Figures

Figure 1-1. EPA's General Ecological Risk Assessment Framework

Figure 2-1. Ecological Exposure CSM

Figure 4–1. Ratio of UCL95 to arithmetic mean for ICS triplicate samples from 2014 UCR Upland and 2015 Bossburg soil studies.

Horizonal dashed line indicates mean ratio

Figure 6-1a: Plant soil bioavailability-adjusted potentially affected fraction (PAF) for cobalt

Background threshold value (BTV) = 20.4 mg/kg

The count of PAFs ≥ 5% shown in figures and maps is less by a small number of samples than the number of BAB HQs ≥ 1 reported in Section 6 tables and text because the Threshold Calculator output shows PAFs < 5% for some samples with BAB HQ >= 1 but close to 1.0.

Figure 6-1b: Plant soil bioavailability-adjusted potentially affected fraction (PAF) for copper

Background threshold value (BTV) = 41.5 mg/kg

The count of PAFs ≥ 5% shown in figures and maps is less by a small number of samples than the number of BAB HQs ≥ 1 reported in Section 6 tables and text because the Threshold Calculator output shows PAFs < 5% for some samples with BAB HQ >= 1 but close to 1.0.

Figure 6-1c: Plant soil bioavailability-adjusted potentially affected fraction (PAF) for lead

Background threshold value (BTV) = 27.2 mg/kg

♥ 2012 Ecology Upland Soil Study
2014 UCR Upland Soil Study
2015 Bossburg Study

Figure 6-1d: Plant soil bioavailability-adjusted potentially affected fraction (PAF) for molybdenum

Background threshold value (BTV) = 1.4 mg/kg

Figure 6-1e: Plant soil bioavailability-adjusted potentially affected fraction (PAF) for nickel

Background threshold value (BTV) = 35 mg/kg

Figure 6-1f: Plant soil bioavailability-adjusted potentially affected fraction (PAF) for zinc

Background threshold value (BTV) = 111 mg/kg

Figure 6-2a: Plant soil screening level (SSL) benchmark comparison for antimony

```
SSL benchmark = 1900 mg/kg
Background threshold value (BTV) = 0.41 mg/kg
```


Fill color: □ ≤ BTV ■ > BTV

Figure 6-2b: Plant soil screening level (SSL) benchmark comparison for arsenic

SSL benchmark = 18 mg/kg Background threshold value (BTV) = 23.3 mg/kg

Fill color: □ ≤ BTV ■ > BTV

 Δ

2014 UCR

Study

Upland Soil

2015

Study

Bossburg

2012 Ecology

Upland Soil

Study

Figure 6-2c: Plant soil screening level (SSL) benchmark comparison for barium

SSL benchmark = 1400 mg/kg Background threshold value (BTV) = 395 mg/kg

BTV shown as dotted line

Fill color: □ ≤ BTV ■ > BTV

 Δ

2014 UCR

Study

Upland Soil

2015

Study

Bossburg

2012 Ecology

Upland Soil

Study

Figure 6-2d: Plant soil screening level (SSL) benchmark comparison for chromium

SSL benchmark = 190 mg/kg Background threshold value (BTV) = 23.8 mg/kg

Fill color: □ ≤ BTV ■ > BTV

 Δ

2014 UCR

Study

Upland Soil

2015

Study

Bossburg

2012 Ecology

Upland Soil

Study

Figure 6-2e: Plant soil screening level (SSL) benchmark comparison for cobalt

SSL benchmark = 13 mg/kg Background threshold value (BTV) = 20.4 mg/kg

Fill color: □ ≤ BTV ■ > BTV

■ 2012 Ecology Upland Soil Study
2014 UCR Upland Soil Study
2015 Bossburg Study

Figure 6-2f: Plant soil screening level (SSL) benchmark comparison for copper

SSL benchmark = 70 mg/kg Background threshold value (BTV) = 41.5 mg/kg

Fill color: □ ≤ BTV ■ > BTV

 Δ

2014 UCR

Study

Upland Soil

2015

Study

Bossburg

2012 Ecology

Upland Soil

Study

Figure 6-2g: Plant soil screening level (SSL) benchmark comparison for lead

SSL benchmark = 120 mg/kg Background threshold value (BTV) = 27.2 mg/kg

Fill color: ■ > BTV

 Δ

2014 UCR

Study

Upland Soil

2015

Study

Bossburg

2012 Ecology

Upland Soil

Study

Figure 6-2h: Plant soil screening level (SSL) benchmark comparison for manganese

SSL benchmark = 220 mg/kg Background threshold value (BTV) = 1240 mg/kg

Fill color: □ ≤ BTV ■ > BTV

 O 2012 Ecology Upland Soil Study
 Study

Figure 6-2i: Plant soil screening level (SSL) benchmark comparison for molybdenum

SSL benchmark = 26 mg/kg Background threshold value (BTV) = 1.4 mg/kg

Fill color: □ ≤ BTV □ > BTV

Figure 6-2j: Plant soil screening level (SSL) benchmark comparison for nickel

SSL benchmark = 38 mg/kg Background threshold value (BTV) = 35 mg/kg

Fill color: □ ≤ BTV ■ > BTV

♥ 2012 Ecology Upland Soil Study
2014 UCR Upland Soil Study
■ 2015 Bossburg Study

Figure 6-2k: Plant soil screening level (SSL) benchmark comparison for selenium

SSL benchmark = 0.52 mg/kg Background threshold value (BTV) = 0.098 mg/kg

Fill color: ■ > BTV

 O 2012 Ecology Upland Soil Study
 Study
 Study
 D 2014 UCR Upland Soil Study
 D 2015 Bossburg Study
 Study
 D
 Study
 Study
 D
 Study
 Study

Figure 6-2I: Plant soil screening level (SSL) benchmark comparison for thallium

SSL benchmark = 3.2 mg/kg Background threshold value (BTV) = 0.56 mg/kg

Figure 6-2m: Plant soil screening level (SSL) benchmark comparison for zinc

SSL benchmark = 160 mg/kg Background threshold value (BTV) = 111 mg/kg

Fill color: □ ≤ BTV ■ > BTV

♥ 2012 Ecology Upland Soil Study
2014 UCR Upland Soil Study
2015 Bossburg Study

Figure 7-1a: Invertebrate soil bioavailability-adjusted potentially affected fraction (PAF) for cobalt

Background threshold value (BTV) = 20.4 mg/kg

The count of PAFs ≥ 5% shown in figures and maps is less by a small number of samples than the number of BAB HQs ≥ 1 reported in Section 7 tables and text because the Threshold Calculator output shows PAFs < 5% for some samples with BAB HQ >= 1 but close to 1.0.

Figure 7-1b: Invertebrate soil bioavailability-adjusted potentially affected fraction (PAF) for copper

Background threshold value (BTV) = 41.5 mg/kg

Figure 7-1c: Invertebrate soil bioavailability-adjusted potentially affected fraction (PAF) for molybdenum

Background threshold value (BTV) = 1.4 mg/kg

The count of PAFs ≥ 5% shown in figures and maps is less by a small number of samples than the number of BAB HQs ≥ 1 reported in Section 7 tables and text because the Threshold Calculator output shows PAFs < 5% for some samples with BAB HQ >= 1 but close to 1.0.

Figure 7-1d: Invertebrate soil bioavailability-adjusted potentially affected fraction (PAF) for zinc

Background threshold value (BTV) = 111 mg/kg

Figure 7-2a: Invertebrate soil screening level (SSL) benchmark comparison for arsenic

SSL benchmark = 150 mg/kg Background threshold value (BTV) = 23.3 mg/kg

Fill color: □ ≤ BTV ■ > BTV

 Δ

2014 UCR

Study

Upland Soil

2015

Study

Bossburg

2012 Ecology

Upland Soil

Study

Figure 7-2b: Invertebrate soil screening level (SSL) benchmark comparison for barium

SSL benchmark = 330 mg/kg Background threshold value (BTV) = 395 mg/kg

BTV shown as dotted line

Fill color: □ ≤ BTV ■ > BTV

2012 Ecology 2014 UCR 2015 Upland Soil Upland Soil Bossburg \bigcirc Δ Study Study Study

Figure 7-2c: Invertebrate soil screening level (SSL) benchmark comparison for chromium

SSL benchmark = 57 mg/kg Background threshold value (BTV) = 23.8 mg/kg

Fill color: □ ≤ BTV ■ > BTV

♥ 2012 Ecology Upland Soil Study
2014 UCR Upland Soil Study
■ 2015 Bossburg Study

Figure 7-2d: Invertebrate soil screening level (SSL) benchmark comparison for cobalt

SSL benchmark = 130 mg/kg Background threshold value (BTV) = 20.4 mg/kg

Fill color: □ ≤ BTV ■ > BTV

 Δ

2014 UCR

Study

Upland Soil

2015

Study

Bossburg

2012 Ecology

Upland Soil

Study

Figure 7-2e: Invertebrate soil screening level (SSL) benchmark comparison for copper

SSL benchmark = 80 mg/kg Background threshold value (BTV) = 41.5 mg/kg

Fill color: □ ≤ BTV ■ > BTV

 Δ

2014 UCR

Study

Upland Soil

2015

Study

Bossburg

2012 Ecology

Upland Soil

Study

Figure 7-2f: Invertebrate soil screening level (SSL) benchmark comparison for manganese

SSL benchmark = 450 mg/kg Background threshold value (BTV) = 1240 mg/kg

Fill color: □ ≤ BTV ■ > BTV

♥ 2012 Ecology Upland Soil Study
2014 UCR Upland Soil Study
■ 2015 Bossburg Study

Figure 7-2g: Invertebrate soil screening level (SSL) benchmark comparison for molybdenum

SSL benchmark = 230 mg/kg Background threshold value (BTV) = 1.4 mg/kg

Fill color: □ ≤ BTV □ > BTV

Figure 7-2h: Invertebrate soil screening level (SSL) benchmark comparison for silver

SSL benchmark = 58 mg/kg Background threshold value (BTV) = 0.078 mg/kg

Fill color: □ ≤ BTV □ > BTV

Figure 7-2i: Invertebrate soil screening level (SSL) benchmark comparison for thallium

SSL benchmark = 30 mg/kg Background threshold value (BTV) = 0.56 mg/kg

Figure 7-2j: Invertebrate soil screening level (SSL) benchmark comparison for vanadium

SSL benchmark = 290 mg/kg Background threshold value (BTV) = 47.5 mg/kg

Fill color: □ ≤ BTV ■ > BTV

 Δ

2014 UCR

Study

Upland Soil

2015

Study

Bossburg

2012 Ecology

Upland Soil

Study

 \bigcirc

Figure 7-2k: Invertebrate soil screening level (SSL) benchmark comparison for zinc

SSL benchmark = 120 mg/kg Background threshold value (BTV) = 111 mg/kg

Fill color: □ ≤ BTV □ > BTV

 Δ

2014 UCR

Study

Upland Soil

2015 Bossburg

Study

2012 Ecology

Upland Soil

Study

 \bigcirc

Border color: $\bigcirc \leq BTV$ > BTV

Figure 8-1b: American robin (invertivorous bird) hazard quotient (HQ) and effective dose (EDx) for aluminum

ED20 shown as dashed line If no data shown, EDx not available for that endpoint

^{♥ 2012} Ecology Upland Soil Study
2014 UCR Upland Soil Upland Soil Study
2015 Bossburg Study

Figure 8-1c: Tree swallow (aerial insectivorous bird) hazard quotient (HQ) and effective dose (EDx) for aluminum

Border color: O ≤ BTV ● > BTV

Border color: $\bigcirc \leq BTV$ > BTV

Figure 8-1e: Black-capped chickadee (omnivorous bird) hazard quotient (HQ) and effective dose (EDx) for aluminum

0.25

0.00

0.001

0.010

0.100

0.01

(OD)

0.10

1.00

0.25

0.00

1.000

²⁰¹² Ecology 2014 UCR 2015 Bossburg Upland Soil \wedge Upland Soil Ο Study Study Study

Border color: $\bigcirc \leq BTV$ > BTV

Border color: $\bigcirc \leq BTV$ > BTV

Figure 8-2c: Tree swallow (aerial insectivorous bird) hazard quotient (HQ) and effective dose (EDx) for barium

Border color: ○ ≤ BTV ● > BTV

Figure 8-2d: American kestrel (carnivorous bird) hazard quotient (HQ) and effective dose (EDx) for barium

Border color: ○ ≤ BTV ● > BTV

Border color: ○ ≤ BTV ● > BTV

Border color: ○ ≤ BTV ● > BTV

Figure 8-3d: American kestrel (carnivorous bird) hazard quotient (HQ) and effective dose (EDx) for cadmium

Border color: ○ ≤ BTV ● > BTV

Border color: $\bigcirc \leq BTV \bigcirc > BTV$

Figure 8-4a: California quail (herbivorous bird) hazard quotient (HQ) and effective dose (EDx) for chromium

Fraction of samples with with HQ \geq 1 shown above each box Points jittered for readability

HQ = 1 shown as dashed line

Effective dose (EDx) with an x percent reduction in the response

Figure 8-4b: American robin (invertivorous bird) hazard quotient (HQ) and effective dose (EDx) for chromium

Fraction of samples with with HQ \geq 1 shown above each box Points jittered for readability

Effective dose (EDx) with an x percent reduction in the response

HQ = 1 shown as dashed line

Effective dose (EDx) with an x percent reduction in the response

Fraction of samples with with HQ \geq 1 shown above each box Points jittered for readability

HQ = 1 shown as dashed line

Effective dose (EDx) with an x percent reduction in the response

ED20 shown as dashed line If no data shown, EDx not available for that endpoint

■ 2012 Ecology Upland Soil Study
2014 UCR Upland Soil Study
2015 Bossburg Study

Border color: $\bigcirc \leq BTV \bigcirc > BTV$

Fraction of samples with with $HQ \ge 1$ shown above each box Points jittered for readability

Effective dose (EDx) with an x percent reduction in the response

Figure 8-5a: California quail (herbivorous bird) hazard quotient (HQ) and effective dose (EDx) for copper

Border color: $\bigcirc \leq BTV$ > BTV

Figure 8-5b: American robin (invertivorous bird) hazard quotient (HQ) and effective dose (EDx) for copper

Border color: $\bigcirc \leq BTV$ > BTV

Figure 8-5c: Tree swallow (aerial insectivorous bird) hazard quotient (HQ) and effective dose (EDx) for copper

Figure 8-5d: American kestrel (carnivorous bird) hazard quotient (HQ) and effective dose (EDx) for copper

Figure 8-5e: Black-capped chickadee (omnivorous bird) hazard quotient (HQ) and effective dose (EDx) for copper

Figure 8-6b: American robin (invertivorous bird) hazard quotient (HQ) and effective dose (EDx) for iron

Figure 8-6d: American kestrel (carnivorous bird) hazard quotient (HQ) and effective dose (EDx) for iron

Border color: $\bigcirc \leq BTV$ > BTV

Border color: $\bigcirc \leq BTV$ > BTV

Figure 8-7a: California quail (herbivorous bird) hazard quotient (HQ) and effective dose (EDx) for lead

Border color: $\bigcirc \leq BTV$ > BTV

Figure 8-7b: American robin (invertivorous bird) hazard quotient (HQ) and effective dose (EDx) for lead

Border color: $\bigcirc \leq BTV \bigcirc > BTV$

Border color: ○ ≤ BTV ● > BTV

Figure 8-7d: American kestrel (carnivorous bird) hazard quotient (HQ) and effective dose (EDx) for lead

Figure 8-7e: Black-capped chickadee (omnivorous bird) hazard quotient (HQ) and effective dose (EDx) for lead

Figure 8-8b: American robin (invertivorous bird) hazard quotient (HQ) and effective dose (EDx) for mercury

Border color: $\bigcirc \leq BTV$ $\bigcirc > BTV$

Figure 8-8d: American kestrel (carnivorous bird) hazard quotient (HQ) and effective dose (EDx) for mercury

Figure 8-8e: Black-capped chickadee (omnivorous bird) hazard quotient (HQ) and effective dose (EDx) for mercury

Border color: $\bigcirc \leq BTV$ $\bigcirc > BTV$

Border color: $\bigcirc \leq BTV \bigcirc > BTV$

Border color: $\bigcirc \leq BTV \bigcirc > BTV$

Border color: $\bigcirc \leq BTV$ $\bigcirc > BTV$

Figure 8-10a: California quail (herbivorous bird) hazard quotient (HQ) and effective dose (EDx) for selenium

Border color: $\bigcirc \leq BTV$ > BTV

Figure 8-10b: American robin (invertivorous bird) hazard quotient (HQ) and effective dose (EDx) for selenium

Figure 8-10c: Tree swallow (aerial insectivorous bird) hazard quotient (HQ) and effective dose (EDx) for selenium

Figure 8-10d: American kestrel (carnivorous bird) hazard quotient (HQ) and effective dose (EDx) for selenium

Figure 8-10e: Black-capped chickadee (omnivorous bird) hazard quotient (HQ) and effective dose (EDx) for selenium

Figure 8-11a: California quail (herbivorous bird) hazard quotient (HQ) and effective dose (EDx) for vanadium

Figure 8-11b: American robin (invertivorous bird) hazard quotient (HQ) and effective dose (EDx) for vanadium

Figure 8-11c: Tree swallow (aerial insectivorous bird) hazard quotient (HQ) and effective dose (EDx) for vanadium

Figure 8-11d: American kestrel (carnivorous bird) hazard quotient (HQ) and effective dose (EDx) for vanadium

Figure 8-11e: Black-capped chickadee (omnivorous bird) hazard quotient (HQ) and effective dose (EDx) for vanadium

Border color: ○ ≤ BTV ● > BTV

Figure 8-12a: California quail (herbivorous bird) hazard quotient (HQ) and effective dose (EDx) for zinc

Border color: $\bigcirc \leq BTV$ > BTV

Figure 8-12b: American robin (invertivorous bird) hazard quotient (HQ) and effective dose (EDx) for zinc

Figure 8-12d: American kestrel (carnivorous bird) hazard quotient (HQ) and effective dose (EDx) for zinc

Figure 8-12e: Black-capped chickadee (omnivorous bird) hazard quotient (HQ) and effective dose (EDx) for zinc

Border color: $\bigcirc \leq BTV \bigcirc > BTV$

Figure 8-13: Cumulative Probability Plots for Metals without TRVs

Fraction of samples with concentrations > BTV shown above each box

Points jittered for readability

Border color: $\bigcirc \leq BTV$ > BTV

Figure 9-1b: Masked shrew (invertivorous mammal) hazard quotient (HQ) and effective dose (EDx) for aluminum

Figure 9-1c: Little brown bat (aerial insectivorous mammal) hazard quotient (HQ) and effective dose (EDx) for aluminum

Figure 9-1d: Short-tailed weasel (carnivorous mammal) hazard quotient (HQ) and effective dose (EDx) for aluminum

Figure 9-1e: Gray wolf (carnivorous mammal) hazard quotient (HQ) and effective dose (EDx) for aluminum

Figure 9-1f: Deer mouse (omnivorous mammal) hazard quotient (HQ) and effective dose (EDx) for aluminum

Figure 9-2a: Meadow vole (herbivorous mammal) hazard quotient (HQ) and effective dose (EDx) for cadmium

Border color: $\bigcirc \leq BTV \bigcirc > BTV$

Figure 9-2b: Masked shrew (invertivorous mammal) hazard quotient (HQ) and effective dose (EDx) for cadmium

Figure 9-2c: Little brown bat (aerial insectivorous mammal) hazard quotient (HQ) and effective dose (EDx) for cadmium

Figure 9-2d: Short-tailed weasel (carnivorous mammal) hazard quotient (HQ) and effective dose (EDx) for cadmium

Figure 9-2e: Gray wolf (carnivorous mammal) hazard quotient (HQ) and effective dose (EDx) for cadmium

Figure 9-2f: Deer mouse (omnivorous mammal) hazard quotient (HQ) and effective dose (EDx) for cadmium

Border color: $\bigcirc \leq BTV$ $\bigcirc > BTV$

Figure 9-3c: Little brown bat (aerial insectivorous mammal) hazard quotient (HQ) and effective dose (EDx) for chromium

Figure 9-3d: Short-tailed weasel (carnivorous mammal) hazard quotient (HQ) and effective dose (EDx) for chromium

Figure 9-3e: Gray wolf (carnivorous mammal) hazard quotient (HQ) and effective dose (EDx) for chromium

Figure 9-3f: Deer mouse (omnivorous mammal) hazard quotient (HQ) and effective dose (EDx) for chromium

Border color: $\bigcirc \leq BTV$ > BTV

Border color: $\bigcirc \leq BTV$ > BTV

Figure 9-4d: Short-tailed weasel (carnivorous mammal) hazard quotient (HQ) and effective dose (EDx) for copper

Figure 9-4e: Gray wolf (carnivorous mammal) hazard quotient (HQ) and effective dose (EDx) for copper

Figure 9-4f: Deer mouse (omnivorous mammal) hazard quotient (HQ) and effective dose (EDx) for copper

Figure 9-5d: Short-tailed weasel (carnivorous mammal) hazard quotient (HQ) and effective dose (EDx) for iron

Figure 9-5e: Gray wolf (carnivorous mammal) hazard quotient (HQ) and effective dose (EDx) for iron

Figure 9-5f: Deer mouse (omnivorous mammal) hazard quotient (HQ) and effective dose (EDx) for iron

Figure 9-6a: Meadow vole (herbivorous mammal) hazard quotient (HQ) and effective dose (EDx) for lead

Figure 9-6b: Masked shrew (invertivorous mammal) hazard quotient (HQ) and effective dose (EDx) for lead

Figure 9-6c: Little brown bat (aerial insectivorous mammal) hazard quotient (HQ) and effective dose (EDx) for lead

Border color: $\bigcirc \leq BTV$ > BTV

Figure 9-6d: Short-tailed weasel (carnivorous mammal) hazard quotient (HQ) and effective dose (EDx) for lead

Figure 9-6e: Gray wolf (carnivorous mammal) hazard quotient (HQ) and effective dose (EDx) for lead

Figure 9-6f: Deer mouse (omnivorous mammal) hazard quotient (HQ) and effective dose (EDx) for lead

Figure 9-7b: Masked shrew (invertivorous mammal) hazard quotient (HQ) and effective dose (EDx) for mercury

Figure 9-7d: Short-tailed weasel (carnivorous mammal) hazard quotient (HQ) and effective dose (EDx) for mercury

Border color: $\bigcirc \leq BTV$ $\bigcirc > BTV$

Figure 9-7e: Gray wolf (carnivorous mammal) hazard quotient (HQ) and effective dose (EDx) for mercury

Border color: ○ ≤ BTV ● > BTV

Figure 9-7f: Deer mouse (omnivorous mammal) hazard quotient (HQ) and effective dose (EDx) for mercury

Figure 9-8b: Masked shrew (invertivorous mammal) hazard quotient (HQ) and effective dose (EDx) for molybdenum

Figure 9-8c: Little brown bat (aerial insectivorous mammal) hazard quotient (HQ) and effective dose (EDx) for molybdenum

Figure 9-8d: Short-tailed weasel (carnivorous mammal) hazard quotient (HQ) and effective dose (EDx) for molybdenum

Border color: $\bigcirc \leq BTV$ $\bigcirc > BTV$

Figure 9-8e: Gray wolf (carnivorous mammal) hazard quotient (HQ) and effective dose (EDx) for molybdenum

Figure 9-8f: Deer mouse (omnivorous mammal) hazard quotient (HQ) and effective dose (EDx) for molybdenum

Border color: ○ ≤ BTV ● > BTV

Figure 9-9c: Little brown bat (aerial insectivorous mammal) hazard quotient (HQ) and effective dose (EDx) for selenium

 2012 Ecology Upland Soil Study
2014 UCR Upland Soil Upland Soil Study
2015 Bossburg Study

Figure 9-9d: Short-tailed weasel (carnivorous mammal) hazard quotient (HQ) and effective dose (EDx) for selenium

Figure 9-9f: Deer mouse (omnivorous mammal) hazard quotient (HQ) and effective dose (EDx) for selenium

Border color: ○ ≤ BTV ● > BTV

Figure 9-10c: Little brown bat (aerial insectivorous mammal) hazard quotient (HQ) and effective dose (EDx) for thallium

Figure 9-10d: Short-tailed weasel (carnivorous mammal) hazard quotient (HQ) and effective dose (EDx) for thallium

Figure 9-10e: Gray wolf (carnivorous mammal) hazard quotient (HQ) and effective dose (EDx) for thallium

Figure 9-10f: Deer mouse (omnivorous mammal) hazard quotient (HQ) and effective dose (EDx) for thallium

Figure 9-11b: Masked shrew (invertivorous mammal) hazard quotient (HQ) and effective dose (EDx) for zinc

Border color: ○ ≤ BTV ● > BTV

Figure 9-11c: Little brown bat (aerial insectivorous mammal) hazard quotient (HQ) and effective dose (EDx) for zinc

Figure 9-11d: Short-tailed weasel (carnivorous mammal) hazard quotient (HQ) and effective dose (EDx) for zinc

Border color: ○ ≤ BTV ● > BTV

Figure 9-11e: Gray wolf (carnivorous mammal) hazard quotient (HQ) and effective dose (EDx) for zinc

Figure 9-11f: Deer mouse (omnivorous mammal) hazard quotient (HQ) and effective dose (EDx) for zinc

Border color: $\bigcirc \leq BTV$ $\bigcirc > BTV$

Figure 9-12: Cumulative Probability Plots for Metals without TRVs

Fraction of samples with concentrations > BTV shown above each box Points jittered for readability

BTV shown as dotted line