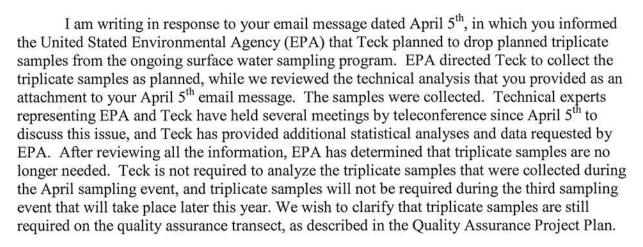


UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION 10

1200 Sixth Avenue, Suite 900 Seattle, Washington 98101-3140

April 21, 2010


CERTIFIED MAIL – RETURN RECEIPT REQUESTED

Reply To: ECL-111

Marko Adzic Teck American Incorporated 501 North Riverpoint Boulevard, Suite 300 Spokane, Washington 99202

RE: Triplicate Samples in the Surface Water Sampling Program

Dear Mr. Adzic,

However, the timing, format, and language of Teck's email notification on this issue were unacceptable. The email arrived the day before the first triplicate samples were to be collected and informed EPA that Teck had unilaterally decided not to collect triplicate samples. Teck must get EPA approval for any changes to approved sampling programs. We understand that Teck spent more than \$150,000 collecting triplicate samples that will never be analyzed. This is unfortunate, but it was Teck's responsibility to provide EPA the sampling data analysis with adequate time to evaluate the analysis in order to determine whether triplicate sampling was necessary. Validated surface water data from the first round of sampling has been available for months now. Teck could have brought this analysis to EPA in a timely manner.

Sincerely,

Helen 14 Botteher

Helen Bottcher Project Manager

cc: Dan Audet, U.S. Department of the Interior

Patti Bailey, Confederated Tribes of the Colville Reservation

Randy Connolly, Spokane Tribe of Indians

John Roland, Washington State Department of Ecology

David Godlewski, Teck

EXTERNAL MEMORANDUM

To: Bruce Duncan, EPA

FROM: Melanie Edwards

DATE: April 13, 2010 PROJECT: 0900083.013

SUBJECT: Statistical analysis of surface water samples using variability of field triplicate

samples

As discussed on the conference call on April 8th, I have conducted a statistical analysis of a selected few metals to assess whether field triplicate sampling should be continued at transects CAN1 and TC3. EPA indicated on the aforementioned conference call that the currently available field triplicate samples represent an agreed upon level of effort and, therefore, could be used as the residual variability when assessing significant interactions between locations and depths within a transect. The materials associated with this memo provide a summary of the analysis conducted for three selected metals, specifically cadmium, cobalt, and manganese that lead to the conclusion of no significant and meaningful interaction terms.

Table 1 provides a summary of the metals and metalloids measured in surface water samples, including both undisturbed and disturbed samples. The three metals selected for analysis have only a few undetected results and one or more samples with concentrations above the lowest criterion. Dissolved manganese was not evaluated because a large majority of samples had undetected concentrations.

Table 2 provides an overview of the analysis of variance models fit to each metal. Initially, the complete model was fit, including a term for transect differences as well as terms for location, depth, and their interaction within each transect. In this manner, the depth and location differences were evaluated within each transect. The full ANOVA model was simplified sequentially be removing each non-significant term individually then refitting the resulting model. *P*-values for each term in each of the models are provided in Table 2. Pages A1-A9 provide the original statistical output with several plots of the residuals from the final model for each metal. Total and dissolved manganese concentrations were log₁₀ transformed to meet the method assumptions.

Multiple comparisons followed the final ANOVA model for each metal to assess differences between locations and/or depths within each transect. A Bonferroni adjustment was used to account for the number of comparisons in order to achieve an overall 0.05 significance level,

Statistical analysis of surface water samples using variability of field triplicate samples April 13, 2010
Page 2

i.e., 95 percent confidence. Table 3 provides the *P*-values for the significant terms in the final ANOVA model for each metal and a summary of the significant differences found between locations and depths at each transect. The sample design does not provide enough degrees of freedom to assess pairwise comparisons of the interaction term. A significant interaction term indicates differences between locations within transects may not be consistent for all depths. Alternatively, it could indicate that differences between depths within transects may not be consistent for all three locations. When the interaction term was significant, separate ANOVA models were evaluated based on subsets of the data, specifically evaluating depth differences for each location individually and evaluating location differences for each depth individually. The significance of the statistical comparisons must be interpreted jointly with an assessment of the magnitude of the difference and number of undetected results to evaluate how "real" (or meaningful) it is.

The only significant interaction term was for dissolved cobalt. Comparisons within transects identified only one significant difference between near bottom and nearshore samples on the left bank of TC2. Within each transect the range in concentration was $0.016 \,\mu\text{g/L}$ or less when calculated with undetected results included at the full detection limit $(0.024 - 0.028 \,\mu\text{g/L})$. The significant difference identified is because the undetected concentrations were included at half the detection limit in the statistical analysis $(0.012 - 0.014 \,\mu\text{g/L})$. Table 4 shows the range in concentrations measured within each transect, with undetected results at half the detection limit.

Table 5 provides the measured concentrations by sample for the three metals evaluated. Figures 1-3 show the measured concentrations by transect, along with the appropriate comparison criteria. Symbols distinguish between depths (near-surface, nearshore, and near-bottom) within each area of a transect (i.e., left bank, mid-channel, and right bank) as well as indicating undetected concentration samples.

These three metals reasonably represent patterns among many of the other metals/chemicals. Total manganese was detected at a fairly wide range of concentrations whereas cadmium and cobalt were generally detected over a smaller range. All three exceeded the minimum comparison criteria level. The small range in cadmium and cobalt concentrations resulted in detectable differences that may not be meaningful. The only significant interaction term between location and depth was for dissolved cobalt, which was due to undetected results included at half the detection limit

Overall, the evaluation of these three metals indicates the field triplicate samples provided the variability estimate necessary for comparisons between depths and locations by transect. However, it is recommended that field triplicate samples be discontinued in the later rounds of sampling. The analysis included here indicated no significant and meaningful interaction terms, therefore the multiple depth and/or location samples provide the necessary replication for statistical assessments. Further, the second and third rounds of surface water sampling will provide even more samples.

Table 1. Summary of concentrations measured in surface water samples (including disturbed samples)

									Criteria		
Metals and Metalloids (μ g/L)	Ν	Detects	% ND	Min. ^a	All ^a	Detect	Median ^b	Mean ^b	AWQC	DWS	RBC
Dissolved aluminum	96	11	89	1.2	18.9	18.9	2.0	2.4	87		
Total aluminum	96	56	42	5.5	469	469	10.6	35.9		50-200	23
Dissolved antimony	96	91	5	0.018	0.23	0.23	0.18	0.17			
Total antimony	96	91	5	0.020	1.1	1.1	0.18	0.18		6	0.34
Dissolved arsenic	96	34	65	0.075	0.90	0.70	0.25	0.31	150		
Total arsenic	96	12	88	0.083	1.1	0.70	0.25	0.26		10	0.013
Dissolved inorganic arsenic	62	62	0	0.053	0.75	0.75	0.34	0.34	150		
Total inorganic arsenic	62	62	0	0.067	1.0	1.0	0.37	0.37		10	0.013
Dissolved barium	96	96	0	17.6	58.6	58.6	29.9	31.0			
Total barium	96	96	0	18.0	59.7	59.7	31.1	32.1		2,000	3.3
Dissolved beryllium	96	0	100	0.0060	0.0060		0.0030	0.0030			
Total beryllium	96	13	86	0.0047	0.029	0.029	0.0030	0.0041		4	0.029
Dissolved bismuth	62	4	94	0.0031	0.0050	0.0045	0.0025	0.0026			
Total bismuth	62	7	89	0.0033	0.0063	0.0063	0.0025	0.0028			
Dissolved boron	63	7	89	1.7	9.4	3.6	1.5	1.9			
Total boron	63	11	83	1.5	11.9	4.9	1.7	2.1	0.05	6,000	130
Dissolved cadmium	96	87	9	0.0037	0.028	0.028	0.010	0.012	0.25		
Total cadmium	96	91	5	0.0062	0.27	0.27	0.015	0.019		5	0.039
Dissolved calcium	96	96	0	15.7	20.3	20.3	18.2	18.2			
Total calcium	96	96	0	15.8	20.5	20.5	18.2	18.1			
Dissolved cerium	62	1	98	0.0090	0.015	0.015	0.0045	0.0047			
Total cerium	62 62	62 59	0	0.013 0.0067	0.23 0.020	0.23 0.020	0.029 0.010	0.035 0.013			
Dissolved cesium Total cesium	62	62	5 0		0.020	0.020		0.013			
Dissolved chromium	96	62 8	92	0.010 0.030	0.030	0.030	0.020 0.055	0.016	 74		
Total chromium	96	16	83	0.030	1.2	1.2	0.055	0.036		100	100
Dissolved cobalt	96	89	7	0.036	0.084	0.084	0.070	0.10			100
Total cobalt	96	95	1	0.021	0.004	0.004	0.034	0.064			0.025
Dissolved copper	96	9	91	0.023	0.84	0.64	0.26	0.007	9		0.020
Total copper	96	82	15	0.19	14.9	14.9	0.60	0.82		1,000	34
Dissolved dysprosium	62	0	100	0.0070	0.0070		0.0035	0.0035			
Total dysprosium	62	5	92	0.00533	0.014	0.014	0.0035	0.0039			
Dissolved erbium	62	0	100	0.010	0.010		0.0050	0.0050			
Total erbium	62	0	100	0.010	0.010		0.0050	0.0050			
Dissolved europium	62	23	63	0.0040	0.011	0.011	0.0030	0.0044			
Total europium	62	35	44	0.0040	0.015	0.015	0.006	0.006			
Dissolved gadolinium	62	0	100	0.010	0.010		0.0050	0.0050			
Total gadolinium	62	4	94	0.00667	0.020	0.020	0.0050	0.0054			
Dissolved gallium	62	0	100	0.020	0.020		0.010	0.010			
Total gallium	62	3	95	0.017	0.040	0.040	0.010	0.011			
Dissolved germanium	62	4	94	0.012	0.13	0.031	0.015	0.019			
Total germanium	62	9	85	0.017	0.18	0.049	0.025	0.026			
Dissolved gold	63	3	95	0.030	0.14	0.048	0.025	0.027			
Total gold	63	8	87	0.028	0.17	0.073	0.025	0.035			
Dissolved holmium	62	0	100	0.0090	0.0090		0.0045	0.0045			
Total holmium	62	0	100	0.0090	0.0090		0.0045	0.0045			
Dissolved indium	62	0	100	0.0060	0.0060		0.0030	0.0030			
Total indium	62	2	97	0.0045	0.0070	0.0070	0.0030	0.0031			
Dissolved iron	88	16	82	2.1	19.9	19.9	1.5	2.1	1,000		
Total iron	96	76	21	3.0	1,477	1,477	23.1	79.9		300	600
Dissolved lanthanum	62	5	92	0.0040	0.0080	0.0080	0.0030	0.0032			
Total lanthanum	62	62	0	0.011	0.12	0.12	0.019	0.022			
Dissolved lead	96	6	94	0.0033	0.030	0.028	0.0070	0.0072	2.5		
Total lead	96	44	54	0.023	17.2	17.2	0.060	0.34		15	15
Dissolved lithium	63	12	81	1.4	3.9	2.7	1.0	1.3			
Total lithium	63	14	78	1.3	3.4	3.4	1.0	1.2			17
Dissolved lutetium	62	0	100	0.0060	0.0060		0.0030	0.0030			
Total lutetium	62	1	98	0.0045	0.0060	0.0045	0.0030	0.0030			

Table 1. Cont.

Metalsa Metalloids (µq) N Delects % ND Min.* NIP Delect	Maximum								Criteria			
Dissolved magnesium	Motals and Motalloids (u.g/l.)	NI	Dotocto	0/. ND	Min ^a			Medianb	Meanb			DRC
Total magnesium												
Dissolved manganese	<u> </u>											
Total manganese												
Dissolved mercury	· ·											
Total mercury												
Dissolved milybdenum 96 96 0 0.52 0.72 0.72 0.58 0.59 40 4.3												
Total molybdenum			_									
Dissolved neodymirum 62 0 100 0.020 0.020 0.020 0.010												4.3
Total neodymium												
Dissolved nickel 96 83 14 0.16 0.58 0.58 0.39 0.35 52 100 17 12 12 0.42 0.40 0 17 10 10							0.11					
Total nickel 96 87 9 0.17 1.2 1.2 0.42 0.40 100 17 17 17 17 17 17 1	-									52		
Dissolved niobium				9							100	17
Total potassium												
Total potassium				92					0.013			
Total potassium				0								
Total prasepodymium Car	-	96	96	0	528	851	851		646			
Total praseodymium 62 62 70 0.044 0.024 0.0030 0.0043	•	62	0	100	0.0060	0.0060		0.0030	0.0030			
Dissolved rubidium		62	14	77	0.0040	0.024	0.024	0.0030	0.0043			
Dissolved samarium		62	62	0	0.72	1.1	1.1	0.98	0.97			
Dissolved scandium	Total rubidium	62	62	0	0.80	1.1	1.1	1.0	1.0			
Dissolved scandium 62 53 15 0.077 0.36 0.36 0.25 0.21 Total scandium 62 54 13 0.094 0.41 0.41 0.26 0.23 Dissolved selenium 96 5 95 0.23 0.60 0.50 0.15 0.18 5 Total selenium 96 3 97 0.21 0.50 0.38 0.15 0.16 50 4.3 Dissolved silver 96 0 100 0.0040 0.0011 0.0020 0.0021 1.6 Total silver 96 2 98 0.0040 0.037 0.037 0.0020 0.0024 100 4.3 Dissolved sodium 96 96 0 1.233 2.450 2.450 1.770 1.774 Total silver 96 6 0 1.233 2.450 2.450 1.770 1.774 Dissolved strontium 63 63 0 62.6 107 107 94.8 93.7 Dissolved strontium 59 4 93 0.066 0.012 0.012 0.0040 0.0043 Total stontium 59 4 93 0.066 0.012 0.012 0.0040 0.0043 Total tantalum 59 4 93 0.066 0.012 0.012 0.0040 0.0043 Dissolved tellurium 62 0 100 0.050 0.070 0.025 0.025 Dissolved terbium 62 0 100 0.050 0.070 0.025 0.025 Dissolved terbium 62 0 100 0.0070 0.0070 0.0035 0.0035 Dissolved thallium 96 18 81 0.0049 0.056 0.042 0.0043 0.0043 Total thorium 63 2 97 0.0058 0.057 0.080 0.0035 0.0035 Total thorium 63 2 97 0.0058 0.057 0.080 0.0030 0.0043 Dissolved thinium 62 0 100 0.080 0.080 0.080 0.0030 0.0040 Dissolved tinium 62 0 100 0.080 0.080 0.080 0.0030 0.0040 Dissolved tinium 63 1 98 0.32 1.0 0.080 0.080 0.0030 0.0040 Dissolved tinium 63 1 98 0.32 0.010 0.080 0.080 0.010 0.0040 0.0040 Dissolved tinium 62 6 90 0.050 0.045 0.060 0.010 0.040 0.	Dissolved samarium	62	0	100	0.0080	0.0080		0.0040	0.0040			
Total scandium	Total samarium	62	5	92	0.0065	0.019	0.019	0.0040	0.0046			
Dissolved selenium	Dissolved scandium	62	53	15	0.077	0.36	0.36	0.25	0.21			
Total selenium 96 3 97 0.21 0.50 0.38 0.15 0.16 50 4.3 Dissolved silver 96 2 98 0.0040 0.037 0.0020 0.0024 100 4.3 Dissolved sodium 96 96 0 1.233 2.450 2.450 1.770 1.774 Total sodium 96 96 0 1.263 2.500 1.718 1.752 Dissolved strontium 63 63 0 62.6 107 107 94.8 93.7 4,000 520 Dissolved strontium 63 63 0 63.5 109 109 94.1 93.7 4,000 520 Dissolved tantalum 59 4 93 0.060 0.012 0.012 0.004 0.0043 Dissolved talllurium 62 </td <td>Total scandium</td> <td>62</td> <td>54</td> <td>13</td> <td>0.094</td> <td>0.41</td> <td>0.41</td> <td>0.26</td> <td>0.23</td> <td></td> <td></td> <td></td>	Total scandium	62	54	13	0.094	0.41	0.41	0.26	0.23			
Dissolved silver 96 0 100 0.0040 0.011 0.0020 0.0021 1.6 1- Total silver 96 2 98 0.0040 0.037 0.0020 0.0024 100 4.3 Dissolved sodium 96 96 0 1,233 2,450 2,500 1,770 1,774 Dissolved strontium 63 63 0 62.6 107 107 94.8 93.7 4,000 520 Dissolved tantalum 59 4 93 0.066 0.012 0.012 0.0040 0.0043 2.0 100 0.050 0.013 0.011 0.0040 0.0043 1.0 0.0043 1.0 0.0043 1.0 0.0043	Dissolved selenium	96	5	95	0.23	0.60	0.50	0.15	0.18	5		
Total silver 96 2 98 0.0040 0.037 0.037 0.0020 0.024 100 4.3 Dissolved sodium 96 96 0 1,233 2,500 2,450 1,770 1,776 Dissolved strontium 63 63 0 62.6 107 107 94.8 93.7 Total strontium 63 63 0 63.5 109 109 94.1 93.7 4,000 520 Dissolved tantalum 59 4 93 0.0060 0.012 0.014 0.044 0.043 Total tantalum 62 0 100 0.050 0.070 0.025 0.025 Dissolved tellurium 62 1 98 0.050 0.59 0.59 0.025 0.035 Dissolved trallium <td>Total selenium</td> <td>96</td> <td>3</td> <td>97</td> <td>0.21</td> <td>0.50</td> <td>0.38</td> <td>0.15</td> <td>0.16</td> <td></td> <td>50</td> <td>4.3</td>	Total selenium	96	3	97	0.21	0.50	0.38	0.15	0.16		50	4.3
Dissolved sodium 96 96 0 1,233 2,450 2,450 1,770 1,774 Total sodium 96 96 0 1,263 2,500 2,500 1,718 1,752 Dissolved strontium 63 63 0 62.6 107 107 94.8 93.7 4,000 520 Dissolved tantalum 59 4 93 0.0066 0.012 0.012 0.0040 0.0043 Total strontium 59 4 93 0.0066 0.012 0.012 0.0040 0.0043 Total tantalum 59 4 93 0.0066 0.013 0.011 0.0040 0.0043 Dissolved tellurium 62 0 100 0.050 0.070 0.025 0.025 Total tellurium 62 1 98 0.050 0.59 0.59 0.025 0.034 Total terbium 62 0 100 0.0070 0.0070 0.0035 0.0035 Total terbium 62 0 100 0.0070 0.0070 0.0035 0.0035 Total terbium 96 18 81 0.0049 0.056 0.042 0.0095 0.013 Total thallium 96 20 79 0.0050 0.048 0.042 0.0095 0.014 2 0.06 Dissolved thorium 63 16 75 0.0040 0.061 0.061 0.0043 0.0066 Total thorium 62 0 100 0.0080 0.0080 0.0040 0.0040 Dissolved tinlium 62 0 100 0.0080 0.0080 0.0040 0.0040 Total tin dilum 62 0 100 0.0080 0.0080 0.0040 0.0040 Dissolved tin dilum 62 0 100 0.0080 0.0080 0.0040 0.0040 Total tin dilum 63 1 98 0.32 1.0 0.32 0.20 0.011 Dissolved tingsten 62 6 90 0.050 0.45 0.055 0.050 0.073 Dissolved turgsten 62 6 90 0.050 0.045 0.050 0.040 0.040 Dissolved vanadium 96 25 74 0.073 1.4 1.4 0.12 0.18 0.48 Dissolved vanadium 96 25 74 0.073 1.4 1.4 0.12 0.18 0.040 Dissolved vanadium 62 1 98 0.0060 0.0080 0.0080 0.0040 0.0040 0.0040 Dissolved	Dissolved silver	96	0	100	0.0040	0.011		0.0020	0.0021	1.6		
Total sodium 96 96 0 1,263 2,500 2,500 1,718 1,752 Dissolved strontium 63 63 0 62.6 107 107 94.8 93.7	Total silver	96	2	98	0.0040	0.037	0.037	0.0020	0.0024		100	4.3
Dissolved strontium	Dissolved sodium	96	96	0	1,233	2,450	2,450	1,770	1,774			
Total strontium 63 63 0 63.5 109 109 94.1 93.7 4,000 520 Dissolved tantalum 59 4 93 0.0060 0.012 0.0040 0.0043 Total tantalum 59 4 93 0.0060 0.013 0.011 0.0040 0.0043 Dissolved tellurium 62 0 100 0.050 0.59 0.59 0.025 0.034 Dissolved terbium 62 0 100 0.0070 0.0070 0.035 0.0035 Dissolved terbium 62 0 100 0.0070 0.0070 0.0035 0.0035 Total terbium 62 0 100 0.0050 0.042 0.012 0.013 Dissolved thorium <	Total sodium			0		2,500	2,500					
Dissolved tantalum												
Total tantalum 59 4 93 0.0060 0.013 0.011 0.0040 0.0043 Dissolved tellurium 62 0 100 0.0550 0.070 0.025 0.025 <td></td> <td>4,000</td> <td>520</td>											4,000	520
Dissolved tellurium												
Total tellurium 62 1 98 0.050 0.59 0.59 0.025 0.034 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>0.011</td><td></td><td></td><td></td><td></td><td></td></t<>							0.011					
Dissolved terbium												
Total terbium 62 0 100 0.0070 0.0070 0.0035 0.0035 Dissolved thallium 96 18 81 0.0049 0.056 0.042 0.0095 0.013 <			-				0.59					
Dissolved thallium 96 18 81 0.0049 0.056 0.042 0.0095 0.013			-									
Total thallium 96 20 79 0.0050 0.048 0.042 0.012 0.014 2 0.06 Dissolved thorium 63 2 97 0.00583 0.057 0.0080 0.0030 0.0043 -												
Dissolved thorium 63 2 97 0.00583 0.057 0.0080 0.0030 0.0043												
Total thorium 63 16 75 0.0040 0.061 0.061 0.0043 0.0066												0.06
Dissolved thulium 62 0 100 0.0080 0.0080 0.0040 0.0040												
Total thulium 62 0 100 0.0080 0.0080 0.0040 0.0040												
Dissolved tin 62 3 95 0.013 0.080 0.018 0.010 0.011 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
Total tin 63 5 92 0.017 0.060 0.060 0.010 0.012												
Dissolved titanium 63 1 98 0.32 1.0 0.32 0.20 0.21 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>												
Total titanium 63 11 83 0.30 8.7 8.7 0.40 0.60 <												
Dissolved tungsten 62 6 90 0.050 0.45 0.25 0.050 0.073												
Total tungsten 62 7 89 0.042 0.20 0.16 0.030 0.042 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>												
Dissolved uranium 100 100 0 0.41 0.57 0.57 0.48 0.48 0.86 Dissolved ytterbium 62 0 100 0.0080 0.0080 0.0040 0.0040 0.0040 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>												
Total uranium 100 100 0 0.41 0.63 0.63 0.49 0.49 0.86 Dissolved ytterbium 62 0 100 0.0080 0.0080 0.0040 0.0040 0.86 Dissolved yttrium 62 1 98 0.0060 0.0080 0.0060 0.0040 0.0040 Dissolved yttrium 62 31 50 0.0067 0.010 0.010 0.0058 0.0073	_										 -	
Dissolved vanadium 96 62 35 0.10 0.33 0.23 0.13 0.14 0.86 Total vanadium 96 25 74 0.073 1.4 1.4 0.12 0.18 0.86 Dissolved ytterbium 62 0 100 0.0080 0.0080 0.0040 0.0040 Total ytterbium 62 1 98 0.0060 0.0080 0.0060 0.0040 0.0040 0.086 0.0040 <												
Total vanadium 96 25 74 0.073 1.4 1.4 0.12 0.18 0.86 Dissolved ytterbium 62 0 100 0.0080 0.0080 0.0040 0.0040												
Dissolved ytterbium 62 0 100 0.0080 0.0080 0.0040 0.0040												0.06
Total ytterbium 62 1 98 0.0060 0.0080 0.0060 0.0040 0.0040 Dissolved yttrium 62 31 50 0.0067 0.010 0.010 0.0058 0.0073												0.00
Dissolved yttrium 62 31 50 0.0067 0.010 0.010 0.0058 0.0073	-											
·												
	Total yttrium	62	62	0	0.0007	0.010	0.010	0.0036	0.0073		=-	

Table 1. Cont.

				Maximum					Criteria		
Metals and Metalloids (μ g/L)	Ν	Detects	% ND	Min. ^a	All ^a	Detect	Median ^b	Mean ^b	AWQC	DWS	RBC
Dissolved zinc	96	7	93	0.20	3.9	0.83	0.40	0.45	120		
Total zinc	96	16	83	0.32	126	126	0.60	2.97		2,000	260

^a Calculated with non-detected results at the full detection limit.

AWQC - Chronic ambient water quality criteria

DWS - U.S. EPA drinking water standard

RBC - Spokane Tribe risk based concentration drinking water standard

^b Calculated with non-detected results at half the detection limit.

^c Criterion was only exceeded by unfiltered disturbed surface water samples.

Table 2. Summary of analysis of variance model assessments

	Cad	mium	Co	balt	Mang	janese
·	Total	Dissolved	Total	Dissolved	Total	Dissolved
Number of results	129	129	128	127	128	127
Number of undetected results	8	23	1	9	0	117
Percent undetected results	6.2	17.8	0.8	7.1	0	92.1
P-values for sequential ANOVA	models					
Full model						
Transect	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	NA
Depth w/in transect	0.1206	0.1204	0.0003	0.0126	< 0.0001	
Location w/in transect	0.0122	0.0121	0.0001	< 0.0001	0.0126	
Interaction w/in transect	0.4277	0.1103	0.0700	0.0055	0.0551	
Without interaction						
Transect	< 0.0001	< 0.0001	< 0.0001	NA	< 0.0001	NA
Depth w/in transect	0.1130	0.2134	0.0007		< 0.0001	
Location w/in transect	0.0088	0.0252	0.0002		0.0381	
Type difference model						
Transect	NA	NA	NA	NA	NA	NA
Depth w/in transect						
Side difference model						
Transect	< 0.0001	< 0.0001	NA	NA	NA	NA
Location w/in transect	0.0171	0.0054				

Note: Disturbed samples and samples from CAN2 were excluded from analysis.

Values for the ANOVA models are the P-values for each term in the model, rounded to four decimal places Results of multiple comparisons are reportd in Table 3.

ANOVA - Analysis of variance

NA - Not analyzed

Table 3. Summary of multiple comparisons between depths and locations

		Cac	lmium	С	obalt	Mang	janese
		Total	Dissolved	Total	Dissolved	Total	Dissolved
P-values from	om final ANOVA model						
Transe	ct	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	NA ^a
Depth v	v/in transect	ns	ns	0.0007	0.0126	< 0.0001	
Locatio	n w/in transect	0.0171	0.0054	0.0002	< 0.0001	0.0381	
Interact	ion w/in transect	ns	ns	ns	0.0055	ns	
Location cor	mparisons						
CAN1	Left - Right						
TC10	Left - Right						
TC9	Left - Right						
TC1	Left - Mid-channel						
	Left - Right						
	Mid-channel - Right						
TC2	Left - Mid-channel						
102	Left - Right			Signif.			
	Mid-channel - Right	Signif.	Signif.	Signif.			
TC3	Left - Mid-channel		oigiiii.	oigiiii.			
100	Left - Right			Signif.			
	Mid-channel - Right						
TC4	Left - Mid-channel						
104	Left - Right						
	Mid-channel - Right						
TC5	Left - Mid-channel						
100	Left - Right						
	Mid-channel - Right						
TC6	Left - Mid-channel						
100	Left - Right						
	Mid-channel - Right						
TC7	Left - Mid-channel						
107	Left - Right						
	Mid-channel - Right						
	_						
Depth comp							
CAN1	Bottom - Shore	NA	NA				
	Bottom - Surface						
	Shore - Surface						
TC10	Bottom - Shore						
	Bottom - Surface						
	Shore - Surface						
TC9	Bottom - Shore						
	Bottom - Surface						
	Shore - Surface						
TC1	Bottom - Shore						
	Bottom - Surface						
	Shore - Surface						

Table 3. Cont.

		Ca	dmium	C	Cobalt	Man	ganese
		Total	Dissolved	Total	Dissolved	Total	Dissolved
Depth com	parisons (cont.)						
TC2	Bottom - Shore				Signif. ^b		
	Bottom - Surface						
	Shore - Surface						
TC3	Bottom - Shore						
	Bottom - Surface						
	Shore - Surface			Signif.			
TC4	Bottom - Shore						
	Bottom - Surface					Signif.	
	Shore - Surface						
TC5	Bottom - Shore						
	Bottom - Surface					Signif.	
	Shore - Surface						
TC6	Bottom - Shore						
	Bottom - Surface					Signif.	
	Shore - Surface			Signif.			
TC7	Bottom - Shore						
	Bottom - Surface					Signif.	
	Shore - Surface						

ANOVA - Analysis of variance

NA - Not analyzed

ns - Not significant at 0.05 level.

^{-- -} Not significant at overall 0.05 level.

^a - Not analyzed because 92 percent of results were undetected.

^b - Difference is significant only for the left samples.

Table 4. Range of measured concentrations by transect

	Total	Cadmium (<i>μ</i>	rg/L)	Dissolved Cadmium (µg/L)				
Transect	Min.	Max.	Difference	Min.	Max.	Difference		
CAN1	0.003 <i>U</i>	0.019	0.017	0.003 <i>U</i>	0.010	0.008		
CAN2	0.009 <i>U</i>	0.023	0.014	0.008 <i>U</i>	0.015 <i>U</i>	ND		
TC10	0.021	0.033	0.012	0.018	0.028	0.010		
TC9	0.016	0.031	0.015	0.009	0.024	0.015		
TC1	0.013 <i>U</i>	0.031	0.019	0.009 <i>U</i>	0.013	0.004		
TC2	0.008 <i>U</i>	0.020	0.013	0.008 <i>U</i>	0.019	0.012		
TC3	0.010	0.028	0.018	0.010	0.020	0.010		
TC4	0.011	0.018	0.007	0.008	0.013	0.005		
TC5	0.008	0.022	0.014	0.006	0.011	0.005		
TC6	0.005	0.017	0.012	0.003 <i>U</i>	0.013	0.011		
TC7	0.009	0.016	0.007	0.005 <i>U</i>	0.013	0.008		

	Tota	al Cobalt (µg	/L)	Dissol	Dissolved Cobalt (μg/L)				
Transect	Min.	Max.	Difference	Min.	Max.	Difference			
CAN1	0.025	0.041	0.016	0.022	0.029	0.007			
CAN2	0.037	0.069	0.032	0.059	0.088	0.029			
TC10	0.032	0.036	0.004	0.025	0.032	0.007			
TC9	0.031	0.053	0.022	0.028	0.038	0.010			
TC1	0.036	0.056	0.020	0.012 <i>U</i>	0.040	0.029			
TC2	0.015 <i>U</i>	0.056	0.041	0.014 <i>U</i>	0.042	0.028			
TC3	0.035	0.074	0.039	0.014 <i>U</i>	0.043	0.030			
TC4	0.038	0.081	0.043	0.030	0.039	0.009			
TC5	0.043	0.060	0.017	0.029	0.042	0.013			
TC6	0.039	0.080	0.041	0.029	0.041	0.012			
TC7	0.033	0.041	0.008	0.027	0.037	0.010			

	Total	Manganese ((µg/L)	Dissolved	Dissolved Manganese (µg/L)				
Transect	Min.	Max.	Difference	Min.	Max.	Difference			
CAN1	1.64	1.93	0.29	0.110 <i>U</i>	0.209	0.099			
CAN2	1.92	3.07	1.15	0.177 <i>U</i>	0.299	0.122			
TC10	1.98	2.12	0.14	0.244 <i>U</i>	0.618	0.374			
TC9	2.43	4.45	2.02	0.243 <i>U</i>	0.335 <i>U</i>	ND			
TC1	2.46	3.47	1.02	0.238 <i>U</i>	0.274 <i>U</i>	ND			
TC2	2.48	3.51	1.03	0.130 <i>U</i>	0.295 <i>U</i>	ND			
TC3	2.60	4.83	2.23	0.078 <i>U</i>	0.322 <i>U</i>	ND			
TC4	1.58	5.12	3.54	0.122 <i>U</i>	1.10	0.978			
TC5	2.04	5.67	3.63	0.111 <i>U</i>	0.291 <i>U</i>	ND			
TC6	2.63	13.2	10.57	0.107 <i>U</i>	0.398	0.291			
TC7	3.05	12.5	9.45	0.178 <i>U</i>	0.951	0.773			

Note: Undetected results included at half the detection limit.

ND - Differences were not calculated between two undetected results.

Table 5. Measured concentrations by sample

					Total	Dissolved	Total	Dissolved	Total	Dissolved
			Field		Cadmium	Cadmium	Cobalt	Cobalt	Manganese	Manganese
Transect	Depth	Loc.	Trip.	Sample	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	(μ g/L)	(μ g/L)
CAN1	Bottom	L	Ä	SW0000010	0.009	0.007	0.041	0.027	1.82	0.121 <i>Ú</i>
CAN1	Bottom	L	В	SW0000012	0.003 <i>U</i>	0.003 <i>U</i>	0.029	0.026	1.72	0.129 <i>U</i>
CAN1	Bottom	L	С	SW0000011	0.007	0.003 <i>U</i>	0.030	0.024	1.70	0.123 <i>U</i>
CAN1	Bottom	R	Α	SW0000016	0.007	0.003 <i>U</i>	0.030	0.024	1.75	0.159 <i>U</i>
CAN1	Bottom	R	В	SW0000017	0.007	0.003 <i>U</i>	0.030	0.028	1.76	0.163 <i>U</i>
CAN1	Bottom	R	С	SW0000018	0.011	0.006	0.026	0.027	1.70	0.161 <i>U</i>
CAN1	Shore	L	Α	SW0000019	0.009	0.003 <i>U</i>	0.031	0.024	1.93	0.151 <i>U</i>
CAN1	Shore	L	В	SW0000020	0.009	0.003 <i>U</i>	0.030	0.028	1.87	0.181 <i>U</i>
CAN1	Shore	L	С	SW0000021	0.008	0.007	0.025	0.027	1.88	0.180 <i>U</i>
CAN1	Shore	R	Α	SW0000022	0.006	0.006	0.032	0.028	1.91	0.180 <i>U</i>
CAN1	Shore	R	В	SW0000023	0.009	0.006	0.028	0.026	1.92	0.180 <i>U</i>
CAN1	Shore	R	C	SW0000024	0.009	0.008	0.034	0.025	1.89	0.181 <i>U</i>
CAN1	Surface		Ā	SW0000007	0.009	0.010	0.034	0.026	1.75	0.112 <i>U</i>
CAN1	Surface		В	SW0000009	0.011	0.008	0.032	0.029	1.68	0.110 <i>U</i>
CAN1	Surface		C	SW0000008	0.007	0.003 <i>U</i>	0.029	0.022	1.70	0.209
CAN1	Surface		Ä	SW0000013	0.010	0.008	0.027	0.028	1.72	0.150 <i>U</i>
CAN1	Surface	R	В	SW0000014	0.008	0.003 <i>U</i>	0.028	0.025	1.71	0.152 <i>U</i>
CAN1	Surface	R	Č	SW0000015	0.019	0.006	0.034	0.024	1.64	0.155 <i>U</i>
CAN2 ^a	Shore	Ĺ		SW0000001	0.009 <i>U</i>	0.009 <i>U</i>	0.001	0.02	1.01	0.100 0
CAN2 ^a	Shore	Ĺ		SW0000002	0.011 <i>U</i>	0.015 <i>U</i>	0.069	0.088	2.13	0.178 <i>U</i>
CAN2 ^a	Shore	Ĺ		SW0000003	0.020	0.008 <i>U</i>	0.037	0.059	1.92	0.299
CAN2 ^a	Shore	Ĺ		SW0000004	0.023	0.008 <i>U</i>	0.054	0.000	3.07	0.200
CAN2 ^a	Shore	Ĺ		SW0000005	0.021	0.010 <i>U</i>	0.051	0.084	2.10	0.177 <i>U</i>
TC10	Bottom	ī		SW0000026	0.031	0.028	0.035	0.032	2.12	0.361 <i>U</i>
TC10	Bottom	R		SW0000028	0.021	0.023	0.032	0.025	2.07	0.277 <i>U</i>
TC10	Shore	L		SW0000029	0.033	0.023	0.035	0.027	2.09	0.368 <i>U</i>
TC10	Shore	R		SW0000030	0.026	0.018	0.036	0.029	1.98	0.244 <i>U</i>
TC10	Surface	L		SW0000025	0.026	0.027	0.036	0.032	2.06	0.618
TC10	Surface			SW0000027	0.023	0.018	0.033	0.028	2.03	0.260 <i>U</i>
TC9	Bottom	L		SW0000032	0.023	0.020	0.037	0.033	2.90	0.335 <i>U</i>
TC9	Bottom	R		SW0000034	0.028	0.021	0.034	0.030	2.43	0.291 <i>U</i>
TC9	Shore	L		SW0000035	0.016	0.009	0.053	0.038	4.45	0.243 <i>U</i>
TC9	Shore	R		SW0000036	0.031	0.024	0.035	0.029	2.43	0.294 <i>U</i>
TC9	Surface			SW0000031	0.021	0.024	0.043	0.031	3.35	0.311 <i>U</i>
TC9	Surface			SW0000031	0.029	0.024	0.031	0.028	2.46	0.298 <i>U</i>
TC1	Bottom	L		SW0000042	0.031	0.009 <i>U</i>	0.036	0.013 <i>U</i>	2.64	0.238 <i>U</i>
TC1	Bottom	M		SW0000042	0.020	0.011	0.044	0.032	3.45	0.274 <i>U</i>
TC1	Bottom	R		SW0000044	0.020	0.011	0.043	0.032	3.30	0.268 <i>U</i>
TC1	Shore	L		SW0000047	0.013 <i>U</i>	0.012 0.010 <i>U</i>	0.039	0.031 0.014 <i>U</i>	2.62	0.266 <i>U</i>
TC1	Shore	R		SW0000052	0.021	0.009	0.056	0.040	3.42	0.261 <i>U</i>
TC1	Surface			SW0000032	0.021	0.009 <i>U</i>	0.036	0.040 0.012 <i>U</i>	2.46	0.248 <i>U</i>
TC1	Surface			SW0000041	0.020	0.003 0	0.030	0.012 0	3.47	0.267 <i>U</i>
TC1	Surface			SW0000045	0.020	0.013	0.043	0.033	3.08	0.251 <i>U</i>
TC2	Bottom	L		SW0000057	0.014	0.012	0.056	0.042	3.51	0.295 <i>U</i>
TC2	Bottom	M		SW0000059	0.020	0.013	0.050	0.042	3.18	0.136 <i>U</i>
TC2	Bottom	R		SW0000039	0.020 0.010 <i>U</i>	0.013 0.008 <i>U</i>	0.031 0.015 <i>U</i>	0.037 0.014 <i>U</i>	2.48	0.179 <i>U</i>
TC2	Shore	L		SW0000061	0.010 <i>U</i>	0.008 <i>U</i>	0.013 0	0.014 <i>U</i>	3.24	0.164 <i>U</i>
TC2	Shore	R		SW0000062	0.012 <i>U</i>	0.008 <i>U</i>	0.042	0.014 <i>U</i>	3.07	0.104 <i>U</i> 0.222 <i>U</i>
TC2	Surface			SW0000056	0.000	0.008 0	0.057	0.014 0	3.08	0.222 <i>U</i> 0.136 <i>U</i>
TC2	Surface			SW0000058	0.020	0.013	0.056	0.039	3.06	0.130 <i>U</i>
					0.020 0.011 <i>U</i>					
TC2	Surface	Г		SW0000060	0.011 0	0.008 <i>U</i>	0.038	0.015 <i>U</i>	3.13	0.163 <i>U</i>

Table 5. Cont.

					Total	Dissolved	Total	Dissolved	Total	Dissolved
			Field		Cadmium	Cadmium	Cobalt	Cobalt	Manganese	Manganese
Transect	Depth	Loc.	Trip.	Sample	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	(µ g/L)	(μ g/L)
TC3	Bottom	М	A	SW0000085	0.026	0.015	0.053	0.038	3.52	0.149 <i>U</i>
TC3	Bottom	M	В	SW0000086	0.023	0.015	0.044	0.038	3.20	0.131 <i>U</i>
TC3	Bottom	M	С	SW0000087	0.020	0.012	0.052	0.036	3.41	0.136 <i>U</i>
TC3	Bottom	R	Α	SW0000091	0.022	0.012	0.051	0.034	3.24	0.203 <i>U</i>
TC3	Bottom	R	В	SW0000092	0.021	0.013	0.047	0.036	2.98	0.094 <i>U</i>
TC3	Bottom	R	С	SW0000093	0.015	0.012	0.047	0.032	3.18	0.105 <i>U</i>
TC3	Bottom	L	Α	SW0000073	0.028	0.015	0.055	0.038	3.63	0.322 <i>U</i>
TC3	Bottom	L	В	SW0000074	0.022	0.018	0.051	0.040	3.26	0.201 <i>U</i>
TC3	Bottom	L	С	SW0000075	0.027	0.020	0.054	0.040	3.47	0.185 <i>U</i>
TC3	Bottom	L	Α	SW0000079	0.010	0.010	0.051	0.040	3.55	0.249 <i>U</i>
TC3	Bottom	L	В	SW0000080	0.018	0.014	0.050	0.037	3.89	0.243 <i>U</i>
TC3	Bottom	L	С	SW0000081	0.021	0.013	0.055	0.035	4.21	0.272 <i>U</i>
TC3	Shore	L	Α	SW0000094	0.026	0.014	0.074	0.034	4.83	0.194 <i>U</i>
TC3	Shore	L	В	SW0000095	0.022	0.013	0.068	0.037	4.18	0.183 <i>U</i>
TC3	Shore	L	С	SW0000096	0.024	0.014	0.051	0.034	3.40	0.173 <i>U</i>
TC3	Shore	R	Α	SW0000100	0.020	0.014	0.048	0.034	3.14	0.174 <i>U</i>
TC3	Shore	R	В	SW0000101	0.018	0.016	0.045	0.031	2.72	0.174 <i>U</i>
TC3	Shore	R	С	SW0000102	0.023	0.016	0.044	0.035	2.60	0.160 <i>U</i>
TC3	Surface	M	Α	SW0000082	0.016	0.016	0.047	0.041	2.75	0.241
TC3	Surface	M	В	SW0000083	0.019	0.014	0.048	0.037	2.75	0.078 <i>U</i>
TC3	Surface	M	С	SW0000084	0.014	0.012	0.046	0.039	2.79	0.083 <i>U</i>
TC3	Surface	R	Α	SW0000088	0.017	0.016	0.046	0.035	2.82	0.105 <i>U</i>
TC3	Surface	R	В	SW0000089	0.021	0.016	0.035	0.014 <i>U</i>	2.85	0.101 <i>U</i>
TC3	Surface	R	С	SW0000090	0.017	0.013	0.035	0.014 <i>U</i>	2.80	0.102 <i>U</i>
TC3	Surface	L	Α	SW0000070	0.023	0.011	0.045	0.043	2.73	0.127 <i>U</i>
TC3	Surface	L	В	SW0000071	0.017	0.011	0.049	0.039	2.85	0.135 <i>U</i>
TC3	Surface	L	С	SW0000072	0.016	0.018	0.043	0.035	2.82	0.145 <i>U</i>
TC3	Surface	L	Α	SW0000076	0.025	0.011	0.048	0.037	3.11	0.160 <i>U</i>
TC3	Surface	L	В	SW0000077	0.020	0.013	0.049	0.043	3.17	0.152 <i>U</i>
TC3	Surface	L	С	SW0000078	0.018	0.020	0.046	0.035	3.28	0.158 <i>U</i>
TC4	Bottom	М		SW0000111	0.018	0.013	0.046	0.030	3.31	0.161 <i>U</i>
TC4	Bottom	R		SW0000113	0.011	0.009	0.048	0.039	3.08	0.135 <i>U</i>
TC4	Bottom	L		SW0000107	0.014	0.010	0.044	0.035	5.12	1.100
TC4	Bottom	L		SW0000109	0.016	0.008	0.039	0.031	2.92	0.206 <i>U</i>
TC4	Shore	L		SW0000114	0.012	0.010	0.042	0.034	2.27	0.122 <i>U</i>
TC4	Shore	R		SW0000118	0.014	0.008	0.081	0.037	3.92	0.155 <i>U</i>
TC4	Surface	M		SW0000110	0.011	0.009	0.038	0.034	1.76	0.183 <i>U</i>
TC4	Surface	R		SW0000112	0.011	0.012	0.043	0.038	1.90	0.149 <i>U</i>
TC4	Surface			SW0000106	0.013	0.011	0.044	0.039	1.75	0.289
TC4	Surface	L		SW0000108	0.014	0.008	0.044	0.036	1.58	0.143 <i>U</i>
TC5	Bottom	M		SW0000127	0.014	0.009	0.046	0.036	5.67	0.291 <i>U</i>
TC5	Bottom	R		SW0000129	0.009	0.011	0.053	0.036	4.31	0.134 <i>U</i>
TC5	Bottom	L		SW0000123	0.009	0.006	0.052	0.035	4.11	0.143 <i>U</i>
TC5	Bottom	L		SW0000125	0.008	0.006	0.051	0.032	4.04	0.271 <i>U</i>
TC5	Shore	L		SW0000130	0.022	0.007	0.054	0.032	3.10	0.186 <i>U</i>
TC5	Shore	R		SW0000134	0.012	0.009	0.060	0.038	3.07	0.232 <i>U</i>
TC5	Surface	M		SW0000126	0.011	0.011	0.043	0.029	2.24	0.192 <i>U</i>
TC5	Surface	R		SW0000128	0.008	0.010	0.043	0.036	2.47	0.111 <i>U</i>
TC5	Surface			SW0000122	0.010	0.007	0.044	0.038	2.04	0.277 <i>U</i>
TC5	Surface	L		SW0000124	0.008	0.009	0.044	0.042	2.06	0.281 <i>U</i>

Table 5. Cont.

					Total	Dissolved	Total	Dissolved	Total	Dissolved
			Field		Cadmium	Cadmium	Cobalt	Cobalt	Manganese	Manganese
Transec	t Depth	Loc.	Trip.	Sample	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	$(\mu g/L)$	(µ g/L)	(μ g/L)
TC6	Bottom	L	A	SW0000139	0.009	0.005	0.046	0.037	2.83	0.208 <i>U</i>
TC6	Bottom	L	В	SW0000140	0.014	0.008	0.049	0.037	2.81	0.152 <i>U</i>
TC6	Bottom	L	С	SW0000141	0.009	0.007	0.040	0.034	2.83	0.168 <i>U</i>
TC6	Bottom	M	Α	SW0000146	0.009	0.003 <i>U</i>	0.049	0.033	5.49	0.107 <i>U</i>
TC6	Bottom	M	В	SW0000147	0.005	0.006	0.051	0.038	4.89	0.107 <i>U</i>
TC6	Bottom	M	С	SW0000148	0.011	0.003 <i>U</i>	0.042	0.034	4.83	0.122 <i>U</i>
TC6	Bottom	R		SW0000150	0.012	0.010	0.051	0.037	13.20	0.375
TC6	Bottom	R		SW0000154	0.013	0.012	0.047	0.035	2.93	0.296 <i>U</i>
TC6	Shore	L	Α	SW0000155	0.012	0.009	0.080	0.037	5.06	0.120 <i>U</i>
TC6	Shore	L	В	SW0000156	0.008	0.005	0.049	0.039	3.27	0.163 <i>U</i>
TC6	Shore	L	С	SW0000157	0.010	0.008	0.045	0.032	3.16	0.187 <i>U</i>
TC6	Shore	R		SW0000161	0.009	0.006	0.048	0.038	2.71	0.341 <i>U</i>
TC6	Surface	L		SW0000138	0.012	0.008	0.044	0.034	2.83	0.294
TC6	Surface	M	Α	SW0000143	0.016	0.012	0.044	0.033	2.70	0.223 <i>U</i>
TC6	Surface	M	В	SW0000144	0.007	0.012	0.039	0.036	2.71	0.263 <i>U</i>
TC6	Surface	M	С	SW0000145	0.017	0.005	0.039	0.029	2.63	0.246 <i>U</i>
TC6	Surface	R		SW0000149	0.010	0.010	0.046	0.036	2.99	0.398
TC6	Surface	R	Α	SW0000151	0.014	0.013	0.041	0.037	2.86	0.162 <i>U</i>
TC6	Surface	R	В	SW0000152	0.008	0.010	0.046	0.038	2.88	0.202 <i>U</i>
TC6	Surface	R	С	SW0000153	0.010	0.013	0.040	0.041	2.83	0.147 <i>U</i>
TC7	Bottom	L		SW0000166	0.009	0.008	0.039	0.030	3.86	0.178 <i>U</i>
TC7	Bottom	M		SW0000168	0.011	0.013	0.036	0.032	12.50	0.951
TC7	Bottom	R		SW0000170	0.016	0.009	0.040	0.029	6.21	0.313 <i>U</i>
TC7	Shore	L		SW0000171	0.009	0.012	0.034	0.030	3.05	0.179 <i>U</i>
TC7	Shore	R		SW0000175	0.013	0.005 <i>U</i>	0.041	0.032	3.50	0.298 <i>U</i>
TC7	Surface	L		SW0000165	0.012	0.006	0.037	0.027	3.39	0.210 <i>U</i>
TC7	Surface	M		SW0000167	0.012	0.012	0.033	0.031	3.20	0.198 <i>U</i>
TC7	Surface	R		SW0000169	0.014	0.010	0.036	0.037	3.14	0.256 <i>U</i>

Note: Undetected results are reported at half the detection limit.

 $^{^{\}rm a}\,$ - CAN2 was excluded from statistical analysis of location and depth differences.

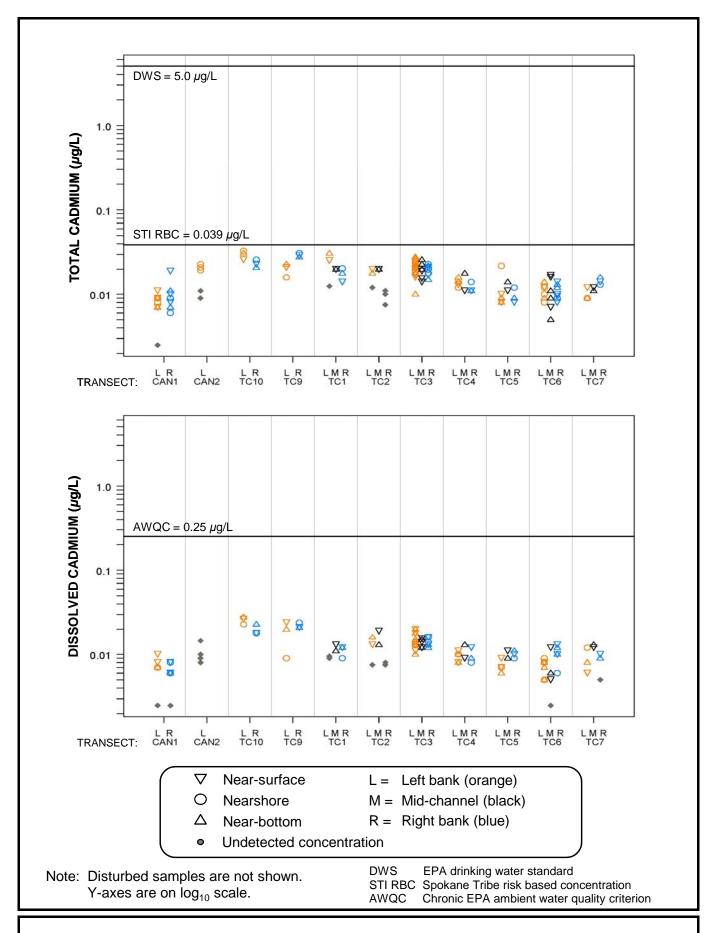


Figure 1. Cadmium concentrations by transect, depth, and location

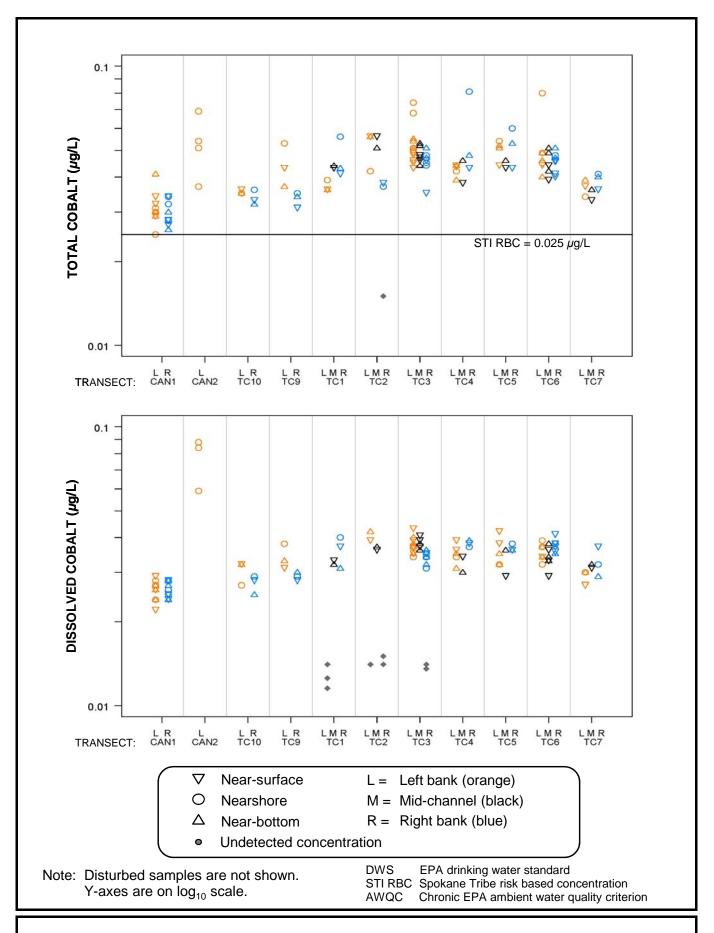
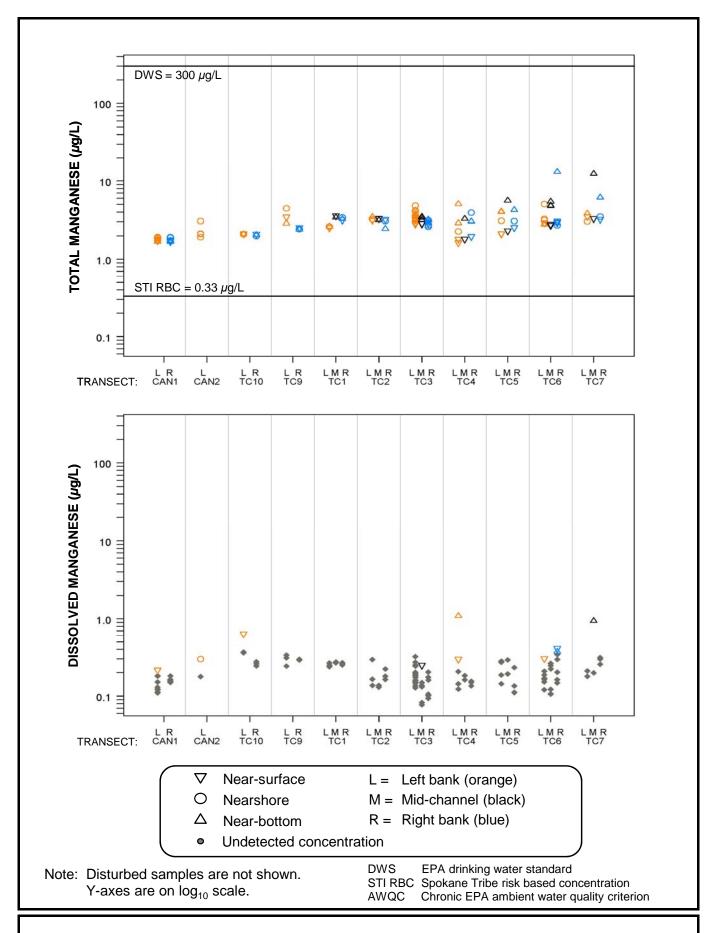
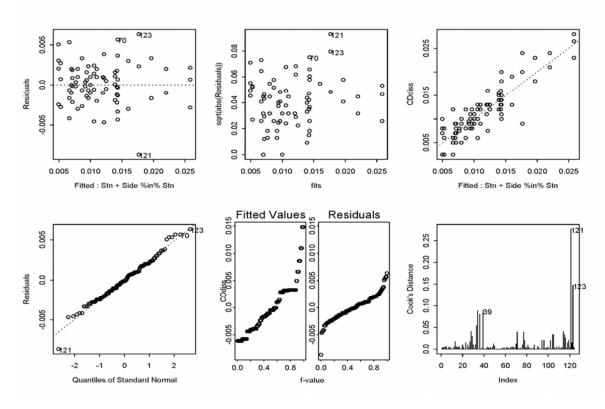


Figure 2. Cobalt concentrations by transect, depth, and location



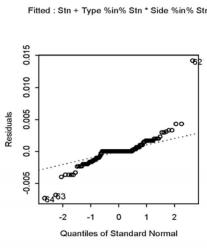

Figure 3. Manganese concentrations by transect, depth, and location

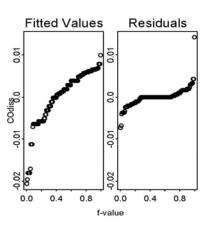
Total Cadmium

```
temp <- aov(CDtot ~ Stn + Type %in% Stn * Side %in% Stn, na.action = na.omit,
         subset = Stn != "CAN2" & Stn != "zzzzz", data = MetalsInput.FldTripsHalfDL.)
> summary(temp)
                                   Df Sum of Sq
                                                        Mean Sq F Value
                              Stn 9 0.003728882 0.0004143202 33.66518
                   Type %in% Stn 20 0.000371160 0.0000185580 1.50791
                   Side %in% Stn 17 0.000478153 0.0000281267 2.28540
(Type %in% Stn):(Side %in% Stn) 27 0.000349440 0.0000129422 1.05161
                        Residuals 50 0.000615354 0.0000123071
                                       Pr(F)
                              Stn 0.0000000
                   Type %in% Stn 0.1205555
                   Side %in% Stn 0.0121776
(Type %in% Stn):(Side %in% Stn) 0.4277479 remove and rerun model
                       Residuals
> temp2 <- aov(CDtot ~ Stn + Type %in% Stn + Side %in% Stn, na.action = na.omit,
         subset = Stn != "CAN2" & Stn != "zzzzz", data = MetalsInput.FldTripsHalfDL.)
> summary(temp2)
                                    Mean Sq F Value
              Df Sum of Sq
           Stn 9 0.003728882 0.0004143202 33.06679 0.0000000
Type %in% Stn 20 0.000371160 0.0000185580 1.48111 0.1130019 remove and rerun model
Side %in% Stn 17 0.000478153 0.0000281267 2.24478 0.0087631
    Residuals 77 0.000964795 0.0000125298
> temp3 <- aov(CDtot ~ Stn + Side %in% Stn, na.action = na.omit, subset = Stn !=
          CAN2 & Stn != "zzzzz", data = MetalsInput.FldTripsHalfDL.)
> summary(temp3)
                   Sum of Sq
                                    Mean Sq F Value
           Stn 9 0.003728882 0.0004143202 29.98746 0.00000000
Side %in% Stn 17 0.000473913 0.0000278772 2.01768 0.01711169
    Residuals 97 0.001340196 0.0000138164
    0.005
                                   sqrt(abs(Residuals))
    0.0
                                                                    CDtot
                                                                       0.015
                                     0.04
                                     0.02
                     950<sup>922</sup>
        0.010 0.015 0.020 0.025 0.030
                                         0.010 0.015 0.020 0.025 0.030
                                                                           0.010 0.015 0.020 0.025 0.030
          Fitted: Stn + Side %in% Stn
                                                                             Fitted: Stn + Side %in% Stn
                                      Fitted Values u
                                                      Residuals
    0.010
    0.005
                                    o.Sptot.oos
                                                                    Cook's Distance
  Residuals
    0.0
                                                                       0.10
                                                                       0.05
                                                                             20
                                                                                 40
                                                                                        80 100 120
          -2
                  0
                                                                          0
                                                                                    60
                                          0.4
                                               0.8
          Quantiles of Standard Normal
                                                 f-value
                                                                                    Index
```


Dissolved Cadmium

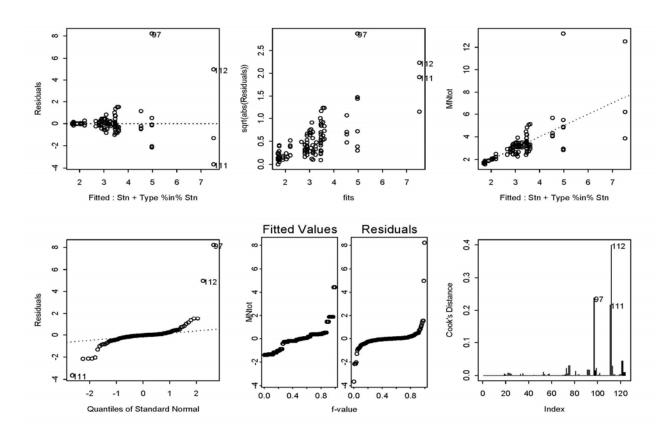
```
temp <- aov(CDdiss ~ Stn + Type %in% Stn * Side %in% Stn, na.action = na.omit,
        subset = Stn != "CAN2" & Stn != "zzzzzz", data = MetalsInput.FldTripsHalfDL.)
> summary(temp)
                               Df
                                   Sum of Sq
                                                   Mean Sq F Value
                           Stn 9 0.002488544 0.0002765048 42.75848
                 Type %in% Stn 20 0.000195086 0.0000097543 1.50840
                 Side %in% Stn 17 0.000251495 0.0000147938 2.28771
(Type %in% Stn):(Side %in% Stn) 27 0.000260026 0.0000096306 1.48927
                     Residuals 50 0.000323333 0.0000064667
                                   Pr(F)
                           Stn 0.0000000
                 Type %in% Stn 0.1203761
                 Side %in% Stn 0.0120899
(Type %in% Stn):(Side %in% Stn) 0.1103032 remove and rerun model
                     Residuals
> temp2 <- aov(CDdiss ~ Stn + Type %in% Stn + Side %in% Stn, na.action = na.omit,
         subset = Stn != "CAN2" & Stn != "zzzzz", data = MetalsInput.FldTripsHalfDL.)
> summary(temp2)
             Df Sum of Sq
                                 Mean Sq F Value
         Stn 9 0.002488544 0.0002765048 36.49703 0.0000000
Type %in% Stn 20 0.000195086 0.0000097543 1.28751 0.2134396 remove and rerun model
Side %in% Stn 17 0.000251495 0.0000147938 1.95270 0.0252230
   Residuals 77 0.000583359 0.0000075761
> temp3 <- aov(CDdiss ~ Stn + Side %in% Stn, na.action = na.omit, subset = Stn !=
         CAN2 & Stn != "zzzzz", data = MetalsInput.FldTripsHalfDL.)
> summary(temp3)
            Df Sum of Sq
                                 Mean Sq F Value
         Stn 9 0.002488544 0.0002765048 36.60001 0.000000000
Side %in% Stn 17 0.000297127 0.0000174781 2.31351 0.005415231
   Residuals 97 0.000732813 0.0000075548
```



Total Cobalt


```
> temp <- aov(COtot ~ Stn + Type %in% Stn * Side %in% Stn, na.action = na.omit,
         subset = Stn != "CAN2" & Stn != "zzzzz", data = MetalsInput.FldTripsHalfDL.)
> summary(temp)
                                     Sum of Sq
                                                   Mean Sq F Value
                               Df
                            Stn 9 0.005581137 0.0006201264 19.91867
                 Type %in% Stn 20 0.002099251 0.0001049625 3.37143
                 Side %in% Stn 17 0.002103171 0.0001237159 3.97380
(Type %in% Stn):(Side %in% Stn) 27 0.001359714 0.0000503598 1.61757
                     Residuals 50 0.001556646 0.0000311329
                                     Pr(F)
                            Stn 0.00000000
                 Type %in% Stn 0.00025329
                  Side %in% Stn 0.00007135
(Type %in% Stn):(Side %in% Stn) 0.06997234 remove and rerun model
                     Residuals
```


Dissolved Cobalt

```
> temp <- aov(COdiss ~ Stn + Type %in% Stn * Side %in% Stn, na.action = na.omit,
           subset = Stn != "CAN2" & Stn != "zzzzz", data = MetalsInput.FldTripsHalfDL.)
> summary(temp)
                                            Sum of Sq
                                                              Mean Sq F Value
                                 Stn 9 0.002057793 0.0002286436 19.20770
                     Type %in% Stn 20 0.000522977 0.0000261489 2.19669
                     Side %in% Stn 17 0.002127483 0.0001251461 10.51316
(Type %in% Stn):(Side %in% Stn) 27 0.000736339 0.0000272718 2.29103
                          Residuals 50 0.000595188 0.0000119038
                                            Pr(F)
                                 Stn 0.00000000
                     Type %in% Stn 0.01260826
                     Side %in% Stn 0.00000000
(Type %in% Stn):(Side %in% Stn) 0.00553188
                          Residuals
     0.015
                962
                                                     %2
     0.010
                                       sqrt(abs(Residuals))
                                                     883
     0.005
  Residuals
                                                                            COdiss
                                          90.0
                                                                               0.025
     0.0
                                                         88
                                                         8
                                          0.02
     -0.005
                                          0.0
                                              ∞ ∞
                                                               0.035
          0.015
                  0.025
                           0.035
                                               0.015
                                                       0.025
                                                                                    0.015
                                                                                            0.025
                                                                                                     0.035
      Fitted: Stn + Type %in% Stn * Side %in% Stn
                                                          fits
                                                                                Fitted: Stn + Type %in% Stn * Side %in% Stn
```

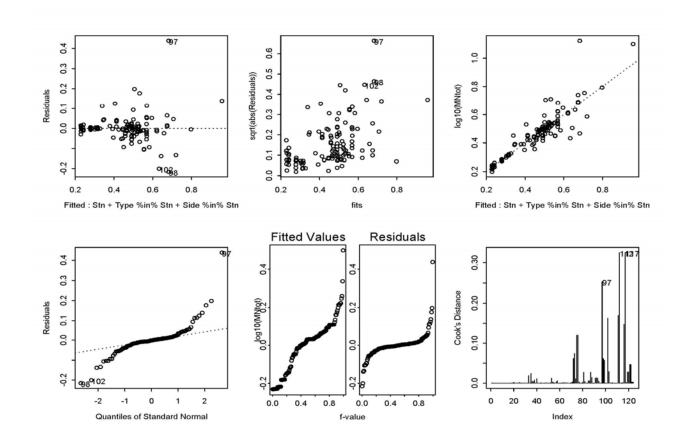



Dissolved Cobalt (cont.)

```
Left bank only
> temp1 <- aov(COdiss ~ Stn + Type %in% Stn, na.action = na.omit, subset = Side ==
         L & Stn != "CAN2" & Stn != "zzzzz", data =
         MetalsInput.FldTripsHalfDL.)
> summary(temp1)
                  Sum of Sq Mean Sq F Value
             Df
         Stn 9 0.002212322 0.0002458135 33.69676 0.0000000000
Type %in% Stn 20 0.000640351 0.0000320175 4.38905 0.0002732274
   Residuals 26 0.000189667 0.0000072949
Mid-channel only
> temp1 <- aov(COdiss ~ Stn + Type %in% Stn, na.action = na.omit, subset = Side ==
         M & Stn != "CAN2" & Stn != "zzzzz", data =
         MetalsInput.FldTripsHalfDL.)
> summary(temp1)
             Df Sum of Sq
                               Mean Sq F Value
                                                     Pr(F)
         Stn 6 0.0001339242 0.00002232071 3.759277 0.0441781
Type %in% Stn 7 0.0000455417 0.00000650595 1.095739 0.44533337
   Residuals 8 0.0000475000 0.00000593750
Right bank only
> temp1 <- aov(COdiss ~ Stn + Type %in% Stn, na.action = na.omit, subset = Side ==
         R & Stn != "CAN2" & Stn != "zzzzz", data =
         MetalsInput.FldTripsHalfDL.)
> summary(temp1)
             Df Sum of Sq
                               Mean Sq F Value
         Stn 9 0.001722198 0.0001913554 8.551698 0.0001259
Type %in% Stn 20 0.000426781 0.0000213390 0.953645 0.5463575
   Residuals 16 0.000358021 0.0000223763
Near-bottom only
           Min. 1st Qu. Median
                                  Mean 3rd Qu. Max.
          0.0125 0.03 0.034 0.03273 0.037 0.042
> temp2 <- aov(COdiss ~ Stn + Side %in% Stn, na.action = na.omit, subset = Type ==
         Bottom & Stn != "CAN2" & Stn != "zzzzz", data =
         MetalsInput.FldTripsHalfDL.)
> summary(temp1)
             Df Sum of Sq Mean Sq F Value
         Stn 9 0.001722198 0.0001913554 8.551698 0.0001259
Type %in% Stn 20 0.000426781 0.0000213390 0.953645 0.5463575
  Residuals 16 0.000358021 0.0000223763
Nearshore only
          Min. 1st Qu. Median Mean 3rd Qu. Max.
         0.014 0.02725 0.032 0.03057 0.0365 0.04
> temp2 <- aov(COdiss ~ Stn + Side %in% Stn, na.action = na.omit, subset = Type ==
         Shore & Stn != "CAN2" & Stn != "zzzzz", data =
         MetalsInput.FldTripsHalfDL.)
> summary(temp1)
             Df Sum of Sq
                              Mean Sq F Value
         Stn 9 0.001722198 0.0001913554 8.551698 0.0001259
Type %in% Stn 20 0.000426781 0.0000213390 0.953645 0.5463575
 Residuals 16 0.000358021 0.0000223763
Near-surface only
                                 Mean 3rd Qu. Max.
            Min. 1st Qu. Median
         0.0115 0.0285 0.035 0.03247 0.0375 0.043
> temp2 <- aov(COdiss ~ Stn + Side %in% Stn, na.action = na.omit, subset = Type ==
         Surface & Stn != "CAN2" & Stn != "zzzzz", data =
         MetalsInput.FldTripsHalfDL.)
> summary(temp1)
             Df Sum of Sq Mean Sq F Value
                                                     Pr(F)
         Stn 9 0.001722198 0.0001913554 8.551698 0.0001259
Type %in% Stn 20 0.000426781 0.0000213390 0.953645 0.5463575
   Residuals 16 0.000358021 0.0000223763
```

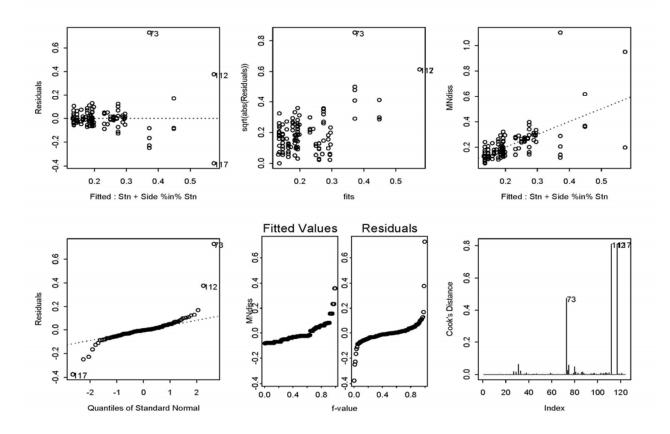
Total Manganese

```
> temp <- aov(MNtot ~ Stn + Type %in% Stn * Side %in% Stn, na.action = na.omit,
         subset = Stn != "CAN2" & Stn != "zzzzz", data = MetalsInput.FldTripsHalfDL.)
> summary(temp)
                               Df Sum of Sq Mean Sq F Value
                                                                  Pr(F)
                           Stn 9 75.18430 8.353811 6.979907 0.0000019
                 Type %in% Stn 20 74.77819 3.738909 3.123992 0.0005651
                 Side %in% Stn 17 36.92437 2.172022 1.814801 0.0525853
(Type %in% Stn):(Side %in% Stn) 27 48.81147 1.807832 1.510508 0.1024215 remove and rerun model
                     Residuals 50 59.84185 1.196837
> temp2 <- aov(MNtot ~ Stn + Type %in% Stn + Side %in% Stn, na.action = na.omit,
         subset = Stn != "CAN2" & Stn != "zzzzz", data = MetalsInput.FldTripsHalfDL.)
> summary(temp2)
             Df Sum of Sq Mean Sq F Value
         Stn 9
                 75.1843 8.353811 5.920145 0.0000030
                 74.7782 3.738909 2.649675 0.0012001
Type %in% Stn 20
                 36.9244 2.172022 1.539260 0.1034083 remove and rerun model
Side %in% Stn 17
   Residuals 77 108.6533 1.411082
> temp3 <- aov(MNtot ~ Stn + Type %in% Stn, na.action = na.omit, subset = Stn !=
         CAN2 & Stn != "zzzzz", data = MetalsInput.FldTripsHalfDL.)
> summary(temp3)
             Df Sum of Sq Mean Sq F Value
          Stn 9 75.1843 8.353811 5.394084 0.000006083
                 74.7782 3.738909 2.414226 0.002377702
Type %in% Stn 20
   Residuals 94 145.5777 1.548699
```

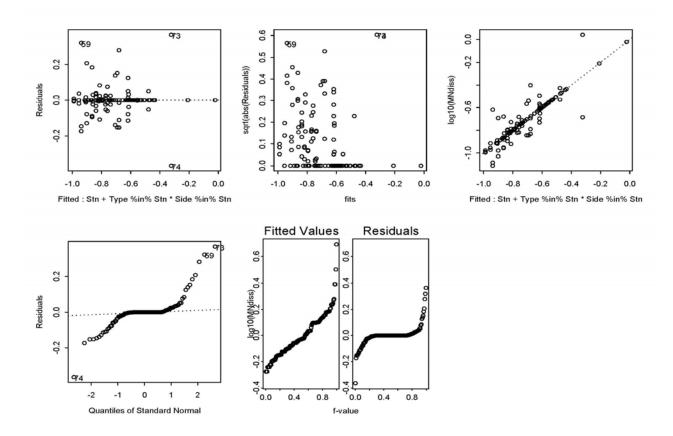


Log₁₀(Total Manganese)

Type %in% Stn 20 0.766828 0.0383414 5.09029 0.00000009 Side %in% Stn 17 0.235022 0.0138248 1.83541 0.03813187


Residuals 77 0.579985 0.0075323

```
> temp <- aov(log10(MNtot) \sim Stn + Type %in% Stn * Side %in% Stn, na.action =
         na.omit, subset = Stn != "CAN2" & Stn != "zzzzz", data = MetalsInput.FldTripsHalfDL.)
> summary(temp)
                               Df Sum of Sq
                                             Mean Sq F Value
                                                                    Pr(F)
                           Stn 9 1.389466 0.1543851 25.40723 0.00000000
                 Type %in% Stn 20  0.766828 0.0383414  6.30986 0.00000006
                 Side %in% Stn 17 0.235022 0.0138248 2.27515 0.01257625
(Type %in% Stn):(Side %in% Stn) 27 0.276164 0.0102283 1.68327 0.05510171 remove and rerun model
                     Residuals 50 0.303821 0.0060764
> temp2 <- aov(log10(MNtot) ~ Stn + Type %in% Stn + Side %in% Stn, na.action =
         na.omit, subset = Stn != "CAN2" & Stn != "zzzzz", data = MetalsInput.FldTripsHalfDL.)
> summary(temp2)
             Df Sum of Sq Mean Sq F Value
         Stn 9 1.389466 0.1543851 20.49649 0.00000000
```



Dissolved Manganese

```
> temp <- aov(MNdiss ~ Stn + Type %in% Stn * Side %in% Stn, na.action = na.omit,
         subset = Stn != "CAN2" & Stn != "zzzzz", data = MetalsInput.FldTripsHalfDL.)
> summary(temp)
                               Df Sum of Sq
                                               Mean Sq F Value
                                                                    Pr(F)
                            Stn 9 0.4399550 0.04888388 4.776241 0.0001312
                 Type %in% Stn 20 0.3133645 0.01566822 1.530877 0.1123009
                 Side %in% Stn 17 0.4126372 0.02427278 2.371592 0.0092872
(Type %in% Stn):(Side %in% Stn) 27 0.4565722 0.01691008 1.652214 0.0617167 remove and rerun model
                     Residuals 50 0.5117401 0.01023480
> temp2 <- aov(MNdiss ~ Stn + Type %in% Stn + Side %in% Stn, na.action = na.omit,
         subset = Stn != "CAN2" & Stn != "zzzzz", data = MetalsInput.FldTripsHalfDL.)
> summary(temp2)
             Df Sum of Sq
                             Mean Sq F Value
         Stn 9 0.4399550 0.04888388 3.887236 0.0004225
Type %in% Stn 20 0.3133645 0.01566822 1.245934 0.2424382 remove and rerun model
Side %in% Stn 17 0.4126372 0.02427278 1.930166 0.0273241
   Residuals 77 0.9683124 0.01257549
> temp3 <- aov(MNdiss ~ Stn + Side %in% Stn, na.action = na.omit, subset = Stn !=
         CAN2 & Stn != "zzzzz", data = MetalsInput.FldTripsHalfDL.)
> summary(temp3)
             Df Sum of Sq
                             Mean Sq F Value
                                                   Pr(F)
         Stn 9 0.439955 0.04888388 3.775857 0.00041371
Side %in% Stn 17  0.438510  0.02579470  1.992417  0.01884030
   Residuals 97 1.255804 0.01294643
```


$Log_{10}(Dissolved Manganese)$

Adzic Marko SPOK

From: Adzic Marko SPOK

Sent: Monday, April 05, 2010 4:45 PM
To: 'Bottcher.Helen@epamail.epa.gov'
Cc: 'Melanie Edwards'; Anne Fairbrother

Subject: Surface Water - Triplicate Sampling Rounds 2 and 3 **Attachments:** 04-05-10 Triplicate Sampling MEdwards.pdf

Helen,

Please find attached a memorandum as prepared by Ms Melanie Edwards of Exponent which indicates that triplicate sampling, as outlined for the first round of surface water sampling, is not necessary in subsequent sampling rounds. Please note that the memorandum was developed per the QAPP to help us ascertain the need (added statistical power) for additional triplicates per the QAPP. As indicated by the attached, Ms Edwards has identified an alternative and more robust method of data analysis which can, and will, be used to evaluate the data at the completion of all three sampling events. Therefore and consistent with the QAPP, additional triplicate samples are not necessary and will not be collected at transects CAN1, TC3, and TC6 in subsequent sampling events. Please let me know if you have any questions.

Regards,

Marko Adzic

Manager, Environmental Engineering Teck American Incorporated Direct Phone: +1.509.892.2585 Phone: 509.747.6111

Fax:

eMail: Marko.Adzic@teck.com

www.teck.com

EXTERNAL MEMORANDUM

To: Marko Adzic

FROM: Melanie Edwards

DATE: April 5, 2010 PROJECT: 0900083.013

SUBJECT: Justification for no additional field triplicate sampling

As directed in the approved Surface Water Quality Assurance Project Plan (QAPP), the first round of surface water sample concentrations were evaluated according to the methodology outlined for statistical comparisons. Based on this analysis, it was determined that field triplicate sampling at transects CAN1, TC3, and TC6 is not necessary during subsequent rounds of surface water sampling.

Adhering to the statistical comparison approach outlined in the QAPP, the field triplicate samples collected during the first round of sampling provide the necessary estimates of variability. It is important to note that a large number of the compounds measured (46 percent) were not detected at any location, with even more compounds (71 percent) detected in fewer than 10 samples. Given the high proportion of undetected concentrations, statistical comparisons are not anticipated, and variability estimates not necessary, for these compounds. The compounds that do have detected concentrations at multiple transects generally were detected most frequently at the three transects with first round triplicate samples.

An alternative approach for statistical comparisons is based on more commonly used statistical methods (analysis of variance) than the method outlined in the QAPP and does not rely upon variability estimates from the field triplicate samples. This approach identifies significant differences by evaluating differences among depths and locations, as well as transects, using all of the available data in two separate models. Conclusions about differences among samples are drawn from the results of both models and plots of the data. This approach will be used for comparisons following the completion of all surface water sampling events.

-

The method outlined in the QAPP uses Monte Carlo random sampling from a normal distribution. The field triplicate samples are used to estimate a coefficient of variability (CV), which combined with the average concentration yields the mean and standard deviation estimates necessary to characterize the normal distribution. Specifics on how this method is applied are outlined in the Surface Water QAPP.

Date: August 6, 2012

+1 509 747 6111 Tel +1 509 922 8767 Fax www.teck.com

Teck

To: Dr. Laura Buelow, U.S. Environmental Protection Agency

(EPA)

From: Kris McCaig, Teck American Incorporated (TAI) File No. 01-773180-000

Cc: Helen Bottcher, EPA

Marko Adzic, TAI

Dr. Anne Fairbrother, Exponent, Inc. (Exponent)

Cristy Kessel, Exponent

RE: Upper Columbia River Remedial Investigation Feasibility Study

Database Detection Limit Analysis Update

TAI submitted a memorandum regarding the above-referenced to Helen Bottcher on December 5, 2011 and has since reviewed the information per EPA's request.

The review was conducted by the project database manager (i.e., Exponent) to determine if there was a group of data for certain parameters, within a study program, or done by a certain laboratory in which data were reported inconsistent with requirements of respective quality assurance project plans (QAPPs).

Findings of the review are as follows:

- 1. When the December 2011 analysis was conducted, information returned from the database included results for lab replicates, field replicates, field triplicates, blank water, and rinse water quality control (QC) samples. Therefore, any non-detects for these analyses were included in the number of results reported to the method detection limit (MDL) or the method reporting limit (MRL). Given that these data are for quality assurance/quality control (QA/QC) purposes only and will not be used in the risk assessment they were inappropriately included in the 2011 analysis. This has been corrected and is detailed within Tables 2 through 8, see attached.
- 2. The December 2011 analysis enumerated results identified as non-detects based on data validation activities rather than laboratory reporting limits. In other words, results were initially reported by the laboratory at a value above the MRL; but were later flagged as non-detected for QA/QC reasons (e.g., blank contamination). In such instances, these non-detects should not have been considered in the analysis of whether or not the QAPP reporting requirements were met. Therefore, these results are not included in the new Tables 2 through 8 attached to this memorandum.
- 3. The December 2011 analysis inadvertently miss-counted non-detect results for which the MDL was equal to the MRL. For example, in the Surface Water Study Rounds 1, 2, and

- 3, all non-detected results for high-resolution gas chromatography/high-resolution mass spectrometry (HRGC/HRMS) analyses were reported to the MRL and therefore categorized as "Non-detects NOT reported per QAPP". However, for all of these analyses, the MDL was equal to the MRL and therefore were reported consistent with the QAPP (i.e., "Non-detects reported per QAPP"). This is reflected in the attached tables (see Tables 2 through 8).
- 4. No revision to the information presented in the December 2011 memorandum for the 2009 Fish Tissue data was necessary as all non-detects were reported per the QAPP.

Attachments (8)

- Table 1 December 5, 2011 Memorandum Table 3 Summary of Non-detect Values Reported from Teck UCR RI/FS Studies
- Table 2 2009 Beach Sediment Data Review of How Non-detect Results Are Reported
- Table 3 2010 Beach Sediment Data Review of How Non-detect Results Are Reported
- Table 4 2011 Beach Sediment Data Review of How Non-detect Results Are Reported
- Table 5 2009 Surface Water Round 1 Data Review of How Non-detect Results Are Reported
- Table 6 2010 Surface Water Round 2 Data Review of How Non-detect Results Are Reported
- Table 7 2010 Surface Water Round 3 Data Review of How Non-detect Results Are Reported
- Table 8 2010 White Sturgeon Sediment Toxicity Testing Data Review of How Non-detect Results Are Reported

Table 1. Summary of Non-detect Values Reported from Teck UCR RI/FS Studies

Teck Program	NDs Reported at MRL	NDs Reported at MDL	NDs Not Reported to MRL or MDL	Explanation Where Non- detect Results are Not Equal to MRL or MDL	Total Count of NDs	QAPP	Number of NDs Results Reported as per QAPP	Number of NDs Results Not Reported as per QAPP
2009 Beach Sediment	73	1,332	37	1 ^a , 34 ^b , 2 ^c	1,442			
2010 Beach Sediment	67	2,168	33	28 ^b , 1 ^d , 4 ^c	2,268			
2011 Beach Sediment	510	14,686	310	220 ^b , 76 ^d , 14 ^c	15,506			
Beach Sediment Total	650	18,186	380		19,216	ND=MRL	650	18,566
2009 Surface Water Round 1	3,976	26,811	307	2 ^a , 295 ^b , 10 ^c	31,094			
Non-HRGC/HRMS Data	3,030	15,482	10		18,522	ND=MRL	3,030	15,482
HRGC/HRMS Data	946	11,329	297		12,572	ND=MDL	11,329	946
2010 Surface Water Round 2	11,697	13,794	16	1 ^b , 15 ^c	25,507			
Non-HRGC/HRMS Data	2,077	12,584	15		14,676	ND=MRL	2,077	12,584
HRGC/HRMS Data	9,620	1,210	1		10,831	ND=MDL	1,210	9,620
2010 Surface Water Round 3	11,791	12,951	14	14 ^c	24,756			
Non-HRGC/HRMS Data	2,180	11,679	14		13,873	ND=MRL	2,180	11,679
HRGC/HRMS Data	9,611	1,272			10,883	ND=MDL	1,272	9,611
Non-HRGC/HRMS Data Total	7,287	39,745	39		47,071	ND=MRL	7,287	39,784
HRGC/HRMS Data Total	20,177	13,811	298		34,286	ND=MDL	13,811	20,475
Surface Water Total	27,464	53,556	337		81,357		21,098	60,259
2009 Fish Total		80,221	11	11 ^b	80,232	ND=MDL	80,221	11 ^b
2010 Sturgeon Sediment Toxicity Total	8,623	14,793	1,947	1904 ^e , 43 ^d	25,363	ND=MRL	8,623	16,740
All Programs Total	36,737	166,756	2,675		206,168		110,592	95,565

Notes:

^a U* flag assigned by validator. U* definition: analyte should be considered "not-detected" because it was detected in an associated blank at a similar level.

b EMPC flag assigned by lab or validator. EMPC definition: the detection limit represents the estimated maximum possible concentration if the compound was present.

^c Pace radionuclides nondetect results - The typical environmental term, method detection limit (MDL) is not applicable to radiochemistry as the detection limit is unique to each sample as well as each method. Therefore following a prescribed methodology such as that described in CFR Part 136 Appendix B would not result in the actual detection limit for the actual sample.

^d These records are CAS grain size results where all of the measured values = 0, and there are no detection/reporting/quantification limits for grain size analysis. The validator assigned the "UJ" flag to these records stating "large discrepancies were observed between the results for these particle size fractions in the associated field duplicate analyses".

^e The reported measured value contains the calculated concentration from the DGT probe; see the "comments" field of these records for more details.

Table 2. 2009 Beach Sediment Data Review of How Non-detect Results Are Reported

December 2011 Summary of 2009 Beach Sediment ^a							
	Number of NDs Results Reported	Number of NDs Results Not Reported as					
QAPP	as per QAPP	per QAPP					
ND=MRL	73	1,332					

Analyte Type	Lab Name	Analyte	No. of Measurements ^b	No. of Reported Non-detects	QAPP Requirement	Non-Detects Reported to MDL?	Non-Detects Reported to MRL?	No. of Measurements Not Reported per QAPP
Convent		Thaiye	Modeuremente	11011 0010010	rtoquiromoni	reperted to MBE.	responds to Mire.	rtoportou por q/ti i
Comronia		oia Analytical Services						
		pH	16	0	MRL	0	0	0
		Solids	54	0	MRL	0	0	0
		Sulfide	16	0	MRL	0	0	0
		TOC	16	0	MRL	0	0	0
Dioxins/I	Furans							
	SGS N	С						
		1,2,3,4,6,7,8-Heptachlorodibenzodioxin	1	1	MRL	1	0	1
		1,2,3,4,6,7,8-Heptachlorodibenzofuran	1	1	MRL	1	0	1
		1,2,3,4,7,8,9-Heptachlorodibenzofuran	1	1	MRL	1	0	1
		1,2,3,4,7,8-Hexachlorodibenzodioxin	1	1	MRL	1	0	1
		1,2,3,4,7,8-Hexachlorodibenzofuran	1	1	MRL	1	0	1
		1,2,3,6,7,8-Hexachlorodibenzodioxin	1	1	MRL	1	0	1
		1,2,3,6,7,8-Hexachlorodibenzofuran	1	1	MRL	1	0	1
		1,2,3,7,8,9-Hexachlorodibenzodioxin	1	1	MRL	1	0	1
		1,2,3,7,8,9-Hexachlorodibenzofuran	1	1	MRL	1	0	1
		1,2,3,7,8-Pentachlorodibenzofuran	1	1	MRL	1	0	1
		1,2,3,7,8-Pentachlorodibenzo-p-dioxin	1	1	MRL	1	0	1
		2,3,4,6,7,8-Hexachlorodibenzofuran	1	1	MRL	1	0	1
		2,3,4,7,8-Pentachlorodibenzofuran	1	1	MRL	1	0	1
		2,3,7,8-Tetrachlorodibenzodioxin	1	1	MRL	1	0	1
		2,3,7,8-Tetrachlorodibenzofuran	1	1	MRL	1	0	1
		Heptachlorodibenzodioxin (Total)	1	0	MRL	0	0	0
		Heptachlorodibenzofuran (Total)	1	0	MRL	0	0	0
		Hexachlorodibenzodioxin (Total)	1	1	MRL	1	0	1
		Hexachlorodibenzofuran (Total)	1	0	MRL	0	0	0
		Octachlorodibenzodioxin	1	1	MRL	1	0	1
		Octachlorodibenzofuran	1	1	MRL	1	0	1
		Pentachlorodibenzodioxin (Total)	1	1	MRL	1	0	1
		Pentachlorodibenzofuran (Total)	1	0	MRL	0	0	0
		Tetrachlorodibenzodioxin (Total)	1	1	MRL	1	0	1
		Tetrachlorodibenzofuran (Total)	1	0	MRL	0	0	0

Table 2. 2009 Beach Sediment Data Review of How Non-detect Results Are Reported

December 2011 Summary of 2009 Beach Sediment ^a							
	Number of NDs Results Reported	Number of NDs Results Not Reported as					
QAPP	as per QAPP	per QAPP					
ND=MRL	73	1,332					

Analyte Type	Lab Name	Analyte	No. of Measurements ^b	No. of Reported Non-detects	QAPP Requirement	Non-Detects Reported to MDL?	Non-Detects Reported to MRL?	No. of Measurements Not Reported per QAPP
Grain Siz	e							
	Columbia Analytic	cal Services						
	Clay		16	0	MRL	0	0	0
	Coarse	Gravel	16	0	MRL	0	0	0
	Coarse	sand	16	0	MRL	0	0	0
	Cobbles		16	0	MRL	0	0	0
	Fine Gra	avel	16	0	MRL	0	0	0
	Fine Sar	nd	16	0	MRL	0	0	0
	Med. Sa	ınd	16	0	MRL	0	0	0
	Medium	Gravel	16	0	MRL	0	0	0
	Silt		16	0	MRL	0	0	0
	Very Co	arse Gravel	16	0	MRL	0	0	0
	Very Co	arse Sand	16	0	MRL	0	0	0
		e Gravel	16	0	MRL	0	0	0
	Very fine		16	0	MRL	0	0	0
Metals/Me								
	Columbia Analytic	cal Services						
	Aluminu		48	0	MRL	0	0	0
	Antimon	у	48	0	MRL	0	0	0
	Arsenic	•	56	0	MRL	0	0	0
	Barium		48	0	MRL	0	0	0
	Berylliur	n	48	0	MRL	0	0	0
	Cadmiu	m	48	0	MRL	0	0	0
	Calcium		48	0	MRL	0	0	0
	Chromiu	ım	48	0	MRL	0	0	0
	Cobalt		48	0	MRL	0	0	0
	Copper		48	0	MRL	0	0	0
	Iron		48	0	MRL	0	0	0
	Lead		56	0	MRL	0	0	0
	Magnes	ium	48	0	MRL	0	0	0
	Mangan		48	0	MRL	0	0	0
	Mercury		48	0	MRL	0	0	0
	Nickel		48	0	MRL	0	0	0
	Potassiu	ım	48	0	MRL	0	0	0
	Seleniur	n	48	1	MRL	1	0	1
	Silver		48	0	MRL	0	0	0

December 2011 Summary of 2009 Beach Sediment ^a							
	Number of NDs Results Reported	Number of NDs Results Not Reported as					
QAPP	as per QAPP	per QAPP					
ND=MRL	73	1,332					

Analyte	Lab Name	Analyta	No. of Measurements ^b	No. of Reported Non-detects	QAPP	Non-Detects	Non-Detects Reported to MRL?	No. of Measurements Not Reported per QAPP
Type		Analyte	Measurements	Non-detects	Requirement	Reported to MDL?	Reported to MRL?	Reported per QAPP
wetais/we	etanoids	(continued) Sodium	48	0	MRL	0	0	0
		Thallium	48	10	MRL	0	10	0
		Uranium	24	0	MRL	0	0	0
		Vanadium	48	0	MRL	0	0	0
		Zinc	48	0	MRL	0	0	0
PAHs		2110			WITE	<u> </u>		<u> </u>
-	Columb	ia Analytical Services						
		1,1'-Biphenyl	6	6	MRL	6	0	6
		2-Methylnaphthalene	6	1	MRL	1	0	1
		Acenaphthene	6	6	MRL	6	0	6
		Acenaphthylene	6	6	MRL	6	0	6
		Anthracene	6	6	MRL	6	0	6
		Benzo[a]anthracene	6	4	MRL	4	0	4
		Benzo[a]pyrene	6	5	MRL	5	0	5
		Benzo[b]fluoranthene	6	4	MRL	4	0	4
		Benzo[g,h,i]perylene	6	5	MRL	5	0	5
		Benzo[k]fluoranthene	6	6	MRL	6	0	6
		Chrysene	6	4	MRL	4	0	4
		Dibenzo[a,h]anthracene	6	6	MRL	6	0	6
		Dibenzofuran	6	6	MRL	6	0	6
		Fluoranthene	6	3	MRL	3	0	3
		Fluorene	6	6	MRL	6	0	6
		Indeno[1,2,3-cd]pyrene	6	6	MRL	6	0	6
		Naphthalene	6	6	MRL	6	0	6
		Phenanthrene	6	3	MRL	3	0	3
		Pyrene	6	4	MRL	4	0	4
PBDEs		•						
_	SGS NO							
		2,2',3,3',4,4',5,5',6-Nonabromodiphenyl ether	1	1	MRL	0	1	0
		2,2',3,3',4,4'-Hexabromodiphenyl ether	1	1	MRL	0	1	0
		2,2',3,4,4',5,5',6-Octabromodiphenyl ether	1	1	MRL	1	0	1
		2,2',3,4,4',5',6-Heptabromodiphenyl ether	1	1	MRL	1	0	1
		2,2',3,4,4',6,6'-Heptabromodiphenyl ether	1	1	MRL	1	0	1
		2,2',3,4,4'-Pentabromodiphenyl ether	1	1	MRL	0	1	0
		2,2',4,4',5,5'-Hexabromodiphenyl ether	1	1	MRL	1	0	1
		2,2',4,4',5,6'-Hexabromodiphenyl ether	1	1	MRL	1	0	1
		2,2',4,4',5-Pentabromodiphenyl ether	1	1	MRL	0	1	0
		2,2',4,4',6-Pentabromodiphenyl ether	1	1	MRL	0	1	0
		2,2',4,4'-Tetrabromodiphenyl ether	1	1	MRL	0	1	0
		2,2',4,5'-Tetrabromodiphenyl ether	1	1	MRL	0	1	0
		2,3,3',4,4',5',6-Heptabromodiphenyl ether	1	1	MRL	0	1	0

December 2011 Summary of 2009 Beach Sediment ^a							
	Number of NDs Results Reported	Number of NDs Results Not Reported as					
QAPP	as per QAPP	per QAPP					
ND=MRL	73	1,332					

Analyte	Lab		No. of	No. of Reported	QAPP	Non-Detects	Non-Detects	No. of Measurements Not
Type	Name	Analyte	Measurements b	Non-detects	Requirement	Reported to MDL?	Reported to MRL?	Reported per QAPP
PBDEs (c	ontinued	4)				·		
		2,3,3',4,4',5,6-Heptabromodiphenyl ether	1	1	MRL	0	1	0
		2,3',4,4'-Tetrabromodiphenyl ether	1	1	MRL	0	1	0
		2,3',4',6-Tetrabromodiphenyl ether	1	1	MRL	0	1	0
		Coelution of PBDE 138 and 166	1	1	MRL	0	1	0
		Coelution of PBDE 17 and 25	1	1	MRL	1	0	1
		Coelution of PBDE 28 and 33	1	1	MRL	1	0	1
		Decabromodiphenyl ether	1	1	MRL	0	1	0
PCBs								
	Columb	ia Analytical Services						
		Aroclor 1016	6	6	MRL	6	0	6
		Aroclor 1221	6	6	MRL	6	0	6
		Aroclor 1232	6	6	MRL	6	0	6
		Aroclor 1242	6	6	MRL	6	0	6
		Aroclor 1248	6	6	MRL	6	0	6
		Aroclor 1254	6	6	MRL	6	0	6
		Aroclor 1260	6	6	MRL	6	0	6
		Aroclor 1262	5	5	MRL	5	0	5
		Aroclor 1268	5	5	MRL	5	0	5
	SGS NO							
		2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	1	1	MRL	0	0	0
		2,2',3,3',4,4',5,5'-Octachlorobiphenyl	1	0	MRL	0	0	0
		2,2',3,3',4,4',5,6,6'-Nonachlorobiphenyl	1	1	MRL	1	0	1
		2,2',3,3',4,4',5,6'-Octachlorobiphenyl	1	1	MRL	1	0	1
		2,2',3,3',4,4',5,6-Octachlorobiphenyl	1	1	MRL	1	0	1
		2,2',3,3',4,4',5-Heptachlorobiphenyl	1	1	MRL	0	0	0
		2,2',3,3',4,4',6,6'-Octachlorobiphenyl	1	1	MRL	1	0	1
		2,2',3,3',4,4',6-Heptachlorobiphenyl	1	1	MRL	1	0	1
		2,2',3,3',4,4'-Hexachlorobiphenyl	1	1	MRL	1	0	1
		2,2',3,3',4,5,5',6,6'-Nonachlorobiphenyl	1	1	MRL	1	0	1
		2,2',3,3',4,5,5',6-Octachlorobiphenyl	1	1	MRL	0	0	0
		2,2',3,3',4,5,5'-Heptachlorobiphenyl	1	1	MRL	1	0	1
		2,2',3,3',4,5',6,6'-Octachlorobiphenyl	1	1	MRL	1	0	1
		2,2',3,3',4,5',6'-Heptachlorobiphenyl	1	1	MRL	1	0	1
		2,2',3,3',4,5',6-Heptachlorobiphenyl	1	1	MRL	1	0	1
		2,2',3,3',4,5,6'-Heptachlorobiphenyl	1	0	MRL	0	0	0
		2,2',3,3',4,5'-Hexachlorobiphenyl	1	1	MRL	1	0	1
		2,2',3,3',4,5-Hexachlorobiphenyl	1	0	MRL	0	0	0
		2,2',3,3',4,6,6'-Heptachlorobiphenyl	1	1	MRL	1	0	1
		2,2',3,3',4,6'-Hexachlorobiphenyl	1	1	MRL	1	0	1
		2,2',3,3',4,6-Hexachlorobiphenyl	1	1	MRL	1	0	1
		2,2',3,3',4-Pentachlorobiphenyl	1	1	MRL	1	0	1

December 2011 Summary of 2009 Beach Sediment ^a							
	Number of NDs Results Reported	Number of NDs Results Not Reported as					
QAPP	as per QAPP	per QAPP					
ND=MRL	73	1,332					

Analyte	Lab		No. of	No. of Reported	QAPP	Non-Detects	Non-Detects	No. of Measurements Not
Type	Name	Analyte	Measurements b	Non-detects	Requirement	Reported to MDL?	Reported to MRL?	Reported per QAPP
PCBs (coi	ntinued)					·		
		2,2',3,3',5,5',6,6'-Octachlorobiphenyl	1	1	MRL	1	0	1
		2,2',3,3',5,5',6-Heptachlorobiphenyl	1	1	MRL	1	0	1
		2,2',3,3',5,5'-Hexachlorobiphenyl	1	1	MRL	1	0	1
		2,2',3,3',5,6,6'-Heptachlorobiphenyl	1	0	MRL	0	0	0
		2,2',3,3',5,6'-Hexachlorobiphenyl	1	1	MRL	0	0	0
		2,2',3,3',5,6-Hexachlorobiphenyl	1	1	MRL	1	0	1
		2,2',3,3',5-Pentachlorobiphenyl	1	1	MRL	1	0	1
		2,2',3,3',6,6'-Hexachlorobiphenyl	1	1	MRL	1	0	1
		2,2',3,3',6-Pentachlorobiphenyl	1	1	MRL	1	0	1
		2,2',3,3'-Tetrachlorobiphenyl	1	1	MRL	1	0	1
		2,2',3,4,4',5,5',6-Octachlorobiphenyl	1	1	MRL	0	0	0
		2,2',3,4,4',5,5'-Heptachlorobiphenyl	1	0	MRL	0	0	0
		2,2',3,4,4',5,6,6'-Octachlorobiphenyl	1	1	MRL	1	0	1
		2,2',3,4,4',5',6-Heptachlorobiphenyl	1	1	MRL	1	0	1
		2,2',3,4,4',5,6'-Heptachlorobiphenyl	1	1	MRL	1	0	1
		2,2',3,4,4',5,6-Heptachlorobiphenyl	1	1	MRL	1	0	1
		2,2',3,4,4',5-Hexachlorobiphenyl	1	1	MRL	1	0	1
		2,2',3,4,4',6,6'-Heptachlorobiphenyl	1	1	MRL	1	0	1
		2,2',3,4,4',6-Hexachlorobiphenyl	1	1	MRL	1	0	1
		2,2',3,4,4'-Pentachlorobiphenyl	1	1	MRL	1	0	1
		2,2',3,4',5,5',6-Heptachlorobiphenyl	1	0	MRL	0	0	0
		2,2',3,4',5,5'-Hexachlorobiphenyl	1	1	MRL	1	0	1
		2,2',3,4,5,5'-Hexachlorobiphenyl	1	1	MRL	1	0	1
		2,2',3,4',5,6,6'-Heptachlorobiphenyl	1	1	MRL	1	0	1
		2,2',3,4,5,6,6'-Heptachlorobiphenyl	1	1	MRL	1	0	1
		2,2',3,4',5,6'-Hexachlorobiphenyl	1	1	MRL	1	0	1
		2,2',3,4',5,6-Hexachlorobiphenyl	1	0	MRL	0	0	0
		2,2',3,4,5',6-Hexachlorobiphenyl	1	1	MRL	1	0	1
		2,2',3,4,5,6'-Hexachlorobiphenyl	1	1	MRL	1	0	1
		2,2',3,4,5,6-Hexachlorobiphenyl	1	1	MRL	1	0	1
		2,2',3,4',5-Pentachlorobiphenyl	1	0	MRL	0	0	0
		2,2',3,4,5-Pentachlorobiphenyl	1	1	MRL	0	0	0
		2,2',3,4',6,6'-Hexachlorobiphenyl	1	1	MRL	1	0	1
		2,2',3,4,6,6'-Hexachlorobiphenyl	1	1	MRL	1	0	1
		2,2',3,4',6'-Pentachlorobiphenyl	1	1	MRL	1	0	1
		2,2',3,4,6'-Pentachlorobiphenyl	1	1	MRL	1	0	1
		2,2',3,4,6-Pentachlorobiphenyl	1	1	MRL	1	0	1
		2,2',3,4'-Tetrachlorobiphenyl	1	1	MRL	1	0	1
		2,2',3,4-Tetrachlorobiphenyl	1	1	MRL	1	0	1
		2,2',3,5,5'-Pentachlorobiphenyl	1	1	MRL	1	0	1
		2,2',3,5,6,6'-Hexachlorobiphenyl	1	1	MRL	1	0	1

December 2011 Summary of 2009 Beach Sediment ^a									
	Number of NDs Results Reported	Number of NDs Results Not Reported as							
QAPP	as per QAPP	per QAPP							
ND=MRL	73	1,332							

Analyte Type	Lab Name	Analyte	No. of Measurements ^b	No. of Reported Non-detects	QAPP Requirement	Non-Detects Reported to MDL?	Non-Detects Reported to MRL?	No. of Measurements Not Reported per QAPP
PCBs (col	ntinued)	·			·	<u> </u>	·	<u> </u>
		2,2',3,5',6-Pentachlorobiphenyl	1	1	MRL	0	0	0
		2,2',3,5,6'-Pentachlorobiphenyl	1	1	MRL	1	0	1
		2,2',3,5,6-Pentachlorobiphenyl	1	1	MRL	1	0	1
		2,2',3,5'-Tetrachlorobiphenyl	1	0	MRL	0	0	0
		2,2',3,5-Tetrachlorobiphenyl	1	1	MRL	1	0	1
		2,2',3,6,6'-Pentachlorobiphenyl	1	1	MRL	1	0	1
		2,2',3,6'-Tetrachlorobiphenyl	1	1	MRL	1	0	1
		2,2',3,6-Tetrachlorobiphenyl	1	1	MRL	1	0	1
		2,2',3-Trichlorobiphenyl	1	1	MRL	0	0	0
		2,2',4,4',5,5'-Hexachlorobiphenyl	1	0	MRL	0	0	0
		2,2',4,4',5,6'-Hexachlorobiphenyl	1	1	MRL	1	0	1
		2,2',4,4',5-Pentachlorobiphenyl	1	1	MRL	1	0	1
		2,2',4,4',6,6'-Hexachlorobiphenyl	1	1	MRL	1	0	1
		2,2',4,5',6-Pentachlorobiphenyl	1	1	MRL	1	0	1
		2,2',4,5'-Tetrachlorobiphenyl	1	1	MRL	1	0	1
		2,2',4,5-Tetrachlorobiphenyl	1	1	MRL	1	0	1
		2,2',4,6,6'-Pentachlorobiphenyl	1	1	MRL	1	0	1
		2,2',4,6-Tetrachlorobiphenyl	1	1	MRL	0	0	0
		2,2',4-Trichlorobiphenyl	1	0	MRL	0	0	0
		2,2',5,5'-Tetrachlorobiphenyl	1	0	MRL	0	0	0
		2,2',5-Trichlorobiphenyl	1	0	MRL	0	0	0
		2,2',6,6'-Tetrachlorobiphenyl	1	1	MRL	1	0	1
		2,2',6-Trichlorobiphenyl	1	1	MRL	1	0	1
		2,2'-Dichlorobiphenyl	1	1	MRL	1	0	1
		2,3,3',4,4',5,5',6-Octachlorobiphenyl	1	1	MRL	1	0	1
		2,3,3',4,4',5,5'-Heptachlorobiphenyl	1	1	MRL	1	0	1
		2,3,3',4,4',5',6-Heptachlorobiphenyl	1	1	MRL	1	0	1
		2,3,3',4,4',5,6-Heptachlorobiphenyl	1	1	MRL	1	0	1
		2,3,3',4,4',5-Hexachlorobiphenyl	1	1	MRL	1	0	1
		2,3,3',4,4',6-Hexachlorobiphenyl	1	1	MRL	1	0	1
		2,3,3',4,4'-Pentachlorobiphenyl	1	1	MRL	0	0	0
		2,3,3',4,5,5',6-Heptachlorobiphenyl	1	1	MRL	1	0	1
		2,3,3',4',5,5'-Hexachlorobiphenyl	1	1	MRL	1	0	1
		2,3,3',4,5,5'-Hexachlorobiphenyl	1	1	MRL	1	0	1
		2,3,3',4',5',6-Hexachlorobiphenyl	1	1	MRL	1	0	1
		2,3,3',4,5',6-Hexachlorobiphenyl	1	1	MRL	1	0	1
		2,3,3',4,5,6-Hexachlorobiphenyl	1	1	MRL	1	0	1
		2,3,3',4',5'-Pentachlorobiphenyl	1	1	MRL	1	0	1
		2,3,3',4',5-Pentachlorobiphenyl	1	1	MRL	1	0	1
		2,3,3',4,5-Pentachlorobiphenyl	1	1	MRL	1	0	1
		2,3,3',4',6-Pentachlorobiphenyl	1	0	MRL	0	0	0

December 2011 Summary of 2009 Beach Sediment ^a									
	Number of NDs Results Reported	Number of NDs Results Not Reported as							
QAPP	as per QAPP	per QAPP							
ND=MRL	73	1,332							

Analyte Type	Lab Name	Analyte	No. of Measurements ^b	No. of Reported Non-detects	QAPP Requirement	Non-Detects Reported to MDL?	Non-Detects Reported to MRL?	No. of Measurements Not Reported per QAPP
PCBs (cor								· · · · · · · · · · · · · · · · · · ·
. 020 (00.		2,3,3',4,6-Pentachlorobiphenyl	1	1	MRL	1	0	1
		2,3,3',4'-Tetrachlorobiphenyl	1	1	MRL	1	0	1
		2,3,3',4-Tetrachlorobiphenyl	1	1	MRL	1	0	1
		2,3,3',5,5',6-Hexachlorobiphenyl	1	1	MRL	1	0	1
		2,3,3',5,5'-Pentachlorobiphenyl	1	1	MRL	1	0	1
		2,3,3',5,6-Pentachlorobiphenyl	1	1	MRL	1	0	1
		2,3,3',5'-Tetrachlorobiphenyl	1	1	MRL	1	0	1
		2,3,3',5-Tetrachlorobiphenyl	1	1	MRL	1	0	1
		2,3,3',6-Tetrachlorobiphenyl	1	1	MRL	1	0	1
		2,3,3'-Trichlorobiphenyl	1	1	MRL	0	1	0
		2,3',4,4',5,5'-Hexachlorobiphenyl	1	1	MRL	1	0	1
		2,3',4,4',5'-Pentachlorobiphenyl	1	1	MRL	1	0	1
		2,3',4,4',5-Pentachlorobiphenyl	1	0	MRL	0	0	0
		2,3,4,4',5-Pentachlorobiphenyl	1	1	MRL	1	0	1
		2,3',4,4'-Tetrachlorobiphenyl	1	0	MRL	0	0	0
		2,3,4,4'-Tetrachlorobiphenyl	1	1	MRL	1	0	1
		2,3',4,5,5'-Pentachlorobiphenyl	1	1	MRL	1	0	1
		2,3',4,5',6-Pentachlorobiphenyl	1	1	MRL	1	0	1
		2,3',4,5'-Tetrachlorobiphenyl	1	1	MRL	1	0	1
		2,3',4,5-Tetrachlorobiphenyl	1	1	MRL	1	0	1
		2,3,4',5-Tetrachlorobiphenyl	1	1	MRL	1	0	1
		2,3,4,5-Tetrachlorobiphenyl	1	1	MRL	0	1	0
		2,3,4',6-Tetrachlorobiphenyl	1	1	MRL	1	0	1
		2,3',4-Trichlorobiphenyl	1	1	MRL	0	0	0
		2,3,4'-Trichlorobiphenyl	1	0	MRL	0	0	0
		2,3,4-Trichlorobiphenyl	1	1	MRL	0	1	0
		2,3',5,5'-Tetrachlorobiphenyl	1	1	MRL	1	0	1
		2,3',5',6-Tetrachlorobiphenyl	1	1	MRL	1	0	1
		2,3',5'-Trichlorobiphenyl	1	1	MRL	1	0	1
		2,3',5-Trichlorobiphenyl	1	1	MRL	0	0	0
		2,3,5-Trichlorobiphenyl	1	1	MRL	1	0	1
		2,3',6-Trichlorobiphenyl	1	1	MRL	1	0	1
		2,3,6-Trichlorobiphenyl	1	1	MRL	1	0	1
		2,3'-Dichlorobiphenyl	1	1	MRL	0	0	0
		2,3-Dichlorobiphenyl	1	1	MRL	1	0	1
		2,4',5-Trichlorobiphenyl	1	1	MRL	0	1	0
		2,4',6-Trichlorobiphenyl	1	1	MRL	0	0	0
		2,4'-Dichlorobiphenyl	1	1	MRL	0	1	0
		2,4-Dichlorobiphenyl	1	1	MRL	1	0	1
		2,5-Dichlorobiphenyl	1	1	MRL	1	0	1
		2,6-Dichlorobiphenyl	1	1	MRL	1	0	1

December 2011 Summary of 2009 Beach Sediment ^a								
	Number of NDs Results Reported	Number of NDs Results Not Reported as						
QAPP	as per QAPP	per QAPP						
ND=MRL	73	1,332						

PCBs (continued)	Analyte Type	Lab Name	Analyte	No. of Measurements ^b	No. of Reported Non-detects	QAPP Requirement	Non-Detects Reported to MDL?	Non-Detects Reported to MRL?	No. of Measurements Not Reported per QAPP
3,3,4,4,5,5 Hexachlorobipheny 1	PCBs (co.	ntinued)	·			·	·	·	· ·
3,3,4,5-Fentachlorobipheny		,		1	1	MRL	1	0	1
3.3.4.5.Fentachlorobjpheny				1	1		1		1
3.3.4.5.7-Pentachlorobipheny			3,3',4,4'-Tetrachlorobiphenyl	1	1	MRL	1	0	1
3.3'.4.5-Tetrachlorobipheny				1	1	MRL	1	0	1
3.3°,4-Trichlorobiphenyl			3,3',4,5'-Tetrachlorobiphenyl	1	1	MRL	1	0	1
3.3',5.5'-Tetrachiorobiphenyl			3,3',4,5-Tetrachlorobiphenyl	1	1	MRL	1	0	1
3.3'.5-Trichlorobiphenyl 1 1 1 MRL 1 0 1 1 3.3'.5-Inchlorobiphenyl 1 1 1 MRL 0 1 1 0 1 1 3.3'.5-Inchlorobiphenyl 1 1 1 MRL 1 0 1 1 0 1 1 3.4'.5-Tetrachlorobiphenyl 1 1 1 MRL 1 0 1 1 0 1 1 3.4'.5-Tetrachlorobiphenyl 1 1 1 MRL 1 0 1 1 0 1 1 3.4'.5-Trichlorobiphenyl 1 1 1 MRL 1 0 1 1 0 1 1 3.4'.5-Trichlorobiphenyl 1 1 1 MRL 1 0 1 1 0 1 1 3.4'.5-Trichlorobiphenyl 1 1 1 MRL 1 0 0 1 1 1 3.4'.5-Trichlorobiphenyl 1 1 1 MRL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				1	1	MRL	1	0	1
3,3'-5-Trichlorobiphenyl			3,3',5,5'-Tetrachlorobiphenyl	1	1	MRL	1	0	1
3,3-Dichlorobipherny				1	1	MRL	1	0	1
3.4.4'.5-Tetrachlorobiphenyl 1 1 MRL 1 0 1 0 1 3.4'.5-Trichlorobiphenyl 1 1 1 MRL 0 0 1 1 0 3.4'.5-Trichlorobiphenyl 1 1 1 MRL 1 0 0 1 1 3.4'.5-Trichlorobiphenyl 1 1 1 MRL 1 0 0 1 1 3.4'.5-Trichlorobiphenyl 1 1 MRL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				1	1		0	1	0
3,4,4-Trichlorobiphenyl 1 1 1 MRL 0 1 0 1 3,4;5-Trichlorobiphenyl 1 1 1 MRL 1 0 1 1 3,4;5-Trichlorobiphenyl 1 1 1 MRL 1 0 1 1 3,4;5-Trichlorobiphenyl 1 1 1 MRL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				1	1	MRL	1	0	1
3.4.5-Trichlorobiphenyl 1 1 1 MRL 1 0 1 1 3.4.5-Trichlorobiphenyl 1 1 1 MRL 1 0 0 1 1 3.4.5-Trichlorobiphenyl 1 1 1 MRL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				1	1	MRL	0	1	0
3,4-Dichlorobiphenyl (PCB 209) 1				1	1	MRL	1	0	1
3,4-Dichlorobiphenyl (PCB 209) 1			3,4,5-Trichlorobiphenyl	1	1	MRL	1	0	1
PCB congener 1 1 0 MRL 0 0 0 PCB congener 14 1 1 1 MRL 1 0 1 PCB congener 2 1 1 MRL 0 0 0 PCB congener 3 1 1 MRL 0 0 0 PCB TEQ using WHO 2005 TEFs ND=0 DL 1 0 MRL 0 0 0 PCB TEQ using WHO 2005 TEFs ND=1/2 DL 1 0 MRL 0 0 0 PCB TEQ using WHO 2005 TEFs ND=1/2 DL 1 0 MRL 0 0 0 PCB TEQ using WHO 2005 TEFs ND=1/2 DL 1 0 MRL 0 0 0 PCB TEQ using WHO 2005 TEFs ND=1/2 DL 1 0 MRL 0 0 0 PCB TEQ using WHO 2005 TEFs ND=1/2 DL 1 0 MRL 0 0 0 PCB TEQ using WHO 2005 TEFs ND=1/2 DL 1 0 MRL 0 0 0 0 0				1	1		0	0	0
PCB congener 1 1 0 MRL 0 0 0 PCB congener 14 1 1 1 MRL 1 0 1 PCB congener 2 1 1 MRL 0 0 0 PCB congener 3 1 1 MRL 0 0 0 PCB TEQ using WHO 2005 TEFs ND=0 DL 1 0 MRL 0 0 0 PCB TEQ using WHO 2005 TEFs ND=1/2 DL 1 0 MRL 0 0 0 PCB TEQ using WHO 2005 TEFs ND=1/2 DL 1 0 MRL 0 0 0 PCB TEQ using WHO 2005 TEFs ND=1/2 DL 1 0 MRL 0 0 0 PCB TEQ using WHO 2005 TEFs ND=1/2 DL 1 0 MRL 0 0 0 PCB TEQ using WHO 2005 TEFs ND=1/2 DL 1 0 MRL 0 0 0 PCB TEQ using WHO 2005 TEFs ND=1/2 DL 1 0 MRL 0 0 0 0 0			Decachlorobiphenyl (PCB 209)	1	0	MRL	0	0	0
PCB congener 14 1 1 MRL 1 0 1 PCB congener 15 1 1 MRL 0 0 0 PCB congener 2 1 1 MRL 0 0 0 PCB congener 3 1 1 MRL 0 0 0 PCB TEQ using WHO 2005 TEFs ND=0 DL 1 0 MRL 0 0 0 PCB TEQ using WHO 2005 TEFs ND=1/2 DL 1 0 MRL 0 0 0 PCB TEQ using WHO 2005 TEFs ND=1/2 DL 1 0 MRL 0 0 0 PCB TEQ using WHO 2005 TEFs ND=1/2 DL 1 0 MRL 0 0 0 PCB TEQ using WHO 2005 TEFs ND=1/2 DL 1 0 MRL 0 0 0 PCB TEQ using WHO 2005 TEFs ND=1/2 DL 1 0 MRL 6 0 0 6 PCB TEQ using WHO 2005 TEFs ND=1/2 DL 1 0 MRL 6 0 6 6 0				1	0	MRL	0	0	0
PCB congener 15				1	1	MRL	1	0	1
PCB congener 2 1 1 MRL 0 0 0 PCB congener 3 1 1 MRL 0 0 0 PCB TEQ using WHO 2005 TEFs ND=0 L 1 0 MRL 0 0 0 Pesticides/Herbicides Columbia Analytical Services MRL 6				1	1	MRL	0	1	0
PCB congener 3 1 1 MRL 0 0 0 PCB TEQ using WHO 2005 TEFs ND=1/2 DL 1 0 MRL 0 0 0 PESTECQ using WHO 2005 TEFs ND=1/2 DL 1 0 MRL 0 0 0 PESTECTION OF TEMPORATION O				1	1	MRL	0	0	0
PCB TEQ using WHO 2005 TEFs ND=0 DL PCB TEQ using WHO 2005 TEFs ND=1/2 DL 1 0 MRL NRL 0 0 0 Pesticides/Herbicides Columbia Analytical Services 2,4'-DDD 6 6 MRL 6 0 6 2,4'-DDT 6 6 MRL 6 0 6 4,4'-DDD 6 6 MRL 6 0 6 4,4'-DDE 6 6 MRL 6 0 6 4,4'-DDT 6 6 MRL 6 0 6 4,4'-DDT 6 6 MRL 6 0 6 Aldrin 6 6 MRL 6 0 6 alpha-Benzenehexachloride 6 6 MRL 6 0 6 alpha-Chlordane 6 6 MRL 6 0 6 Chlordane 6 6 MRL 6 0 6 Chlordane <td></td> <td></td> <td></td> <td>1</td> <td>1</td> <td>MRL</td> <td>0</td> <td>0</td> <td>0</td>				1	1	MRL	0	0	0
PCB TEQ using WHO 2005 TEFs ND=1/2 DL				1	0	MRL	0	0	0
Columbia Analytical Services 2,4'-DDD 6 6 MRL 6 0 6 2,4'-DDE 6 6 MRL 6 0 6 2,4'-DDT 6 6 MRL 6 0 6 4,4'-DDD 6 6 MRL 6 0 6 4,4'-DDT 6 6 MRL 6 0 6 Aldrin 6 6 MRL 6 0 6 Alpha-Benzenehexachloride 6 6 MRL 6 0 6 alpha-Chlordane 6 6 MRL 6 0 6 beta-BHC 6 6 MRL 6 0 6 Chlordane 6 6 MRL 6 0 6 cis-Nonachlor 6 6 MRL 6 0 6 delta-BHC 6 6 MRL 6 0 6 Dieldrin				1	0	MRL	0	0	0
2,4'-DDD 6 6 MRL 6 0 6 2,4'-DDE 6 6 MRL 6 0 6 2,4'-DDT 6 6 MRL 6 0 6 4,4'-DDE 6 6 MRL 6 0 6 4,4'-DDT 6 6 MRL 6 0 6 Aldrin 6 6 MRL 6 0 6 Beta-BHC 6 6 MRL 6 0 6	Pesticides	s/Herbic							
2,4'-DDE 6 6 6 MRL 6 0 6 6 4.4'-DDT 6 6 6 6 MRL 6 0 0 6 0 0 0 6 MRL 6 0 0 0 0 6 MRL 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Columb	ia Analytical Services						_
2,4'-DDT 6 6 MRL 6 0 6 4,4'-DDD 6 6 MRL 6 0 6 4,4'-DDE 6 6 MRL 6 0 6 4,4'-DDT 6 6 MRL 6 0 6 Aldrin 6 6 MRL 6 0 6 alpha-Benzenehexachloride 6 6 MRL 6 0 6 alpha-Chlordane 6 6 MRL 6 0 6 beta-BHC 6 6 MRL 6 0 6 Chlordane 6 6 MRL 6 0 6 cis-Nonachlor 6 6 MRL 6 0 6 delta-BHC 6 6 MRL 6 0 6 Dieldrin 6 6 MRL 6 0 6 Endosulfan I 6 6 MRL 6 0 6			2,4'-DDD	6	6	MRL	6	0	6
4,4'-DDD 6 6 MRL 6 0 6 4,4'-DDE 6 6 MRL 6 0 6 4,4'-DDT 6 6 MRL 6 0 6 Aldrin 6 6 MRL 6 0 6 Aldrin 6 6 MRL 6 0 6 Alpha-Benzenehexachloride 6 6 MRL 6 0 6 alpha-Chlordane 6 6 MRL 6 0 6 beta-BHC 6 6 MRL 6 0 6 Chlordane 6 6 MRL 6 0 6 cis-Nonachlor 6 6 MRL 6 0 6 delta-BHC 6 6 MRL 6 0 6 Dieldrin 6 6 MRL 6 0 6 Endosulfan I 6 6 MRL 6 0 6			2,4'-DDE	6	6	MRL	6	0	6
4,4'-DDE 6 6 MRL 6 0 6 4,4'-DDT 6 6 MRL 6 0 6 Aldrin 6 6 MRL 6 0 6 alpha-Benzenehexachloride 6 6 MRL 6 0 6 alpha-Chlordane 6 6 MRL 6 0 6 beta-BHC 6 6 MRL 6 0 6 Chlordane 6 6 MRL 6 0 6 cis-Nonachlor 6 6 MRL 6 0 6 delta-BHC 6 MRL 6 0 6 Dieldrin 6 6 MRL 6 0 6 Endosulfan I 6 6 MRL 6 0 6			2,4'-DDT	6	6	MRL	6	0	6
4,4'-DDT 6 6 MRL 6 0 6 Aldrin 6 6 MRL 6 0 6 alpha-Benzenehexachloride 6 6 MRL 6 0 6 alpha-Chlordane 6 6 MRL 6 0 6 beta-BHC 6 6 MRL 6 0 6 Chlordane 6 6 MRL 6 0 6 cis-Nonachlor 6 6 MRL 6 0 6 delta-BHC 6 6 MRL 6 0 6 Dieldrin 6 6 MRL 6 0 6 Endosulfan I 6 6 MRL 6 0 6			4,4'-DDD	6	6	MRL	6	0	6
Aldrin 6 6 MRL 6 0 6 alpha-Benzenehexachloride 6 6 MRL 6 0 6 alpha-Chlordane 6 6 MRL 6 0 6 beta-BHC 6 6 MRL 6 0 6 Chlordane 6 6 MRL 6 0 6 cis-Nonachlor 6 6 MRL 6 0 6 delta-BHC 6 6 MRL 6 0 6 Dieldrin 6 6 MRL 6 0 6 Endosulfan I 6 6 MRL 6 0 6				6	6		6	0	6
alpha-Benzenehexachloride 6 6 MRL 6 0 6 alpha-Chlordane 6 6 MRL 6 0 6 beta-BHC 6 6 MRL 6 0 6 Chlordane 6 6 MRL 6 0 6 cis-Nonachlor 6 6 MRL 6 0 6 delta-BHC 6 6 MRL 6 0 6 Dieldrin 6 6 MRL 6 0 6 Endosulfan I 6 6 MRL 6 0 6			4,4'-DDT	6	6	MRL	6	0	6
alpha-Chlordane 6 6 MRL 6 0 6 beta-BHC 6 6 MRL 6 0 6 Chlordane 6 6 MRL 6 0 6 cis-Nonachlor 6 6 MRL 6 0 6 delta-BHC 6 MRL 6 0 6 Dieldrin 6 6 MRL 6 0 6 Endosulfan I 6 6 MRL 6 0 6			Aldrin	6	6	MRL	6	0	6
beta-BHC 6 6 MRL 6 0 6 Chlordane 6 6 MRL 6 0 6 cis-Nonachlor 6 6 MRL 6 0 6 delta-BHC 6 6 MRL 6 0 6 Dieldrin 6 6 MRL 6 0 6 Endosulfan I 6 6 MRL 6 0 6			alpha-Benzenehexachloride	6	6	MRL	6	0	6
Chlordane 6 6 MRL 6 0 6 cis-Nonachlor 6 6 MRL 6 0 6 delta-BHC 6 6 MRL 6 0 6 Dieldrin 6 6 MRL 6 0 6 Endosulfan I 6 6 MRL 6 0 6			alpha-Chlordane	6	6	MRL	6	0	6
cis-Nonachlor 6 6 MRL 6 0 6 delta-BHC 6 6 MRL 6 0 6 Dieldrin 6 6 MRL 6 0 6 Endosulfan I 6 6 MRL 6 0 6			beta-BHC	6	6	MRL	6	0	6
delta-BHC 6 6 MRL 6 0 6 Dieldrin 6 6 MRL 6 0 6 Endosulfan I 6 6 MRL 6 0 6			Chlordane	6	6		6	0	6
Dieldrin 6 6 MRL 6 0 6 Endosulfan I 6 6 MRL 6 0 6			cis-Nonachlor	6	6	MRL	6	0	6
Endosulfan I 6 6 MRL 6 0 6			delta-BHC	6	6	MRL	6	0	6
			Dieldrin	6	6	MRL	6	0	6
Endosulfan II 6 6 MRL 6 0 6			Endosulfan I	6	6	MRL	6	0	6
			Endosulfan II	6	6	MRL	6	0	6

	December 2011 Summary of 2009 Beach Sediment ^a								
	Number of NDs Results Reported	Number of NDs Results Not Reported as							
QAPP	as per QAPP	per QAPP							
ND=MRL	73	1,332							

Analyte	Lab		No. of	No. of Reported	QAPP	Non-Detects	Non-Detects	No. of Measurements Not
Type	Name	Analyte	Measurements ^b	Non-detects	Requirement	Reported to MDL?	Reported to MRL?	Reported per QAPP
Pesticides	s/Herbicides (con	ntinued)						
	Endosu	lfan sulfate	6	6	MRL	6	0	6
	Endrin		6	6	MRL	6	0	6
	Endrin a	aldehyde	6	6	MRL	6	0	6
	Endrin l	ketone	6	6	MRL	6	0	6
	gamma	-BHC	6	6	MRL	6	0	6
	gamma	-Chlordane	6	6	MRL	6	0	6
	Heptach	hlor	6	6	MRL	6	0	6
	Heptach	hlor epoxide	6	6	MRL	6	0	6
	Methox	ychlor	6	6	MRL	6	0	6
	Mirex		6	6	MRL	6	0	6
	Oxychlo	ordane	6	6	MRL	6	0	6
	Toxaph	ene	6	6	MRL	5	1	5
	trans-Ne	onachlor	6	6	MRL	6	0	6
Radionuc								
	Pace Analytical							_
	Radium	-226	1	0	MRL	0	0	0
	Uraniun	n-238	1	0	MRL	0	0	0
SVOCs								
_	Columbia Analytic							
	1,2,4-Tr	richlorobenzene	6	6	MRL	6	0	6
	1,2-Dich	hlorobenzene	6	6	MRL	6	0	6
	1,3-Dich	hlorobenzene	6	6	MRL	6	0	6
	1,4-Dich	hlorobenzene	6	6	MRL	6	0	6
	2,2'-oxy	bis(1-Chloropropane)	6	6	MRL	6	0	6
	2,4,5-Tr	richlorophenol	6	6	MRL	6	0	6
	2,4,6-Tr	richlorophenol	6	6	MRL	6	0	6
	2,4-Dich	hlorophenol	6	6	MRL	6	0	6
		nethylphenol	6	6	MRL	6	0	6
	2,4-Dini	itrophenol	6	6	MRL	6	0	6
	2,4-Dini	itrotoluene	6	6	MRL	6	0	6
	2,6-Dini	itrotoluene	6	6	MRL	6	0	6
	2-Chlore	onaphthalene	6	6	MRL	6	0	6
	2-Chlore	ophenol	6	6	MRL	6	0	6
	2-Methy	/lphenol	6	6	MRL	6	0	6
	2-Nitroa	aniline	6	6	MRL	6	0	6
	2-Nitrop	phenol	6	6	MRL	6	0	6
	3,3'-Dic	hlorobenzidine	6	6	MRL	6	0	6
	3-Nitroa	aniline	6	6	MRL	6	0	6
	4,6-Dini	itro-2-methylphenol	6	6	MRL	6	0	6
	4-Brome	ophenyl-phenylether	6	6	MRL	6	0	6
	4-Chlore	o-3-methylphenol	6	6	MRL	6	0	6

Table 2. 2009 Beach Sediment Data Review of How Non-detect Results Are Reported

December 2011 Summary of 2009 Beach Sediment ^a								
Number of NDs Results Reported Number of NDs Results Not Reported a								
QAPP	as per QAPP	per QAPP						
ND=MRL	73	1,332						

Analyte Type	Lab Name	Analyte	No. of Measurements ^b	No. of Reported Non-detects	QAPP Requirement	Non-Detects Reported to MDL?	Non-Detects Reported to MRL?	No. of Measurements Not Reported per QAPP
SVOCs (c	ontinue	•						
		4-Chloroaniline	6	6	MRL	6	0	6
		4-Chlorophenyl-phenyl ether	6	6	MRL	6	0	6
		4-Methylphenol	6	6	MRL	6	0	6
		4-Nitroaniline	6	6	MRL	6	0	6
		4-Nitrophenol	6	6	MRL	6	0	6
		Acetophenone	6	6	MRL	1	5	1
		Benzaldehyde	6	6	MRL	6	0	6
		Benzoic acid	6	6	MRL	6	0	6
		Benzyl alcohol	6	6	MRL	6	0	6
		Benzyl n-butyl phthalate	6	6	MRL	6	0	6
		bis(2-Chloroethoxy)methane	6	6	MRL	6	0	6
		Bis(2-chloroethyl)ether	6	6	MRL	6	0	6
		bis(2-Ethylhexyl)phthalate	6	2	MRL	1	1	1
		Caprolactam	6	6	MRL	6	0	6
		Carbazole	6	6	MRL	6	0	6
		Diethyl phthalate	6	6	MRL	6	0	6
		Dimethyl phthalate	6	6	MRL	6	0	6
		Di-n-butyl phthalate	6	6	MRL	6	0	6
		Di-n-octylphthalate	6	6	MRL	6	0	6
		Hexachlorobenzene	6	6	MRL	6	0	6
		Hexachlorobutadiene	6	6	MRL	6	0	6
		Hexachlorocyclopentadiene	6	6	MRL	6	0	6
		Hexachloroethane	6	6	MRL	6	0	6
		Isophorone	6	6	MRL	6	0	6
		Nitrobenzene	6	6	MRL	6	0	6
		N-Nitrosodi-n-propylamine	6	6	MRL	6	0	6
		N-Nitrosodiphenylamine	6	6	MRL	6	0	6
		Pentachlorophenol	6	6	MRL	6	0	6
		Phenol	6	3	MRL	3	0	3
		2009 Beach Sediment ^b	2,315	816	MRL	761	38	761

Notes:

^a The December 2011 analysis and summary included results for lab replicates, field replicates, field triplicates, blank water, rinse water/QC samples whereas the current table does not.

b Excludes all duplicate/triplicate/replicate/blank and rinsewater QC sample results

December 2011 Summary of 2010 Beach Sediment ^a								
Number of NDs Results								
QAPP	Reported as per QAPP	per QAPP						
ND=MRL	67	2,168						

Analyte Type	Lab Name	Analyte	No. of Measurements ^b	No. of Reported Non-detects	QAPP Requirement	Non-Detects Reported to MDL?	Non-Detects Reported to MRL?	No. of Measurements Not Reported per QAPP
Convention	onals							
	Columbia	a Analytical Services						
		Organic carbon	33	1	MRL	1	0	1
		pH	33	0	MRL	0	0	0
		Solids	113	0	MRL	0	0	0
		Sulfide	33	8	MRL	8	0	8
Dioxins/F								
	SGS NC							
		1,2,3,4,6,7,8-Heptachlorodibenzodioxin	2	0	MRL	0	0	0
		1,2,3,4,6,7,8-Heptachlorodibenzofuran	2	2	MRL	0	2	0
		1,2,3,4,7,8,9-Heptachlorodibenzofuran	2	2	MRL	2	0	2
		1,2,3,4,7,8-Hexachlorodibenzodioxin	2	2	MRL	2	0	2
		1,2,3,4,7,8-Hexachlorodibenzofuran	2	2	MRL	2	0	2
		1,2,3,6,7,8-Hexachlorodibenzodioxin	2	2	MRL	2	0	2
		1,2,3,6,7,8-Hexachlorodibenzofuran	2	2	MRL	2	0	2
		1,2,3,7,8,9-Hexachlorodibenzodioxin	2	1	MRL	1	0	1
		1,2,3,7,8,9-Hexachlorodibenzofuran	2	2	MRL	2	0	2
		1,2,3,7,8-Pentachlorodibenzofuran	2	2	MRL	2	0	2
		1,2,3,7,8-Pentachlorodibenzo-p-dioxin	2	1	MRL	1	0	1
		2,3,4,6,7,8-Hexachlorodibenzofuran	2	2	MRL	2	0	2
		2,3,4,7,8-Pentachlorodibenzofuran	2	2	MRL	2	0	2
		2,3,7,8-Tetrachlorodibenzodioxin	2	1	MRL	1	0	1
		2,3,7,8-Tetrachlorodibenzofuran	2	0	MRL	0	0	0
		Heptachlorodibenzodioxin (Total)	2	0	MRL	0	0	0
		Heptachlorodibenzofuran (Total)	2	0	MRL	0	0	0
		Hexachlorodibenzodioxin (Total)	2	0	MRL	0	0	0
		Hexachlorodibenzofuran (Total)	2	0	MRL	0	0	0
		Octachlorodibenzodioxin	2	1	MRL	0	1	0
		Octachlorodibenzofuran	2	2	MRL	1	1	1
		Pentachlorodibenzodioxin (Total)	2	0	MRL	0	0	0
		Pentachlorodibenzofuran (Total)	2	0	MRL	0	0	0
		Tetrachlorodibenzodioxin (Total)	2	0	MRL	0	0	0
		Tetrachlorodibenzofuran (Total)	2	0	MRL	0	0	0

December 2011 Summary of 2010 Beach Sediment ^a						
QAPP	Number of NDs Results Reported as per QAPP	Number of NDs Results Not Reported as				
QALL	Reported as per QALL	per QALL				
ND=MRL	67	2,168				

Analyte Type	Lab Name	Analyte	No. of Measurements ^b	No. of Reported Non-detects	QAPP Requirement	Non-Detects Reported to MDL?	Non-Detects Reported to MRL?	No. of Measurements Not Reported per QAPP
Grain Size								
	Columbia	a Analytical Services						
		Clay	32	0	MRL	0	0	0
		Coarse Gravel	32	0	MRL	0	0	0
		Coarse sand	32	0	MRL	0	0	0
		Cobbles	32	0	MRL	0	0	0
		Fine Gravel	32	0	MRL	0	0	0
		Fine Sand	32	0	MRL	0	0	0
		Med. Sand	32	0	MRL	0	0	0
		Medium Gravel	32	0	MRL	0	0	0
		Silt	32	0	MRL	0	0	0
		Very Coarse Gravel	32	0	MRL	0	0	0
		Very Coarse Sand	32	0	MRL	0	0	0
		Very Fine Gravel	32	0	MRL	0	0	0
		Very fine sand	32	0	MRL	0	0	0
Metals/Me								
	Columbia	a Analytical Services						
		Aluminum	101	0	MRL	0	0	0
		Antimony	101	2	MRL	0	2	0
		Arsenic	144	2	MRL	0	2	0
		Barium	101	0	MRL	0	0	0
		Beryllium	101	0	MRL	0	0	0
		Cadmium	101	0	MRL	0	0	0
		Calcium	101	0	MRL	0	0	0
		Chromium	101	0	MRL	0	0	0
		Cobalt	101	0	MRL	0	0	0
		Copper	101	0	MRL	0	0	0
		Iron	101	0	MRL	0	0	0
		Lead	144	0	MRL	0	0	0
		Magnesium	101	0	MRL	0	0	0
		Manganese	101	0	MRL	0	0	0
		Mercury	101	3	MRL	3	0	3
		Nickel	101	0	MRL	0	0	0
		Potassium	101	0	MRL	0	0	0
		Selenium	101	59	MRL	42	17	42
		Silver	101	0	MRL	0	0	0
		Sodium	101	0	MRL	0	0	0

ew of How Non-detect Results Al	e Reported									
		December 2011 Summary of 2010 Beach Sediment ^a								
	QAPP	Number of NDs Reported as pe			Number of NDs Results Not Reported as per QAPP					
	ND=MRL	67		2,1	68]				
	No. of	No. of Reported	QAPP	Non-Detects	Non-Detects	No.				

Analyte	Lab		No. of	No. of Reported	QAPP	Non-Detects	Non-Detects	No. of Measurements Not
Туре	Name	Analyte	Measurements b	Non-detects	Requirement	Reported to MDL?	Reported to MRL?	Reported per QAPP
Metals/Me	talloids (c		121					-
		Thallium	101	3	MRL	0	3	0
		Uranium	53	0	MRL	0	0	0
		Vanadium	101	0	MRL	0	0	0
		Zinc	101	0	MRL	0	0	0
PAHs	0-1	Analytical Services						
	Columbia		12	12	MDI	12	0	40
		1,1'-Biphenyl			MRL MRL			12
		2-Methylnaphthalene	12	5		5	0	5
		Acenaphthene	12	12	MRL	12	0	12
		Acenaphthylene	12	12	MRL	12	0	12
		Anthracene	12	12	MRL	12	0	12
		Benzo[a]anthracene	12	9	MRL	9	0	9
		Benzo[a]pyrene	12	9	MRL	9	0	9
		Benzo[b]fluoranthene	12	7	MRL	7	0	7
		Benzo[g,h,i]perylene	12	8	MRL	8	0	8
		Benzo[k]fluoranthene	12	11	MRL	11	0	11
		Chrysene	12	6	MRL	6	0	6
		Dibenzo[a,h]anthracene	12	12	MRL	12	0	12
		Dibenzofuran	12	11	MRL	11	0	11
		Fluoranthene	12	7	MRL	7	0	7
		Fluorene	12	12	MRL	12	0	12
		Indeno[1,2,3-cd]pyrene	12	10	MRL	10	0	10
		Naphthalene	12	3	MRL	2	1	2
		Phenanthrene	12	5	MRL	5	0	5
		Pyrene	12	7	MRL	7	0	7
PBDEs								
·	SGS NC							
		2,2',3,3',4,4',5,5',6-Nonabromodiphenyl ether	2	2	MRL	2	0	2
		2,2',3,3',4,4'-Hexabromodiphenyl ether	2	2	MRL	2	0	2
		2,2',3,4,4',5,5',6-Octabromodiphenyl ether	2	2	MRL	2	0	2
		2,2',3,4,4',5',6-Heptabromodiphenyl ether	2	1	MRL	1	0	1
		2,2',3,4,4',6,6'-Heptabromodiphenyl ether	2	2	MRL	2	0	2
		2,2',3,4,4'-Pentabromodiphenyl ether	2	2	MRL	1	1	1
		2,2',4,4',5,5'-Hexabromodiphenyl ether	2	1	MRL	1	0	1
		2,2',4,4',5,6'-Hexabromodiphenyl ether	2	1	MRL	1	0	1
		2,2',4,4',5-Pentabromodiphenyl ether	2	2	MRL	0	2	0
		2,2',4,4',6-Pentabromodiphenyl ether	2	1	MRL	1	0	1
		2,2',4,4'-Tetrabromodiphenyl ether	2	1	MRL	0	1	0
		2,2',4,5'-Tetrabromodiphenyl ether	2	0	MRL	0	0	0
		2,3,3',4,4',5',6-Heptabromodiphenyl ether	2	2	MRL	2	0	2
		2,3,3',4,4',5,6-Heptabromodiphenyl ether	2	2	MRL	2	0	2
		2,3',4,4'-Tetrabromodiphenyl ether	2	1	MRL	- 1	0	1
		=,=,.,.	-	•		•	•	•

Table 3. 2010 Beach Sediment Data Review of How Non-detect Results Are Reported

December 2011 Summary of 2010 Beach Sediment ^a							
0.155		Number of NDs Results Not Reported as					
QAPP	Reported as per QAPP	per QAPP					
ND=MRL	67	2,168					

Analyte	Lab		No. of	No. of Reported	QAPP	Non-Detects	Non-Detects	No. of Measurements Not
Туре	Name	Analyte	Measurements ^b	Non-detects	Requirement	Reported to MDL?	Reported to MRL?	Reported per QAPP
PBDEs (ce	ontinued)							
		2,3',4',6-Tetrabromodiphenyl ether	2	2	MRL	2	0	2
		Coelution of PBDE 138 and 166	2	2	MRL	2	0	2
		Coelution of PBDE 17 and 25	2	2	MRL	2	0	2
		Coelution of PBDE 28 and 33	2	2	MRL	2	0	2
		Decabromodiphenyl ether	2	2	MRL	1	0	1
PCBs								
	Columbia	Analytical Services						
		Aroclor 1016	12	12	MRL	12	0	12
		Aroclor 1221	12	12	MRL	12	0	12
		Aroclor 1232	12	12	MRL	12	0	12
		Aroclor 1242	12	12	MRL	12	0	12
		Aroclor 1248	12	12	MRL	12	0	12
		Aroclor 1254	12	12	MRL	12	0	12
		Aroclor 1260	12	12	MRL	12	0	12
		Aroclor 1262	12	12	MRL	12	0	12
		Aroclor 1268	12	12	MRL	12	0	12
	SGS NC							
		2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	2	1	MRL	1	0	1
		2,2',3,3',4,4',5,5'-Octachlorobiphenyl	2	1	MRL	1	0	1
		2,2',3,3',4,4',5,6,6'-Nonachlorobiphenyl	2	2	MRL	2	0	2
		2,2',3,3',4,4',5,6'-Octachlorobiphenyl	2	1	MRL	1	0	1
		2,2',3,3',4,4',5,6-Octachlorobiphenyl	2	1	MRL	1	0	1
		2,2',3,3',4,4',5-Heptachlorobiphenyl	2	1	MRL	1	0	1
		2,2',3,3',4,5,5',6,6'-Nonachlorobiphenyl	2	1	MRL	1	0	1
		2,2',3,3',4,5,5'-Heptachlorobiphenyl	2	2	MRL	2	0	2
		2,2',3,3',4,5',6,6'-Octachlorobiphenyl	2	2	MRL	2	0	2
		2,2',3,3',4,5',6'-Heptachlorobiphenyl	2	1	MRL	1	0	1
		2,2',3,3',4,5',6-Heptachlorobiphenyl	2	2	MRL	2	0	2
		2,2',3,3',4,5,6'-Heptachlorobiphenyl	2	1	MRL	1	0	_ 1
		2,2',3,3',4,5'-Hexachlorobiphenyl	2	2	MRL	2	0	2
		2,2',3,3',4,6,6'-Heptachlorobiphenyl	2	2	MRL	2	0	2
		2,2',3,3',4,6'-Hexachlorobiphenyl	2	1	MRL	1	0	_ 1
		2,2',3,3',4,6-Hexachlorobiphenyl	2	2	MRL	2	0	2
		2,2',3,3',4-Pentachlorobiphenyl	2	2	MRL	_ 1	0	_ 1
		2,2',3,3',5,5',6,6'-Octachlorobiphenyl	2	2	MRL	2	0	2
		2,2',3,3',5,5',6-Heptachlorobiphenyl	2	2	MRL	2	0	2
		2,2',3,3',5,5'-Hexachlorobiphenyl	2	2	MRL	2	0	2
		2,2',3,3',5,6,6'-Heptachlorobiphenyl	2	1	MRL	1	0	1
		2,2',3,3',5,6-Hexachlorobiphenyl	2	2	MRL	2	0	2
		2,2',3,3',5-Pentachlorobiphenyl	2	2	MRL	2	0	2
		2,2',3,3',6,6'-Hexachlorobiphenyl	2	1	MRL	1	0	1
		2,2',3,3',6-Pentachlorobiphenyl	2	2	MRL	1	0	1
		z,z,s,s,o-rentachiolopphenyi	۷	2	IVIKL	ı	U	I

December 2011 Summary of 2010 Beach Sediment ^a						
0.4.00		Number of NDs Results Not Reported as				
QAPP	Reported as per QAPP	per QAPP				
ND=MRL	67	2,168				

Analyte Type	Lab Name	Analyte	No. of Measurements ^b	No. of Reported Non-detects	QAPP Requirement	Non-Detects Reported to MDL?	Non-Detects Reported to MRL?	No. of Measurements Not Reported per QAPP
PCBs (coi	ntinued)	· · · · · · · · · · · · · · · · · · ·			•	•	·	· ·
,		2,2',3,4,4',5,5',6-Octachlorobiphenyl	2	1	MRL	1	0	1
		2,2',3,4,4',5,6,6'-Octachlorobiphenyl	2	2	MRL	2	0	2
		2,2',3,4,4',5,6'-Heptachlorobiphenyl	2	2	MRL	2	0	2
		2,2',3,4,4',5,6-Heptachlorobiphenyl	2	2	MRL	2	0	2
		2,2',3,4,4',5-Hexachlorobiphenyl	2	2	MRL	2	0	2
		2,2',3,4,4',6,6'-Heptachlorobiphenyl	2	2	MRL	2	0	2
		2,2',3,4,4',6-Hexachlorobiphenyl	2	2	MRL	2	0	2
		2,2',3,4',5,5',6-Heptachlorobiphenyl	2	1	MRL	0	0	0
		2,2',3,4',5,5'-Hexachlorobiphenyl	2	1	MRL	1	0	1
		2,2',3,4,5,5'-Hexachlorobiphenyl	2	1	MRL	1	0	1
		2,2',3,4',5,6,6'-Heptachlorobiphenyl	2	2	MRL	2	0	2
		2,2',3,4,5,6,6'-Heptachlorobiphenyl	2	2	MRL	2	0	2
		2,2',3,4',5,6'-Hexachlorobiphenyl	2	2	MRL	2	0	2
		2,2',3,4,5',6-Hexachlorobiphenyl	2	2	MRL	1	0	1
		2,2',3,4,5,6'-Hexachlorobiphenyl	2	2	MRL	2	0	2
		2,2',3,4,5,6-Hexachlorobiphenyl	2	2	MRL	2	0	2
		2,2',3,4',6,6'-Hexachlorobiphenyl	2	2	MRL	2	0	2
		2,2',3,4,6,6'-Hexachlorobiphenyl	2	2	MRL	2	0	2
		2,2',3,4',6'-Pentachlorobiphenyl	2	2	MRL	2	0	2
		2,2',3,4,6'-Pentachlorobiphenyl	2	2	MRL	2	0	2
		2,2',3,4'-Tetrachlorobiphenyl	2	2	MRL	2	0	2
		2,2',3,4-Tetrachlorobiphenyl	2	2	MRL	2	0	2
		2,2',3,5,5'-Pentachlorobiphenyl	2	1	MRL	1	0	1
		2,2',3,5,6,6'-Hexachlorobiphenyl	2	2	MRL	2	0	2
		2,2',3,5',6-Pentachlorobiphenyl	2	0	MRL	0	0	0
		2,2',3,5,6'-Pentachlorobiphenyl	2	2	MRL	2	0	2
		2,2',3,5-Tetrachlorobiphenyl	2	2	MRL	2	0	2
		2,2',3,6,6'-Pentachlorobiphenyl	2	2	MRL	2	0	2
		2,2',3,6'-Tetrachlorobiphenyl	2	2	MRL	2	0	2
		2,2',3-Trichlorobiphenyl	2	2	MRL	1	0	1
		2,2',4,4',5,6'-Hexachlorobiphenyl	2	2	MRL	2	0	2
		2,2',4,4',5-Pentachlorobiphenyl	2	1	MRL	1	0	1
		2,2',4,4',6,6'-Hexachlorobiphenyl	2	2	MRL	2	0	2
		2,2',4,5',6-Pentachlorobiphenyl	2	2	MRL	2	0	2
		2,2',4,5-Tetrachlorobiphenyl	2	2	MRL	2	0	2
		2,2',4,6,6'-Pentachlorobiphenyl	2	2	MRL	2	0	2
		2,2',4-Trichlorobiphenyl	2	1	MRL	0	0	0
		2,2',5,5'-Tetrachlorobiphenyl	2	0	MRL	0	0	0
		2,2',6,6'-Tetrachlorobiphenyl	2	2	MRL	2	0	2
		2,2',6-Trichlorobiphenyl	2	1	MRL	1	0	1
		2,2'-Dichlorobiphenyl	2	1	MRL	0	1	0
		2,3,3',4,4',5,5',6-Octachlorobiphenyl	2	2	MRL	2	0	2

December 2011 Summary of 2010 Beach Sediment ^a						
		Number of NDs Results Not Reported a				
QAPP	Reported as per QAPP	per QAPP				
ND=MRL	67	2,168				

Analyte	Lab		No. of	No. of Reported	QAPP	Non-Detects	Non-Detects	No. of Measurements Not
Туре	Name	Analyte	Measurements b	Non-detects	Requirement	Reported to MDL?	Reported to MRL?	Reported per QAPP
PCBs (con	tinued)		-			_	_	
		2,3,3',4,4',5,5'-Heptachlorobiphenyl	2	2	MRL	2	0	2
		2,3,3',4,4',5',6-Heptachlorobiphenyl	2	2	MRL	2	0	2
		2,3,3',4,4',5,6-Heptachlorobiphenyl	2	1	MRL	1	0	1
		2,3,3',4,4',5-Hexachlorobiphenyl	2	2	MRL	1	0	1
		2,3,3',4,4',6-Hexachlorobiphenyl	2	1	MRL	1	0	1
		2,3,3',4,4'-Pentachlorobiphenyl	2	0	MRL	0	0	0
		2,3,3',4,5,5',6-Heptachlorobiphenyl	2	2	MRL	2	0	2
		2,3,3',4',5,5'-Hexachlorobiphenyl	2	2	MRL	2	0	2
		2,3,3',4,5,5'-Hexachlorobiphenyl	2	2	MRL	2	0	2
		2,3,3',4',5',6-Hexachlorobiphenyl	2	2	MRL	2	0	2
		2,3,3',4,5',6-Hexachlorobiphenyl	2	2	MRL	2	0	2
		2,3,3',4,5,6-Hexachlorobiphenyl	2	2	MRL	2	0	2
		2,3,3',4',5'-Pentachlorobiphenyl	2	2	MRL	2	0	2
		2,3,3',4,5-Pentachlorobiphenyl	2	2	MRL	2	0	2
		2,3,3',4,6-Pentachlorobiphenyl	2	2	MRL	2	0	2
		2,3,3',4'-Tetrachlorobiphenyl	2	1	MRL	0	0	0
		2,3,3',4-Tetrachlorobiphenyl	2	2	MRL	2	0	2
		2,3,3',5,5',6-Hexachlorobiphenyl	2	2	MRL	2	0	2
		2,3,3',5,5'-Pentachlorobiphenyl	2	2	MRL	2	0	2
		2,3,3',5,6-Pentachlorobiphenyl	2	2	MRL	2	0	2
		2,3,3',5'-Tetrachlorobiphenyl	2	2	MRL	2	0	2
		2,3,3',5-Tetrachlorobiphenyl	2	2	MRL	2	0	2
		2,3,3',6-Tetrachlorobiphenyl	2	2	MRL	2	0	2
		2,3',4,4',5,5'-Hexachlorobiphenyl	2	2	MRL	2	0	2
		2,3',4,4',5'-Pentachlorobiphenyl	2	2	MRL	2	0	2
		2,3',4,4',5-Pentachlorobiphenyl	2	0	MRL	0	0	0
		2,3,4,4',5-Pentachlorobiphenyl	2	2	MRL	2	0	2
		2,3',4,4'-Tetrachlorobiphenyl	2	0	MRL	0	0	0
		2,3,4,4'-Tetrachlorobiphenyl	2	1	MRL	0	0	0
		2,3',4,5,5'-Pentachlorobiphenyl	2	2	MRL	2	0	2
		2,3',4,5',6-Pentachlorobiphenyl	2	2	MRL	2	0	2
		2,3',4,5'-Tetrachlorobiphenyl	2	2	MRL	2	0	2
		2,3',4,5-Tetrachlorobiphenyl	2	2	MRL	2	0	2
		2,3,4',5-Tetrachlorobiphenyl	2	2	MRL	2	0	2
		2,3,4',6-Tetrachlorobiphenyl	2	1	MRL	0	0	0
		2,3',4-Trichlorobiphenyl	2	1	MRL	1	0	1
		2,3,4'-Trichlorobiphenyl	2	1	MRL	0	1	0
		2,3',5,5'-Tetrachlorobiphenyl	2	2	MRL	2	0	2
		2,3',5',6-Tetrachlorobiphenyl	2	2	MRL	2	0	2
		2,3',5'-Trichlorobiphenyl	2	2	MRL	2	0	2
		2,3,5-Trichlorobiphenyl	2	1	MRL	1	0	1
		2,3',6-Trichlorobiphenyl	2	2	MRL	2	0	2
		2,0,0-moniorophenyl	4	۷	IVITAL	4	U	2

	December 2011 Summary of 20	10 Beach Sediment ^a						
QAPP	Number of NDs Results Reported as per QAPP	Number of NDs Results Not Reported as						
ND=MRI	67	2.168						
ND=NKL	07	2,100						

Analyte Type	Lab Name	Analyte	No. of Measurements ^b	No. of Reported	QAPP Requirement	Non-Detects Reported to MDL?	Non-Detects Reported to MRL?	No. of Measurements Not Reported per QAPP
PCBs (con		ritaryto	Mododromonto	11011 0010010	rtoquiiomont	reported to MBE.	reported to MITE.	reperted per Qrii i
T ODS (COIL	tinaeu)	2,3,6-Trichlorobiphenyl	2	2	MRL	2	0	2
		2,3'-Dichlorobiphenyl	2	0	MRL	0	0	0
		2,3-Dichlorobiphenyl	2	1	MRL	0	0	0
		2,4',5-Trichlorobiphenyl	2	2	MRL	0	2	0
		2,4',6-Trichlorobiphenyl	2	1	MRL	1	0	1
		2,4'-Dichlorobiphenyl	2	1	MRL	0	1	0
		2,4-Dichlorobiphenyl	2	1	MRL	0	0	0
		2,5-Dichlorobiphenyl	2	1	MRL	0	0	0
		2,6-Dichlorobiphenyl	2	2	MRL	1	0	1
		3,3',4,4',5,5'-Hexachlorobiphenyl	2	2	MRL	2	0	2
		3,3',4,4',5-Pentachlorobiphenyl	2	2	MRL	2	0	2
		3,3',4,4'-Tetrachlorobiphenyl	2	2	MRL	1	0	1
		3,3',4,5,5'-Pentachlorobiphenyl	2	2	MRL	2	0	2
		3,3',4,5'-Tetrachlorobiphenyl	2	2	MRL	2	0	2
		3,3',4,5-Tetrachlorobiphenyl	2	2	MRL	2	0	2
		3,3',4-Trichlorobiphenyl	2	2	MRL	1	0	1
		3,3',5,5'-Tetrachlorobiphenyl	2	2	MRL	2	0	2
		3,3',5-Trichlorobiphenyl	2	2	MRL	2	0	2
		3,3'-Dichlorobiphenyl	2	2	MRL	0	2	0
		3,4,4',5-Tetrachlorobiphenyl	2	2	MRL	2	0	2
		3,4,4'-Trichlorobiphenyl	2	2	MRL	0	2	0
		3,4',5-Trichlorobiphenyl	2	2	MRL	2	0	2
		3,4,5-Trichlorobiphenyl	2	2	MRL	2	0	2
		Coelution of PCB 107 and 124	2	2	MRL	2	0	2
		Coelution of PCB 110 and 115	2	0	MRL	0	0	0
		Coelution of PCB 12 and 13	2	1	MRL	0	0	0
		Coelution of PCB 128 and 166	2	1	MRL	1	0	1
		Coelution of PCB 135 and 151	2	0	MRL	0	0	0
		Coelution of PCB 147 and 149	2	0	MRL	Õ	0	0
		Coelution of PCB 153 and 168	2	0	MRL	0	0	0
		Coelution of PCB 171 and 173	2	1	MRL	1	0	1
		Coelution of PCB 18 and 30	2	2	MRL	0	2	0
		Coelution of PCB 180 and 193	2	1	MRL	0	0	0
		Coelution of PCB 183 and 185	2	1	MRL	1	0	1
		Coelution of PCB 197 and 200	2	2	MRL	2	0	2
		Coelution of PCB 198 and 199	2	1	MRL	1	0	1
		Coelution of PCB 20 and 28	2	0	MRL	0	0	0
		Coelution of PCB 21 and 33	2	0	MRL	0	0	0
		Coelution of PCB 26 and 29	2	1	MRL	1	0	1
		Coelution of PCB 44, 47, and 65	2	0	MRL	0	0	0
		Coelution of PCB 45 and 51	2	1	MRL	0	0	0
		Coelution of PCB 49 and 69	2	0	MRL	0	0	0
		Cooldings of LOD 40 and 03	4	U	IVIIXL	J	U	3

	December 2011 Summary of 20	10 Beach Sediment ^a
0.55		Number of NDs Results Not Reported as
QAPP	Reported as per QAPP	per QAPP
ND=MRL	67	2,168

Analyte Type	Lab Name	Analyte	No. of Measurements ^b	No. of Reported Non-detects	QAPP Requirement	Non-Detects Reported to MDL?	Non-Detects Reported to MRL?	No. of Measurements Not Reported per QAPP
PCBs (con		, and yes	cacaronicino		rtoquiioiiioiit	repende to m22.		rtoportou por Q. ii r
1 023 (0011	unucuj	Coelution of PCB 50 and 53	2	1	MRL	0	0	0
		Coelution of PCB 61,70,74 and 76	2	1	MRL	0	1	0
		Coelution of PCB 85+116+117	2	1	MRL	1	0	1
		Coelution of PCB 86, 87, 97, 108, 119, and 125	2	1	MRL	0	0	0
		Coelution of PCB 88 and 91	2	1	MRL	1	0	1
		Coelution of PCB 90, 101, and 113	2	1	MRL	0	1	0
		Decachlorobiphenyl (PCB 209)	2	1	MRL	1	0	1
		PCB congener 1	2	1	MRL	0	0	0
		PCB congener 14	2	2	MRL	2	0	2
		PCB congener 15	2	2	MRL	0	2	0
		PCB congener 2	2	2	MRL	1	0	1
		PCB congener 3	2	0	MRL	0	0	0
		PCB TEQ using WHO 2005 TEFs ND=0 DL	2	0	MRL	0	0	0
		PCB TEQ using WHO 2005 TEFs ND=1/2 DL	2	0	MRL	0	0	0
		PCB_129+138+163	2	0	MRL	0	0	0
		PCB_cong_40+71	2	2	MRL	1	0	1
		PCB_cong_93+100	2	2	MRL	1	1	1
Pesticides/								
	Columbia	Analytical Services						
		2,4'-DDD	12	12	MRL	12	0	12
		2,4'-DDE	12	12	MRL	12	0	12
		2,4'-DDT	12	12	MRL	12	0	12
		4,4'-DDD	12	12	MRL	12	0	12
		4,4'-DDE	12	10	MRL	10	0	10
		4,4'-DDT	12	11	MRL	11	0	11
		Aldrin	12	12	MRL	12	0	12
		alpha-Benzenehexachloride	12	12	MRL	12	0	12
		alpha-Chlordane	12	12	MRL	12	0	12
		beta-BHC	12	11	MRL	11	0	11
		Chlordane	12	12	MRL	12	0	12
		cis-Nonachlor	12	12	MRL	12	0	12
		delta-BHC	12	12	MRL	12	0	12
		Dieldrin	12	12	MRL	12	0	12
		Endosulfan I	12	12	MRL	12	0	12
		Endosulfan II	12	12	MRL	12	0	12
		Endosulfan sulfate	12	12	MRL	12	0	12
		Endrin	12	12	MRL	12	0	12
		Endrin aldehyde	12	12	MRL	12	0	12
		Endrin ketone	12	12	MRL	12	0	12
		gamma-BHC	12	12	MRL	12	0	12
		gamma-Chlordane	12	12	MRL	12	0	12
		Heptachlor	12	12	MRL	12	0	12

December 2011 Summary of 2010 Beach Sediment ^a							
	Number of NDs Results	Number of NDs Results Not Reported as					
QAPP	Reported as per QAPP	per QAPP					
ND=MRL	67	2,168					

Analyte	Lab	Acciden	No. of	No. of Reported	QAPP	Non-Detects	Non-Detects	No. of Measurements Not
Туре	Name	Analyte	Measurements ^b	Non-detects	Requirement	Reported to MDL?	Reported to MRL?	Reported per QAPP
Pesticides	/Herbicid	es (continued)						
		Heptachlor epoxide	12	12	MRL	12	0	12
		Methoxychlor	12	12	MRL	12	0	12
		Mirex	12	12	MRL	12	0	12
		Oxychlordane	12	12	MRL	12	0	12
		Toxaphene	12	12	MRL	12	0	12
5 "		trans-Nonachlor	12	12	MRL	12	0	12
Radionucl		sh dia a l						
	Pace Ana		0	•	MDI	0	0	0
		Radium-226	2	0	MRL	0	0	0
01/00-		Uranium-238	2	0	MRL	0	0	0
SVOCs	Columbia	Analytical Services						
	Columbia	1,2,4-Trichlorobenzene	12	12	MRL	12	0	12
		1,2-Dichlorobenzene	12	12	MRL	12	0	12
		1.3-Dichlorobenzene	12	12	MRL	12	0	12
		1,4-Dichlorobenzene	12	12	MRL	12	0	12
		,	12	12	MRL	12	0	12
		2,2'-oxybis(1-Chloropropane)						
		2,4,5-Trichlorophenol	12	12	MRL	12	0	12
		2,4,6-Trichlorophenol	12	12	MRL	12	0	12
		2,4-Dichlorophenol	12	12	MRL	12	0	12
		2,4-Dimethylphenol	12	12	MRL	12	0	12
		2,4-Dinitrophenol	12	12	MRL	12	0	12
		2,4-Dinitrotoluene	12	12	MRL	12	0	12
		2,6-Dinitrotoluene	12	12	MRL	12	0	12
		2-Chloronaphthalene	12	12	MRL	12	0	12
		2-Chlorophenol	12	12	MRL	12	0	12
		2-Methylphenol	12	12	MRL	12	0	12
		2-Nitroaniline	12	12	MRL	12	0	12
		2-Nitrophenol	12	12	MRL	12	0	12
		3,3'-Dichlorobenzidine	12	12	MRL	12	0	12
		3-Nitroaniline	12	12	MRL	12	0	12
		4,6-Dinitro-2-methylphenol	12	12	MRL	12	0	12
		4-Bromophenyl-phenylether	12	12	MRL	12	0	12
		4-Chloro-3-methylphenol	12	12	MRL	12	0	12
		4-Chloroaniline	12	12	MRL	12	0	12
		4-Chlorophenyl-phenyl ether	12	12	MRL	12	0	12
		4-Methylphenol	12	12	MRL	12	0	12
		4-Nitroaniline	12	12	MRL	12	0	12
		4-Nitrophenol	12	12	MRL	12	0	12
		Acetophenone	12	12	MRL	11	1	11
		Benzaldehyde	12	11	MRL	11	0	11
		Benzoic acid	12	12	MRL	12	0	12

Table 3. 2010 Beach Sediment Data Review of How Non-detect Results Are Reported

December 2011 Summary of 2010 Beach Sediment ^a						
QAPP	Number of NDs Results Reported as per QAPP	Number of NDs Results Not Reported as per QAPP				
ND=MRL	67	2,168				

Analyte Type	Lab Name	Analyte	No. of Measurements ^b	No. of Reported Non-detects	QAPP Requirement	Non-Detects Reported to MDL?	Non-Detects Reported to MRL?	No. of Measurements Not Reported per QAPP
SVOCs (co	ontinued)					·		
		Benzyl alcohol	12	12	MRL	12	0	12
		Benzyl n-butyl phthalate	12	10	MRL	10	0	10
		bis(2-Chloroethoxy)methane	12	12	MRL	12	0	12
		Bis(2-chloroethyl)ether	12	12	MRL	12	0	12
		bis(2-Ethylhexyl)phthalate	12	3	MRL	3	0	3
		Caprolactam	12	12	MRL	12	0	12
		Carbazole	12	12	MRL	12	0	12
		Diethyl phthalate	12	12	MRL	12	0	12
		Dimethyl phthalate	12	12	MRL	12	0	12
		Di-n-butyl phthalate	12	12	MRL	12	0	12
		Di-n-octylphthalate	12	12	MRL	2	10	2
		Hexachlorobenzene	12	11	MRL	11	0	11
		Hexachlorobutadiene	12	12	MRL	12	0	12
		Hexachlorocyclopentadiene	12	12	MRL	12	0	12
		Hexachloroethane	12	12	MRL	12	0	12
		Isophorone	12	12	MRL	12	0	12
		Nitrobenzene	12	12	MRL	12	0	12
		N-Nitrosodi-n-propylamine	12	12	MRL	12	0	12
		N-Nitrosodiphenylamine	12	12	MRL	12	0	12
		Pentachlorophenol	12	12	MRL	12	0	12
		Phenol	12	12	MRL	12	0	12
		2010 Beach Sediment ^b	4,816	1,608	MRL	1,523	60	1,523

Notes:

^a The December 2011 analysis and summary included results for lab replicates, field replicates, field triplicates, blank water, rinse water/QC samples whereas the current table does not.

^b Excludes all duplicate/triplicate/replicate/blank and rinsewater QC sample results

Table 4. 2011 Beach Sediment Data Review of How Non-detect Results Are Reported

December 2011 Summary of 2011 Beach Sediment ^a						
QAPP	Number of NDs Results Reported as per QAPP	Number of NDs Results Not Reported as per QAPP				
ND=MRL	510	14,686				

Analyte Type	Lab Name	Analyte	No. of Measurements ^b	No. of Reported Non-detects	QAPP Requirement	Non-Detects Reported to MDL?	Non-Detects Reported to MRL?	No. of Measurements Not Reported per QAPP
Convention								
	Columbi	ia Analytical Services						
		Organic carbon	208	1	MRL	1	0	1
		pH	208	0	MRL	0	0	0
		Solids	805	0	MRL	0	0	0
		Sulfide	208	72	MRL	72	0	72
Dioxins/Fu								
	SGS NO					•	•	
		1,2,3,4,6,7,8-Heptachlorodibenzodioxin	6	1	MRL	0	0	0
		1,2,3,4,6,7,8-Heptachlorodibenzofuran	6	1	MRL	0	0	0
		1,2,3,4,7,8,9-Heptachlorodibenzofuran	6	5	MRL	5	0	5
		1,2,3,4,7,8-Hexachlorodibenzodioxin	6	3	MRL	3	0	3
		1,2,3,4,7,8-Hexachlorodibenzofuran	6	5	MRL	3	0	3
		1,2,3,6,7,8-Hexachlorodibenzodioxin	6	4	MRL	3	0	3
		1,2,3,6,7,8-Hexachlorodibenzofuran	6	3	MRL	3	0	3
		1,2,3,7,8,9-Hexachlorodibenzodioxin	6	5	MRL	3	0	3
		1,2,3,7,8,9-Hexachlorodibenzofuran	6	5	MRL	3	0	3
		1,2,3,7,8-Pentachlorodibenzofuran	6	4	MRL	3	0	3
		1,2,3,7,8-Pentachlorodibenzo-p-dioxin	6	6	MRL	3	0	3
		2,3,4,6,7,8-Hexachlorodibenzofuran	6	5	MRL	3	0	3
		2,3,4,7,8-Pentachlorodibenzofuran	6	3	MRL	2	0	2
		2,3,7,8-Tetrachlorodibenzodioxin	6	6	MRL	4	0	4
		2,3,7,8-Tetrachlorodibenzofuran	6	0	MRL	0	0	0
		Heptachlorodibenzodioxin (Total)	6	0	MRL	0	0	0
		Heptachlorodibenzofuran (Total)	6	0	MRL	0	0	0
		Hexachlorodibenzodioxin (Total)	6	0	MRL	0	0	0
		Hexachlorodibenzofuran (Total)	6	1	MRL	1	0	1
		Octachlorodibenzodioxin	6	0	MRL	0	0	0
		Octachlorodibenzofuran	6	0	MRL	0	0	0
		Pentachlorodibenzodioxin (Total)	6	5	MRL	5	0	5
		Pentachlorodibenzofuran (Total)	6	0	MRL	0	0	0
		Tetrachlorodibenzodioxin (Total)	6	5	MRL	5	0	5
		Tetrachlorodibenzofuran (Total)	6	0	MRL	0	0	0

Table 4. 2011 Beach Sediment Data Review of How Non-detect Results Are Reported

December 2011 Summary of 2011 Beach Sediment ^a						
QAPP	Number of NDs Results Reported as per QAPP	Number of NDs Results Not Reported as per QAPP				
ND=MRL	510	14,686				

Analyte Type	Lab Name	Analyte	No. of Measurements ^b	No. of Reported Non-detects	QAPP Requirement	Non-Detects Reported to MDL?	Non-Detects Reported to MRL?	No. of Measurements Not Reported per QAPP
Grain Size								
		nalytical Services						
	Cla	•	208	0	MRL	0	0	0
		arse Gravel	208	0	MRL	0	0	0
		arse sand	208	0	MRL	0	0	0
		bbles	208	0	MRL	0	0	0
		e Gravel	208	23	MRL	0	0	0
		e Sand	208	0	MRL	0	0	0
	Me	d. Sand	208	0	MRL	0	0	0
		dium Gravel	208	39	MRL	0	0	0
	Silt		208	0	MRL	0	0	0
		ry Coarse Gravel	208	1	MRL	0	0	0
	Ver	ry Coarse Sand	208	0	MRL	0	0	0
	Ver	ry Fine Gravel	208	0	MRL	0	0	0
	Ver	ry fine sand	208	0	MRL	0	0	0
Metals/Meta								
	Columbia Ar	nalytical Services						
	Alu	minum	623	0	MRL	0	0	0
	Ant	timony	623	76	MRL	16	60	16
	Ars	enic	849	0	MRL	0	0	0
	Bar	rium	623	0	MRL	0	0	0
	Ber	ryllium	623	0	MRL	0	0	0
	Cad	dmium	629	40	MRL	0	40	0
	Cal	cium	623	0	MRL	0	0	0
	Chi	romium	629	0	MRL	0	0	0
	Col	balt	623	0	MRL	0	0	0
	Cop	pper	623	0	MRL	0	0	0
	Iror	า	623	0	MRL	0	0	0
	Lea	ad	849	0	MRL	0	0	0
	Ma	gnesium	623	0	MRL	0	0	0
	Ma	nganese	623	0	MRL	0	0	0
	Me	rcury	623	48	MRL	48	0	48
	Nic	kel	623	0	MRL	0	0	0
	Pot	assium	623	0	MRL	0	0	0
	Sel	enium	629	480	MRL	480	0	480

Table 4. 2011 Beach Sediment Data Review of How Non-detect Results Are Reported

December 2011 Summary of 2011 Beach Sediment ^a						
QAPP	Number of NDs Results Reported as per QAPP	Number of NDs Results Not Reported as per QAPP				
ND=MRL	510	14,686				

Analyte Type	Lab Name	Analyte	No. of Measurements ^b	No. of Reported Non-detects	QAPP Requirement	Non-Detects Reported to MDL?	Non-Detects Reported to MRL?	No. of Measurements Not Reported per QAPP
Metals/Meta	alloids (conti							
		ver	623	100	MRL	2	98	2
		dium	623	0	MRL	0	0	0
		allium	629	55	MRL	0	55	0
	Ura	anium	312	0	MRL	0	0	0
	Va	nadium	629	0	MRL	0	0	0
	Zir	nc	623	0	MRL	0	0	0
PAHs								
		nalytical Services						
		'-Biphenyl	78	71	MRL	71	0	71
		Methylnaphthalene	78	57	MRL	57	0	57
	Ac	enaphthene	78	78	MRL	78	0	78
	Ac	enaphthylene	78	75	MRL	75	0	75
	An	thracene	78	71	MRL	71	0	71
	Be	nzo[a]anthracene	78	61	MRL	61	0	61
	Be	nzo[a]pyrene	78	62	MRL	62	0	62
		nzo[b]fluoranthene	78	60	MRL	60	0	60
	Be	nzo[g,h,i]perylene	78	61	MRL	61	0	61
	Be	nzo[k]fluoranthene	78	67	MRL	67	0	67
	Ch	irysene	78	61	MRL	61	0	61
	Dik	penzo[a,h]anthracene	78	74	MRL	74	0	74
	Dik	penzofuran	78	67	MRL	67	0	67
	Flu	uoranthene	78	59	MRL	59	0	59
	Flu	uorene	78	67	MRL	67	0	67
	Inc	deno[1,2,3-cd]pyrene	78	64	MRL	64	0	64
	Na	phthalene	78	45	MRL	45	0	45
	Ph	enanthrene	78	62	MRL	59	3	59
	Ру	rene	78	53	MRL	53	0	53
PBDEs								
	SGS NC							
	2,2	2',3,3',4,4',5,5',6-Nonabromodiphenyl ether	6	6	MRL	0	4	0
	2,2	2',3,3',4,4'-Hexabromodiphenyl ether	6	6	MRL	6	0	6
	2,2	2',3,4,4',5,5',6-Octabromodiphenyl ether	6	5	MRL	3	0	3
	2,2	2',3,4,4',5',6-Heptabromodiphenyl ether	6	2	MRL	0	0	0
	2,2	2',3,4,4',6,6'-Heptabromodiphenyl ether	6	5	MRL	4	0	4

Table 4. 2011 Beach Sediment Data Review of How Non-detect Results Are Reported

	December 2011 Summary of 201	1 Beach Sediment ^a
QAPP	Number of NDs Results Reported as per QAPP	Number of NDs Results Not Reported as per QAPP
ND=MRL	510	14,686

Analyte Type	Lab Name	Analyte	No. of Measurements ^b	No. of Reported Non-detects	QAPP Requirement	Non-Detects Reported to MDL?	Non-Detects Reported to MRL?	No. of Measurements Not Reported per QAPP
PBDEs (cor	ntinued)							
		2,2',3,4,4'-Pentabromodiphenyl ether	6	1	MRL	0	0	0
		2,2',4,4',5,5'-Hexabromodiphenyl ether	6	0	MRL	0	0	0
		2,2',4,4',5,6'-Hexabromodiphenyl ether	6	0	MRL	0	0	0
		2,2',4,4',5-Pentabromodiphenyl ether	6	0	MRL	0	0	0
		2,2',4,4',6-Pentabromodiphenyl ether	6	0	MRL	0	0	0
		2,2',4,4'-Tetrabromodiphenyl ether	6	0	MRL	0	0	0
		2,2',4,5'-Tetrabromodiphenyl ether	6	1	MRL	0	0	0
		2,3,3',4,4',5',6-Heptabromodiphenyl ether	6	6	MRL	6	0	6
		2,3,3',4,4',5,6-Heptabromodiphenyl ether	6	6	MRL	6	0	6
		2,3',4,4'-Tetrabromodiphenyl ether	6	3	MRL	0	0	0
		2,3',4',6-Tetrabromodiphenyl ether	6	3	MRL	2	0	2
		Coelution of PBDE 138 and 166	6	4	MRL	1	0	1
		Coelution of PBDE 17 and 25	6	3	MRL	0	0	0
		Coelution of PBDE 28 and 33	6	6	MRL	4	0	4
		Decabromodiphenyl ether	6	4	MRL	0	1	0
PCB s								
	Columb	ia Analytical Services						
		Aroclor 1016	78	78	MRL	78	0	78
		Aroclor 1221	78	78	MRL	78	0	78
		Aroclor 1232	78	78	MRL	78	0	78
		Aroclor 1242	78	78	MRL	78	0	78
		Aroclor 1248	78	78	MRL	78	0	78
		Aroclor 1254	78	77	MRL	77	0	77
		Aroclor 1260	78	74	MRL	74	0	74
		Aroclor 1262	78	78	MRL	78	0	78
		Aroclor 1268	78	78	MRL	78	0	78
	SGS NO	C						
		2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	6	0	MRL	0	0	0
		2,2',3,3',4,4',5,5'-Octachlorobiphenyl	6	0	MRL	0	0	0
		2,2',3,3',4,4',5,6,6'-Nonachlorobiphenyl	6	0	MRL	0	0	0
		2,2',3,3',4,4',5,6'-Octachlorobiphenyl	6	0	MRL	0	0	0
		2,2',3,3',4,4',5,6-Octachlorobiphenyl	6	0	MRL	0	0	0
		2,2',3,3',4,4',5-Heptachlorobiphenyl	6	0	MRL	0	0	0
		2,2',3,3',4,5,5',6,6'-Nonachlorobiphenyl	6	0	MRL	0	0	0

Table 4. 2011 Beach Sediment Data Review of How Non-detect Results Are Reported

December 2011 Summary of 2011 Beach Sediment ^a						
QAPP	Number of NDs Results Reported as per QAPP	Number of NDs Results Not Reported as per QAPP				
ND=MRL	510	14,686				

Analyte Type	Lab Name	Analyte	No. of Measurements ^b	No. of Reported Non-detects	QAPP Requirement	Non-Detects Reported to MDL?	Non-Detects Reported to MRL?	No. of Measurements Not Reported per QAPP
PCBs (cont	tinued)							
		2,2',3,3',4,5,5'-Heptachlorobiphenyl	6	0	MRL	0	0	0
		2,2',3,3',4,5',6,6'-Octachlorobiphenyl	6	0	MRL	0	0	0
		2,2',3,3',4,5',6'-Heptachlorobiphenyl	6	0	MRL	0	0	0
		2,2',3,3',4,5',6-Heptachlorobiphenyl	6	0	MRL	0	0	0
		2,2',3,3',4,5,6'-Heptachlorobiphenyl	6	0	MRL	0	0	0
		2,2',3,3',4,5'-Hexachlorobiphenyl	6	0	MRL	0	0	0
		2,2',3,3',4,6,6'-Heptachlorobiphenyl	6	0	MRL	0	0	0
		2,2',3,3',4,6'-Hexachlorobiphenyl	6	0	MRL	0	0	0
		2,2',3,3',4,6-Hexachlorobiphenyl	6	0	MRL	0	0	0
		2,2',3,3',4-Pentachlorobiphenyl	6	0	MRL	0	0	0
		2,2',3,3',5,5',6,6'-Octachlorobiphenyl	6	0	MRL	0	0	0
		2,2',3,3',5,5',6-Heptachlorobiphenyl	6	0	MRL	0	0	0
		2,2',3,3',5,5'-Hexachlorobiphenyl	6	0	MRL	0	0	0
		2,2',3,3',5,6,6'-Heptachlorobiphenyl	6	0	MRL	0	0	0
		2,2',3,3',5,6-Hexachlorobiphenyl	6	0	MRL	0	0	0
		2,2',3,3',5-Pentachlorobiphenyl	6	1	MRL	0	0	0
		2,2',3,3',6,6'-Hexachlorobiphenyl	6	0	MRL	0	0	0
		2,2',3,3',6-Pentachlorobiphenyl	6	0	MRL	0	0	0
		2,2',3,4,4',5,5',6-Octachlorobiphenyl	6	0	MRL	0	0	0
		2,2',3,4,4',5,6,6'-Octachlorobiphenyl	6	6	MRL	6	0	6
		2,2',3,4,4',5,6'-Heptachlorobiphenyl	6	5	MRL	4	0	4
		2,2',3,4,4',5,6-Heptachlorobiphenyl	6	5	MRL	4	0	4
		2,2',3,4,4',5-Hexachlorobiphenyl	6	0	MRL	0	0	0
		2,2',3,4,4',6,6'-Heptachlorobiphenyl	6	6	MRL	6	0	6
		2,2',3,4',5,5',6-Heptachlorobiphenyl	6	0	MRL	0	0	0
		2,2',3,4',5,5'-Hexachlorobiphenyl	6	0	MRL	0	0	0
		2,2',3,4,5,5'-Hexachlorobiphenyl	6	0	MRL	0	0	0
		2,2',3,4',5,6,6'-Heptachlorobiphenyl	6	5	MRL	5	0	5
		2,2',3,4,5,6,6'-Heptachlorobiphenyl	6	6	MRL	6	0	6
		2,2',3,4',5,6'-Hexachlorobiphenyl	6	5	MRL	4	0	4
		2,2',3,4,5',6-Hexachlorobiphenyl	6	0	MRL	0	0	0
		2,2',3,4,5,6'-Hexachlorobiphenyl	6	6	MRL	6	0	6
		2,2',3,4,5,6-Hexachlorobiphenyl	6	6	MRL	6	0	6
		2,2',3,4',6,6'-Hexachlorobiphenyl	6	5	MRL	4	0	4

Table 4. 2011 Beach Sediment Data Review of How Non-detect Results Are Reported

December 2011 Summary of 2011 Beach Sediment ^a						
QAPP	Number of NDs Results Reported as per QAPP	Number of NDs Results Not Reported as per QAPP				
ND=MRL	510	14,686				

Analyte Type	Lab Name	Analyte	No. of Measurements ^b	No. of Reported Non-detects	QAPP Requirement	Non-Detects Reported to MDL?	Non-Detects Reported to MRL?	No. of Measurements No Reported per QAPP
PCBs (cont	tinued)							
		2,2',3,4,6,6'-Hexachlorobiphenyl	6	6	MRL	5	0	5
		2,2',3,4,6'-Pentachlorobiphenyl	6	2	MRL	1	0	1
		2,2',3,4'-Tetrachlorobiphenyl	6	2	MRL	0	2	0
		2,2',3,4-Tetrachlorobiphenyl	6	1	MRL	0	0	0
		2,2',3,5,5'-Pentachlorobiphenyl	6	0	MRL	0	0	0
		2,2',3,5,6,6'-Hexachlorobiphenyl	6	5	MRL	4	0	4
		2,2',3,5',6-Pentachlorobiphenyl	6	0	MRL	0	0	0
		2,2',3,5,6'-Pentachlorobiphenyl	6	3	MRL	2	0	2
		2,2',3,5-Tetrachlorobiphenyl	6	2	MRL	1	0	1
		2,2',3,6,6'-Pentachlorobiphenyl	6	1	MRL	0	0	0
		2,2',3,6-Tetrachlorobiphenyl	6	4	MRL	0	0	0
		2,2',3-Trichlorobiphenyl	6	5	MRL	0	4	0
		2,2',4,4',5,6'-Hexachlorobiphenyl	6	2	MRL	0	0	0
		2,2',4,4',5-Pentachlorobiphenyl	6	0	MRL	0	0	0
		2,2',4,4',6,6'-Hexachlorobiphenyl	6	5	MRL	5	0	5
		2,2',4,5',6-Pentachlorobiphenyl	6	4	MRL	2	0	2
		2,2',4,5-Tetrachlorobiphenyl	6	1	MRL	0	0	0
		2,2',4,6,6'-Pentachlorobiphenyl	6	6	MRL	6	0	6
		2,2',4-Trichlorobiphenyl	6	0	MRL	0	0	0
		2,2',5,5'-Tetrachlorobiphenyl	6	0	MRL	0	0	0
		2,2',6,6'-Tetrachlorobiphenyl	6	3	MRL	3	0	3
		2,2',6-Trichlorobiphenyl	6	2	MRL	0	0	0
		2,2'-Dichlorobiphenyl	6	6	MRL	0	6	0
		2,3,3',4,4',5,5',6-Octachlorobiphenyl	6	1	MRL	0	0	0
		2,3,3',4,4',5,5'-Heptachlorobiphenyl	6	0	MRL	0	0	0
		2,3,3',4,4',5',6-Heptachlorobiphenyl	6	0	MRL	0	0	0
		2,3,3',4,4',5,6-Heptachlorobiphenyl	6	0	MRL	0	0	0
		2,3,3',4,4',6-Hexachlorobiphenyl	6	0	MRL	0	0	0
		2,3,3',4,4'-Pentachlorobiphenyl	6	0	MRL	0	0	0
		2,3,3',4,5,5',6-Heptachlorobiphenyl	6	6	MRL	6	0	6
		2,3,3',4',5,5'-Hexachlorobiphenyl	6	6	MRL	5	0	5
		2,3,3',4,5,5'-Hexachlorobiphenyl	6	6	MRL	6	0	6
		2,3,3',4',5',6-Hexachlorobiphenyl	6	0	MRL	0	0	0
		2,3,3',4,5',6-Hexachlorobiphenyl	6	6	MRL	6	0	6

Table 4. 2011 Beach Sediment Data Review of How Non-detect Results Are Reported

December 2011 Summary of 2011 Beach Sediment ^a						
QAPP	Number of NDs Results Reported as per QAPP	Number of NDs Results Not Reported as per QAPP				
ND=MRL	510	14,686				

Analyte Type	Lab Name	Analyte	No. of Measurements ^b	No. of Reported Non-detects	QAPP Requirement	Non-Detects Reported to MDL?	Non-Detects Reported to MRL?	No. of Measurements Not Reported per QAPP
PCBs (cont	tinued)							
		2,3,3',4,5,6-Hexachlorobiphenyl	6	6	MRL	6	0	6
		2,3,3',4',5'-Pentachlorobiphenyl	6	2	MRL	0	0	0
		2,3,3',4,5-Pentachlorobiphenyl	6	6	MRL	6	0	6
		2,3,3',4,6-Pentachlorobiphenyl	6	0	MRL	0	0	0
		2,3,3',4'-Tetrachlorobiphenyl	6	1	MRL	0	1	0
		2,3,3',4-Tetrachlorobiphenyl	6	6	MRL	6	0	6
		2,3,3',5,5',6-Hexachlorobiphenyl	6	4	MRL	4	0	4
		2,3,3',5,5'-Pentachlorobiphenyl	6	6	MRL	6	0	6
		2,3,3',5,6-Pentachlorobiphenyl	6	6	MRL	6	0	6
		2,3,3',5'-Tetrachlorobiphenyl	6	5	MRL	5	0	5
		2,3,3',5-Tetrachlorobiphenyl	6	6	MRL	6	0	6
		2,3',4,4',5,5'-Hexachlorobiphenyl	6	0	MRL	0	0	0
		2,3',4,4',5'-Pentachlorobiphenyl	6	1	MRL	0	0	0
		2,3',4,4',5-Pentachlorobiphenyl	6	0	MRL	0	0	0
		2,3,4,4',5-Pentachlorobiphenyl	6	1	MRL	0	0	0
		2,3',4,4'-Tetrachlorobiphenyl	6	1	MRL	0	1	0
		2,3,4,4'-Tetrachlorobiphenyl	6	0	MRL	0	0	0
		2,3',4,5,5'-Pentachlorobiphenyl	6	5	MRL	3	0	3
		2,3',4,5',6-Pentachlorobiphenyl	6	6	MRL	6	0	6
		2,3',4,5'-Tetrachlorobiphenyl	6	4	MRL	3	0	3
		2,3',4,5-Tetrachlorobiphenyl	6	2	MRL	0	0	0
		2,3,4',5-Tetrachlorobiphenyl	6	2	MRL	0	0	0
		2,3,4',6-Tetrachlorobiphenyl	6	1	MRL	0	1	0
		2,3',4-Trichlorobiphenyl	6	0	MRL	0	0	0
		2,3,4'-Trichlorobiphenyl	6	5	MRL	0	5	0
		2,3',5,5'-Tetrachlorobiphenyl	6	4	MRL	3	0	3
		2,3',5',6-Tetrachlorobiphenyl	6	5	MRL	5	0	5
		2,3',5'-Trichlorobiphenyl	6	6	MRL	5	0	5
		2,3,5-Trichlorobiphenyl	6	6	MRL	5	0	5
		2,3',6-Trichlorobiphenyl	6	6	MRL	5	1	5
		2,3,6-Trichlorobiphenyl	6	5	MRL	4	0	4
		2,3'-Dichlorobiphenyl	6	6	MRL	0	3	0
		2,3-Dichlorobiphenyl	6	6	MRL	5	0	5
		2,4',5-Trichlorobiphenyl	6	5	MRL	0	5	0

Table 4. 2011 Beach Sediment Data Review of How Non-detect Results Are Reported

December 2011 Summary of 2011 Beach Sediment ^a						
QAPP	Number of NDs Results Reported as per QAPP	Number of NDs Results Not Reported as per QAPP				
ND=MRL	510	14,686				

Analyte Type	Lab Name	Analyte	No. of Measurements ^b	No. of Reported Non-detects	QAPP Requirement	Non-Detects Reported to MDL?	Non-Detects Reported to MRL?	No. of Measurements Not Reported per QAPP
PCBs (conti	tinued)							
		2,4',6-Trichlorobiphenyl	6	5	MRL	0	5	0
		2,4'-Dichlorobiphenyl	6	5	MRL	0	5	0
		2,4-Dichlorobiphenyl	6	5	MRL	4	0	4
		2,5-Dichlorobiphenyl	6	6	MRL	3	0	3
		2,6-Dichlorobiphenyl	6	6	MRL	6	0	6
		3,3',4,4',5,5'-Hexachlorobiphenyl	6	5	MRL	4	0	4
		3,3',4,4',5-Pentachlorobiphenyl	6	3	MRL	2	0	2
		3,3',4,4'-Tetrachlorobiphenyl	6	0	MRL	0	0	0
		3,3',4,5,5'-Pentachlorobiphenyl	6	6	MRL	6	0	6
		3,3',4,5'-Tetrachlorobiphenyl	6	5	MRL	5	0	5
		3,3',4,5-Tetrachlorobiphenyl	6	6	MRL	6	0	6
		3,3',4-Trichlorobiphenyl	6	6	MRL	5	1	5
		3,3',5,5'-Tetrachlorobiphenyl	6	5	MRL	4	0	4
		3,3',5-Trichlorobiphenyl	6	6	MRL	6	0	6
		3,3'-Dichlorobiphenyl	6	6	MRL	0	6	0
		3,4,4',5-Tetrachlorobiphenyl	6	6	MRL	6	0	6
		3,4,4'-Trichlorobiphenyl	6	5	MRL	0	5	0
		3,4',5-Trichlorobiphenyl	6	6	MRL	6	0	6
		3,4,5-Trichlorobiphenyl	6	5	MRL	5	0	5
		Coelution of PCB 107 and 124	6	0	MRL	0	0	0
		Coelution of PCB 110 and 115	6	0	MRL	0	0	0
		Coelution of PCB 12 and 13	6	2	MRL	1	0	1
		Coelution of PCB 128 and 166	6	0	MRL	0	0	0
		Coelution of PCB 135 and 151	6	0	MRL	0	0	0
		Coelution of PCB 139 and 140	6	1	MRL	0	0	0
		Coelution of PCB 147 and 149	6	0	MRL	0	0	0
		Coelution of PCB 153 and 168	6	0	MRL	0	0	0
		Coelution of PCB 156 and 157	6	0	MRL	0	0	0
		Coelution of PCB 171 and 173	6	0	MRL	0	0	0
		Coelution of PCB 18 and 30	6	5	MRL	0	5	0
		Coelution of PCB 180 and 193	6	0	MRL	0	0	0
		Coelution of PCB 183 and 185	6	0	MRL	0	0	0
		Coelution of PCB 197 and 200	6	0	MRL	0	0	0
		Coelution of PCB 198 and 199	6	0	MRL	0	0	0

Table 4. 2011 Beach Sediment Data Review of How Non-detect Results Are Reported

	December 2011 Summary of 201	1 Beach Sediment ^a
QAPP	Number of NDs Results Reported as per QAPP	Number of NDs Results Not Reported as per QAPP
ND=MRL	510	14,686

Analyte Type	Lab Name	Analyte	No. of Measurements ^b	No. of Reported Non-detects	QAPP Requirement	Non-Detects Reported to MDL?	Non-Detects Reported to MRL?	No. of Measurements Not Reported per QAPP
PCBs (cont	tinued)							
		Coelution of PCB 20 and 28	6	5	MRL	0	5	0
		Coelution of PCB 21 and 33	6	5	MRL	0	5	0
		Coelution of PCB 26 and 29	6	6	MRL	0	6	0
		Coelution of PCB 44, 47, and 65	6	1	MRL	0	1	0
		Coelution of PCB 45 and 51	6	1	MRL	0	0	0
		Coelution of PCB 49 and 69	6	2	MRL	0	2	0
		Coelution of PCB 50 and 53	6	5	MRL	0	3	0
		Coelution of PCB 59, 62, and 75	6	1	MRL	0	0	0
		Coelution of PCB 61,70,74 and 76	6	0	MRL	0	0	0
		Coelution of PCB 85+116+117	6	0	MRL	0	0	0
		Coelution of PCB 86, 87, 97, 108, 119, and 125	6	0	MRL	0	0	0
		Coelution of PCB 88 and 91	6	0	MRL	0	0	0
		Coelution of PCB 90, 101, and 113	6	0	MRL	0	0	0
		Decachlorobiphenyl (PCB 209)	6	0	MRL	0	0	0
		Dichlorobiphenyl homologs	6	0	MRL	0	0	0
		Heptachlorobiphenyl homologs	6	0	MRL	0	0	0
		Hexachlorobiphenyl homologs	6	0	MRL	0	0	0
		Monochlorobiphenyl homologs	6	0	MRL	0	0	0
		Nonachlorobiphenyl homologs	6	0	MRL	0	0	0
		Octachlorobiphenyl homologs	6	0	MRL	0	0	0
		PCB congener 1	6	5	MRL	0	5	0
		PCB congener 14	6	6	MRL	6	0	6
		PCB congener 15	6	2	MRL	0	2	0
		PCB congener 2	6	6	MRL	1	5	1
		PCB congener 3	6	5	MRL	0	5	0
		PCB_129+138+163	6	0	MRL	0	0	0
		PCB_cong_40+71	6	2	MRL	0	2	0
		PCB_cong_93+100	6	4	MRL	4	0	4
		Pentachlorobiphenyl homologs	6	0	MRL	0	0	0
		Tetrachlorobiphenyl homologs	6	0	MRL	0	0	0
		Trichlorobiphenyl homologs	6	0	MRL	0	0	0

Table 4. 2011 Beach Sediment Data Review of How Non-detect Results Are Reported

December 2011 Summary of 2011 Beach Sediment ^a							
QAPP	Number of NDs Results Reported as per QAPP	Number of NDs Results Not Reported as per QAPP					
ND=MRL	510	14,686					

Analyte Type	Lab Name	Analyte	No. of Measurements ^b	No. of Reported Non-detects	QAPP Requirement	Non-Detects Reported to MDL?	Non-Detects Reported to MRL?	No. of Measurements No Reported per QAPP
esticides/l	Herbicides							
	Columbia Analytical	Services						
	2,4'-DDD		78	78	MRL	77	1	77
	2,4'-DDE		78	78	MRL	77	1	77
	2,4'-DDT		78	75	MRL	75	0	75
	4,4'-DDD		78	78	MRL	74	4	74
	4,4'-DDE		78	71	MRL	48	23	48
	4,4'-DDT		78	74	MRL	73	1	73
	Aldrin		78	78	MRL	78	0	78
	alpha-Benz	zenehexachloride	78	78	MRL	78	0	78
	alpha-Chlo	rdane	78	77	MRL	67	10	67
	beta-BHC		78	78	MRL	78	0	78
	Chlordane		78	78	MRL	78	0	78
	cis-Nonach	lor	78	78	MRL	78	0	78
	delta-BHC		78	78	MRL	78	0	78
	Dieldrin		78	78	MRL	78	0	78
	Endosulfar	r I	78	78	MRL	78	0	78
	Endosulfar	ı II	78	78	MRL	78	0	78
	Endosulfar	sulfate	78	78	MRL	76	2	76
	Endrin		78	78	MRL	78	0	78
	Endrin alde	ehyde	78	78	MRL	78	0	78
	Endrin keto	one	78	78	MRL	78	0	78
	gamma-B⊦	IC	78	77	MRL	77	0	77
	gamma-Ch	llordane	78	76	MRL	76	0	76
	Heptachlor		78	78	MRL	78	0	78
	Heptachlor	epoxide	78	78	MRL	78	0	78
	Methoxych	lor	78	78	MRL	77	1	77
	Oxychlorda	ane	78	78	MRL	74	4	74
	Toxaphene		78	78	MRL	77	1	77
	trans-Nona		78	78	MRL	78	0	78
Radionuclio	des							
	Pace Analytical							
	Radium-22	6	5	0	MRL	0	0	0
	Uranium-23	38	5	0	MRL	0	0	0

Table 4. 2011 Beach Sediment Data Review of How Non-detect Results Are Reported

December 2011 Summary of 2011 Beach Sediment ^a							
QAPP	Number of NDs Results Reported as per QAPP	Number of NDs Results Not Reported as per QAPP					
ND=MRL	510	14,686					

Analyte Type	Lab Name	Analyte	No. of Measurements ^b	No. of Reported Non-detects	QAPP Requirement	Non-Detects Reported to MDL?	Non-Detects Reported to MRL?	No. of Measurements No Reported per QAPP
SVOCs		·			·	·	·	· · ·
	Columbia Analy	rtical Services						
	1,2,4-	Trichlorobenzene	78	78	MRL	78	0	78
	1,2-Di	chlorobenzene	78	78	MRL	78	0	78
	1,3-Di	chlorobenzene	78	78	MRL	78	0	78
	1,4-Di	chlorobenzene	78	78	MRL	78	0	78
	2,2'-0>	ybis(1-Chloropropane)	78	78	MRL	78	0	78
	2,4,5-	Trichlorophenol	78	78	MRL	78	0	78
	2,4,6-	Trichlorophenol	78	78	MRL	78	0	78
	2,4-Di	chlorophenol	78	78	MRL	78	0	78
	2,4-Di	methylphenol	78	60	MRL	60	0	60
	2,4-Di	nitrophenol	78	78	MRL	78	0	78
	2,4-Di	nitrotoluene	78	78	MRL	78	0	78
	2,6-Di	nitrotoluene	78	78	MRL	78	0	78
	2-Chlo	ronaphthalene	78	78	MRL	78	0	78
	2-Chlo	rophenol	78	78	MRL	78	0	78
	2-Meth	nylphenol	78	78	MRL	78	0	78
	2-Nitro	paniline	78	78	MRL	78	0	78
	2-Nitro	phenol	78	78	MRL	78	0	78
	3,3'-Di	chlorobenzidine	78	78	MRL	78	0	78
	3-Nitro	paniline	78	78	MRL	78	0	78
	4,6-Di	nitro-2-methylphenol	78	78	MRL	78	0	78
	4-Bror	nophenyl-phenylether	78	78	MRL	78	0	78
	4-Chlo	oro-3-methylphenol	78	78	MRL	78	0	78
	4-Chlo	proaniline	78	78	MRL	78	0	78
	4-Chlo	prophenyl-phenyl ether	78	78	MRL	78	0	78
		nylphenol	78	72	MRL	72	0	72
		paniline	78	78	MRL	78	0	78
	4-Nitro	phenol	78	78	MRL	78	0	78
		phenone	78	70	MRL	70	0	70
		Idehyde	78	69	MRL	69	0	69
	Benzo		78	76	MRL	76	0	76
	Benzy	l alcohol	78	77	MRL	77	0	77
	•	l n-butyl phthalate	78	73	MRL	73	0	73
	•	Chloroethoxy)methane	78	78	MRL	78	0	78

Table 4. 2011 Beach Sediment Data Review of How Non-detect Results Are Reported

December 2011 Summary of 2011 Beach Sediment ^a						
QAPP	Number of NDs Results Reported as per QAPP	Number of NDs Results Not Reported as per QAPP				
ND=MRL	510	14,686				

Analyte Type	Lab Name	Analyte	No. of Measurements ^b	No. of Reported Non-detects	QAPP Requirement	Non-Detects Reported to MDL?	Non-Detects Reported to MRL?	No. of Measurements Not Reported per QAPP
SVOCs (cor	ntinued)							
		Bis(2-chloroethyl)ether	78	78	MRL	78	0	78
		bis(2-Ethylhexyl)phthalate	78	76	MRL	76	0	76
		Caprolactam	78	78	MRL	78	0	78
		Carbazole	78	74	MRL	74	0	74
		Diethyl phthalate	78	75	MRL	75	0	75
		Dimethyl phthalate	78	66	MRL	66	0	66
		Di-n-butyl phthalate	78	78	MRL	78	0	78
		Di-n-octylphthalate	78	78	MRL	78	0	78
		Hexachlorobenzene	78	76	MRL	76	0	76
		Hexachlorobutadiene	78	78	MRL	78	0	78
		Hexachlorocyclopentadiene	78	78	MRL	72	6	72
		Hexachloroethane	78	78	MRL	78	0	78
		Isophorone	78	78	MRL	78	0	78
		Nitrobenzene	78	78	MRL	78	0	78
		N-Nitrosodi-n-propylamine	78	78	MRL	78	0	78
		N-Nitrosodiphenylamine	78	78	MRL	78	0	78
		Pentachlorophenol	78	78	MRL	78	0	78
		Phenol	78	41	MRL	41	0	41
		2011 Beach Sediment ^b	28,926	9,437	MRL	8,862	412	8,862

Notes

^a The December 2011 analysis and summary included results for lab replicates, field replicates, field triplicates, blank water, rinse water/QC samples whereas the current table does not.

^b Excludes all duplicate/triplicate/replicate/blank and rinsewater QC sample results

Table 5. 2009 Surface Water Round 1 Data Review of How Non-detect Results Are Reported

December 2011 Summary of 2009 Surface Water Round 1 a								
	2009 Surface Water Round 1		Number of NDs Results Reported as per QAPP	Number of NDs Results Not Reported as per QAPP				
	Non-HRGC/HRMS Data	ND=MRL	3,030	15,482				
	HRGC/HRMS Data	HRGC/HRMS Data ND=MDL		946				

Analyte Type	Lab Name	Analyte	No. of Measurements ^b	No. of Reported Non-detects	QAPP Requirement	Non-Detects Reported to MDL?	Non-Detects Reported to MRL?	No. of Measurements Not Reported per QAPP
Conventio	onals							
	Columbia	a Analytical Services						
		Alkalinity	87	0	MRL	0	0	0
		Fluoride	87	0	MRL	0	0	0
		Hardness as CaCO3	94	0	MRL	0	0	0
		Organic carbon	174	174	MRL	0	174	0
		рН	87	0	MRL	0	0	0
		Sulfate	87	0	MRL	0	0	0
		Total dissolved solids	87	2	MRL	0	2	0
		Total Suspended Solids	93	89	MRL	0	89	0
Metals/Me								
	Columbia	a Analytical Services						
		Aluminum	200	149	MRL	0	149	0
		Antimony	200	12	MRL	12	0	12
		Arsenic	200	172	MRL	57	115	57
		Barium	200	0	MRL	0	0	0
		Beryllium	200	192	MRL	192	0	192
		Bismuth	122	112	MRL	112	0	112
		Boron	122	122	MRL	122	0	122
		Cadmium	200	27	MRL	17	10	17
		Calcium	200	0	MRL	0	0	0
		Cerium	122	60	MRL	60	0	60
		Cesium	122	5	MRL	5	0	5
		Chloride ion	87	44	MRL	0	44	0
		Chromium	200	194	MRL	177	17	177
		Cobalt	200	9	MRL	0	9	0
		Copper	200	117	MRL	0	117	0
		Dysprosium	122	118	MRL	118	0	118
		Erbium	122	122	MRL	122	0	122
		Europium	122	69	MRL	69	0	69
		Gadolinium	122	119	MRL	119	0	119
		Gallium	122	119	MRL	119	0	119
		Germanium	122	120	MRL	116	4	116
		Gold	122	122	MRL	106	16	106

Table 5. 2009 Surface Water Round 1 Data Review of How Non-detect Results Are Reported

December 2011 Summary of 2009 Surface Water Round 1 ^a								
	2009 Surface Water Round 1		Number of NDs Results Reported as per QAPP	Number of NDs Results Not Reported as per QAPP				
	Non-HRGC/HRMS Data	ND=MRL	3,030	15,482				
	HRGC/HRMS Data	HRGC/HRMS Data ND=MDL		946				

Analyte Type	Lab Name	Analyte	No. of Measurements ^b	No. of Reported Non-detects	QAPP Requirement	Non-Detects Reported to MDL?	Non-Detects Reported to MRL?	No. of Measurements Not Reported per QAPP
Metals/Me	talloids (continued)						
		Holmium	122	122	MRL	122	0	122
		Indium	122	121	MRL	121	0	121
		Iron	200	114	MRL	90	24	90
		Lanthanum	122	58	MRL	58	0	58
		Lead	200	165	MRL	70	95	70
		Lithium	122	104	MRL	104	0	104
		Lutetium	122	121	MRL	121	0	121
		Magnesium	200	0	MRL	0	0	0
		Manganese	200	94	MRL	0	94	0
		Mercury	200	193	MRL	191	2	191
		Molybdenum	200	0	MRL	0	0	0
		Neodymium	122	103	MRL	103	0	103
		Nickel	200	32	MRL	3	29	3
		Niobium	122	122	MRL	122	0	122
		Potassium	200	0	MRL	0	0	0
		Praseodymium	122	111	MRL	111	0	111
		Rubidium	122	0	MRL	0	0	0
		Samarium	122	118	MRL	118	0	118
		Scandium	122	19	MRL	4	15	4
		Selenium	200	196	MRL	196	0	196
		Silica	87	6	MRL	0	6	0
		Silicon	122	0	MRL	0	0	0
		Silver	200	199	MRL	198	1	198
		Sodium	200	0	MRL	0	0	0
		Strontium	122	0	MRL	0	0	0
		Tantalum	122	121	MRL	121	0	121
		Tellurium	122	121	MRL	120	1	120
		Terbium	122	122	MRL	122	0	122
		Thallium	200	172	MRL	68	104	68
		Thorium	122	109	MRL	109	0	109
		Thulium	122	122	MRL	122	0	122
		Tin	122	120	MRL	120	0	120
		Titanium	122	121	MRL	94	27	94

Table 5. 2009 Surface Water Round 1 Data Review of How Non-detect Results Are Reported

December 2011 Summary of 2009 Surface Water Round 1 a								
2009 Surface Water Rou		Number of NDs Results Reported as per QAPP	Number of NDs Results Not Reported as per QAPP					
Non-HRGC/HRMS Data	ND=MRL	3,030	15,482					
HRGC/HRMS Data	HRGC/HRMS Data ND=MDL		946					

Analyte Type	Lab Name	Analyte	No. of Measurements ^b	No. of Reported Non-detects	QAPP Requirement	Non-Detects Reported to MDL?	Non-Detects Reported to MRL?	No. of Measurements Not Reported per QAPP
Metals/Me	talloids (c	ontinued)			<u> </u>		<u> </u>	
	•	Tungsten	122	122	MRL	69	53	69
		Uranium	200	0	MRL	0	0	0
		Vanadium	200	128	MRL	47	81	47
		Ytterbium	122	121	MRL	121	0	121
		Yttrium	122	33	MRL	33	0	33
		Zinc	200	197	MRL	11	186	11
	Frontier G	GeoSciences						
		Inorganic Arsenic	202	7	MRL	1	6	1
Nutrients								
	Columbia	Analytical Services						
		Ammonia as Nitrogen	87	48	MRL	48	0	48
		Nitrate plus nitrite	87	85	MRL	67	18	67
		Phosphorus	87	85	MRL	74	11	74
PAHs								
	Columbia	Analytical Services						
		1,1'-Biphenyl	44	44	MRL	44	0	44
		2-Methylnaphthalene	44	44	MRL	42	2	42
		Acenaphthene	44	44	MRL	44	0	44
		Acenaphthylene	44	41	MRL	41	0	41
		Anthracene	44	43	MRL	43	0	43
		Benzo(e)pyrene	44	42	MRL	42	0	42
		Benzo[a]anthracene	44	43	MRL	43	0	43
		Benzo[a]pyrene	44	41	MRL	41	0	41
		Benzo[b]fluoranthene	44	39	MRL	39	0	39
		Benzo[g,h,i]perylene	44	38	MRL	38	0	38
		Benzo[k]fluoranthene	44	41	MRL	41	0	41
		Chrysene	44	43	MRL	43	0	43
		Dibenzo[a,h]anthracene	44	41	MRL	41	0	41
		Dibenzofuran	44	42	MRL	42	0	42
		Fluoranthene	44	44	MRL	44	0	44
		Fluorene	44	44	MRL	44	0	44
		Indeno[1,2,3-cd]pyrene	44	41	MRL	41	0	41
		Naphthalene	44	43	MRL	3	40	3

Table 5. 2009 Surface Water Round 1 Data Review of How Non-detect Results Are Reported

December 2011 Summary of 2009 Surface Water Round 1 ^a										
2009 Surface Water Round 1		Number of NDs Results Reported as per QAPP	Number of NDs Results Not Reported as per QAPP							
Non-HRGC/HRMS Data	ND=MRL	3,030	15,482							
HRGC/HRMS Data	ND=MDL	11,329	946							

Analyte Type	Lab Name	Analyte	No. of Measurements ^b	No. of Reported Non-detects	QAPP Requirement	Non-Detects Reported to MDL?	Non-Detects Reported to MRL?	No. of Measurements Not Reported per QAPP
PAHs (cor	ntinued)							
		Perylene	44	43	MRL	43	0	43
		Phenanthrene	44	44	MRL	40	4	40
		Pyrene	44	44	MRL	44	0	44
		Pyrene	37	36	MRL	36	0	36
PBDEs								
	SGS NC	1						
		2,2',3,3',4,4',5,5',6-Nonabromodiphenyl ether	44	44	MDL	44	0	0
		2,2',3,3',4,4'-Hexabromodiphenyl ether	44	44	MDL	44	0	0
		2,2',3,4,4',5,5',6-Octabromodiphenyl ether	44	44	MDL	44	0	0
		2,2',3,4,4',5',6-Heptabromodiphenyl ether	44	44	MDL	44	0	0
		2,2',3,4,4',6,6'-Heptabromodiphenyl ether	44	44	MDL	44	0	0
		2,2',3,4,4'-Pentabromodiphenyl ether	44	43	MDL	43	0	0
		2,2',4,4',5,5'-Hexabromodiphenyl ether	44	41	MDL	41	0	0
		2,2',4,4',5,6'-Hexabromodiphenyl ether	44	43	MDL	43	0	0
		2,2',4,4',5-Pentabromodiphenyl ether	44	43	MDL	43	0	0
		2,2',4,4',6-Pentabromodiphenyl ether	44	37	MDL	37	0	0
		2,2',4,4'-Tetrabromodiphenyl ether	44	44	MDL	44	0	0
		2,2',4,5'-Tetrabromodiphenyl ether	44	44	MDL	44	0	0
		2,3,3',4,4',5',6-Heptabromodiphenyl ether	44	44	MDL	44	0	0
		2,3,3',4,4',5,6-Heptabromodiphenyl ether	44	44	MDL	44	0	0
		2,3',4,4'-Tetrabromodiphenyl ether	44	41	MDL	41	0	0
		2,3',4',6-Tetrabromodiphenyl ether	44	44	MDL	44	0	0
		Coelution of PBDE 138 and 166	44	44	MDL	44	0	0
		Coelution of PBDE 17 and 25	44	42	MDL	42	0	0
		Coelution of PBDE 28 and 33	44	43	MDL	43	0	0
		Decabromodiphenyl ether	44	44	MDL	44	0	0

Table 5. 2009 Surface Water Round 1 Data Review of How Non-detect Results Are Reported

December 2011 Summary of 2009 Surface Water Round 1 ^a									
2009 Surface Water Round 1		Number of NDs Results Reported as per QAPP	Number of NDs Results Not Reported as per QAPP						
Non-HRGC/HRMS Data	ND=MRL	3,030	15,482						
HRGC/HRMS Data	ND=MDL	11,329	946						

Analyte Type	Lab Name	Analyte	No. of Measurements ^b	No. of Reported Non-detects	QAPP Requirement	Non-Detects Reported to MDL?	Non-Detects Reported to MRL?	No. of Measurements Not Reported per QAPP
PCBs								
	SGS NC							
		2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	44	44	MDL	44	0	0
		2,2',3,3',4,4',5,5'-Octachlorobiphenyl	44	44	MDL	44	0	0
		2,2',3,3',4,4',5,6,6'-Nonachlorobiphenyl	44	44	MDL	44	0	0
		2,2',3,3',4,4',5,6'-Octachlorobiphenyl	44	44	MDL	44	0	0
		2,2',3,3',4,4',5,6-Octachlorobiphenyl	44	44	MDL	44	0	0
		2,2',3,3',4,4',5-Heptachlorobiphenyl	44	44	MDL	44	0	0
		2,2',3,3',4,4',6,6'-Octachlorobiphenyl	44	44	MDL	44	0	0
		2,2',3,3',4,4',6-Heptachlorobiphenyl	44	44	MDL	44	0	0
		2,2',3,3',4,4'-Hexachlorobiphenyl	44	44	MDL	44	0	0
		2,2',3,3',4,5,5',6,6'-Nonachlorobiphenyl	44	44	MDL	44	0	0
		2,2',3,3',4,5,5',6-Octachlorobiphenyl	44	44	MDL	44	0	0
		2,2',3,3',4,5,5'-Heptachlorobiphenyl	44	44	MDL	44	0	0
		2,2',3,3',4,5',6,6'-Octachlorobiphenyl	44	44	MDL	44	0	0
		2,2',3,3',4,5',6'-Heptachlorobiphenyl	44	44	MDL	44	0	0
		2,2',3,3',4,5',6-Heptachlorobiphenyl	44	44	MDL	44	0	0
		2,2',3,3',4,5,6'-Heptachlorobiphenyl	44	44	MDL	44	0	0
		2,2',3,3',4,5'-Hexachlorobiphenyl	44	44	MDL	44	0	0
		2,2',3,3',4,5-Hexachlorobiphenyl	44	41	MDL	37	0	0
		2,2',3,3',4,6,6'-Heptachlorobiphenyl	44	44	MDL	44	0	0
		2,2',3,3',4,6'-Hexachlorobiphenyl	44	44	MDL	44	0	0
		2,2',3,3',4,6-Hexachlorobiphenyl	44	44	MDL	44	0	0
		2,2',3,3',4-Pentachlorobiphenyl	44	44	MDL	44	0	0
		2,2',3,3',5,5',6,6'-Octachlorobiphenyl	44	44	MDL	44	0	0
		2,2',3,3',5,5',6-Heptachlorobiphenyl	44	44	MDL	44	0	0
		2,2',3,3',5,5'-Hexachlorobiphenyl	44	44	MDL	44	0	0
		2,2',3,3',5,6,6'-Heptachlorobiphenyl	44	44	MDL	44	0	0
		2,2',3,3',5,6'-Hexachlorobiphenyl	44	43	MDL	42	0	0
		2,2',3,3',5,6-Hexachlorobiphenyl	44	44	MDL	44	0	0
		2,2',3,3',5-Pentachlorobiphenyl	44	44	MDL	44	0	0
		2,2',3,3',6,6'-Hexachlorobiphenyl	44	43	MDL	43	0	0
		2,2',3,3',6-Pentachlorobiphenyl	44	44	MDL	44	0	0
		2,2',3,3'-Tetrachlorobiphenyl	44	42	MDL	42	0	0

Table 5. 2009 Surface Water Round 1 Data Review of How Non-detect Results Are Reported

	December 2011 Summary of 2009 Surface Water Round 1 ^a										
	2009 Surface Water Round 1		Number of NDs Results Reported as per QAPP	Number of NDs Results Not Reported as per QAPP							
ĺ	Non-HRGC/HRMS Data	ND=MRL	3,030	15,482							
ĺ	HRGC/HRMS Data	ND=MDL	11,329	946							

PCBs (continued)	Analyte Type	Lab Name	Analyte	No. of Measurements ^b	No. of Reported Non-detects	QAPP Requirement	Non-Detects Reported to MDL?	Non-Detects Reported to MRL?	No. of Measurements Not Reported per QAPP
2,2,3,4,4,5,5-Heptachlorobiphenyl 44 42 MDL 42 0 2,2,3,4,4,5,6-Heptachlorobiphenyl 44 44 MDL 44 0 2,2,3,4,4,5,6-Heptachlorobiphenyl 44 44 MDL 44 0 2,2,3,4,5,6-Heptachlorobiphenyl 44 44 MDL 44 0 2,2,3,4,5,6-Heptachlorobiphenyl 44 44 MDL 44 0 2,2,3,4,6-Heptachlorobiphenyl 44 44 MDL 44 0 2,2,3,4,5,5-Heptachlorobiphenyl 44 44 MDL 44 0 2,2,3,4,5,6-Heptachlorobiphenyl 44 44 MDL 44 0 2,2,3,4,5,6-Heptachlorobiphenyl 44 44 MDL 44 0 2,2,3,4,5,6-Hexachlorobiphenyl 44 44 MDL 44 0	PCBs (cor	ntinued)							
2.2.3.4.4.5.6.6"-Octachlorobiphenyl 44 44 MDL 44 0 2.2.3.4.4.5.6.1+glachlorobiphenyl 44 44 MDL 44 0 2.2.3.4.4.6.6.1+glachlorobiphenyl 44 44 MDL 44 0 2.2.3.4.4.6.6.1+glachlorobiphenyl 44 44 MDL 44 0 2.2.3.4.4.6.6.1+glachlorobiphenyl 44 44 MDL 44 0 2.2.3.4.5.5.6.1+glachlorobiphenyl 44 44 MDL 44 0 2.2.3.4.5.6.6.1+glachlorobiphenyl 44 44 MDL 44 0 2.2.3.4.5.6.1+glachlorobiphenyl 44 44 MDL 44 0 2.2.3.4.5.6-Heachlorobiphenyl 44 44 MDL 44 0 2.2.3.4.5.6-Heachlorobiphenyl 44 44 MDL 44 0 2.2.3.4.5.6-Heachlorobiphenyl 44 44 MDL 44 MDL 44 0 2.2.3.4.5.6-Heachlorobiphenyl 44 MDL 44 MDL 44 MDL 44 MDL 42 MDL 44 MDL 42 MDL 44 MDL 44 MDL 42 MDL 44 MDL 42 MDL 44 MDL 42 MDL 44 MDL 44 MDL 42 MDL 44 MDL 44 MDL 42 MDL 44 MDL 44 MDL 44 MDL 44 MDL 42			2,2',3,4,4',5,5',6-Octachlorobiphenyl	44	44	MDL	44	0	0
2.2.3.4,4'.5.6-Heptachlorobiphenyl 44 44 MDL 44 0 2.2.3.4,4'.5.6-Heptachlorobiphenyl 44 44 MDL 44 0 2.2.3.4,4'.5.6-Heptachlorobiphenyl 44 44 MDL 44 0 2.2.3.4,4'.6-Hestachlorobiphenyl 44 44 MDL 44 0 2.2.3.4,4'.6-Hestachlorobiphenyl 44 44 MDL 44 0 2.2.3.4,4'.6-Hestachlorobiphenyl 44 44 MDL 44 0 2.2.3.4,5'.6-Heptachlorobiphenyl 44 44 MDL 44 0 2.2.3.4,5.5'-Hestachlorobiphenyl 44 44 MDL 44 0 2.2.3.4,5.5'-Hestachlorobiphenyl 44 44 MDL 44 0 2.2.3.4,5.6'-Heptachlorobiphenyl 44 44 MDL 43 0 2.2.3.4,5.6'-Heptachlorobiphenyl 44 44 MDL 44 0 2.2.3.4,5.6'-Heptachlorobiphenyl 44 44 MDL 44 0 2.2.3.4,5.6'-Heptachlorobiphenyl 44 44 MDL 44 0 <td></td> <td></td> <td>2,2',3,4,4',5,5'-Heptachlorobiphenyl</td> <td>44</td> <td>42</td> <td>MDL</td> <td>42</td> <td>0</td> <td>0</td>			2,2',3,4,4',5,5'-Heptachlorobiphenyl	44	42	MDL	42	0	0
2,2,3,4,4',5,6'-Heptachlorobiphenyl 44 44 MDL 44 0 2,2,3,4,4',5,6'-Heptachlorobiphenyl 44 44 MDL 44 0 2,3,4,4',5,6'-Heptachlorobiphenyl 44 44 MDL 44 0 2,3,4,4',6,6'-Heptachlorobiphenyl 44 44 MDL 44 0 2,3,4,4'-6,6'-Heptachlorobiphenyl 44 44 MDL 44 0 2,3,4,4'-Pentachlorobiphenyl 44 44 MDL 44 0 2,3,4,4'-Pentachlorobiphenyl 44 44 MDL 44 0 2,3,4',5,5'-Hexachlorobiphenyl 44 44 MDL 43 0 2,3,4',5,6'-Heptachlorobiphenyl 44 44 MDL 44 0 2,3,4',5,6'-Heptachlorobiphenyl 44 44 MDL 44 0 2,3,4',5,6'-Hexachlorobiphenyl 44 44 MDL 44 0 2,3,4',5,6'-Hexachlorobiphenyl 44 44 MDL 44 0 2,3,4',5,6'-Hexachlorobiphenyl 44 MDL 44 0 2,3,4',6'-Pentachlorobiphenyl 44 MDL 44 MDL 44 DQL 2,3,4',6'-Pentachlorobiphenyl 44 MDL 44 MDL 44 MDL 44 DQL 2,3,4',6'-Pentachlorobiphenyl 44 MDL 44 MDL 44 MDL 44 DQL 2,3,4',6'-Pentachlorobiphenyl 44 MDL 44 MDL 44 MDL 44 MDL 44 MDL 42 MDL 44 MDL 42 MDL 44 MDL 44 MDL 44 MDL 42 MDL 44 MDL 44 MDL 42 MDL 44 MDL 44 MDL 42 MDL 44 MDL 44 MDL 44 MDL 42 MDL 44 MDL 44 MDL 42 MDL 44 MDL 44 MDL 42 MDL 44 MDL 42 MDL 44 MDL 44 MDL 42 MDL 44 MDL 44 MDL 42 MDL 44 MDL 42 MDL 44 MDL 44 MDL 42 MDL 44 MDL 44 MD			2,2',3,4,4',5,6,6'-Octachlorobiphenyl	44	44	MDL	44	0	0
2,2',3,4,4',5,6-Heptachlorobiphenyl 44 44 MDL 44 0 2,2',3,4,4',6,6-Heptachlorobiphenyl 44 44 MDL 44 0 2,2',3,4,4',6-Hexachlorobiphenyl 44 44 MDL 44 0 2,2',3,4,4',6-Hexachlorobiphenyl 44 44 MDL 44 0 2,2',3,4',5,5'-Hetachlorobiphenyl 44 44 MDL 44 0 2,2',3,4',5,5'-Hexachlorobiphenyl 44 44 MDL 44 0 2,2',3,4',5,6'-Hexachlorobiphenyl 44 44 MDL 44 0 2,2',3,4',5,6'-Hexachlorobiphenyl 44 44 MDL 44 0 2,2',3,4',5,6'-Heptachlorobiphenyl 44 44 MDL 44 0 2,2',3,4',5,6'-Hexachlorobiphenyl 44 44 MDL 44 0 2,2',3,4',5,6'-Hexachlorobiphenyl 44 44 MDL 39 0 2,2',3,4',5,6'-Hexachlorobiphenyl 44 44 MDL 44 0 2,2',3,4',5,6'-Hexachlorobiphenyl 44 44 MDL 44			2,2',3,4,4',5',6-Heptachlorobiphenyl	44	44	MDL	44	0	0
2,2',3,4,4',5-Hexachlorobiphenyl 44 44 MDL 44 0 2,2',3,4,4',6-Hexachlorobiphenyl 44 44 MDL 44 0 2,2',3,4,4'-Pentachlorobiphenyl 44 44 MDL 44 0 2,2',3,4',5-F'-Hexachlorobiphenyl 44 44 MDL 44 0 2,2',3,4',5,5'-Hexachlorobiphenyl 44 44 MDL 44 0 2,2',3,4',5,5'-Hexachlorobiphenyl 44 44 MDL 44 0 2,2',3,4',5,5'-Hexachlorobiphenyl 44 44 MDL 44 0 2,2',3,4',5,6'-Hexachlorobiphenyl 44 44 MDL 44 0 2,2',3,4',5,6'-Hexachlorobiphenyl 44 44 MDL 44 0 2,2',3,4',5,6'-Hexachlorobiphenyl 44 44 MDL 39 0 2,2',3,4',5,6'-Hexachlorobiphenyl 44 44 MDL 44 0 2,2',3,4',5,6'-Hexachlorobiphenyl 44 44 MDL 44 0 2,2',3,4',5,6'-Hexachlorobiphenyl 44 44 MDL 44 0			2,2',3,4,4',5,6'-Heptachlorobiphenyl	44	44	MDL	44	0	0
2,2',3,4,4',6,6'-Heptachlorobiphenyl 44 44 MDL 44 0 2,2',3,4,4'-Pentachlorobiphenyl 44 44 MDL 44 0 2,2',3,4,5',5'-Heptachlorobiphenyl 44 44 MDL 44 0 2,2',3,4',5,5'-Hexachlorobiphenyl 44 44 MDL 44 0 2,2',3,4',5,5'-Hexachlorobiphenyl 44 43 MDL 43 0 2,2',3,4',5,6'-Hexachlorobiphenyl 44 44 MDL 44 0 2,2',3,4',5,6'-Hexachlorobiphenyl 44 44 MDL 44 0 2,2',3,4',5,6'-Hexachlorobiphenyl 44 44 MDL 44 0 2,2',3,4',5,6'-Hexachlorobiphenyl 44 44 MDL 39 0 2,2',3,4',5,6'-Hexachlorobiphenyl 44 44 MDL 44 0 2,2',3,4',5,6'-Hexachlorobiphenyl 44 44 MDL 44 0 2,2',3,4',5,6'-Hexachlorobiphenyl 44 44 MDL 44 0 2,2',3,4',5,6'-Hexachlorobiphenyl 44 44 MDL 38			2,2',3,4,4',5,6-Heptachlorobiphenyl	44	44	MDL	44	0	0
2,2',3,4,4',6-Hexachlorobiphenyl 44 44 MDL 44 0 2,2',3,4',5-Pentachlorobiphenyl 44 44 MDL 44 0 2,2',3,4',5,5',6-Heytachlorobiphenyl 44 44 MDL 44 0 2,2',3,4',5,5'-Hexachlorobiphenyl 44 44 MDL 44 0 2,2',3,4',5,6'-Heytachlorobiphenyl 44 44 MDL 44 0 2,2',3,4',5,6'-Heytachlorobiphenyl 44 44 MDL 44 0 2,2',3,4',5,6'-Heytachlorobiphenyl 44 44 MDL 44 0 2,2',3,4',5,6'-Hexachlorobiphenyl 44 44 MDL 44 0 2,2',3,4',5,6'-Hexachlorobiphenyl 44 44 MDL 39 0 2,2',3,4',5,6'-Hexachlorobiphenyl 44 44 MDL 44 0 2,2',3,4',5,6'-Hexachlorobiphenyl 44 44 MDL 44 0 2,2',3,4',5,6'-Hexachlorobiphenyl 44 44 MDL 44 0 2,2',3,4',5,6'-Hexachlorobiphenyl 44 35 MDL 38			2,2',3,4,4',5-Hexachlorobiphenyl	44	44	MDL	44	0	0
2,2,3,4,4-Pentachlorobiphenyl 44 44 MDL 44 0 2,2,3,4,5,5,6-Heptachlorobiphenyl 44 44 MDL 44 0 2,2,3,4,5,5-Hexachlorobiphenyl 44 44 MDL 44 0 2,2,3,4,5,6,6-Heptachlorobiphenyl 44 44 MDL 44 0 2,2,3,4,5,6-Heptachlorobiphenyl 44 44 MDL 44 0 2,2,3,4,5,6-Hexachlorobiphenyl 44 44 MDL 44 0 2,2,3,4,5,6-Hexachlorobiphenyl 44 44 MDL 39 0 2,2,3,4,5,6-Hexachlorobiphenyl 44 44 MDL 44 0 2,2,3,4,5,6-Hexachlorobiphenyl 44 44 MDL 44 0 2,2,3,4,5,6-Hexachlorobiphenyl 44 44 MDL 44 0 2,2,3,4,5-Pentachlorobiphenyl 44 44 MDL 44 0 2,2,3,4,5-Pentachlorobiphenyl 44 44 MDL 44 0 2,2,3,4,5-Pentachlorobiphenyl 44 44 MDL 44 0 <			2,2',3,4,4',6,6'-Heptachlorobiphenyl	44	44	MDL	44	0	0
2,2',3,4',5,5',6-Heptachlorobiphenyl 44 44 MDL 44 0 2,2',3,4',5,5'-Hexachlorobiphenyl 44 44 MDL 43 0 2,2',3,4',5,6'-Heytachlorobiphenyl 44 44 MDL 44 0 2,2',3,4',5,6'-Heytachlorobiphenyl 44 44 MDL 44 0 2,2',3,4',5,6'-Hexachlorobiphenyl 44 44 MDL 44 0 2,2',3,4',5,6'-Hexachlorobiphenyl 44 44 MDL 39 0 2,2',3,4',5,6'-Hexachlorobiphenyl 44 44 MDL 44 0 2,2',3,4',5,6'-Hexachlorobiphenyl 44 44 MDL 44 0 2,2',3,4',5,6'-Hexachlorobiphenyl 44 44 MDL 44 0 2,2',3,4',5-Pentachlorobiphenyl 44 44 MDL 44 0 2,2',3,4',5-Pentachlorobiphenyl 44 43 39 MDL 38 0 2,2',3,4',6'-Hexachlorobiphenyl 44 44 MDL 44 0 2,2',3,4',6'-Hexachlorobiphenyl 44 44 MDL			2,2',3,4,4',6-Hexachlorobiphenyl	44	44	MDL	44	0	0
2,2',3,4',5,5'-Hexachlorobiphenyl 44 44 MDL 44 0 2,2',3,4',5,5'-Hexachlorobiphenyl 44 43 MDL 43 0 2,2',3,4',5,6'-Heptachlorobiphenyl 44 44 MDL 44 0 2,2',3,4',5,6'-Hexachlorobiphenyl 44 44 MDL 44 0 2,2',3,4',5,6'-Hexachlorobiphenyl 44 44 MDL 39 0 2,2',3,4',5,6'-Hexachlorobiphenyl 44 44 MDL 44 0 2,2',3,4',5'-Bentachlorobiphenyl 44 44 MDL 34 0 2,2',3,4',5'-Bentachlorobiphenyl 44 35 MDL 38 0 2,2',3,4',5'-Bentachlorobiphenyl 44 44 MDL 44 0 2,2',3,4',6'-Hexachlorobiphenyl 44 44 MDL 44 0			2,2',3,4,4'-Pentachlorobiphenyl	44	44	MDL	44	0	0
2,2',3,4,5,5'-Hexachlorobiphenyl 44 43 MDL 43 0 2,2',3,4',5,6'-Heptachlorobiphenyl 44 44 MDL 44 0 2,2',3,4',5,6'-Hexachlorobiphenyl 44 44 MDL 44 0 2,2',3,4',5,6'-Hexachlorobiphenyl 44 40 MDL 39 0 2,2',3,4',5,6'-Hexachlorobiphenyl 44 44 MDL 44 0 2,2',3,4',5-Pentachlorobiphenyl 44 35 MDL 24 0 2,2',3,4',5-Pentachlorobiphenyl 44 39 MDL 38 0 2,2',3,4',6'-Pentachlorobiphenyl 44 44 MDL 44 0 2,2',3,4',6'-Pentachlorobiphenyl 44 44 MDL 44 0 2,2',3,4',6'-Pentachlorobiphenyl 44 44 MDL 44 0 <td></td> <td></td> <td>2,2',3,4',5,5',6-Heptachlorobiphenyl</td> <td>44</td> <td>44</td> <td>MDL</td> <td>44</td> <td>0</td> <td>0</td>			2,2',3,4',5,5',6-Heptachlorobiphenyl	44	44	MDL	44	0	0
2,2',3,4',5,6,6'-Heptachlorobiphenyl 44 44 MDL 44 0 0 2,2',3,4',5,6'-Hexachlorobiphenyl 44 44 MDL 44 0 0 2,2',3,4',5,6'-Hexachlorobiphenyl 44 44 MDL 39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			2,2',3,4',5,5'-Hexachlorobiphenyl	44	44	MDL	44	0	0
2,2,3,4,5,6,6'-Hexachlorobiphenyl 44 44 MDL 44 0 2,2',3,4',5,6'-Hexachlorobiphenyl 44 44 MDL 39 0 2,2',3,4,5,6-Hexachlorobiphenyl 44 44 MDL 44 0 2,2',3,4,5,6'-Hexachlorobiphenyl 44 44 MDL 44 0 2,2',3,4,5,6'-Hexachlorobiphenyl 44 44 MDL 44 0 2,2',3,4,5,6'-Hexachlorobiphenyl 44 44 MDL 44 0 2,2',3,4,5,6-Hexachlorobiphenyl 44 35 MDL 24 0 2,2',3,4',5-Pentachlorobiphenyl 44 39 MDL 38 0 2,2',3,4',6,6'-Hexachlorobiphenyl 44 44 MDL 44 0 2,2',3,4,6,6'-Hexachlorobiphenyl 44 44 MDL 44 0 2,2',3,4,6,6'-Hexachlorobiphenyl 44 44 MDL 44 0 2,2',3,4,6'-Pentachlorobiphenyl 44 44 MDL 44 0 2,2',3,4'-Tetrachlorobiphenyl 44 44 MDL 44 0 2,2',3,4'-Tetrachlorobiphenyl 44 MDL 44 0 2,2',3,4'-Tetrachlorobiphenyl 44 MDL 44 MDL 44 0 2,2',3,4'-Tetrachlorobiphenyl 44 MDL 44 MDL 44 0 2,2',3,5,5'-Pentachlorobiphenyl 44 MDL 44 MDL 44 MDL 44 0 2,2',3,5,5'-Pentachlorobiphenyl 44 MDL			2,2',3,4,5,5'-Hexachlorobiphenyl	44	43	MDL	43	0	0
2,2',3,4',5,6'-Hexachlorobiphenyl			2,2',3,4',5,6,6'-Heptachlorobiphenyl	44	44	MDL	44	0	0
2,2',3,4',5,6-Hexachlorobiphenyl 44 40 MDL 39 0 2,2',3,4,5',6-Hexachlorobiphenyl 44 44 MDL 44 0 2,2',3,4,5,6'-Hexachlorobiphenyl 44 44 MDL 44 0 2,2',3,4',5-Pentachlorobiphenyl 44 35 MDL 24 0 2,2',3,4',5-Pentachlorobiphenyl 44 39 MDL 38 0 2,2',3,4',6,6'-Hexachlorobiphenyl 44 44 MDL 44 0 2,2',3,4,6,6'-Hexachlorobiphenyl 44 44 MDL 44 0 2,2',3,4',6'-Pentachlorobiphenyl 44 44 MDL 44 0 2,2',3,4',6'-Pentachlorobiphenyl 44 44 MDL 44 0 2,2',3,4'-G-Pentachlorobiphenyl 44 44 MDL 44 0 2,2',3,4'-Tetrachlorobiphenyl 44 44 MDL 43 0 2,2',3,4'-Tetrachlorobiphenyl 44 44 MDL 44 0 2,2',3,4'-Tetrachlorobiphenyl 44 44 MDL 44 0			2,2',3,4,5,6,6'-Heptachlorobiphenyl	44	44	MDL	44	0	0
2,2',3,4,5',6-Hexachlorobiphenyl 44 44 MDL 44 0 2,2',3,4,5,6'-Hexachlorobiphenyl 44 44 MDL 44 0 2,2',3,4,5,6-Hexachlorobiphenyl 44 44 MDL 44 0 2,2',3,4',5-Pentachlorobiphenyl 44 35 MDL 24 0 2,2',3,4',6,6'-Hexachlorobiphenyl 44 44 MDL 38 0 2,2',3,4',6,6'-Hexachlorobiphenyl 44 44 MDL 44 0 2,2',3,4',6'-Pentachlorobiphenyl 44 44 MDL 44 0 2,2',3,4',6'-Pentachlorobiphenyl 44 44 MDL 44 0 2,2',3,4'-G-Pentachlorobiphenyl 44 44 MDL 44 0 2,2',3,4'-G-Pentachlorobiphenyl 44 44 MDL 44 0 2,2',3,4'-G-Pentachlorobiphenyl 44 44 MDL 44 0 2,2',3,4'-Tetrachlorobiphenyl 44 44 MDL 44 0 2,2',3,5'-Pentachlorobiphenyl 44 44 MDL 44 0			2,2',3,4',5,6'-Hexachlorobiphenyl	44	44	MDL	44	0	0
2,2,3,4,5,6'-Hexachlorobiphenyl 44 44 MDL 44 0 2,2',3,4,5,6'-Hexachlorobiphenyl 44 44 MDL 44 0 2,2',3,4,5,6'-Pentachlorobiphenyl 44 35 MDL 24 0 2,2',3,4,5-Pentachlorobiphenyl 44 39 MDL 38 0 2,2',3,4',6,6'-Hexachlorobiphenyl 44 MDL 44 0 2,2',3,4,6,6'-Hexachlorobiphenyl 44 44 MDL 44 0 2,2',3,4,6'-Pentachlorobiphenyl 44 MDL 44 0 2,2',3,4'-Tetrachlorobiphenyl 44 MDL 44 MDL 43 0 2,2',3,4'-Tetrachlorobiphenyl 44 MDL 44 MDL 44 0 2,2',3,5,5'-Pentachlorobiphenyl 44 MDL 44 MDL 44 0 2,2',3,5,5'-Pentachlorobiphenyl 44 MDL 44 MDL 44 0 2,2',3,5,5'-Pentachlorobiphenyl 44 MDL 44 MDL 44 0			2,2',3,4',5,6-Hexachlorobiphenyl	44	40	MDL	39	0	0
2,2',3,4,5,6-Hexachlorobiphenyl 44 44 MDL 44 0 2,2',3,4',5-Pentachlorobiphenyl 44 35 MDL 24 0 2,2',3,4',5-Pentachlorobiphenyl 44 39 MDL 38 0 2,2',3,4',6,6'-Hexachlorobiphenyl 44 44 MDL 44 0 2,2',3,4',6'-Pentachlorobiphenyl 44 44 MDL 44 0 2,2',3,4'-G'-Pentachlorobiphenyl 44 44 MDL 44 0 2,2',3,4,6'-Pentachlorobiphenyl 44 44 MDL 44 0 2,2',3,4,6'-Pentachlorobiphenyl 44 44 MDL 44 0 2,2',3,4'-Tetrachlorobiphenyl 44 44 MDL 43 0 2,2',3,4'-Tetrachlorobiphenyl 44 44 MDL 44 0 2,2',3,5,5'-Pentachlorobiphenyl 44 44 MDL 44 0 2,2',3,5,6'-Hexachlorobiphenyl 44 44 MDL 44 0			2,2',3,4,5',6-Hexachlorobiphenyl	44	44	MDL	44	0	0
2,2',3,4',5-Pentachlorobiphenyl 44 35 MDL 24 0 2,2',3,4,5-Pentachlorobiphenyl 44 39 MDL 38 0 2,2',3,4',6,6'-Hexachlorobiphenyl 44 44 MDL 44 0 2,2',3,4',6'-Hexachlorobiphenyl 44 44 MDL 44 0 2,2',3,4',6'-Pentachlorobiphenyl 44 44 MDL 44 0 2,2',3,4',6'-Pentachlorobiphenyl 44 44 MDL 44 0 2,2',3,4'-Tetrachlorobiphenyl 44 44 MDL 43 0 2,2',3,4'-Tetrachlorobiphenyl 44 44 MDL 43 0 2,2',3,4'-Tetrachlorobiphenyl 44 44 MDL 44 0 2,2',3,5'-Pentachlorobiphenyl 44 44 MDL 44 0 2,2',3,5,5'-Pentachlorobiphenyl 44 44 MDL 44 0 2,2',3,5,6,6'-Hexachlorobiphenyl 44 44 MDL 44 0			2,2',3,4,5,6'-Hexachlorobiphenyl	44	44	MDL	44	0	0
2,2',3,4,5-Pentachlorobiphenyl 44 39 MDL 38 0 2,2',3,4',6,6'-Hexachlorobiphenyl 44 44 MDL 44 0 2,2',3,4',6'-Pentachlorobiphenyl 44 44 MDL 44 0 2,2',3,4,6'-Pentachlorobiphenyl 44 44 MDL 44 0 2,2',3,4,6-Pentachlorobiphenyl 44 44 MDL 44 0 2,2',3,4'-Tetrachlorobiphenyl 44 44 MDL 43 0 2,2',3,4'-Tetrachlorobiphenyl 44 44 MDL 44 0 2,2',3,4-Tetrachlorobiphenyl 44 44 MDL 44 0 2,2',3,5,5'-Pentachlorobiphenyl 44 44 MDL 44 0 2,2',3,5,6,6'-Hexachlorobiphenyl 44 44 MDL 44 0			2,2',3,4,5,6-Hexachlorobiphenyl	44	44	MDL	44	0	0
2,2',3,4',6,6'-Hexachlorobiphenyl 44 44 MDL 44 0 2,2',3,4,6,6'-Hexachlorobiphenyl 44 44 MDL 44 0 2,2',3,4,6'-Pentachlorobiphenyl 44 44 MDL 44 0 2,2',3,4,6'-Pentachlorobiphenyl 44 44 MDL 44 0 2,2',3,4,6'-Pentachlorobiphenyl 44 44 MDL 44 0 2,2',3,4'-Tetrachlorobiphenyl 44 44 MDL 43 0 2,2',3,4'-Tetrachlorobiphenyl 44 44 MDL 44 0 2,2',3,5,5'-Pentachlorobiphenyl 44 44 MDL 44 0 2,2',3,5,6,6'-Hexachlorobiphenyl 44 44 MDL 44 0			2,2',3,4',5-Pentachlorobiphenyl	44	35	MDL	24	0	0
2,2',3,4,6,6'-Hexachlorobiphenyl 44 44 MDL 44 0 2,2',3,4',6'-Pentachlorobiphenyl 44 44 MDL 44 0 2,2',3,4,6'-Pentachlorobiphenyl 44 44 MDL 44 0 2,2',3,4,6-Pentachlorobiphenyl 44 44 MDL 44 0 2,2',3,4'-Tetrachlorobiphenyl 44 44 MDL 43 0 2,2',3,4-Tetrachlorobiphenyl 44 44 MDL 44 0 2,2',3,5,5'-Pentachlorobiphenyl 44 44 MDL 44 0 2,2',3,5,6'-Hexachlorobiphenyl 44 44 MDL 44 0			2,2',3,4,5-Pentachlorobiphenyl	44	39	MDL	38	0	0
2,2',3,4',6'-Pentachlorobiphenyl 44 44 MDL 44 0 2,2',3,4,6'-Pentachlorobiphenyl 44 44 MDL 44 0 2,2',3,4'-Pentachlorobiphenyl 44 44 MDL 44 0 2,2',3,4'-Tetrachlorobiphenyl 44 44 MDL 43 0 2,2',3,4-Tetrachlorobiphenyl 44 44 MDL 44 0 2,2',3,5,5'-Pentachlorobiphenyl 44 44 MDL 44 0 2,2',3,5,6'-Hexachlorobiphenyl 44 44 MDL 44 0			2,2',3,4',6,6'-Hexachlorobiphenyl	44	44	MDL	44	0	0
2,2',3,4,6'-Pentachlorobiphenyl 44 44 MDL 44 0 2,2',3,4,6-Pentachlorobiphenyl 44 44 MDL 44 0 2,2',3,4'-Tetrachlorobiphenyl 44 44 MDL 43 0 2,2',3,4-Tetrachlorobiphenyl 44 44 MDL 44 0 2,2',3,5,5'-Pentachlorobiphenyl 44 44 MDL 44 0 2,2',3,5,6,6'-Hexachlorobiphenyl 44 44 MDL 44 0			2,2',3,4,6,6'-Hexachlorobiphenyl	44	44	MDL	44	0	0
2,2',3,4,6-Pentachlorobiphenyl 44 44 MDL 44 0 2,2',3,4'-Tetrachlorobiphenyl 44 44 MDL 43 0 2,2',3,4-Tetrachlorobiphenyl 44 44 MDL 44 0 2,2',3,5,5'-Pentachlorobiphenyl 44 44 MDL 44 0 2,2',3,5,6,6'-Hexachlorobiphenyl 44 44 MDL 44 0			2,2',3,4',6'-Pentachlorobiphenyl	44	44	MDL	44	0	0
2,2',3,4'-Tetrachlorobiphenyl 44 44 MDL 43 0 2,2',3,4-Tetrachlorobiphenyl 44 44 MDL 44 0 2,2',3,5,5'-Pentachlorobiphenyl 44 44 MDL 44 0 2,2',3,5,6,6'-Hexachlorobiphenyl 44 44 MDL 44 0			2,2',3,4,6'-Pentachlorobiphenyl	44	44	MDL	44	0	0
2,2',3,4-Tetrachlorobiphenyl 44 44 MDL 44 0 2,2',3,5,5'-Pentachlorobiphenyl 44 44 MDL 44 0 2,2',3,5,6,6'-Hexachlorobiphenyl 44 44 MDL 44 0			2,2',3,4,6-Pentachlorobiphenyl	44	44	MDL	44	0	0
2,2',3,5,5'-Pentachlorobiphenyl 44 44 MDL 44 0 2,2',3,5,6,6'-Hexachlorobiphenyl 44 44 MDL 44 0				44	44	MDL	43	0	0
2,2',3,5,6,6'-Hexachlorobiphenyl 44 44 MDL 44 0			2,2',3,4-Tetrachlorobiphenyl	44	44	MDL	44	0	0
			2,2',3,5,5'-Pentachlorobiphenyl	44	44	MDL	44	0	0
\cdot .			2,2',3,5,6,6'-Hexachlorobiphenyl	44	44	MDL	44	0	0
2,2',3,5',6-Pentachlorobiphenyl 44 34 MDL 29 0			2,2',3,5',6-Pentachlorobiphenyl	44	34	MDL	29	0	0
2,2',3,5,6'-Pentachlorobiphenyl 44 44 MDL 44 0			2,2',3,5,6'-Pentachlorobiphenyl	44	44	MDL	44	0	0

Table 5. 2009 Surface Water Round 1 Data Review of How Non-detect Results Are Reported

	December 2011 Summary of 2009 Surface Water Round 1 ^a										
	2009 Surface Water Round 1		Number of NDs Results Reported as per QAPP	Number of NDs Results Not Reported as per QAPP							
ĺ	Non-HRGC/HRMS Data	ND=MRL	3,030	15,482							
ĺ	HRGC/HRMS Data	ND=MDL	11,329	946							

Analyte Type	Lab Name	Analyte	No. of Measurements ^b	No. of Reported Non-detects	QAPP Requirement	Non-Detects Reported to MDL?	Non-Detects Reported to MRL?	No. of Measurements Not Reported per QAPP
PCBs (con	ntinued)							
		2,2',3,5,6-Pentachlorobiphenyl	44	44	MDL	44	0	0
		2,2',3,5'-Tetrachlorobiphenyl	44	29	MDL	23	0	0
		2,2',3,5-Tetrachlorobiphenyl	44	44	MDL	44	0	0
		2,2',3,6,6'-Pentachlorobiphenyl	44	44	MDL	44	0	0
		2,2',3,6'-Tetrachlorobiphenyl	44	44	MDL	43	0	0
		2,2',3,6-Tetrachlorobiphenyl	44	42	MDL	39	0	0
		2,2',3-Trichlorobiphenyl	44	39	MDL	34	0	0
		2,2',4,4',5,5'-Hexachlorobiphenyl	44	41	MDL	39	0	0
		2,2',4,4',5,6'-Hexachlorobiphenyl	44	44	MDL	44	0	0
		2,2',4,4',5-Pentachlorobiphenyl	44	44	MDL	44	0	0
		2,2',4,4',6,6'-Hexachlorobiphenyl	44	44	MDL	44	0	0
		2,2',4,5',6-Pentachlorobiphenyl	44	44	MDL	44	0	0
		2,2',4,5'-Tetrachlorobiphenyl	44	42	MDL	37	0	0
		2,2',4,5-Tetrachlorobiphenyl	44	44	MDL	44	0	0
		2,2',4,6,6'-Pentachlorobiphenyl	44	44	MDL	44	0	0
		2,2',4,6-Tetrachlorobiphenyl	44	42	MDL	42	0	0
		2,2',4-Trichlorobiphenyl	44	35	MDL	31	0	0
		2,2',5,5'-Tetrachlorobiphenyl	44	33	MDL	25	0	0
		2,2',5-Trichlorobiphenyl	44	35	MDL	33	0	0
		2,2',6,6'-Tetrachlorobiphenyl	44	44	MDL	44	0	0
		2,2',6-Trichlorobiphenyl	44	41	MDL	40	0	0
		2,2'-Dichlorobiphenyl	44	31	MDL	27	0	0
		2,3,3',4,4',5,5',6-Octachlorobiphenyl	44	44	MDL	44	0	0
		2,3,3',4,4',5,5'-Heptachlorobiphenyl	44	44	MDL	44	0	0
		2,3,3',4,4',5',6-Heptachlorobiphenyl	44	44	MDL	44	0	0
		2,3,3',4,4',5,6-Heptachlorobiphenyl	44	44	MDL	44	0	0
		2,3,3',4,4',5-Hexachlorobiphenyl	44	44	MDL	44	0	0
		2,3,3',4,4',6-Hexachlorobiphenyl	44	44	MDL	44	0	0
		2,3,3',4,4'-Pentachlorobiphenyl	44	44	MDL	44	0	0
		2,3,3',4,5,5',6-Heptachlorobiphenyl	44	44	MDL	44	0	0
		2,3,3',4',5,5'-Hexachlorobiphenyl	44	44	MDL	44	0	0
		2,3,3',4,5,5'-Hexachlorobiphenyl	44	44	MDL	44	0	0
		2,3,3',4',5',6-Hexachlorobiphenyl	44	44	MDL	44	0	0

Table 5. 2009 Surface Water Round 1 Data Review of How Non-detect Results Are Reported

December 2011 Summary of 2009 Surface Water Round 1 ^a										
2009 Surface Water Round 1		Number of NDs Results Reported as per QAPP	Number of NDs Results Not Reported as per QAPP							
Non-HRGC/HRMS Data	ND=MRL	3,030	15,482							
HRGC/HRMS Data	ND=MDL	11,329	946							

PCBs (continued) 2,3,3,4,5,6-Hexachlorobiphenyl	Analyte Type	Lab Name	Analyte	No. of Measurements ^b	No. of Reported Non-detects	QAPP Requirement	Non-Detects Reported to MDL?	Non-Detects Reported to MRL?	No. of Measurements Not Reported per QAPP
2,3,3,4,6,6-Hexachlorobiphenyl 44 44 MDL 43 0 0 2,3,3,4,6-Pentachlorobiphenyl 44 44 MDL 44 0 0 2,3,3,4,6-Pentachlorobiphenyl 44 44 MDL 44 0 0 2,3,3,4,6-Pentachlorobiphenyl 44 44 MDL 47 0 0 2,3,3,4,6-Pentachlorobiphenyl 44 44 MDL 43 0 0 2,3,3,4-Tetrachlorobiphenyl 44 44 MDL 43 0 0 2,3,3,5,5,6-Hexachlorobiphenyl 44 44 MDL 43 0 0 2,3,3,5,5,6-Hexachlorobiphenyl 44 44 MDL 44 0 0 2,3,3,5,6-Pentachlorobiphenyl 44 44 MDL 44 0 0 2,3,3,5-Fentachlorobiphenyl 44 44 MDL 44 0 0 2,3,3,5-Fentachlorobiphenyl 44 44 MDL 44 0 0 2,3,3,5-Fentachlorobiphenyl 44 44 MDL 44 0 0 <td>PCBs (cor</td> <td>ntinued)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	PCBs (cor	ntinued)							
2,3,3,4,5-Pentachlorobiphenyl 44 44 MDL 44 0 0 2,3,3,4,5-Pentachlorobiphenyl 44 44 MDL 44 0 0 2,3,3,4,6-Pentachlorobiphenyl 44 30 MDL 17 0 0 2,3,3,4,6-Pentachlorobiphenyl 44 44 MDL 44 0 0 2,3,3,4-Tetrachlorobiphenyl 44 44 MDL 43 0 0 2,3,3,4-Tetrachlorobiphenyl 44 44 MDL 43 0 0 2,3,3,5,5-Pentachlorobiphenyl 44 44 MDL 44 0 0 2,3,3,5,5-Pentachlorobiphenyl 44 44 MDL 44 0 0 2,3,3,5-Tetrachlorobiphenyl 44 44 MDL 44 0 0 2,3,3,5-Tetrachlorobiphenyl 44 44 MDL 44 0 0 2,3,3,5-Tetrachlorobiphenyl 44 44 MDL 44 0 0 <t< td=""><td></td><td></td><td>2,3,3',4,5',6-Hexachlorobiphenyl</td><td>44</td><td>44</td><td>MDL</td><td>44</td><td>0</td><td>0</td></t<>			2,3,3',4,5',6-Hexachlorobiphenyl	44	44	MDL	44	0	0
2,3,3',4,5-Pentachlorobiphenyl 44 44 MDL 44 0 0 2,3,3',4,6-Pentachlorobiphenyl 44 44 MDL 47 0 0 2,3,3',4,6-Pentachlorobiphenyl 44 44 MDL 44 0 0 2,3,3',4-Etrachlorobiphenyl 44 44 MDL 43 0 0 2,3,3',5-Fentachlorobiphenyl 44 44 MDL 44 0 0 2,3,3',5-Fentachlorobiphenyl 44 44 MDL 44 0 0 2,3,3',5-Fentachlorobiphenyl 44 44 MDL 44 0 0 2,3,3',5-Fertachlorobiphenyl 44 44 MDL 44 0 0 2,3,3',5-Fertachlorobiphenyl 44 44 MDL 44 0 0 2,3,3',5-Tetrachlorobiphenyl 44 44 MDL 44 0 0 2,3,3',5-Tetrachlorobiphenyl 44 44 MDL 44 0 0 2,3,3',5-Tetrachlorobiphenyl 44 44 MDL 44 0 0			2,3,3',4,5,6-Hexachlorobiphenyl	44	44	MDL	43	0	0
2,3,3,4,5-Pentachlorobiphenyl 44 44 MDL 44 0 0 2,3,3,4,6-Pentachlorobiphenyl 44 30 MDL 17 0 0 2,3,3,4,6-Pentachlorobiphenyl 44 44 MDL 43 0 0 2,3,3,4-Tetrachlorobiphenyl 44 44 MDL 43 0 0 2,3,3,5,5,6-Pentachlorobiphenyl 44 44 MDL 44 0 0 2,3,3,5,5,6-Pentachlorobiphenyl 44 44 MDL 44 0 0 2,3,3,5,7-Eertachlorobiphenyl 44 44 MDL 44 0 0 2,3,4,6,5,6-Heachlorobiphenyl 44 44 MDL 44 0 <			2,3,3',4',5'-Pentachlorobiphenyl	44	44	MDL	44	0	0
2,3,3',4',6-Pentachlorobiphenyl 44 30 MDL 17 0 0 2,3,3',4',6-Pentachlorobiphenyl 44 44 MDL 43 0 0 2,3,3',4'-Tetrachlorobiphenyl 44 44 MDL 44 0 0 2,3,3',5,5'-Pentachlorobiphenyl 44 44 MDL 44 0 0 2,3,3',5,5'-Pentachlorobiphenyl 44 44 MDL 44 0 0 2,3,3',5,5'-Pentachlorobiphenyl 44 44 MDL 44 0 0 2,3,3',5'-Tetrachlorobiphenyl 44 44 MDL 44 0 0 2,3',4'-S'-Pentachlorobiphenyl 44 44 MDL 44 0 <td></td> <td></td> <td>2,3,3',4',5-Pentachlorobiphenyl</td> <td>44</td> <td>44</td> <td>MDL</td> <td>44</td> <td>0</td> <td>0</td>			2,3,3',4',5-Pentachlorobiphenyl	44	44	MDL	44	0	0
2,3,3,4,6-Pentachlorobiphenyl 44 44 MDL 44 0 0 2,3,3,4-Tetrachlorobiphenyl 44 44 MDL 43 0 0 2,3,3,4-Tetrachlorobiphenyl 44 44 MDL 44 0 0 2,3,3,5,5-Pentachlorobiphenyl 44 44 MDL 44 0 0 2,3,3,5-Pentachlorobiphenyl 44 44 MDL 44 0 0 2,3,3,5-Tetrachlorobiphenyl 44 44 MDL 44 0 0 2,3,4,5-Pentachlorobiphenyl 44 44 MDL 44 0 0 2,3,4,5-Pentachlorobiphenyl 44 44 MDL 44 0 0			2,3,3',4,5-Pentachlorobiphenyl	44	44	MDL	44	0	0
2,3,3',4-Tetrachlorobiphenyl 44 44 MDL 43 0 0 2,3,3',4-Tetrachlorobiphenyl 44 44 MDL 44 0 0 2,3,3',5,5'-Pentachlorobiphenyl 44 44 MDL 44 0 0 2,3,3',5,5'-Pentachlorobiphenyl 44 44 MDL 44 0 0 2,3,3',5-Tetrachlorobiphenyl 44 44 MDL 44 0 0 2,3,4',5-Tetrachlorobiphenyl 44 44 MDL 44 0 0 2,3',4',5-Pentachlorobiphenyl 44 44 MDL 44 0 0 2,3',4',5-Pentachlorobiphenyl 44 44 MDL 44 0 0 2,3',4'-Tetrachlorobiphenyl 44 44 MDL 44 0 0 <td></td> <td></td> <td>2,3,3',4',6-Pentachlorobiphenyl</td> <td>44</td> <td>30</td> <td>MDL</td> <td>17</td> <td>0</td> <td>0</td>			2,3,3',4',6-Pentachlorobiphenyl	44	30	MDL	17	0	0
2,3,3',4-Tetrachlorobiphenyl 44 44 MDL 44 0 0 2,3,3',5,5',6-Hexachlorobiphenyl 44 44 MDL 44 0 0 2,3,3',5,6-Pentachlorobiphenyl 44 44 MDL 44 0 0 2,3,3',5'-Tetrachlorobiphenyl 44 44 MDL 31 0 0 2,3,4',5,5'-Hexachlorobiphenyl 44 44 MDL 31 0 0 2,3',4,4',5,5'-Hexachlorobiphenyl 44 44 MDL 44 0 0 2,3',4,4',5-Pentachlorobiphenyl 44 44 MDL 28 0 0 2,3,4,5'-Pentachlorobiphenyl 44 44 MDL 44 0			2,3,3',4,6-Pentachlorobiphenyl	44	44	MDL	44	0	0
2,3,3,5,5,6-Hexachlorobiphenyl 44 44 MDL 44 0 0 2,3,3,5,5-Pentachlorobiphenyl 44 44 MDL 44 0 0 2,3,3,5-Tetrachlorobiphenyl 44 44 MDL 44 0 0 2,3,3,6-Tetrachlorobiphenyl 44 44 MDL 44 0 0 2,3,3,4-Tetrachlorobiphenyl 44 35 MDL 31 0 0 2,3,4-4,5,5-Hexachlorobiphenyl 44 44 MDL 44 0 0 2,3,4,4,5-Pentachlorobiphenyl 44 44 MDL 28 0 0 2,3,4,5-Pentachlorobiphenyl 44 44 MDL 43 0 0 2,3,4,5-Tetrachlorobiphenyl 44 44 MDL 43 0 0 </td <td></td> <td></td> <td>2,3,3',4'-Tetrachlorobiphenyl</td> <td>44</td> <td>44</td> <td>MDL</td> <td>43</td> <td>0</td> <td>0</td>			2,3,3',4'-Tetrachlorobiphenyl	44	44	MDL	43	0	0
2,3,3',5,5'-Pentachlorobiphenyl 44 44 MDL 44 0 0 2,3,3',5,6'-Pentachlorobiphenyl 44 44 MDL 44 0 0 2,3,3',5'-Tetrachlorobiphenyl 44 44 MDL 44 0 0 2,3,3',5'-Tetrachlorobiphenyl 44 44 MDL 44 0 0 2,3,4',5,5'-Hexachlorobiphenyl 44 44 MDL 44 0 0 2,3',4,4',5,5'-Hexachlorobiphenyl 44 44 MDL 44 0 0 2,3',4,4',5-Pentachlorobiphenyl 44 44 MDL 44 0 0 2,3',4,4',5-Pentachlorobiphenyl 44 44 MDL 44 0 0 2,3',4,4',5-Pentachlorobiphenyl 44 44 MDL 44 0 0 2,3',4,4'-Fentachlorobiphenyl 44 44 MDL 44 0 0 2,3',4,4'-Fentachlorobiphenyl 44 44 MDL 43 0 0 2,3',4,5'-Fentachlorobiphenyl 44 44 MDL 43 0			2,3,3',4-Tetrachlorobiphenyl	44	44	MDL	44	0	0
2,3,3',5,6-Pentachlorobiphenyl 44 44 MDL 44 0 0 2,3,3',5-Tetrachlorobiphenyl 44 44 MDL 44 0 0 2,3,3',5-Tetrachlorobiphenyl 44 44 MDL 44 0 0 2,3,3',6-Tetrachlorobiphenyl 44 44 MDL 44 0 0 2,3',4,4',5,5'-Hexachlorobiphenyl 44 44 MDL 44 0 0 2,3',4,4',5-Pentachlorobiphenyl 44 44 MDL 44 0 0 2,3',4,4',5-Pentachlorobiphenyl 44 44 MDL 44 0 0 2,3',4,4',5-Pentachlorobiphenyl 44 44 MDL 28 0 0 2,3',4,4'-Tetrachlorobiphenyl 44 44 MDL 44 0 0 2,3',4,5'-Pentachlorobiphenyl 44 44 MDL 43 0 0 2,3',4,5'-Fertachlorobiphenyl 44 44 MDL 43 0 0 2,3',4,5'-Fertachlorobiphenyl 44 44 MDL 44 0			2,3,3',5,5',6-Hexachlorobiphenyl	44	44	MDL	44	0	0
2,3,3',5'-Tetrachlorobiphenyl 44 44 MDL 44 0 0 2,3,3',5-Tetrachlorobiphenyl 44 44 MDL 44 0 0 2,3,3'-Trichlorobiphenyl 44 44 MDL 44 0 0 2,3',4',5'-Fentachlorobiphenyl 44 44 MDL 44 0 0 2,3',4,4',5-Pentachlorobiphenyl 44 44 MDL 44 0 0 2,3',4,4',5-Pentachlorobiphenyl 44 44 MDL 44 0 0 2,3',4,4'-S-Pentachlorobiphenyl 44 44 MDL 28 0 0 2,3',4,4'-Tetrachlorobiphenyl 44 44 MDL 27 0 0 2,3',4,4'-Tetrachlorobiphenyl 44 44 MDL 27 0 0 2,3',4,5'-Pentachlorobiphenyl 44 44 MDL 43 0 0 2,3',4,5'-S-Pentachlorobiphenyl 44 44 MDL 44 0 0 2,3',4,5'-Tetrachlorobiphenyl 44 44 MDL 43 0			2,3,3',5,5'-Pentachlorobiphenyl	44	44	MDL	44	0	0
2,3,3',5-Tetrachlorobiphenyl 44 44 MDL 44 0 0 2,3,3',6-Tetrachlorobiphenyl 44 44 MDL 44 0 0 2,3',4,4',5',5'-Hexachlorobiphenyl 44 44 MDL 44 0 0 2,3',4,4',5'-Pentachlorobiphenyl 44 44 MDL 44 0 0 2,3',4,4',5-Pentachlorobiphenyl 44 44 MDL 44 0 0 2,3',4,4'-Fentachlorobiphenyl 44 44 MDL 44 0 0 2,3',4,5'-Pentachlorobiphenyl 44 44 MDL 44 0 0 2,3',4,5'-Pentachlorobiphenyl 44 44 MDL 43 0 0 2,3',4,5'-Pentachlorobiphenyl 44 44 MDL 44 0			2,3,3',5,6-Pentachlorobiphenyl	44	44	MDL	44	0	0
2,3,3,6-Tetrachlorobiphenyl 44 44 MDL 44 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			2,3,3',5'-Tetrachlorobiphenyl	44	44	MDL	44	0	0
2,3,3'-Trichlorobiphenyl 44 35 MDL 31 0 0 0 2,3',4,4',5,5'-Hexachlorobiphenyl 44 44 MDL 44 0 0 0 2,3',4,4',5-Pentachlorobiphenyl 44 44 MDL 44 0 0 0 2,3',4,4',5-Pentachlorobiphenyl 44 37 MDL 28 0 0 0 2,3',4,4',5-Pentachlorobiphenyl 44 44 MDL 44 0 0 0 2,3',4,4'-5-Pentachlorobiphenyl 44 44 MDL 44 0 0 0 2,3',4,4'-Tetrachlorobiphenyl 44 44 MDL 47 0 0 0 2,3',4,4'-Tetrachlorobiphenyl 44 44 MDL 47 0 0 0 2,3',4,5'-Pentachlorobiphenyl 44 MDL 47 0 0 0 2,3',4,5'-Pentachlorobiphenyl 44 MDL 47 0 0 0 2,3',4,5'-Pentachlorobiphenyl 44 MDL 47 0 0 0 2,3',4,5'-Tetrachlorobiphenyl 44 MDL 44 0 0 0 0 2,3',4,5'-Tetrachlorobiphenyl 44 MDL 47 MDL 48 0 0 0 2,3',4,5'-Tetrachlorobiphenyl 44 MDL 47 MDL 48 0 0 0 2,3',4,5'-Tetrachlorobiphenyl 44 MDL 44 MDL 49 0 0 0 2,3',4,5'-Tetrachlorobiphenyl 44 MDL 44 MDL 49 0 0 0 2,3',4,5'-Tetrachlorobiphenyl 44 MDL 44 MDL 44 0 0 0 0 2,3',4'-Trichlorobiphenyl 44 MDL 44 MDL 44 0 0 0 0 2,3',4'-Trichlorobiphenyl 44 MDL 44 MDL 44 0 0 0 0 2,3',4'-Trichlorobiphenyl 44 MDL 44 MDL 41 0 0 0 2,3',4'-Trichlorobiphenyl 44 MDL 41 MDL 41 0 0 0 2,3',4'-Trichlorobiphenyl 44 MDL 41 MDL 41 0 0 0 2,3',4'-Trichlorobiphenyl 44 MDL 43 0 0 0 2,3',4'-Trichlorobiphenyl 44 MDL 43 0 0 0 2,3',4'-Trichlorobiphenyl 44 MDL 43 0 0 0 2,3',4'-Trichlorobiphenyl 44 MDL 41 MDL 41 0 0 0 2,3',4'-Trichlorobiphenyl 44 MDL 41 MDL 41 0 0 0 2,3',4'-Trichlorobiphenyl 44 MDL 43 0 0 0 2,3',4'-Trichlorobiphenyl 44 MDL 44 MDL 43 0 0 0			2,3,3',5-Tetrachlorobiphenyl	44	44	MDL	44	0	0
2,3',4,4',5,5'-Hexachlorobiphenyl 44 44 MDL 44 0 0 2,3',4,4',5'-Pentachlorobiphenyl 44 44 MDL 44 0 0 2,3',4,4',5-Pentachlorobiphenyl 44 37 MDL 28 0 0 2,3,4,4',5-Pentachlorobiphenyl 44 44 MDL 44 0 0 2,3',4,4'-Tetrachlorobiphenyl 44 40 MDL 27 0 0 2,3',4,5'-Fentachlorobiphenyl 44 44 MDL 43 0 0 2,3',4,5',6'-Pentachlorobiphenyl 44 44 MDL 44 0 0 2,3',4,5'-Tetrachlorobiphenyl 44 44 MDL 43 0 0 2,3',4,5'-Tetrachlorobiphenyl 44 44 MDL 43 0 0 2,3',4,5'-Tetrachlorobiphenyl 44 44 MDL 44 0 0 2,3,4',5'-Tetrachlorobiphenyl 44 44 MDL 44 0 0 2,3,4',5'-Tetrachlorobiphenyl 44 44 MDL 41 0 </td <td></td> <td></td> <td>2,3,3',6-Tetrachlorobiphenyl</td> <td>44</td> <td>44</td> <td>MDL</td> <td>44</td> <td>0</td> <td>0</td>			2,3,3',6-Tetrachlorobiphenyl	44	44	MDL	44	0	0
2,3',4,4',5'-Pentachlorobiphenyl 44 44 MDL 44 0 0 2,3',4,4',5-Pentachlorobiphenyl 44 37 MDL 28 0 0 2,3',4,4',5-Pentachlorobiphenyl 44 44 MDL 44 0 0 2,3',4,4'-Tetrachlorobiphenyl 44 40 MDL 27 0 0 2,3',4,5,5'-Pentachlorobiphenyl 44 44 MDL 43 0 0 2,3',4,5'-Pentachlorobiphenyl 44 44 MDL 44 0 0 2,3',4,5'-Pentachlorobiphenyl 44 44 MDL 44 0 0 2,3',4,5'-Pentachlorobiphenyl 44 44 MDL 44 0 0 2,3',4,5'-Tetrachlorobiphenyl 44 44 MDL 43 0 0 2,3',4,5-Tetrachlorobiphenyl 44 44 MDL 44 0 0 2,3,4',5-Tetrachlorobiphenyl 44 44 MDL 44 0 0 2,3,4',6-Tetrachlorobiphenyl 44 44 MDL 41 0			2,3,3'-Trichlorobiphenyl	44	35	MDL	31	0	0
2,3',4,4',5-Pentachlorobiphenyl 44 37 MDL 28 0 0 2,3,4,4',5-Pentachlorobiphenyl 44 44 MDL 44 0 0 2,3',4,4'-Tetrachlorobiphenyl 44 40 MDL 27 0 0 2,3',4,5'-Fentachlorobiphenyl 44 44 MDL 43 0 0 2,3',4,5'-Pentachlorobiphenyl 44 44 MDL 44 0 0 2,3',4,5'-Tetrachlorobiphenyl 44 44 MDL 43 0 0 2,3',4,5'-Tetrachlorobiphenyl 44 44 MDL 44 0 0 2,3,4',5'-Tetrachlorobiphenyl 44 47 MDL 11 0 0 2,3,4'-Trichlorobiphenyl 44 44 MDL 43 0 0			2,3',4,4',5,5'-Hexachlorobiphenyl	44	44	MDL	44	0	0
2,3,4,4',5-Pentachlorobiphenyl 44 44 MDL 44 0 0 2,3',4,4'-Tetrachlorobiphenyl 44 40 MDL 27 0 0 2,3,4,4'-Tetrachlorobiphenyl 44 44 MDL 43 0 0 2,3',4,5',5'-Pentachlorobiphenyl 44 44 MDL 44 0 0 2,3',4,5'-Tetrachlorobiphenyl 44 44 MDL 43 0 0 2,3',4,5'-Tetrachlorobiphenyl 44 44 MDL 43 0 0 2,3',4,5'-Tetrachlorobiphenyl 44 44 MDL 43 0 0 2,3',4,5-Tetrachlorobiphenyl 44 44 MDL 44 0 0 2,3,4',5-Tetrachlorobiphenyl 44 44 MDL 44 0 0 2,3,4',5-Tetrachlorobiphenyl 44 27 MDL 11 0 0 2,3,4'-Trichlorobiphenyl 44 41 MDL 41 0 0 2,3,4'-Trichlorobiphenyl 44 37 MDL 31 0 0			2,3',4,4',5'-Pentachlorobiphenyl	44	44	MDL	44	0	0
2,3',4,4'-Tetrachlorobiphenyl 44 40 MDL 27 0 0 2,3,4,4'-Tetrachlorobiphenyl 44 44 MDL 43 0 0 2,3',4,5'-Pentachlorobiphenyl 44 44 MDL 44 0 0 2,3',4,5'-Tetrachlorobiphenyl 44 44 MDL 43 0 0 2,3',4,5-Tetrachlorobiphenyl 44 44 MDL 44 0 0 2,3,4',5-Tetrachlorobiphenyl 44 44 MDL 44 0 0 2,3,4',5-Tetrachlorobiphenyl 44 44 MDL 44 0 0 2,3,4',5-Tetrachlorobiphenyl 44 27 MDL 11 0 0 2,3,4',6-Tetrachlorobiphenyl 44 41 MDL 41 0 0 2,3',4-Trichlorobiphenyl 44 44 MDL 43 0 0 2,3,4'-Trichlorobiphenyl 44 37 MDL 31 0 0 2,3,4-Trichlorobiphenyl 44 31 MDL 27 0 0 </td <td></td> <td></td> <td>2,3',4,4',5-Pentachlorobiphenyl</td> <td>44</td> <td>37</td> <td>MDL</td> <td>28</td> <td>0</td> <td>0</td>			2,3',4,4',5-Pentachlorobiphenyl	44	37	MDL	28	0	0
2,3,4,4'-Tetrachlorobiphenyl 44 44 MDL 43 0 0 2,3',4,5,5'-Pentachlorobiphenyl 44 44 MDL 44 0 0 2,3',4,5'-G-Pentachlorobiphenyl 44 44 MDL 44 0 0 2,3',4,5'-Tetrachlorobiphenyl 44 44 MDL 43 0 0 2,3',4,5-Tetrachlorobiphenyl 44 44 MDL 44 0 0 2,3,4',5-Tetrachlorobiphenyl 44 44 MDL 44 0 0 2,3,4',5-Tetrachlorobiphenyl 44 27 MDL 11 0 0 2,3,4'-G-Tetrachlorobiphenyl 44 41 MDL 41 0 0 2,3',4-Trichlorobiphenyl 44 44 MDL 43 0 0 2,3,4'-Trichlorobiphenyl 44 44 MDL 43 0 0 2,3,4'-Trichlorobiphenyl 44 37 MDL 31 0 0 2,3,4'-Trichlorobiphenyl 44 31 MDL 27 0 0 <			2,3,4,4',5-Pentachlorobiphenyl	44	44	MDL	44	0	0
2,3',4,5,5'-Pentachlorobiphenyl 44 44 MDL 44 0 0 2,3',4,5'-G-Pentachlorobiphenyl 44 44 MDL 44 0 0 2,3',4,5'-Tetrachlorobiphenyl 44 44 MDL 43 0 0 2,3',4,5-Tetrachlorobiphenyl 44 44 MDL 44 0 0 2,3,4',5-Tetrachlorobiphenyl 44 44 MDL 44 0 0 2,3,4',6-Tetrachlorobiphenyl 44 41 MDL 41 0 0 2,3,4',6-Tetrachlorobiphenyl 44 41 MDL 41 0 0 2,3,4'-Trichlorobiphenyl 44 44 MDL 43 0 0 2,3,4'-Trichlorobiphenyl 44 44 MDL 31 0 0 2,3,4'-Trichlorobiphenyl 44 37 MDL 31 0 0 2,3,4-Trichlorobiphenyl 44 31 MDL 27 0 0			2,3',4,4'-Tetrachlorobiphenyl	44	40	MDL	27	0	0
2,3',4,5',6-Pentachlorobiphenyl 44 44 MDL 44 0 0 2,3',4,5'-Tetrachlorobiphenyl 44 44 MDL 43 0 0 2,3',4,5-Tetrachlorobiphenyl 44 44 MDL 44 0 0 2,3,4,5-Tetrachlorobiphenyl 44 44 MDL 44 0 0 2,3,4,5-Tetrachlorobiphenyl 44 41 MDL 11 0 0 2,3,4'6-Tetrachlorobiphenyl 44 41 MDL 41 0 0 2,3',4-Trichlorobiphenyl 44 44 MDL 43 0 0 2,3,4'-Trichlorobiphenyl 44 37 MDL 31 0 0 2,3,4'-Trichlorobiphenyl 44 37 MDL 31 0 0			2,3,4,4'-Tetrachlorobiphenyl	44	44	MDL	43	0	0
2,3',4,5'-Tetrachlorobiphenyl 44 44 MDL 43 0 0 2,3',4,5-Tetrachlorobiphenyl 44 44 MDL 44 0 0 2,3,4',5-Tetrachlorobiphenyl 44 44 MDL 44 0 0 2,3,4',5-Tetrachlorobiphenyl 44 27 MDL 11 0 0 2,3,4',6-Tetrachlorobiphenyl 44 41 MDL 41 0 0 2,3',4-Trichlorobiphenyl 44 44 MDL 43 0 0 2,3,4'-Trichlorobiphenyl 44 37 MDL 31 0 0 2,3,4-Trichlorobiphenyl 44 31 MDL 27 0 0			2,3',4,5,5'-Pentachlorobiphenyl	44	44	MDL	44	0	0
2,3',4,5-Tetrachlorobiphenyl 44 44 MDL 44 0 0 2,3,4',5-Tetrachlorobiphenyl 44 44 MDL 44 0 0 2,3,4',5-Tetrachlorobiphenyl 44 27 MDL 11 0 0 2,3,4',6-Tetrachlorobiphenyl 44 41 MDL 41 0 0 2,3',4-Trichlorobiphenyl 44 44 MDL 43 0 0 2,3,4'-Trichlorobiphenyl 44 37 MDL 31 0 0 2,3,4-Trichlorobiphenyl 44 31 MDL 27 0 0			2,3',4,5',6-Pentachlorobiphenyl	44	44	MDL	44	0	0
2,3,4',5-Tetrachlorobiphenyl 44 44 MDL 44 0 0 2,3,4',5-Tetrachlorobiphenyl 44 27 MDL 11 0 0 2,3,4',6-Tetrachlorobiphenyl 44 41 MDL 41 0 0 2,3',4-Trichlorobiphenyl 44 44 MDL 43 0 0 2,3,4'-Trichlorobiphenyl 44 37 MDL 31 0 0 2,3,4-Trichlorobiphenyl 44 31 MDL 27 0 0			2,3',4,5'-Tetrachlorobiphenyl	44	44	MDL	43	0	0
2,3,4,5-Tetrachlorobiphenyl 44 27 MDL 11 0 0 2,3,4',6-Tetrachlorobiphenyl 44 41 MDL 41 0 0 2,3',4-Trichlorobiphenyl 44 44 MDL 43 0 0 2,3,4'-Trichlorobiphenyl 44 37 MDL 31 0 0 2,3,4-Trichlorobiphenyl 44 31 MDL 27 0 0			2,3',4,5-Tetrachlorobiphenyl	44	44	MDL	44	0	0
2,3,4',6-Tetrachlorobiphenyl 44 41 MDL 41 0 0 2,3',4-Trichlorobiphenyl 44 44 MDL 43 0 0 2,3,4'-Trichlorobiphenyl 44 37 MDL 31 0 0 2,3,4-Trichlorobiphenyl 44 31 MDL 27 0 0			2,3,4',5-Tetrachlorobiphenyl	44	44	MDL	44	0	0
2,3',4-Trichlorobiphenyl 44 44 MDL 43 0 0 2,3,4'-Trichlorobiphenyl 44 37 MDL 31 0 0 2,3,4-Trichlorobiphenyl 44 31 MDL 27 0 0			2,3,4,5-Tetrachlorobiphenyl	44	27	MDL	11	0	0
2,3,4'-Trichlorobiphenyl 44 37 MDL 31 0 0 2,3,4-Trichlorobiphenyl 44 31 MDL 27 0 0			2,3,4',6-Tetrachlorobiphenyl	44	41	MDL	41	0	0
2,3,4-Trichlorobiphenyl 44 31 MDL 27 0 0			2,3',4-Trichlorobiphenyl	44	44	MDL	43	0	0
• •			2,3,4'-Trichlorobiphenyl	44	37	MDL	31	0	0
2,3',5,5'-Tetrachlorobiphenyl 44 44 MDL 44 0 0			2,3,4-Trichlorobiphenyl	44	31	MDL	27	0	0
			2,3',5,5'-Tetrachlorobiphenyl	44	44	MDL	44	0	0

Table 5. 2009 Surface Water Round 1 Data Review of How Non-detect Results Are Reported

December 2011 Summary of 2009 Surface Water Round 1 ^a										
2009 Surface Water Round 1		Number of NDs Results Reported as per QAPP	Number of NDs Results Not Reported as per QAPP							
Non-HRGC/HRMS Data	ND=MRL	3,030	15,482							
HRGC/HRMS Data	ND=MDL	11,329	946							

Analyte Type	Lab Name	Analyte	No. of Measurements ^b	No. of Reported Non-detects	QAPP Requirement	Non-Detects Reported to MDL?	Non-Detects Reported to MRL?	No. of Measurements Not Reported per QAPP
PCBs (con	ntinued)							
		2,3',5',6-Tetrachlorobiphenyl	44	44	MDL	44	0	0
		2,3',5'-Trichlorobiphenyl	44	44	MDL	44	0	0
		2,3',5-Trichlorobiphenyl	44	40	MDL	36	0	0
		2,3,5-Trichlorobiphenyl	44	44	MDL	44	0	0
		2,3',6-Trichlorobiphenyl	44	43	MDL	43	0	0
		2,3,6-Trichlorobiphenyl	44	43	MDL	43	0	0
		2,3'-Dichlorobiphenyl	44	33	MDL	26	0	0
		2,3-Dichlorobiphenyl	44	43	MDL	42	0	0
		2,4',5-Trichlorobiphenyl	44	27	MDL	24	0	0
		2,4',6-Trichlorobiphenyl	44	37	MDL	32	0	0
		2,4'-Dichlorobiphenyl	44	24	MDL	24	0	0
		2,4-Dichlorobiphenyl	44	41	MDL	41	0	0
		2,5-Dichlorobiphenyl	44	43	MDL	41	0	0
		2,6-Dichlorobiphenyl	44	44	MDL	44	0	0
		3,3',4,4',5,5'-Hexachlorobiphenyl	44	44	MDL	44	0	0
		3,3',4,4',5-Pentachlorobiphenyl	44	44	MDL	44	0	0
		3,3',4,4'-Tetrachlorobiphenyl	44	44	MDL	44	0	0
		3,3',4,5,5'-Pentachlorobiphenyl	44	44	MDL	44	0	0
		3,3',4,5'-Tetrachlorobiphenyl	44	44	MDL	44	0	0
		3,3',4,5-Tetrachlorobiphenyl	44	44	MDL	44	0	0
		3,3',4-Trichlorobiphenyl	44	44	MDL	44	0	0
		3,3',5,5'-Tetrachlorobiphenyl	44	44	MDL	44	0	0
		3,3',5-Trichlorobiphenyl	44	44	MDL	44	0	0
		3,3'-Dichlorobiphenyl	44	32	MDL	32	0	0
		3,4,4',5-Tetrachlorobiphenyl	44	44	MDL	44	0	0
		3,4,4'-Trichlorobiphenyl	44	40	MDL	34	1	1
		3,4',5-Trichlorobiphenyl	44	44	MDL	44	0	0
		3,4,5-Trichlorobiphenyl	44	44	MDL	44	0	0
		3,4-Dichlorobiphenyl	44	43	MDL	42	0	0
		Decachlorobiphenyl (PCB 209)	44	44	MDL	44	0	0
		PCB congener 1	44	42	MDL	37	0	0
		PCB congener 14	44	44	MDL	44	0	0
		PCB congener 15	44	32	MDL	25	0	0

Table 5. 2009 Surface Water Round 1 Data Review of How Non-detect Results Are Reported

December 2011 Summary of 2009 Surface Water Round 1 ^a									
2009 Surface Water Round 1		Number of NDs Results Reported as per QAPP	Number of NDs Results Not Reported as per QAPP						
Non-HRGC/HRMS Data	ND=MRL	3,030	15,482						
HRGC/HRMS Data	ND=MDL	11,329	946						

Analyte Type	Lab Name	Analyte	No. of Measurements ^b	No. of Reported Non-detects	QAPP Requirement	Non-Detects Reported to MDL?	Non-Detects Reported to MRL?	No. of Measurements Not Reported per QAPP
PCBs (con	ntinued)							
		PCB congener 2	44	44	MDL	44	0	0
		PCB congener 3	44	43	MDL	41	0	0
Pesticides,								
	Columbi	a Analytical Services						
		2,4'-DDD	44	43	MRL	36	7	36
		2,4'-DDE	44	44	MRL	41	3	41
		2,4'-DDT	44	43	MRL	35	8	35
		4,4'-DDD	44	44	MRL	25	19	25
		4,4'-DDE	44	42	MRL	21	21	21
		4,4'-DDT	44	44	MRL	40	4	40
		Aldrin	44	44	MRL	36	8	36
		alpha-Benzenehexachloride	44	44	MRL	44	0	44
		alpha-Chlordane	44	44	MRL	38	6	38
		beta-BHC	44	44	MRL	44	0	44
		Chlordane	44	44	MRL	27	17	27
		cis-Nonachlor	44	44	MRL	29	15	29
		delta-BHC	44	44	MRL	44	0	44
		Dieldrin	44	44	MRL	44	0	44
		Endosulfan I	44	44	MRL	42	2	42
		Endosulfan II	44	40	MRL	28	12	28
		Endosulfan sulfate	44	44	MRL	44	0	44
		Endrin	44	44	MRL	40	4	40
		Endrin aldehyde	44	44	MRL	44	0	44
		Endrin ketone	44	44	MRL	44	0	44
		gamma-BHC	44	44	MRL	44	0	44
		gamma-Chlordane	44	38	MRL	36	2	36
		Heptachlor	44	44	MRL	40	4	40
		Heptachlor epoxide	44	44	MRL	42	2	42
		Methoxychlor	44	44	MRL	42	2	42
		Oxychlordane	44	44	MRL	16	28	16
		Toxaphene	44	44	MRL	1	43	1
		trans-Nonachlor	44	39	MRL	33	6	33

Table 5. 2009 Surface Water Round 1 Data Review of How Non-detect Results Are Reported

December 2011 Summary of 2009 Surface Water Round 1 a									
2009 Surface Water Round 1		Number of NDs Results Reported as per QAPP	Number of NDs Results Not Reported as per QAPP						
Non-HRGC/HRMS Data	ND=MRL	3,030	15,482						
HRGC/HRMS Data	ND=MDL	11,329	946						

Analyte Type	Lab Name	Analyte	No. of Measurements ^b	No. of Reported Non-detects	QAPP Requirement	Non-Detects Reported to MDL?	Non-Detects Reported to MRL?	No. of Measurements Not Reported per QAPP
Radionuc	lides							
	Isotech							
		Stable hydrogen isotope-ratio	82	0	MRL	0	0	0
		Stable oxygen isotope-ratio	82	0	MRL	0	0	0
	Pace An	alytical						
		Radium-226	6	6	MRL	0	0	0
		Uranium-238	6	0	MRL	0	0	0
SVOCs								
·	Columbi	a Analytical Services						
		1,2,4-Trichlorobenzene	44	42	MRL	42	0	42
		1,2-Dichlorobenzene	44	42	MRL	42	0	42
		1,3-Dichlorobenzene	44	44	MRL	44	0	44
		1,4-Dichlorobenzene	44	44	MRL	44	0	44
		2,2'-oxybis(1-Chloropropane)	44	44	MRL	44	0	44
		2,4,5-Trichlorophenol	44	42	MRL	42	0	42
		2,4,6-Trichlorophenol	44	43	MRL	43	0	43
		2,4-Dichlorophenol	44	44	MRL	44	0	44
		2,4-Dimethylphenol	44	44	MRL	43	1	43
		2,4-Dinitrophenol	44	44	MRL	44	0	44
		2,4-Dinitrotoluene	44	44	MRL	44	0	44
		2,6-Dinitrotoluene	44	44	MRL	44	0	44
		2-Chloronaphthalene	44	43	MRL	43	0	43
		2-Chlorophenol	44	42	MRL	42	0	42
		2-Methylphenol	44	44	MRL	44	0	44
		2-Nitroaniline	44	44	MRL	44	0	44
		2-Nitrophenol	44	44	MRL	44	0	44
		3,3'-Dichlorobenzidine	44	44	MRL	44	0	44
		3-Nitroaniline	44	44	MRL	44	0	44
		4,6-Dinitro-2-methylphenol	44	44	MRL	44	0	44
		4-Bromophenyl-phenylether	44	44	MRL	44	0	44
		4-Chloro-3-methylphenol	44	38	MRL	38	0	38
		4-Chloroaniline	44	44	MRL	44	0	44
		4-Chlorophenyl-phenyl ether	44	44	MRL	44	0	44
		4-Methylphenol	44	44	MRL	44	0	44

Table 5. 2009 Surface Water Round 1 Data Review of How Non-detect Results Are Reported

	December 2011 Summary of 2009 Surface Water Round 1 ^a									
	2009 Surface Water Round 1		Number of NDs Results Reported as per QAPP	Number of NDs Results Not Reported as per QAPP						
I	Non-HRGC/HRMS Data	ND=MRL	3,030	15,482						
	HRGC/HRMS Data	ND=MDL	11,329	946						

Analyte Type	Lab Name	Analyte	No. of Measurements ^b	No. of Reported Non-detects	QAPP Requirement	Non-Detects Reported to MDL?	Non-Detects Reported to MRL?	No. of Measurements Not Reported per QAPP
SVOCs (co	ontinued)							
		4-Nitroaniline	44	44	MRL	44	0	44
		4-Nitrophenol	44	44	MRL	44	0	44
		Acetophenone	44	44	MRL	44	0	44
		Benzaldehyde	44	44	MRL	44	0	44
		Benzoic acid	44	43	MRL	43	0	43
		Benzyl alcohol	44	43	MRL	43	0	43
		Benzyl n-butyl phthalate	44	44	MRL	44	0	44
		bis(2-Chloroethoxy)methane	44	44	MRL	44	0	44
		Bis(2-chloroethyl)ether	44	43	MRL	43	0	43
		bis(2-Ethylhexyl)phthalate	44	44	MRL	38	6	38
		Caprolactam	44	44	MRL	44	0	44
		Carbazole	88	87	MRL	87	0	87
		Dibenzothiophene	44	44	MRL	44	0	44
		Diethyl phthalate	44	36	MRL	36	0	36
		Dimethyl phthalate	44	42	MRL	42	0	42
		Di-n-butyl phthalate	44	44	MRL	44	0	44
		Di-n-octylphthalate	44	42	MRL	42	0	42
		Hexachlorobenzene	44	44	MRL	44	0	44
		Hexachlorobutadiene	44	43	MRL	40	3	40
		Hexachlorocyclopentadiene	44	44	MRL	44	0	44
		Hexachloroethane	44	44	MRL	44	0	44
		Isophorone	44	43	MRL	43	0	43
		Nitrobenzene	44	44	MRL	44	0	44
		N-Nitrosodi-n-propylamine	44	44	MRL	44	0	44
		N-Nitrosodiphenylamine	44	44	MRL	44	0	44
		Pentachlorophenol	44	44	MRL	44	0	44
		Phenol	44	44	MRL	44	0	44
			15,282	10,543	MRL	8,769	1,768	8,769
			8,184	7,881	MDL	7,703	1	1
		2009 Surface Water R1 b	23,466	18,424	ALL	16,472	1,769	8,770

Notes

^a The December 2011 analysis and summary included results for lab replicates, field replicates, field triplicates, blank water, rinse water/QC samples whereas the current table does not.

^b Excludes all duplicate/triplicate/replicate/blank and rinsewater QC sample results

December 2011 Summary of 2010 Surface Water Round 2									
		Number of NDs Results Reported	Number of NDs Results Not Reported as						
2010 Surface Water Round 2	QAPP	as per QAPP	per QAPP						
Non-HRGC/HRMS Data	ND=MRL	2,077	12,584						
HRGC/HRMS Data	ND=MDL	1,210	9,620						

Analyte	Lab Name	Analyta	No. of Measurements ^b	No. of Reported Non-detects	QAPP Requirement	Non-Detects	Non-Detects Reported to MRL?	No. of Measurements Not
Туре		Analyte	Measurements	Non-detects	Requirement	Reported to MDL?	Reported to MRL?	Reported per QAPP
Convent		Analytical Services						
	Columbia	Alkalinity	83	0	MRL	0	0	0
		Fluoride	83	0	MRL	0	0	0
		Hardness as CaCO3	96	0	MRL	0	0	0
		Organic carbon	166	119	MRL	0	119	0
		pH	83	0	MRL	0	0	0
		Sulfate	83	0	MRL	0	0	0
		Total dissolved solids	83	6	MRL	0	6	0
		Total Suspended Solids	89	79	MRL	0	79	0
Metals/M	letalloids					-		
	Columbia	Analytical Services						
		Aluminum	196	98	MRL	16	82	16
		Antimony	196	0	MRL	0	0	0
		Arsenic	196	76	MRL	23	53	23
		Barium	196	0	MRL	0	0	0
		Beryllium	196	181	MRL	181	0	181
		Bismuth	100	89	MRL	89	0	89
		Boron	101	87	MRL	87	0	87
		Cadmium	196	70	MRL	23	47	23
		Calcium	196	0	MRL	0	0	0
		Cerium	100	48	MRL	48	0	48
		Cesium	100	2	MRL	2	0	2
		Chloride ion	83	18	MRL	0	18	0
		Chromium	196	177	MRL	162	15	162
		Cobalt	196	87	MRL	0	87	0
		Copper	196	59	MRL	0	59	0
		Dysprosium	100	91	MRL	91	0	91
		Erbium	100	99	MRL	99	0	99
		Europium	100	26	MRL	26	0	26
		Gadolinium	100	94	MRL	94	0	94
		Gallium	100	97	MRL	97	0	97
		Germanium	100	40	MRL	39	1	39
		Gold	100	100	MRL	99	1	99
		Holmium	100	100	MRL	100	0	100
		Indium	100	100	MRL	100	0	100
		Iron	196	143	MRL	87	56	87
		Lanthanum	100	13	MRL	13	0	13
		Lead	196	98	MRL	32	66	32
		Lithium	101	99	MRL	99	0	99
		Lutetium	100	100	MRL	100	0	100

December 2011 Summary of 2010 Surface Water Round 2									
		Number of NDs Results Reported	Number of NDs Results Not Reported as						
2010 Surface Water Round 2	QAPP	as per QAPP	per QAPP						
Non-HRGC/HRMS Data	ND=MRL	2,077	12,584						
HRGC/HRMS Data	ND=MDL	1,210	9,620						

Analyte Type	Lab Name	Analyte	No. of Measurements ^b	No. of Reported Non-detects	QAPP Poquiroment	Non-Detects Reported to MDL?	Non-Detects Reported to MRL?	No. of Measurements Not Reported per QAPP
		(continued)	Weasurements	Non-detects	Requirement	Reported to MDL:	Reported to MRL?	Reported per QAFF
wetars/w	etanoias	Magnesium	196	0	MRL	0	0	0
		Manganese	196	47	MRL	0	47	0
		Mercury	196	143	MRL	138	5	138
		Molybdenum	196	26	MRL	0	26	0
		Neodymium	100	70	MRL	70	0	70
		Nickel	196	65	MRL	0	65	0
		Niobium	100	99	MRL	96	3	96
		Potassium	196	0	MRL	0	0	0
		Praseodymium	100	74	MRL	74	0	74
		Rubidium	100	0	MRL	0	0	0
		Samarium	100	94	MRL	94	0	94
		Scandium	100	3	MRL	0	3	0
		Selenium	196	145	MRL	145	0	145
		Silica	83	0	MRL	0	0	0
		Silicon	101	0	MRL	0	0	0
		Silver	196	177	MRL	177	0	177
		Sodium	196	0	MRL	0	0	0
		Strontium	101	0	MRL	0	0	0
		Tantalum	100	98	MRL	98	0	98
		Tellurium	100	100	MRL	100	0	100
		Terbium	100	100	MRL	100	0	100
		Thallium	196	159	MRL	89	70	89
		Thorium			MRL	90	1	
		Thulium	100 41	91 41	MRL	90 41	0	90 41
		Tin	100	99	MRL	99	0	99
		Titanium	101	76	MRL	61	15	61
		Tungsten	100	99	MRL	78	21	78
		Uranium	196	0	MRL	0	0	0
		Vanadium	196	89	MRL	64	25	64
		Ytterbium	100	98	MRL	98	0	98
		Yttrium	100	0	MRL	0	0	0
		Zinc	196	126	MRL	0	126	0
		Zirconium	100	61	MRL	61	0	61
	Erontion (SeoSciences	100	01	IVIKL	01	U	01
	rioniler	Inorganic Arsenic	196	24	MRL	0	24	0
Nutrients		inorganic Arsenic	190	24	IVIRL	U	24	U
		Analytical Services						
	Colultible	Ammonia as Nitrogen	83	82	MRL	82	0	82
		Nitrate plus nitrite	83	62 11	MRL	0	11	02
		Phosphorus	83	64	MRL	64	0	64
		ι πουριτοία	03	04	IVIINL	04	U	04

	D	December 2011 Summary of 2010 Surface Water Round 2				
		Number of NDs Results Reported	Number of NDs Results Not Reported as			
2010 Surface Water Round 2	QAPP	as per QAPP	per QAPP			
Non-HRGC/HRMS Data	ND=MRL	2,077	12,584			
HRGC/HRMS Data	ND=MDL	1,210	9,620			

Analyte	Lab		No. of	No. of Reported	QAPP	Non-Detects	Non-Detects	No. of Measurements Not
Туре	Name	Analyte	Measurements ^b	Non-detects	Requirement	Reported to MDL?	Reported to MRL?	Reported per QAPP
PAHs								
	Columbia	Analytical Services						
		1,1'-Biphenyl	38	38	MRL	38	0	38
		2-Methylnaphthalene	38	38	MRL	37	1	37
		Acenaphthene	38	35	MRL	35	0	35
		Acenaphthylene	38	36	MRL	36	0	36
		Anthracene	38	36	MRL	36	0	36
		Benzo(e)pyrene	38	36	MRL	36	0	36
		Benzo[a]anthracene	38	35	MRL	35	0	35
		Benzo[a]pyrene	38	37	MRL	37	0	37
		Benzo[b]fluoranthene	38	36	MRL	36	0	36
		Benzo[g,h,i]perylene	38	35	MRL	35	0	35
		Benzo[k]fluoranthene	38	36	MRL	36	0	36
		Chrysene	38	36	MRL	36	0	36
		Dibenzo[a,h]anthracene	38	36	MRL	36	0	36
		Dibenzofuran	38	38	MRL	38	0	38
		Fluoranthene	38	38	MRL	37	1	37
		Fluorene	38	32	MRL	32	0	32
		Indeno[1,2,3-cd]pyrene	38	36	MRL	36	0	36
		Naphthalene	38	33	MRL	0	33	0
		Perylene	38	37	MRL	37	0	37
		Phenanthrene	38	38	MRL	35	3	35
		Pyrene	38	37	MRL	37	0	37
	Vista Ana	llytical Laboratory						_
		2,2',3,3',4,4',5,5',6-Nonabromodiphenyl ether	38	35	MDL	35	0	0
		2,2',3,3',4,4'-Hexabromodiphenyl ether	38	38	MDL	38	0	0
		2,2',3,4,4',5'-Hexabromodiphenyl ether	38	36	MDL	36	0	0
PBDEs		0.010.4.410.0111		00	MDI			
		2,2',3,4,4',6,6'-Heptabromodiphenyl ether	38	38	MDL	38	0	0
		2,2',3,4,4'-Pentabromodiphenyl ether	38	34	MDL	34 34	0	0
		2,2',4,4',5,5'-Hexabromodiphenyl ether	38	34	MDL	-	0	0
		2,2',4,4',5,6'-Hexabromodiphenyl ether	38	29	MDL	29	0	0
		2,2',4,4',5-Pentabromodiphenyl ether	38	36	MDL	36	0	0
		2,2',4,4',6-Pentabromodiphenyl ether	38	34	MDL	34	0	0
		2,2',4,4'-Tetrabromodiphenyl ether	38	34	MDL	34	0	0
		2,2',4,5'-Tetrabromodiphenyl ether	38	27	MDL MDL	27	0 0	0 0
		2,2',4-Tribromodiphenyl ether	38	32		32	-	-
		2,3,3',4,4',5',6-Heptabromodiphenyl ether	38	38	MDL	38	0	0
		2,3',4,4'-Tetrabromodiphenyl ether	38	26	MDL	26	0	0
		2,3',4',6-Tetrabromodiphenyl ether	38	38	MDL	38	0	0
		Coelution of PBDE 183 and 176	38	37	MDL	37	0	0

December 2011 Summary of 2010 Surface Water Round 2										
		Number of NDs Results Reported	Number of NDs Results Not Reported as							
2010 Surface Water Round 2	QAPP	as per QAPP	per QAPP							
Non-HRGC/HRMS Data	ND=MRL	2,077	12,584							
HRGC/HRMS Data	ND=MDL	1,210	9,620							

Analyte	Lab		No. of	No. of Reported	QAPP	Non-Detects	Non-Detects	No. of Measurements Not
Туре	Name	Analyte	Measurements ^b	Non-detects	Requirement	Reported to MDL?	Reported to MRL?	Reported per QAPP
PBDEs (c	ontinue	al)						
		Coelution of PBDE 190 and 171	38	38	MDL	38	0	0
		Coelution of PBDE 200 and 203	38	38	MDL	38	0	0
		Coelution of PBDE 28 and 33	38	38	MDL	38	0	0
		Decabromodiphenyl ether	38	34	MDL	33	0	0
PCBs								
	Vista Ana	alytical Laboratory						
		2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	38	36	MDL	36	0	0
		2,2',3,3',4,4',5,5'-Octachlorobiphenyl	38	34	MDL	34	0	0
		2,2',3,3',4,4',5,6,6'-Nonachlorobiphenyl	38	38	MDL	38	0	0
		2,2',3,3',4,4',5,6'-Octachlorobiphenyl	38	34	MDL	34	0	0
		2,2',3,3',4,4',5,6-Octachlorobiphenyl	38	35	MDL	35	0	0
		2,2',3,3',4,4',5-Heptachlorobiphenyl	38	33	MDL	33	0	0
		2,2',3,3',4,4',6,6'-Octachlorobiphenyl	38	38	MDL	38	0	0
		2,2',3,3',4,5,5',6,6'-Nonachlorobiphenyl	38	36	MDL	36	0	0
		2,2',3,3',4,5,5'-Heptachlorobiphenyl	38	37	MDL	37	0	0
		2,2',3,3',4,5',6,6'-Octachlorobiphenyl	38	36	MDL	36	0	0
		2,2',3,3',4,5,6,6'-Octachlorobiphenyl	38	37	MDL	37	0	0
		2,2',3,3',4,5',6'-Heptachlorobiphenyl	38	35	MDL	35	0	0
		2,2',3,3',4,5',6-Heptachlorobiphenyl	38	38	MDL	38	0	0
		2,2',3,3',4,5,6'-Heptachlorobiphenyl	38	34	MDL	34	0	0
		2,2',3,3',4,5'-Hexachlorobiphenyl	38	37	MDL	37	0	0
		2,2',3,3',4,6,6'-Heptachlorobiphenyl	38	37	MDL	37	0	0
		2,2',3,3',4,6'-Hexachlorobiphenyl	38	30	MDL	30	0	0
		2,2',3,3',4,6-Hexachlorobiphenyl	38	38	MDL	38	0	0
		2,2',3,3',4-Pentachlorobiphenyl	38	37	MDL	37	0	0
		2,2',3,3',5,5',6,6'-Octachlorobiphenyl	38	36	MDL	36	0	0
		2,2',3,3',5,5',6-Heptachlorobiphenyl	38	37	MDL	37	0	0
		2,2',3,3',5,5'-Hexachlorobiphenyl	38	38	MDL	38	0	0
		2,2',3,3',5,6,6'-Heptachlorobiphenyl	38	35	MDL	35	0	0
		2,2',3,3',6,6'-Hexachlorobiphenyl	38	36	MDL	36	0	0
		2,2',3,3',6-Pentachlorobiphenyl	38	33	MDL	33	0	0
		2,2',3,4,4',5,5',6-Octachlorobiphenyl	38	34	MDL	34	0	0
		2,2',3,4,4',5,6,6'-Octachlorobiphenyl	38	38	MDL	38	0	0
		2,2',3,4,4',5,6'-Heptachlorobiphenyl	38	38	MDL	38	0	0
		2,2',3,4,4',5,6-Heptachlorobiphenyl	38	38	MDL	38	0	0
		2,2',3,4,4',5-Hexachlorobiphenyl	38	36	MDL	36	0	0
		2,2',3,4,4',6,6'-Heptachlorobiphenyl	38	38	MDL	38	0	0
		2,2',3,4',5,5',6-Heptachlorobiphenyl	38	31	MDL	31	0	0
		2,2',3,4',5,5'-Hexachlorobiphenyl	38	34	MDL	34	0	0
		2,2',3,4,5,5'-Hexachlorobiphenyl	38	33	MDL	33	0	0

Table 6. 2010 Surface Water Round 2 Data Review of How Non-detect Results Are Reported

	December 2011 Summary of 2010 Surface Water Round 2										
			Number of NDs Results Reported	Number of NDs Results Not Reported as							
	2010 Surface Water Round 2	QAPP	as per QAPP	per QAPP							
ĺ	Non-HRGC/HRMS Data	ND=MRL	2,077	12,584							
ĺ	HRGC/HRMS Data	ND=MDL	1,210	9,620							

Analyte	Lab		No. of	No. of Reported	QAPP	Non-Detects	Non-Detects	No. of Measurements Not
Туре	Name	Analyte	Measurements ^b	Non-detects	Requirement	Reported to MDL?	Reported to MRL?	Reported per QAPP
PCBs (co	ntinued)							_
		2,2',3,4',5,6,6'-Heptachlorobiphenyl	38	38	MDL	38	0	0
		2,2',3,4,5,6,6'-Heptachlorobiphenyl	38	38	MDL	38	0	0
		2,2',3,4',5,6'-Hexachlorobiphenyl	38	38	MDL	38	0	0
		2,2',3,4,5',6-Hexachlorobiphenyl	38	37	MDL	37	0	0
		2,2',3,4,5,6-Hexachlorobiphenyl	38	38	MDL	38	0	0
		2,2',3,4',6,6'-Hexachlorobiphenyl	38	38	MDL	38	0	0
		2,2',3,4,6,6'-Hexachlorobiphenyl	38	38	MDL	38	0	0
		2,2',3,4,6'-Pentachlorobiphenyl	38	38	MDL	38	0	0
		2,2',3,4'-Tetrachlorobiphenyl	38	38	MDL	38	0	0
		2,2',3,5,5'-Pentachlorobiphenyl	38	35	MDL	35	0	0
		2,2',3,5,6,6'-Hexachlorobiphenyl	38	38	MDL	38	0	0
		2,2',3,5',6-Pentachlorobiphenyl	38	22	MDL	22	0	0
		2,2',3,5,6'-Pentachlorobiphenyl	38	38	MDL	38	0	0
		2,2',3,5-Tetrachlorobiphenyl	38	38	MDL	38	0	0
		2,2',3,6,6'-Pentachlorobiphenyl	38	38	MDL	38	0	0
		2,2',3,6'-Tetrachlorobiphenyl	38	38	MDL	38	0	0
		2,2',3-Trichlorobiphenyl	38	34	MDL	34	0	0
		2,2',4,4',5,6'-Hexachlorobiphenyl	38	38	MDL	38	0	0
		2,2',4,4',6,6'-Hexachlorobiphenyl	38	38	MDL	38	0	0
		2,2',4,5',6-Pentachlorobiphenyl	38	38	MDL	38	0	0
		2,2',4,5-Tetrachlorobiphenyl	38	37	MDL	37	0	0
		2,2',4,6,6'-Pentachlorobiphenyl	38	38	MDL	38	0	0
		2,2',4-Trichlorobiphenyl	38	30	MDL	30	0	0
		2,2',5,5'-Tetrachlorobiphenyl	38	24	MDL	24	0	0
		2,2',6,6'-Tetrachlorobiphenyl	38	38	MDL	38	0	0
		2,2',6-Trichlorobiphenyl	38	38	MDL	38	0	0
		2,2'-Dichlorobiphenyl	38	38	MDL	38	0	0
		2,3,3',4,4',5,5',6-Octachlorobiphenyl	38	38	MDL	38	0	0
		2,3,3',4,4',5,5'-Heptachlorobiphenyl	38	38	MDL	38	0	0
		2,3,3',4,4',5',6-Heptachlorobiphenyl	38	37	MDL	37	0	0
		2,3,3',4,4',5,6-Heptachlorobiphenyl	38	36	MDL	36	0	0
		2,3,3',4,4',6-Hexachlorobiphenyl	38	36	MDL	36	0	0
		2,3,3',4,4'-Pentachlorobiphenyl	38	26	MDL	26	0	0
		2,3,3',4,5,5',6-Heptachlorobiphenyl	38	38	MDL	38	0	0
		2,3,3',4',5,5'-Hexachlorobiphenyl	38	38	MDL	38	0	0
		2,3,3',4,5,5'-Hexachlorobiphenyl	38	37	MDL	37	0	0
		2,3,3',4',5',6-Hexachlorobiphenyl	38	37	MDL	37	0	0
		2,3,3',4,5',6-Hexachlorobiphenyl	38	38	MDL	38	0	0
		2,3,3',4',5'-Pentachlorobiphenyl	38	38	MDL	38	0	0
		2,3,3',4,5-Pentachlorobiphenyl	38	38	MDL	38	0	0

Table 6. 2010 Surface Water Round 2 Data Review of How Non-detect Results Are Reported

	December 2011 Summary of 2010 Surface Water Round 2										
			Number of NDs Results Reported	Number of NDs Results Not Reported as							
	2010 Surface Water Round 2	QAPP	as per QAPP	per QAPP							
ľ	Non-HRGC/HRMS Data	ND=MRL	2,077	12,584							
ĺ	HRGC/HRMS Data	ND=MDL	1,210	9,620							

Analyte Type	Lab Name	Analyte	No. of Measurements ^b	No. of Reported Non-detects	QAPP Requirement	Non-Detects Reported to MDL?	Non-Detects Reported to MRL?	No. of Measurements Not Reported per QAPP
PCBs (co		Analyte	Measurements	Non-detects	Requirement	Reported to MDL:	Reported to MIRE:	Reported per QALL
r CD3 (CC	munueu ₎	2,3,3',4,6-Pentachlorobiphenyl	38	38	MDL	38	0	0
		2,3,3',4'-Tetrachlorobiphenyl	38	31	MDL	31	0	0
		2,3,3',4-Tetrachlorobiphenyl	38	38	MDL	38	0	0
		2,3,3',5,5',6-Hexachlorobiphenyl	38	38	MDL	38	0	0
		2,3,3',5,5'-Pentachlorobiphenyl	38	38	MDL	38	0	0
		2,3,3',5,6-Pentachlorobiphenyl	38	38	MDL	38	0	0
		2,3,3',5'-Tetrachlorobiphenyl	38	38	MDL	38	0	0
		2,3,3',5-Tetrachlorobiphenyl	38	38	MDL	38	0	0
		2,3',4,4',5,5'-Hexachlorobiphenyl	38	37	MDL	37	0	0
		2,3',4,4',5'-Pentachlorobiphenyl	38	38	MDL	38	0	0
		2,3',4,4',5-Pentachlorobiphenyl	38	25	MDL	25	0	0
		2,3,4,4',5-Pentachlorobiphenyl	38	38	MDL	38	0	0
		2,3',4,4'-Tetrachlorobiphenyl	38	25	MDL	25	0	0
		2,3,4,4'-Tetrachlorobiphenyl	38	36	MDL	36	0	0
		2,3',4,5,5'-Pentachlorobiphenyl	38	38	MDL	38	0	0
		2,3',4,5',6-Pentachlorobiphenyl	38	38	MDL	38	0	0
		2,3',4,5'-Tetrachlorobiphenyl	38	31	MDL	31	0	0
		2,3',4,5-Tetrachlorobiphenyl	38	38	MDL	38	0	0
		2,3,4',5-Tetrachlorobiphenyl	38	38	MDL	38	0	0
		2,3,4',6-Tetrachlorobiphenyl	38	31	MDL	31	0	0
		2,3',4-Trichlorobiphenyl	38	37	MDL	37	0	0
		2,3,4'-Trichlorobiphenyl	38	32	MDL	32	0	0
		2,3',5,5'-Tetrachlorobiphenyl	38	38	MDL	38	0	0
		2,3',5',6-Tetrachlorobiphenyl	38	38	MDL	38	0	0
		2,3',5'-Trichlorobiphenyl	38	38	MDL	38	0	0
		2,3,5-Trichlorobiphenyl	38	38	MDL	38	0	0
		2,3',6-Trichlorobiphenyl	38	38	MDL	38	0	0
		2,3,6-Trichlorobiphenyl	38	38	MDL	38	0	0
		2,3'-Dichlorobiphenyl	38	38	MDL	38	0	0
		2,3-Dichlorobiphenyl	38	38	MDL	38	0	0
		2,4',5-Trichlorobiphenyl	38	36	MDL	36	0	0
		2,4',6-Trichlorobiphenyl	38	33	MDL	33	0	0
		2,4'-Dichlorobiphenyl	38	38	MDL	38	0	0
		2,4-Dichlorobiphenyl	38	38	MDL	38	0	0
		2,5-Dichlorobiphenyl	38	38	MDL	38	0	0
		2,6-Dichlorobiphenyl	38	38	MDL	38	0	0
		3,3',4,4',5,5'-Hexachlorobiphenyl	38	38	MDL	38	0	0
		3,3',4,4',5-Pentachlorobiphenyl	38	38	MDL	38	0	0
		3,3',4,4'-Tetrachlorobiphenyl	38	37	MDL	37	0	0
		3,3',4,5,5'-Pentachlorobiphenyl	38	38	MDL	38	0	0

Table 6. 2010 Surface Water Round 2 Data Review of How Non-detect Results Are Reported

December 2011 Summary of 2010 Surface Water Round 2										
		Number of NDs Results Reported	Number of NDs Results Not Reported as							
2010 Surface Water Round	2 QAPP	as per QAPP	per QAPP							
Non-HRGC/HRMS Data	ND=MRL	2,077	12,584							
HRGC/HRMS Data	ND=MDL	1,210	9,620							

Analyte	Lab		No. of	No. of Reported	QAPP	Non-Detects	Non-Detects	No. of Measurements Not
Туре	Name	Analyte	Measurements ^b	Non-detects	Requirement	Reported to MDL?	Reported to MRL?	Reported per QAPP
PCBs (co	ntinued)							
		3,3',4,5'-Tetrachlorobiphenyl	38	38	MDL	38	0	0
		3,3',4,5-Tetrachlorobiphenyl	38	38	MDL	38	0	0
		3,3',4-Trichlorobiphenyl	38	38	MDL	38	0	0
		3,3',5,5'-Tetrachlorobiphenyl	38	38	MDL	38	0	0
		3,3',5-Trichlorobiphenyl	38	38	MDL	38	0	0
		3,3'-Dichlorobiphenyl	38	23	MDL	23	0	0
		3,4,4',5-Tetrachlorobiphenyl	38	38	MDL	38	0	0
		3,4,4'-Trichlorobiphenyl	38	36	MDL	36	0	0
		3,4',5-Trichlorobiphenyl	38	38	MDL	38	0	0
		3,4,5-Trichlorobiphenyl	38	38	MDL	38	0	0
		Coelution of PCB 107 and 124	38	38	MDL	38	0	0
		Coelution of PCB 110 and 115	38	24	MDL	24	0	0
		Coelution of PCB 12 and 13	38	38	MDL	38	0	0
		Coelution of PCB 128 and 166	38	35	MDL	35	0	0
		Coelution of PCB 129, 138, 160, and 163	38	21	MDL	21	0	0
		Coelution of PCB 134 and 143	38	37	MDL	37	0	0
		Coelution of PCB 135 and 151	38	36	MDL	36	0	0
		Coelution of PCB 139 and 140	38	38	MDL	38	0	0
		Coelution of PCB 147 and 149	38	29	MDL	29	0	0
		Coelution of PCB 153 and 168	38	17	MDL	17	0	0
		Coelution of PCB 156 and 157	38	35	MDL	35	0	0
		Coelution of PCB 171 and 173	38	36	MDL	36	0	0
		Coelution of PCB 18 and 30	38	22	MDL	22	0	0
		Coelution of PCB 180 and 193	38	20	MDL	20	0	0
		Coelution of PCB 183 and 185	38	32	MDL	32	0	0
		Coelution of PCB 198 and 199	38	33	MDL	33	0	0
		Coelution of PCB 20 and 28	38	38	MDL	38	0	0
		Coelution of PCB 21 and 33	38	32	MDL	32	0	0
		Coelution of PCB 26 and 29	38	37	MDL	37	0	0
		Coelution of PCB 40, 41, and 71	38	33	MDL	33	0	0
		Coelution of PCB 44, 47, and 65	38	21	MDL	21	0	0
		Coelution of PCB 45 and 51	38	33	MDL	33	0	0
		Coelution of PCB 49 and 69	38	27	MDL	27	0	0
		Coelution of PCB 50 and 53	38	38	MDL	38	0	0
		Coelution of PCB 59, 62, and 75	38	38	MDL	38	0	0
		Coelution of PCB 61,70,74 and 76	38	21	MDL	21	0	0
		Coelution of PCB 83 and 99	38	32	MDL	32	0	0
		Coelution of PCB 85+116+117	38	35	MDL	35	0	0
		Coelution of PCB 86, 87, 97, 108, 119, and 125	38	33	MDL	33	0	0
		Coelution of PCB 88 and 91	38	36	MDL	36	0	0

December 2011 Summary of 2010 Surface Water Round 2									
		Number of NDs Results Reported	Number of NDs Results Not Reported as						
2010 Surface Water Round 2	QAPP	as per QAPP	per QAPP						
Non-HRGC/HRMS Data	ND=MRL	2,077	12,584						
HRGC/HRMS Data	ND=MDL	1,210	9,620						

Analyte Type	Lab Name	Analyte	No. of Measurements ^b	No. of Reported Non-detects	QAPP Requirement	Non-Detects Reported to MDL?	Non-Detects Reported to MRL?	No. of Measurements Not Reported per QAPP
PCBs (co	ntinued)	•			·	<u> </u>	·	
	,	Coelution of PCB 90, 101, and 113	38	18	MDL	18	0	0
		Coelution of PCB 93, 98, 100 and 102	38	38	MDL	38	0	0
		Decachlorobiphenyl (PCB 209)	38	33	MDL	33	0	0
		Dichlorobiphenyl homologs	38	20	MDL	20	0	0
		Heptachlorobiphenyl homologs	38	17	MDL	17	0	0
		Hexachlorobiphenyl homologs	38	7	MDL	7	0	0
		Monochlorobiphenyl homologs	38	31	MDL	31	0	0
		Nonachlorobiphenyl homologs	38	36	MDL	36	0	0
		Octachlorobiphenyl homologs	38	31	MDL	31	0	0
		PCB congener 1	38	32	MDL	32	0	0
		PCB congener 14	38	38	MDL	38	0	0
		PCB congener 15	38	37	MDL	37	0	0
		PCB congener 2	38	38	MDL	38	0	0
		PCB congener 3	38	36	MDL	36	0	0
		Pentachlorobiphenyl homologs	38	11	MDL	11	0	0
		Tetrachlorobiphenyl homologs	38	6	MDL	6	0	0
		Total PCBs	38	2	MDL	2	0	0
		Trichlorobiphenyl homologs	38	4	MDL	4	0	0
Pesticide								
	Columbia	Analytical Services						
		2,4'-DDD	38	38	MRL	35	3	35
		2,4'-DDE	38	38	MRL	37	1	37
		2,4'-DDT	38	38	MRL	34	4	34
		4,4'-DDD	38	37	MRL	18	19	18
		4,4'-DDE	38	38	MRL	24	14	24
		4,4'-DDT	38	37	MRL	34	3	34
		Aldrin	38	35	MRL	26	9	26
		alpha-Benzenehexachloride	38	38	MRL	37	1	37
		alpha-Chlordane	38	37	MRL	33	4	33
		beta-BHC	38	38	MRL	37	1	37
		Chlordane	38	38	MRL	22	16	22
		cis-Nonachlor	38	38	MRL	22	16	22
		delta-BHC	38	38	MRL	37	1	37
		Dieldrin	38	37	MRL	34	3	34
		Endosulfan I	38	38	MRL	35	3	35
		Endosulfan II	38	37	MRL	30	7	30
		Endosulfan sulfate	38	38	MRL	38	0	38
		Endrin	38	31	MRL	13	18	13
		Endrin aldehyde	38	30	MRL	22	8	22
		Endrin ketone	38	38	MRL	38	0	38

December 2011 Summary of 2010 Surface Water Round 2									
		Number of NDs Results Reported	Number of NDs Results Not Reported as						
2010 Surface Water Round 2	QAPP	as per QAPP	per QAPP						
Non-HRGC/HRMS Data	ND=MRL	2,077	12,584						
HRGC/HRMS Data	ND=MDL	1,210	9,620						

Analyte	Lab		No. of	No. of Reported	QAPP	Non-Detects	Non-Detects	No. of Measurements Not
Туре	Name	Analyte	Measurements b	Non-detects	Requirement	Reported to MDL?	Reported to MRL?	Reported per QAPP
Pesticide	s/Herbici	des (continued)						
		gamma-BHC	38	38	MRL	38	0	38
		gamma-Chlordane	38	38	MRL	38	0	38
		Heptachlor	38	38	MRL	37	1	37
		Heptachlor epoxide	38	38	MRL	37	1	37
		Methoxychlor	38	38	MRL	37	1	37
		Oxychlordane	38	33	MRL	12	21	12
		Toxaphene	38	38	MRL	1	37	1
		trans-Nonachlor	38	38	MRL	36	2	36
Radionud	clides							
	Isotech							
		Stable hydrogen isotope-ratio	95	0	MRL	0	0	0
		Stable oxygen isotope-ratio	95	0	MRL	0	0	0
	Pace Ana	lytical						
		Radium-226	7	7	MRL	0	0	0
		Uranium-238	7	0	MRL	0	0	0
SVOCs								
·	Columbia	Analytical Services						
		1,2,4-Trichlorobenzene	38	38	MRL	38	0	38
		1,2-Dichlorobenzene	38	38	MRL	38	0	38
		1,3-Dichlorobenzene	38	38	MRL	38	0	38
		1,4-Dichlorobenzene	38	38	MRL	38	0	38
		2,2'-oxybis(1-Chloropropane)	38	38	MRL	38	0	38
		2,4,5-Trichlorophenol	38	37	MRL	37	0	37
		2,4,6-Trichlorophenol	38	37	MRL	37	0	37
		2,4-Dichlorophenol	38	37	MRL	37	0	37
		2,4-Dimethylphenol	38	35	MRL	35	0	35
		2,4-Dinitrophenol	38	37	MRL	37	0	37
		2,4-Dinitrotoluene	38	38	MRL	38	0	38
		2,6-Dinitrotoluene	38	38	MRL	38	0	38
		2-Chloronaphthalene	38	38	MRL	38	0	38
		2-Chlorophenol	38	37	MRL	37	0	37
		2-Methylphenol	38	37	MRL	37	0	37
		2-Nitroaniline	38	38	MRL	38	0	38
		2-Nitrophenol	38	38	MRL	38	0	38
		3,3'-Dichlorobenzidine	38	33	MRL	33	0	33
		3-Nitroaniline	38	38	MRL	38	0	38
		4,6-Dinitro-2-methylphenol	38	37	MRL	37	0	37
		4-Bromophenyl-phenylether	38	38	MRL	38	0	38
		4-Chloro-3-methylphenol	38	37	MRL	37	0	37
		4-Chloroaniline	38	38	MRL	38	0	38

Table 6. 2010 Surface Water Round 2 Data Review of How Non-detect Results Are Reported

December 2011 Summary of 2010 Surface Water Round 2						
		Number of NDs Results Reported	Number of NDs Results Not Reported as			
2010 Surface Water Round 2	QAPP	as per QAPP	per QAPP			
Non-HRGC/HRMS Data	ND=MRL	2,077	12,584			
HRGC/HRMS Data	ND=MDL	1,210	9,620			

Analyte Type	Lab Name	Analyte	No. of Measurements ^b	No. of Reported Non-detects	QAPP Requirement	Non-Detects Reported to MDL?	Non-Detects Reported to MRL?	No. of Measurements No Reported per QAPP
SVOCs (c	ontinue	,				.,		.,
•		4-Chlorophenyl-phenyl ether	38	38	MRL	38	0	38
		4-Methylphenol	38	37	MRL	37	0	37
		4-Nitroaniline	38	38	MRL	38	0	38
		4-Nitrophenol	38	37	MRL	37	0	37
		Acetophenone	38	38	MRL	38	0	38
		Benzaldehyde	38	38	MRL	38	0	38
		Benzoic acid	38	24	MRL	24	0	24
		Benzyl alcohol	38	36	MRL	36	0	36
		Benzyl n-butyl phthalate	38	37	MRL	37	0	37
		bis(2-Chloroethoxy)methane	38	38	MRL	38	0	38
		Bis(2-chloroethyl)ether	38	38	MRL	38	0	38
		bis(2-Ethylhexyl)phthalate	38	32	MRL	32	0	32
		Caprolactam	38	38	MRL	38	0	38
		Carbazole	76	76	MRL	76	0	76
		Dibenzothiophene	38	38	MRL	38	0	38
		Diethyl phthalate	38	36	MRL	35	1	35
		Dimethyl phthalate	38	37	MRL	37	0	37
		Di-n-butyl phthalate	38	37	MRL	37	0	37
		Di-n-octylphthalate	38	38	MRL	38	0	38
		Hexachlorobenzene	38	34	MRL	33	1	33
		Hexachlorobutadiene	38	38	MRL	37	1	37
		Hexachlorocyclopentadiene	38	38	MRL	38	0	38
		Hexachloroethane	38	38	MRL	38	0	38
		Isophorone	38	38	MRL	38	0	38
		Nitrobenzene	38	38	MRL	38	0	38
		N-Nitrosodi-n-propylamine	38	38	MRL	38	0	38
		N-Nitrosodiphenylamine	38	38	MRL	38	0	38
		Pentachlorophenol	38	37	MRL	37	0	37
		Phenol	38	37	MRL	37	0	37
			13,803	8,522	MRL	7,149	1,366	7,149
			7,296	6,561	MDL	6,560	0	0
		2010 Surface Water R2 b	21,099	15,083	ALL	13,709	1,366	7,149

Notes

^a The December 2011 analysis and summary included results for lab replicates, field replicates, field triplicates, blank water, rinse water/QC samples whereas the current table does not.

b Excludes all duplicate/triplicate/replicate/blank and rinsewater QC sample results

December 2011 Summary of 2010 Surface Water Round 3							
	2010 Surface Water Round 3	QAPP	Number of NDs Results Reported as per QAPP	Number of NDs Results Not Reported as per QAPP			
	Non-HRGC/HRMS Data	ND=MRL	2,180	11,679			
	HRGC/HRMS Data	ND=MDL	1,272	9,611			

Analyte Type	Lab Name	Analyte	No. of Measurements ^b	No. of Reported Non-detects	QAPP Requirement	Non-Detects Reported to MDL?	Non-Detects	No. of Measurements Not Reported per QAPP
Conventi		Analyte	Measurements	Non detects	ricquirement	ricported to MDE:	ricported to Wirtz:	ricported per QALL
Conventi		a Analytical Services						
	Coldinibit	Alkalinity	82	0	MRL	0	0	0
		Fluoride	82	3	MRL	3	Ö	3
		Hardness as CaCO3	94	0	MRL	0	0	0
		Organic carbon	164	75	MRL	0	75	0
		pH	82	0	MRL	0	0	0
		Sulfate	82	0	MRL	0	0	0
		Total dissolved solids	82	6	MRL	0	6	0
		Total Suspended Solids	88	81	MRL	0	81	0
Metals/Me	etalloids	Total Gasperiaea Golias		01	IVII (L		<u> </u>	J
		a Analytical Services						
		Aluminum	192	44	MRL	0	44	0
		Antimony	192	21	MRL	0	21	0
		Arsenic	192	56	MRL	32	24	32
		Barium	192	0	MRL	0	0	0
		Beryllium	192	171	MRL	171	0	171
		Bismuth	98	94	MRL	94	0	94
		Boron	98	98	MRL	98	0	98
		Cadmium	192	113	MRL	64	49	64
		Calcium	192	0	MRL	0	0	0
		Cerium	98	4	MRL	4	0	4
		Cesium	98	14	MRL	14	0	14
		Chloride ion	82	45	MRL	0	45	0
		Chromium	192	169	MRL	149	20	149
		Cobalt	192	110	MRL	0	110	0
		Copper	192	53	MRL	0	53	0
		Dysprosium	98	56	MRL	56	0	56
		Erbium	98	97	MRL	97	0	97
		Europium	98	15	MRL	15	0	15
		Gadolinium	98	66	MRL	66	0	66
		Gallium	98	84	MRL	84	0	84
		Germanium	98	81	MRL	33	48	33
		Gold	98	96	MRL	80	16	80
		Holmium	98	98	MRL	98	0	98
		Indium	98	98	MRL	98	0	98
		Iron	192	121	MRL	64	57	64
		Lanthanum	98	0	MRL	0	0	0
		Lead	192	111	MRL	19	92	19
		Lithium	98	69	MRL	69	0	69
		Lutetium	98	98	MRL	98	0	98

Table 7. 2010 Surface Water Round 3 Data Review of How Non-detect Results Are Reported

December 2011 Summary of 2010 Surface Water Round 3					
		•	Number of NDs Results Not Reported as		
2010 Surface Water Round 3	QAPP	as per QAPP	per QAPP		
Non-HRGC/HRMS Data	ND=MRL	2,180	11,679		
HRGC/HRMS Data	ND=MDL	1,272	9,611		

Analyte Type	Lab Name	Analyte	No. of Measurements ^b	No. of Reported Non-detects	QAPP Requirement	Non-Detects Reported to MDL?	Non-Detects Reported to MRL?	No. of Measurements Not Reported per QAPP
Metals/Me	etalloids	(continued)						
		Magnesium	192	0	MRL	0	0	0
		Manganese	192	60	MRL	0	60	0
		Mercury	192	118	MRL	111	7	111
		Molybdenum	192	22	MRL	0	22	0
		Neodymium	98	22	MRL	22	0	22
		Nickel	192	81	MRL	0	81	0
		Niobium	98	91	MRL	91	0	91
		Potassium	192	4	MRL	0	4	0
		Praseodymium	98	31	MRL	31	0	31
		Rubidium	98	2	MRL	0	2	0
		Samarium	98	48	MRL	48	0	48
		Scandium	98	4	MRL	0	4	0
		Selenium	192	179	MRL	178	1	178
		Silica	82	0	MRL	0	0	0
		Silicon	98	0	MRL	0	0	0
		Silver	192	185	MRL	182	3	182
		Sodium	192	0	MRL	0	0	0
		Strontium	98	0	MRL	0	0	0
		Tantalum	98	69	MRL	69	0	69
		Tellurium	98	98	MRL	98	0	98
		Terbium	98	97	MRL	97	0	97
		Thallium	192	161	MRL	160	1	160
		Thorium	98	46	MRL	46	0	46
		Thulium	98	98	MRL	98	0	98
		Tin	98	95	MRL	95	0	95
		Titanium	98	56	MRL	52	4	52
		Tungsten	98	93	MRL	83	10	83
		Uranium	192	0	MRL	0	0	0
		Vanadium	192	90	MRL	33	57	33
		Ytterbium	98	94	MRL	94	0	94
		Yttrium	98	0	MRL	0	0	0
		Zinc	192	126	MRL	0	126	0
		Zirconium	98	12	MRL	8	4	8
	Frontier	GeoSciences						
		Inorganic Arsenic	192	4	MRL	0	4	0

Table 7. 2010 Surface Water Round 3 Data Review of How Non-detect Results Are Reported

December 2011 Summary of 2010 Surface Water Round 3

		2010 Surface Water Round 3	QAPP	as per (QAPP	per C	APP	
		Non-HRGC/HRMS Data	ND=MRL	2,18	30	11,	679	1
		HRGC/HRMS Data	ND=MDL	1,27	72	9,6	611	
Analyte	Lab		No. of	No. of Reported	QAPP	Non-Detects	Non-Detects	No. of Measurements Not
Type	Name	Analyte	Measurements b	Non-detects	Requirement	Reported to MDL?	Reported to MRL?	Reported per QAPP
Nutrients								
		a Analytical Services						
		Ammonia as Nitrogen	82	72	MRL	71	1	71
		Nitrate plus nitrite	82	70	MRL	24	46	24
		Phosphorus	82	16	MRL	6	10	6
PAHs								
	Columbia	a Analytical Services						
		1,1'-Biphenyl	37	37	MRL	37	0	37
		2-Methylnaphthalene	37	37	MRL	37	0	37
		Acenaphthene	37	29	MRL	29	0	29
		Acenaphthylene	37	36	MRL	36	0	36
		Anthracene	37	37	MRL	37	0	37
		Benzo(e)pyrene	37	35	MRL	35	0	35
		Benzo[a]anthracene	37	37	MRL	37	0	37
		Benzo[a]pyrene	37	36	MRL	36	0	36
		Benzo[b]fluoranthene	37	33	MRL	33	0	33
		Benzo[g,h,i]perylene	37	34	MRL	34	0	34
		Benzo[k]fluoranthene	37	35	MRL	35	0	35
		Chrysene	37	36	MRL	36	0	36
		Dibenzo[a,h]anthracene	37	36	MRL	36	0	36
		Dibenzofuran	37	37	MRL	37	0	37
		Fluoranthene	37	37	MRL	37	0	37
		Fluorene	37	36	MRL	36	0	36
		Indeno[1,2,3-cd]pyrene	37	34	MRL	34	0	34
		Naphthalene	37	37	MRL	1	36	1
		Perylene	37	36	MRL	36	0	36
		Phenanthrene	37	37	MRL	36	1	36
2225		Pyrene	37	36	MRL	36	0	36
PBDEs	Vioto An	alytical Laboratory						
	VISIA ATI	2,2',3,3',4,4',5,5',6-Nonabromodiphenyl ether	37	33	MDL	33	0	0
		2,2',3,3',4,4'-Hexabromodiphenyl ether	37 37	33 34	MDL	33 34	0	0
		2,2',3,4,4',5'-Hexabromodiphenyl ether	37 37	34	MDL	34	0	0
		2,2',3,4,4',6,6'-Heptabromodiphenyl ether	37 37	34	MDL	34	0	0
			37 37	27	MDL	27	0	0
		2,2',3,4,4'-Pentabromodiphenyl ether 2,2',4,4',5,5'-Hexabromodiphenyl ether	37 37	34	MDL	34	0	0
		2,2',4,4',5,6'-Hexabromodiphenyl ether	37 37	27	MDL	27	0	0
							0	0
		2,2',4,4',5-Pentabromodiphenyl ether	37	34	MDL	34	-	-
		2,2',4,4',6-Pentabromodiphenyl ether	37	33	MDL MDL	33	0	0
		2,2',4,4'-Tetrabromodiphenyl ether	37 37	36 24	MDL MDL	36 24	0 0	0 0
		2,2',4,5'-Tetrabromodiphenyl ether	3/	24	MDL	24	U	U

Number of NDs Results Reported Number of NDs Results Not Reported as

Table 7. 2010 Surface Water Round 3 Data Review of How Non-detect Results Are Reported

	2010 Surface Water Round 3		Number of NDs Re as per C	•	Number of NDs Resi per C	•	
	Non-HRGC/HRMS Data	ND=MRL	2,18	0	11,0	679	
	HRGC/HRMS Data	ND=MDL	1,27	2	9,6	611	
ıb me	Analyte	No. of	No. of Reported	QAPP Requirement	Non-Detects	Non-Detects	No. o

Analyte	Lab		No. of	No. of Reported	QAPP	Non-Detects	Non-Detects	No. of Measurements Not
Type	Name	Analyte	Measurements ^b	Non-detects	Requirement	Reported to MDL?	Reported to MRL?	Reported per QAPP
PBDEs (c	ontinued							
		2,2',4-Tribromodiphenyl ether	37	30	MDL	30	0	0
		2,3,3',4,4',5',6-Heptabromodiphenyl ether	37	34	MDL	34	0	0
		2,3',4,4'-Tetrabromodiphenyl ether	37	33	MDL	33	0	0
		2,3',4',6-Tetrabromodiphenyl ether	37	34	MDL	34	0	0
		Coelution of PBDE 183 and 176	37	35	MDL	35	0	0
		Coelution of PBDE 190 and 171	37	34	MDL	34	0	0
		Coelution of PBDE 200 and 203	37	34	MDL	34	0	0
		Coelution of PBDE 28 and 33	37	37	MDL	37	0	0
		Decabromodiphenyl ether	37	32	MDL	32	0	0
PCBs								
	Vista Ana	alytical Laboratory						
		2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	37	35	MDL	35	0	0
		2,2',3,3',4,4',5,5'-Octachlorobiphenyl	37	36	MDL	36	0	0
		2,2',3,3',4,4',5,6,6'-Nonachlorobiphenyl	37	37	MDL	37	0	0
		2,2',3,3',4,4',5,6'-Octachlorobiphenyl	37	36	MDL	36	0	0
		2,2',3,3',4,4',5,6-Octachlorobiphenyl	37	37	MDL	37	0	0
		2,2',3,3',4,4',5-Heptachlorobiphenyl	37	34	MDL	34	0	0
		2,2',3,3',4,4',6,6'-Octachlorobiphenyl	37	37	MDL	37	0	0
		2,2',3,3',4,5,5',6,6'-Nonachlorobiphenyl	37	36	MDL	36	0	0
		2,2',3,3',4,5,5'-Heptachlorobiphenyl	37	37	MDL	37	0	0
		2,2',3,3',4,5',6,6'-Octachlorobiphenyl	37	35	MDL	35	0	0
		2,2',3,3',4,5,6,6'-Octachlorobiphenyl	37	36	MDL	36	0	0
		2,2',3,3',4,5',6'-Heptachlorobiphenyl	37	36	MDL	36	0	0
		2,2',3,3',4,5',6-Heptachlorobiphenyl	37	37	MDL	37	0	0
		2,2',3,3',4,5,6'-Heptachlorobiphenyl	37	34	MDL	34	0	0
		2,2',3,3',4,5'-Hexachlorobiphenyl	37	36	MDL	36	0	0
		2,2',3,3',4,6,6'-Heptachlorobiphenyl	37	37	MDL	37	0	0
		2,2',3,3',4,6'-Hexachlorobiphenyl	37	30	MDL	30	0	0
		2,2',3,3',4,6-Hexachlorobiphenyl	37	37	MDL	37	0	0
		2,2',3,3',4-Pentachlorobiphenyl	37	37	MDL	37	0	0
		2,2',3,3',5,5',6,6'-Octachlorobiphenyl	37	36	MDL	36	0	0
		2,2',3,3',5,5',6-Heptachlorobiphenyl	37	35	MDL	35	0	0
		2,2',3,3',5,5'-Hexachlorobiphenyl	37	37	MDL	37	0	0
		2,2',3,3',5,6,6'-Heptachlorobiphenyl	37	35	MDL	35	0	0
		2,2',3,3',6,6'-Hexachlorobiphenyl	37	36	MDL	36	0	0
		2,2',3,3',6-Pentachlorobiphenyl	37	34	MDL	34	0	0
		2,2',3,4,4',5,5',6-Octachlorobiphenyl	37	35	MDL	35	0	0
		2,2',3,4,4',5,6,6'-Octachlorobiphenyl	37	37	MDL	37	0	0
		2,2',3,4,4',5,6'-Heptachlorobiphenyl	37	37	MDL	37	0	0
		2,2',3,4,4',5,6-Heptachlorobiphenyl	37	37	MDL	37	0	0

Table 7. 2010 Surface Water Round 3 Data Review of How Non-detect Results Are Reported

December 2011 Summary of 2010 Surface Water Round 3					
		•	Number of NDs Results Not Reported as		
2010 Surface Water Round 3	QAPP	as per QAPP	per QAPP		
Non-HRGC/HRMS Data	ND=MRL	2,180	11,679		
HRGC/HRMS Data	ND=MDL	1,272	9,611		

Analyte	Lab	Andle	No. of	No. of Reported	QAPP	Non-Detects	Non-Detects	No. of Measurements Not
Туре	Name	Analyte	Measurements ^b	Non-detects	Requirement	Reported to MDL?	Reported to MRL?	Reported per QAPP
PCBs (cor	ntinuea)	2,2',3,4,4',5-Hexachlorobiphenyl	37	34	MDL	34	0	0
		2,2',3,4,4',6,6'-Heptachlorobiphenyl	37	37	MDL	37	0	0
		2,2',3,4',5,5',6-Heptachlorobiphenyl	37	27	MDL	27	0	0
		2,2',3,4',5,5'-Hexachlorobiphenyl	37 37	36	MDL	36	0	0
		2,2',3,4,5,5'-Hexachlorobiphenyl	37 37	33	MDL	33	0	0
		2,2',3,4',5,6,6'-Heptachlorobiphenyl	37 37	33 37	MDL	33 37	0	0
		2,2',3,4,5,6,6'-Heptachlorobiphenyl	37 37	37 37	MDL	37 37	0	0
			37 37	37 37	MDL	37 37	0	0
		2,2',3,4',5,6'-Hexachlorobiphenyl	37 37	37 37	MDL	37 37	0	0
		2,2',3,4,5',6-Hexachlorobiphenyl	37 37	37 37	MDL	37 37	0	0
		2,2',3,4,5,6-Hexachlorobiphenyl	37 37	37 37	MDL	37 37		0
		2,2',3,4',6,6'-Hexachlorobiphenyl	37 37		MDL		0	
		2,2',3,4,6,6'-Hexachlorobiphenyl	-	37		37	0	0
		2,2',3,4,6'-Pentachlorobiphenyl	37	37	MDL	37	0	0
		2,2',3,4'-Tetrachlorobiphenyl	37	36	MDL	36	0 0	0
		2,2',3,5,5'-Pentachlorobiphenyl	37	37	MDL	37	-	0
		2,2',3,5,6,6'-Hexachlorobiphenyl	37	37	MDL MDL	37	0	0
		2,2',3,5',6-Pentachlorobiphenyl	37 37	17 37	MDL MDL	17	0 0	0
		2,2',3,5,6'-Pentachlorobiphenyl	37 37		MDL MDL	37 37	-	·
		2,2',3,5-Tetrachlorobiphenyl	-	37		-	0	0
		2,2',3,6,6'-Pentachlorobiphenyl	37	37	MDL	37	0	0
		2,2',3,6'-Tetrachlorobiphenyl	37	37	MDL	37	0	0
		2,2',3-Trichlorobiphenyl	37	36	MDL	36	0	0
		2,2',4,4',5,6'-Hexachlorobiphenyl	37	37	MDL	37	0	0
		2,2',4,4',6,6'-Hexachlorobiphenyl	37	37	MDL	37	0	0
		2,2',4,5',6-Pentachlorobiphenyl	37	37	MDL	37	0	0
		2,2',4,5-Tetrachlorobiphenyl	37	37	MDL	37	0	0
		2,2',4,6,6'-Pentachlorobiphenyl	37	37	MDL	37	0	0
		2,2',4-Trichlorobiphenyl	37	25	MDL	25	0	0
		2,2',5,5'-Tetrachlorobiphenyl	37	20	MDL	20	0	0
		2,2',6,6'-Tetrachlorobiphenyl	37	37	MDL	37	0	0
		2,2',6-Trichlorobiphenyl	37	36	MDL	36	0	0
		2,2'-Dichlorobiphenyl	37	37	MDL	37	0	0
		2,3,3',4,4',5,5',6-Octachlorobiphenyl	37	37	MDL	37	0	0
		2,3,3',4,4',5,5'-Heptachlorobiphenyl	37	36	MDL	36	0	0
		2,3,3',4,4',5',6-Heptachlorobiphenyl	37	37	MDL	37	0	0
		2,3,3',4,4',5,6-Heptachlorobiphenyl	37	37	MDL	37	0	0
		2,3,3',4,4',6-Hexachlorobiphenyl	37	34	MDL	34	0	0
		2,3,3',4,4'-Pentachlorobiphenyl	37	26	MDL	26	0	0
		2,3,3',4,5,5',6-Heptachlorobiphenyl	37	37	MDL	37	0	0
		2,3,3',4',5,5'-Hexachlorobiphenyl	37	37	MDL	37	0	0

Table 7. 2010 Surface Water Round 3 Data Review of How Non-detect Results Are Reported

December 2011 Summary of 2010 Surface Water Round 3						
2010 Surface Water Round 3		Number of NDs Results Reported as per QAPP	Number of NDs Results Not Reported as			
Non-HRGC/HRMS Data	ND=MRL	2,180	11,679			
HRGC/HRMS Data	ND=MDL	1,272	9,611			

PCBs (contin		Analyte	Measurements b	No. of Reported Non-detects	QAPP Requirement	Non-Detects Reported to MDL?	Non-Detects Reported to MRL?	No. of Measurements Not Reported per QAPP
	nued)							
		2,3,3',4,5,5'-Hexachlorobiphenyl	37	37	MDL	37	0	0
		2,3,3',4',5',6-Hexachlorobiphenyl	37	35	MDL	35	0	0
		2,3,3',4,5',6-Hexachlorobiphenyl	37	37	MDL	37	0	0
		2,3,3',4',5'-Pentachlorobiphenyl	37	37	MDL	37	0	0
		2,3,3',4,5-Pentachlorobiphenyl	37	37	MDL	37	0	0
		2,3,3',4,6-Pentachlorobiphenyl	37	37	MDL	37	0	0
		2,3,3',4'-Tetrachlorobiphenyl	37	35	MDL	35	0	0
		2,3,3',4-Tetrachlorobiphenyl	37	37	MDL	37	0	0
		2,3,3',5,5',6-Hexachlorobiphenyl	37	37	MDL	37	0	0
		2,3,3',5,5'-Pentachlorobiphenyl	37	37	MDL	37	0	0
		2,3,3',5,6-Pentachlorobiphenyl	37	37	MDL	37	0	0
		2,3,3',5'-Tetrachlorobiphenyl	37	37	MDL	37	0	0
		2,3,3',5-Tetrachlorobiphenyl	37	37	MDL	37	0	0
		2,3',4,4',5,5'-Hexachlorobiphenyl	37	37	MDL	37	0	0
		2,3',4,4',5'-Pentachlorobiphenyl	37	37	MDL	37	0	0
		2,3',4,4',5-Pentachlorobiphenyl	37	17	MDL	17	0	0
		2,3,4,4',5-Pentachlorobiphenyl	37	37	MDL	37	0	0
		2,3',4,4'-Tetrachlorobiphenyl	37	26	MDL	26	0	0
		2,3,4,4'-Tetrachlorobiphenyl	37	37	MDL	37	0	0
		2,3',4,5,5'-Pentachlorobiphenyl	37	37	MDL	37	0	0
		2,3',4,5',6-Pentachlorobiphenyl	37	37	MDL	37	0	0
		2,3',4,5'-Tetrachlorobiphenyl	37	23	MDL	23	0	0
		2,3',4,5-Tetrachlorobiphenyl	37	37	MDL	37	0	0
		2,3,4',5-Tetrachlorobiphenyl	37	37	MDL	37	0	0
		2,3,4',6-Tetrachlorobiphenyl	37	32	MDL	32	0	0
		2,3',4-Trichlorobiphenyl	37	37	MDL	37	0	0
		2,3,4'-Trichlorobiphenyl	37	33	MDL	33	0	0
		2,3',5,5'-Tetrachlorobiphenyl	37	37	MDL	37	0	0
		2,3',5',6-Tetrachlorobiphenyl	37	37	MDL	37	0	0
		2,3',5'-Trichlorobiphenyl	37	37	MDL	37	0	0
		2,3,5-Trichlorobiphenyl	37	37	MDL	37	0	0
		2,3',6-Trichlorobiphenyl	37	37	MDL	37	0	0
		2,3,6-Trichlorobiphenyl	37	37	MDL	37	0	0
		2,3'-Dichlorobiphenyl	37	37	MDL	37	0	0
		2,3-Dichlorobiphenyl	37	37	MDL	37	0	0
		2,4',5-Trichlorobiphenyl	37	28	MDL	28	0	0
		2,4',6-Trichlorobiphenyl	37	33	MDL	33	0	0
		2,4'-Dichlorobiphenyl	37	37	MDL	37	0	0
		2,4-Dichlorobiphenyl	37	37	MDL	37	0	0
		2,5-Dichlorobiphenyl	37	37	MDL	37	0	0

Table 7. 2010 Surface Water Round 3 Data Review of How Non-detect Results Are Reported

December 2011 Summary of 2010 Surface Water Round 3						
		·	Number of NDs Results Not Reported as			
2010 Surface Water Round 3	QAPP	as per QAPP	per QAPP			
Non-HRGC/HRMS Data	ND=MRL	2,180	11,679			
HRGC/HRMS Data	ND=MDL	1,272	9,611			

3	2,6-Dichlorobiphenyl 3,3',4,4',5,5'-Hexachlorobiphenyl 3,3',4,4',5-Pentachlorobiphenyl 3,3',4,4'-Tetrachlorobiphenyl 3,3',4,5,5'-Pentachlorobiphenyl	37 37 37	37 37	MDL		_	_
3	3,3',4,4',5,5'-Hexachlorobiphenyl 3,3',4,4',5-Pentachlorobiphenyl 3,3',4,4'-Tetrachlorobiphenyl	37 37		MDL			
3	3,3',4,4',5-Pentachlorobiphenyl 3,3',4,4'-Tetrachlorobiphenyl	37	37		37	0	0
	3,3',4,4'-Tetrachlorobiphenyl		01	MDL	37	0	0
3			37	MDL	37	0	0
	3 3' 4 5 5'-Pentachlorohiphenyl	37	37	MDL	37	0	0
3	3,3,4,3,3 -i entacinorobiphenyi	37	37	MDL	37	0	0
3	3,3',4,5'-Tetrachlorobiphenyl	37	37	MDL	37	0	0
3	3,3',4,5-Tetrachlorobiphenyl	37	37	MDL	37	0	0
3	3,3',4-Trichlorobiphenyl	37	37	MDL	37	0	0
3	3,3',5,5'-Tetrachlorobiphenyl	37	37	MDL	37	0	0
3	3,3',5-Trichlorobiphenyl	37	37	MDL	37	0	0
3	3,3'-Dichlorobiphenyl	37	37	MDL	37	0	0
3	3,4,4',5-Tetrachlorobiphenyl	37	37	MDL	37	0	0
3	3,4,4'-Trichlorobiphenyl	37	36	MDL	36	0	0
3	3,4',5-Trichlorobiphenyl	37	37	MDL	37	0	0
3	3,4,5-Trichlorobiphenyl	37	37	MDL	37	0	0
(Coelution of PCB 107 and 124	37	37	MDL	37	0	0
(Coelution of PCB 110 and 115	37	23	MDL	23	0	0
(Coelution of PCB 12 and 13	37	37	MDL	37	0	0
(Coelution of PCB 128 and 166	37	35	MDL	35	0	0
(Coelution of PCB 129, 138, 160, and 163	37	15	MDL	15	0	0
(Coelution of PCB 134 and 143	37	37	MDL	37	0	0
(Coelution of PCB 135 and 151	37	35	MDL	35	0	0
(Coelution of PCB 139 and 140	37	35	MDL	35	0	0
(Coelution of PCB 147 and 149	37	13	MDL	13	0	0
(Coelution of PCB 153 and 168	37	17	MDL	17	0	0
(Coelution of PCB 156 and 157	37	33	MDL	33	0	0
(Coelution of PCB 171 and 173	37	36	MDL	36	0	0
(Coelution of PCB 18 and 30	37	28	MDL	28	0	0
(Coelution of PCB 180 and 193	37	24	MDL	24	0	0
(Coelution of PCB 183 and 185	37	35	MDL	35	0	0
(Coelution of PCB 198 and 199	37	35	MDL	35	0	0
(Coelution of PCB 20 and 28	37	29	MDL	29	0	0
(Coelution of PCB 21 and 33	37	29	MDL	29	0	0
(Coelution of PCB 26 and 29	37	37	MDL	37	0	0
(Coelution of PCB 40, 41, and 71	37	34	MDL	34	0	0
(Coelution of PCB 44, 47, and 65	37	18	MDL	18	0	0
(Coelution of PCB 45 and 51	37	27	MDL	27	0	0
(Coelution of PCB 49 and 69	37	27	MDL	27	0	0
(Coelution of PCB 50 and 53	37	36	MDL	36	0	0
(Coelution of PCB 59, 62, and 75	37	37	MDL	37	0	0

Table 7. 2010 Surface Water Round 3 Data Review of How Non-detect Results Are Reported

L	December 2011 Summary of 2010 Surface Water Round 3							
	2010 Surface Water Round 3		Number of NDs Results Reported as per QAPP	Number of NDs Results Not Reported as				
ŀ	Non-HRGC/HRMS Data	ND=MRL	2,180	11,679				
I	HRGC/HRMS Data	ND=MDL	1,272	9,611				

Analyte Type	Lab Name	Analyte	No. of Measurements ^b	No. of Reported Non-detects	QAPP Requirement	Non-Detects Reported to MDL?	Non-Detects Reported to MRL?	No. of Measurements Not Reported per QAPP
PCBs (co	ntinued)							
_		Coelution of PCB 61,70,74 and 76	37	22	MDL	22	0	0
		Coelution of PCB 83 and 99	37	28	MDL	28	0	0
		Coelution of PCB 85+116+117	37	33	MDL	33	0	0
		Coelution of PCB 86, 87, 97, 108, 119, and 125	37	32	MDL	32	0	0
		Coelution of PCB 88 and 91	37	36	MDL	36	0	0
		Coelution of PCB 90, 101, and 113	37	17	MDL	17	0	0
		Coelution of PCB 93, 98, 100 and 102	37	37	MDL	37	0	0
		Decachlorobiphenyl (PCB 209)	37	36	MDL	36	0	0
		Dichlorobiphenyl homologs	37	27	MDL	27	0	0
		Heptachlorobiphenyl homologs	37	18	MDL	18	0	0
		Hexachlorobiphenyl homologs	37	2	MDL	2	0	0
		Monochlorobiphenyl homologs	37	35	MDL	35	0	0
		Nonachlorobiphenyl homologs	37	35	MDL	35	0	0
		Octachlorobiphenyl homologs	37	35	MDL	35	0	0
		PCB congener 1	37	35	MDL	35	0	0
		PCB congener 14	37	37	MDL	37	0	0
		PCB congener 15	37	37	MDL	37	0	0
		PCB congener 2	37	37	MDL	37	0	0
		PCB congener 3	37	36	MDL	36	0	0
		Pentachlorobiphenyl homologs	37	5	MDL	5	0	0
		Tetrachlorobiphenyl homologs	37	0	MDL	0	0	0
		Total PCBs	37	0	MDL	0	0	0
		Trichlorobiphenyl homologs	37	0	MDL	0	0	0
Pesticide								
	Columbia	a Analytical Services						
		2,4'-DDD	37	37	MRL	37	0	37
		2,4'-DDE	37	37	MRL	37	0	37
		2,4'-DDT	37	37	MRL	36	1	36
		4,4'-DDD	37	37	MRL	15	22	15
		4,4'-DDE	37	37	MRL	13	24	13
		4,4'-DDT	37	37	MRL	29	8	29
		Aldrin	37	37	MRL	20	17	20
		alpha-Benzenehexachloride	37	37	MRL	37	0	37
		alpha-Chlordane	37	37	MRL	19	18	19
		beta-BHC	37	37	MRL	36	1	36
		Chlordane	37	37	MRL	13	24	13
		cis-Nonachlor	37	37	MRL	13	24	13
		delta-BHC	37	33	MRL	32	1	32
		Dieldrin	37	37	MRL	37	0	37
		Endosulfan I	37	37	MRL	36	1	36

	De	ecember 2011 Summary of 2010	Surface Water Round 3
00000 (W. D. Jo			Number of NDs Results Not Reported as
2010 Surface Water Round 3	QAPP	as per QAPP	per QAPP
Non-HRGC/HRMS Data	ND=MRL	2,180	11,679
HRGC/HRMS Data	ND=MDL	1,272	9,611

Analyte Type	Lab Name	Analyte	No. of Measurements ^b	No. of Reported Non-detects	QAPP Requirement	Non-Detects Reported to MDL?	Non-Detects Reported to MRL?	No. of Measurements Not Reported per QAPP
		des (continued)	Modediomonio	11011 0010010	Hoquiromonic	rioportou to MBE.	rioportou to mile:	rioportou por carti i
resticides	3/11CIDICI	Endosulfan II	37	37	MRL	23	14	23
		Endosulfan sulfate	37	37	MRL	37	0	37
		Endrin	37	37	MRL	35	2	35
		Endrin aldehyde	37	34	MRL	22	12	22
		Endrin ketone	37	37	MRL	37	0	37
		gamma-BHC	37	37	MRL	37	0	37
		gamma-Chlordane	37	37	MRL	36	1	36
		Heptachlor	37	37	MRL	31	6	31
		Heptachlor epoxide	37	37	MRL	36	1	36
		Methoxychlor	37	37	MRL	37	0	37
		Oxychlordane	37	37	MRL	12	25	12
		Toxaphene	37	37	MRL	8	29	8
		trans-Nonachlor	37	37	MRL	34	3	34
Radionuc	lides		•			-	-	•
	Isotech							
		Stable hydrogen isotope-ratio	75	0	MRL	0	0	0
		Stable oxygen isotope-ratio	75	0	MRL	0	0	0
	Pace Ana	alytical						
		Radium-226	6	6	MRL	0	0	0
		Uranium-238	6	2	MRL	0	1	0
SVOCs								
	Columbia	a Analytical Services						
		1,2,4-Trichlorobenzene	37	37	MRL	37	0	37
		1,2-Dichlorobenzene	37	37	MRL	37	0	37
		1,3-Dichlorobenzene	37	37	MRL	37	0	37
		1,4-Dichlorobenzene	37	37	MRL	37	0	37
		2,2'-oxybis(1-Chloropropane)	37	37	MRL	37	0	37
		2,4,5-Trichlorophenol	37	37	MRL	37	0	37
		2,4,6-Trichlorophenol	37	37	MRL	37	0	37
		2,4-Dichlorophenol	37	37	MRL	37	0	37
		2,4-Dimethylphenol	37	37	MRL	37	0	37
		2,4-Dinitrophenol	37	37	MRL	37	0	37
		2,4-Dinitrotoluene	37	37	MRL	37	0	37
		2,6-Dinitrotoluene	37	37	MRL	37	0	37
		2-Chloronaphthalene	37	37	MRL	37	0	37
		2-Chlorophenol	37	37	MRL	37	0	37
		2-Methylphenol	37	37	MRL	37	0	37
		2-Nitroaniline	37	37	MRL	37	0	37
		2-Nitrophenol	37	37	MRL	37	0	37
		3.3'-Dichlorobenzidine	37	19	MRL	19	0	19

Table 7. 2010 Surface Water Round 3 Data Review of How Non-detect Results Are Reported

	December 2011 Summary of 2010 Surface Water Round 3							
		Number of NDs Results Reported	Number of NDs Results Not Reported as					
2010 Surface Water Round 3	QAPP	as per QAPP	per QAPP					
Non-HRGC/HRMS Data	ND=MRL	2,180	11,679					
HRGC/HRMS Data	ND=MDL	1,272	9,611					

Analyte	Lab		No. of	No. of Reported	QAPP	Non-Detects	Non-Detects	No. of Measurements Not
Туре	Name	Analyte	Measurements ^b	Non-detects	Requirement	Reported to MDL?	Reported to MRL?	Reported per QAPP
SVOCs (c	ontinued				145			
		3-Nitroaniline	37	37	MRL	37	0	37
		4,6-Dinitro-2-methylphenol	37	37	MRL	37	0	37
		4-Bromophenyl-phenylether	37	37	MRL	37	0	37
		4-Chloro-3-methylphenol	37	37	MRL	37	0	37
		4-Chloroaniline	37	36	MRL	36	0	36
		4-Chlorophenyl-phenyl ether	37	37	MRL	37	0	37
		4-Methylphenol	37	37	MRL	37	0	37
		4-Nitroaniline	37	37	MRL	37	0	37
		4-Nitrophenol	37	37	MRL	37	0	37
		Acetophenone	37	37	MRL	37	0	37
		Benzaldehyde	37	37	MRL	37	0	37
		Benzoic acid	37	28	MRL	28	0	28
		Benzyl alcohol	37	37	MRL	37	0	37
		Benzyl n-butyl phthalate	37	36	MRL	36	0	36
		bis(2-Chloroethoxy)methane	37	37	MRL	37	0	37
		Bis(2-chloroethyl)ether	37	37	MRL	37	0	37
		bis(2-Ethylhexyl)phthalate	37	35	MRL	34	1	34
		Caprolactam	37	37	MRL	37	0	37
		Carbazole	74	74	MRL	74	0	74
		Dibenzothiophene	37	37	MRL	37	0	37
		Diethyl phthalate	37	37	MRL	37	0	37
		Dimethyl phthalate	37	32	MRL	32	0	32
		Di-n-butyl phthalate	37	37	MRL	37	0	37
		Di-n-octylphthalate	37	37	MRL	37	0	37
		Hexachlorobenzene	37	35	MRL	35	0	35
		Hexachlorobutadiene	37	37	MRL	37	0	37
		Hexachlorocyclopentadiene	37	37	MRL	37	0	37
		Hexachloroethane	37	37	MRL	37	0	37
		Isophorone	37	37	MRL	37	0	37
		Nitrobenzene	37	37	MRL	37	0	37
		N-Nitrosodi-n-propylamine	37	37	MRL	37	0	37
		N-Nitrosodiphenylamine	37	37	MRL	37	0	37
		Pentachlorophenol	37	37	MRL	37	0	37
		Phenol	37	37	MRL	37	0	37
			13,524	8,099	MRL	6,631	1,461	6,631
			7,104	6,379	MDL	6,379	0	0
		2010 Surface Water R3 b	20,628	14,478	ALL	13,010	1,461	6,631

Notes:

^a The December 2011 analysis and summary included results for lab replicates, field replicates, field triplicates, blank water, rinse water/QC samples whereas the current table does not.

^b Excludes all duplicate/triplicate/replicate/blank and rinsewater QC sample results

Table 8. 2010 White Sturgeon Sediment Toxicity Testing Data Review of How Non-detect Results are Reported

December 2	December 2011 Summary of 2010 White Sturgeon Sediment Toxicity Testing ^a								
	Number of NDs Results Reported	Number of NDs Results Not Reported							
QAPP	as per QAPP	as per QAPP							
ND=MRL	8,623	16,740							

Analyte	Lab		No. of	No. of Reported	QAPP	Non-Detects	Non-Detects	No. of Measurements not
Туре	Name	Analyte	Measurements ^b	Non-detects	Requirement	Reported to MDL?	Reported to MRL?	Reported per QAPP
Conventi								
	Columbia	Analytical Services						
		Alkalinity	818	9	MRL	7	2	7
		Fluoride	1395	58	MRL	58	0	58
		Hardness as CaCO3	1670	46	MRL	1	21	1
		Organic carbon	1458	317	MRL	1	316	1
		pH Calida	58 54	0	MRL	0	0	0
		Solids Sulfate	54 1395	0 7	MRL MRL	0 7	0 0	0 7
		Sulfide	20	4	MRL	4	0	4
		Sulfide-AVS	20 34	9	MRL	9	0	9
		Total dissolved solids	659	100	MRL	0	100	0
		Total Suspended Solids	4	4	MRL	0	4	0
	University	y of Saskatchewan	7	7	WIIVE	O	7	0
	Omvoron	Alkalinity	930	0	MRL	0	0	0
		Conductivity	3797	0	MRL	0	0	0
		Dissolved oxygen	137	0	MRL	0	0	0
		Dissolved oxygen - % saturation adjusted for temperature	3662	0	MRL	0	0	0
		Hardness	1543	0	MRL	0	0	0
		pH	3800	0	MRL	0	0	0
Grain Siz	е							
	Columbia	Analytical Services						
		Clay	23	0	MRL	0	0	0
		Coarse Gravel	23	6	MRL	0	0	0
		Coarse sand	23	0	MRL	0	0	0
		Cobbles	23	6	MRL	0	0	0
		Fine Gravel	23	6	MRL	0	0	0
		Fine Sand	23	0	MRL	0	0	0
		Med. Sand	23	0	MRL	0	0	0
		Medium Gravel	23	7	MRL	0	0	0
		Silt	23	0	MRL	0	0	0
		Very Coarse Gravel Very Coarse Sand	23 23	6 0	MRL MRL	0 0	0	0 0
		Very Fine Gravel	23 23	1	MRL	0	0 0	0
		Very fine stand	23	0	MRL	0	0	0
Metals/M	etalloids	very line sand		<u> </u>	IVIIXL		<u> </u>	0
Wetars, W		a Analytical Services						
	Coldinibid	Aluminum	2100	629	MRL	150	411	150
		Antimony	2154	522	MRL	321	201	321
		Arsenic	2153	996	MRL	949	47	949
		Barium	2100	246	MRL	7	239	7
		Beryllium	2100	1941	MRL	1937	4	1937
		Cadmium	2296	1403	MRL	660	530	660
		Calcium	2242	17	MRL	14	3	14
		Chloride ion	1395	48	MRL	5	43	5
		Chromium	2154	1361	MRL	203	949	203
		Cobalt	2100	984	MRL	264	575	264

Table 8. 2010 White Sturgeon Sediment Toxicity Testing Data Review of How Non-detect Results are Reported

December 2	December 2011 Summary of 2010 White Sturgeon Sediment Toxicity Testing ^a								
	Number of NDs Results Reported	Number of NDs Results Not Reported							
QAPP	as per QAPP	as per QAPP							
ND=MRL	8,623	16,740							

Analyte	Lab		No. of	No. of Reported	QAPP	Non-Detects	Non-Detects	No. of Measurements not
Type	Name	Analyte	Measurements b	Non-detects	Requirement		Reported to MRL?	
		continued)					.,	.,,
	14.10140	Copper	2282	975	MRL	166	625	166
		Iron	2100	1412	MRL	1076	153	1076
		Lead	2296	1358	MRL	178	1004	178
		Magnesium	2242	20	MRL	18	2	18
		Manganese	2100	720	MRL	120	534	120
		Mercury	1124	438	MRL	264	174	264
		Molybdenum	2098	445	MRL	294	151	294
		Nickel	2140	1124	MRL	195	717	195
		Potassium	2242	392	MRL	341	51	341
		Selenium	2100	1614	MRL	1613	1	1613
		Silicon	392	10	MRL	8	2	8
		Silver	2100	1795	MRL	1512	52	1512
		Sodium	2242	284	MRL	62	222	62
		Thallium	2100	1482	MRL	1264	218	1264
		Vanadium	2100	822	MRL	670	152	670
		Zinc	2282	1369	MRL	146	1030	146
	Liniversity	y of Saskatchewan	2202	1000		110	1000	110
	Offiversity	Chloride ion	44	44	MRL	0	0	0
Nutrients		Cilionae Ion			WITCE	<u> </u>		,
		Analytical Services						
		Ammonia as Nitrogen	853	50	MRL	50	0	50
		Nitrate as nitrogen	1004	8	MRL	8	0	8
		Nitrate plus nitrite	394	0	MRL	0	0	0
		Nitrite as nitrogen	1004	137	MRL	137	0	137
		Orthophosphate as phosphorus	139	34	MRL	34	0	34
		Phosphorus	4	4	MRL	4	0	4
	University	y of Saskatchewan						
		Ammonia	729	255	MRL	0	0	0
		Ammonia as Nitrogen	57	37	MRL	0	0	0
		Nitrate	664	171	MRL	0	0	0
		Nitrite	1061	657	MRL	0	0	0
PAHs		· mine					•	· ·
	Columbia	Analytical Services						
		2-Methylnaphthalene	14	0	MRL	0	0	0
		Acenaphthene	14	0	MRL	0	0	0
		Acenaphthylene	14	0	MRL	0	0	0
		Anthracene	14	0	MRL	0	0	0
		Benzo(e)pyrene	14	0	MRL	0	0	0
		Benzo[a]anthracene	14	0	MRL	0	0	0
		Benzo[a]pyrene	14	0	MRL	0	0	0
		Benzo[b]fluoranthene	14	0	MRL	0	0	0
		Benzo[g,h,i]perylene	14	0	MRL	0	0	0
		Benzo[k]fluoranthene	14	0	MRL	0	0	0
		Chrysene	14	0	MRL	0	0	0
		Dibenzo[a,h]anthracene	14	0	MRL	0	0	0
		Fluoranthene	14	0	MRL	0	0	0
		i iuoraniiiloiio	14	U	IVITYL	U	U	U

Table 8. 2010 White Sturgeon Sediment Toxicity Testing Data Review of How Non-detect Results are Reported

December 2011 Summary of 2010 White Sturgeon Sediment Toxicity Testing ^a								
	Number of NDs Results Reported Number of NDs Results Not Reported							
QAPP	as per QAPP	as per QAPP						
ND=MRL	8,623	16,740						

Analyte	Lab Name	Analyta	No. of Measurements ^b	No. of Reported Non-detects	QAPP Requirement	Non-Detects	Non-Detects Reported to MRL?	No. of Measurements not
Type		Analyte	Measurements	Non-detects	Requirement	Reported to MDL?	Reported to MRL?	Reported per QAPP
PAHs (co	ntinuea)	Fluorene	14	0	MRL	0	0	0
			14	0	MRL	0		0
		Indeno[1,2,3-cd]pyrene			MRL		0	
		Naphthalene	14	14		11	3	11
		Perylene	14	0	MRL	0	0	0
		Phenanthrene	14	0	MRL	0	0	0
PCBs		Pyrene	14	0	MRL	0	0	0
PUBS	Columbia	a Analytical Services						
	Columbia	2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl	16	2	MRL	2	0	2
		2,2',3,3',4,4',5,5'-Octachlorobiphenyl	16	2	MRL	2	0	2
			16	2	MRL	2	0	2
		2,2',3,3',4,4',5,6-Octachlorobiphenyl	16		MRL	2	0	2
		2,2',3,3',4,4',5-Heptachlorobiphenyl	16	2 2	MRL	2	0	
		2,2',3,3',4,4'-Hexachlorobiphenyl	16		MRL	2	0	2
		2,2',3,3',4,5',6,6'-Octachlorobiphenyl		2				2
		2,2',3,3',4,5',6'-Heptachlorobiphenyl	16	2	MRL	2	0	2
		2,2',3,3',4,5,6'-Heptachlorobiphenyl	2	2	MRL	2	0	2
		2,2',3,3',4,6'-Hexachlorobiphenyl	2	2	MRL	2	0	2
		2,2',3,4,4',5,5',6-Octachlorobiphenyl	2	2	MRL	2	0	2
		2,2',3,4,4',5,5'-Heptachlorobiphenyl	16	2	MRL	2	0	2
		2,2',3,4,4',5',6-Heptachlorobiphenyl	16	2	MRL	2	0	2
		2,2',3,4,4',5'-Hexachlorobiphenyl	16	2	MRL	2	0	2
		2,2',3,4,4',6,6'-Heptachlorobiphenyl	2	2	MRL	2	0	2
		2,2',3,4',5,5',6-Heptachlorobiphenyl	16	2	MRL	2	0	2
		2,2',3,4,5,5'-Hexachlorobiphenyl	2	2	MRL	2	0	2
		2,2',3,4',5',6-Hexachlorobiphenyl	16	2	MRL	2	0	2
		2,2',3,4',5'-Pentachlorobiphenyl	2	2	MRL	2	0	2
		2,2',3,4',5-Pentachlorobiphenyl	2	2	MRL	2	0	2
		2,2',3,4,5'-Pentachlorobiphenyl	16	2	MRL	2	0	2
		2,2',3,5,5',6-Hexachlorobiphenyl	16	2	MRL	2	0	2
		2,2',3,5',6-Pentachlorobiphenyl	2	2	MRL	2	0	2
		2,2',3,5'-Tetrachlorobiphenyl	16	2	MRL	2	0	2
		2,2',4,4',5,5'-Hexachlorobiphenyl	16	2	MRL	2	0	2
		2,2',4,4',5-Pentachlorobiphenyl	16	2	MRL	2	0	2
		2,2',4,5,5'-Pentachlorobiphenyl	16	2	MRL	2	0	2
		2,2',4,5'-Tetrachlorobiphenyl	16	2	MRL	2	0	2
		2,2',5,5'-Tetrachlorobiphenyl	16	2	MRL	2	0	2
		2,2',5-Trichlorobiphenyl	16	2	MRL	2	0	2
		2,3,3',4,4',5,5'-Heptachlorobiphenyl	16	2	MRL	2	0	2
		2,3,3',4,4',5'-Hexachlorobiphenyl	16	2	MRL	2	0	2
		2,3,3',4,4',5-Hexachlorobiphenyl	16	2	MRL	2	0	2
		2,3,3',4,4',6-Hexachlorobiphenyl	16	2	MRL	2	Ö	2
		2,3,3',4,4'-Pentachlorobiphenyl	16	2	MRL	2	0	2
		2,3,3',4',6-Pentachlorobiphenyl	16	2	MRL	2	0	2
		2,3,3',4'-Tetrachlorobiphenyl	2	2	MRL	2	0	2
		2,3',4,4',5,5'-Hexachlorobiphenyl	16	2	MRL	2	0	2
			16	2	MRL	2	0	2
		2,3',4,4',5',6-Hexachlorobiphenyl	10	۷	IVIKL	2	U	2

Table 8. 2010 White Sturgeon Sediment Toxicity Testing Data Review of How Non-detect Results are Reported

December 2011 Summary of 2010 White Sturgeon Sediment Toxicity Testing ^a								
	Number of NDs Results Reported	Number of NDs Results Not Reported						
QAPP	as per QAPP	as per QAPP						
ND=MRL	8,623	16,740						

Analyte	Lab		No. of	No. of Reported	QAPP	Non-Detects	Non-Detects	No. of Measurements not
Type	Name	Analyte	Measurements b	Non-detects	Requirement	Reported to MDL?	Reported to MRL?	Reported per QAPP
PCBs (co	ntinued)				•	•		
		2,3,4,4',5,6-Hexachlorobiphenyl	2	2	MRL	2	0	2
		2,3',4,4',5'-Pentachlorobiphenyl	16	2	MRL	2	0	2
		2,3',4,4',5-Pentachlorobiphenyl	16	2	MRL	2	0	2
		2,3,4,4',5-Pentachlorobiphenyl	16	2	MRL	2	0	2
		2,3',4,4',6-Pentachlorobiphenyl	16	2	MRL	2	0	2
		2,3',4,4'-Tetrachlorobiphenyl	16	2	MRL	2	0	2
		2,3,4,4'-Tetrachlorobiphenyl	2	2	MRL	2	0	2
		2,3',4',5-Tetrachlorobiphenyl	16	2	MRL	2	0	2
		2,3',4'-Trichlorobiphenyl	2	2	MRL	2	0	2
		2,3-Dichlorobiphenyl	2	2	MRL	2	0	2
		2,4,4',5-Tetrachlorobiphenyl	16	2	MRL	2	0	2
		2,4,4'-Trichlorobiphenyl	16	2	MRL	2	0	2
		2,4',5-Trichlorobiphenyl	2	2	MRL	2	0	2
		2,4'-Dichlorobiphenyl	16	2	MRL	2	0	2
		2-Chlorobiphenyl	2	2	MRL	2	0	2
		3,3',4,4',5,5'-Hexachlorobiphenyl	16	2	MRL	2	0	2
		3,3',4,4',5-Pentachlorobiphenyl	16	2	MRL	2	0	2
		3,3',4,4'-Tetrachlorobiphenyl	16	2	MRL	2	0	2
		3,4,4',5-Tetrachlorobiphenyl	16	2	MRL	2	0	2
		3,4,4'-Trichlorobiphenyl	16	2	MRL	2	0	2
		Decachlorobiphenyl (PCB 209)	16	2	MRL	2	0	2
Pesticide	s/Herbicio							
	Columbia	a Analytical Services						
		2,4'-DDD	16	2	MRL	2	0	2
		2,4'-DDE	16	2	MRL	2	0	2
		2,4'-DDT	16	2	MRL	2	0	2
		4,4'-DDD	16	2	MRL	2	0	2
		4,4'-DDE	16	2	MRL	2	0	2
		4,4'-DDT	16	2	MRL	2	0	2
Physical-	Chemical	Properties						
	Universit	ty of Saskatchewan						
		Temperature	3799	0	MRL	0	0	0
SVOCs								
	Columbia	a Analytical Services						
		Carbazole	14	0	MRL	0	0	0
		Dibenzothiophene	14	0	MRL	0	0	0
		Teck 2010 White Sturgeon Sediment Toxicity b	85,343	24,534	MRL	12,898	8,536	12,898
Notes:		·	•	•				

Notes

a The December 2011 analysis and summary included results for lab replicates, field replicates, field triplicates, blank water, rinse water/QC samples whereas the current table does not.

^b Excludes all duplicate/triplicate/replicate/blank and rinsewater QC sample results.

Memorandum

Teck American Incorporated 501 North Riverpoint Boulevard Suite 300 Spokane, WA 99202 USA +1 509 747 6111 Tel +1 509 922 8767 Fax www.teck.com

Teck

To: Helen Bottcher, U.S. Environmental Protection Agency

Date: December 5, 2011

(EPA) Region 10 (R10)

From: Kris McCaig, Teck American Incorporated (TAI)

File No. 01-773180-000

Cc: Marko Adzic, TAI

Anne Fairbrother, Exponent, Inc.

RE: Upper Columbia River Remedial Investigation Feasibility Study (UCR RI/FS)

Database Detection Limit Analysis Summary and Results

As you know, Maja Tritt identified a discrepancy between reporting limits listed in approved Quality Assurance Project Plans (QAPPs) and the database. Specifically, M. Tritt noted that "It appears that Teck is reporting non-detects at the MDL (method detection limit) in their database rather than the MRL (method reporting limit). According to the QAPP (i.e., Surface Water Study as referenced below), non-detects should be reported at the MRL. This affects risk assessments to the extent that non-detects are used to calculate risks. MDLs may be reported for non-detects for the entire database, though I only checked the surface water data."

As requested, we have conducted an analysis for the above-mentioned discrepancy. To that end, approved QAPPs (e.g., 2009 Beach Sediment Study) were reviewed for clarification of requirements for reporting non-detected values in the database. Table 1 below identifies requirements and specific citations found in each QAPP:

Table 1 – UCR RI/FS QAPP Requirements

QAPP	Requirement	Citation
2009 Beach Sediment Study	Nondetected values will be reported at the MRL and will be adjusted by the laboratory as necessary to reflect sample dilution or matrix interference.	Page A-23, third full paragraph
, and the second	1	
2009/2010 Surface Water Study	Nondetected values will be reported at the MRL and will be adjusted by the laboratory as necessary to reflect sample dilution or matrix interference.	Page B-19, third full paragraph
	For HRGC/HRMS methods non-detects will be reported to the sample specific detection limit (SDL). For all other methods non-detects will be reported to the MRL.	Table B-2, Note c (table page 6 of 6)
2009 Fish Tissue Study	Nondetected values will be reported at the MDL and will be adjusted by the laboratory as necessary to reflect sample dilution or matrix interference.	Page B-16, third full paragraph
	For high-resolution gas chromatography/high-resolution mass spectrometry (HRGC/HRMS) analyses (i.e., Dioxins/Furans, PCB Congeners, and PBDEs) the analytes will be reported to an estimated detection limit (EDL). The EDL is sample and analyte specific and is based on the signal and noise on the instrument.	Table B-2, Note i (table page 10 of 10)
2010 White Sturgeon Sediment	Nondetected values will be reported at the MRL and will be adjusted by the laboratory as necessary to reflect sample dilution or matrix interference.	Page B-24, second bullet and continued on B-25
Toxicity Study	For HRGC/HRMS methods non-detects will be reported to the SDL. For all other methods non-detects will be reported to the MRL.	Table A-2, Note c (table page 6 of 6)

The database manager (i.e., Exponent) ran a query for all records associated with "Teck" studies in the database to return all records where the undetected field = TRUE. Once the initial review was complete, questions were identified in certain data sets and TAI worked with the respective analytical laboratories to obtain answers and make appropriate updates to the database. Table 2 below is a download from the database webtool under the database history notes tab where updates made to the database regarding the above referenced are recorded based on our work with the laboratories and the validator (i.e., Environmental Standards, Inc.) to clarify or correct data records.

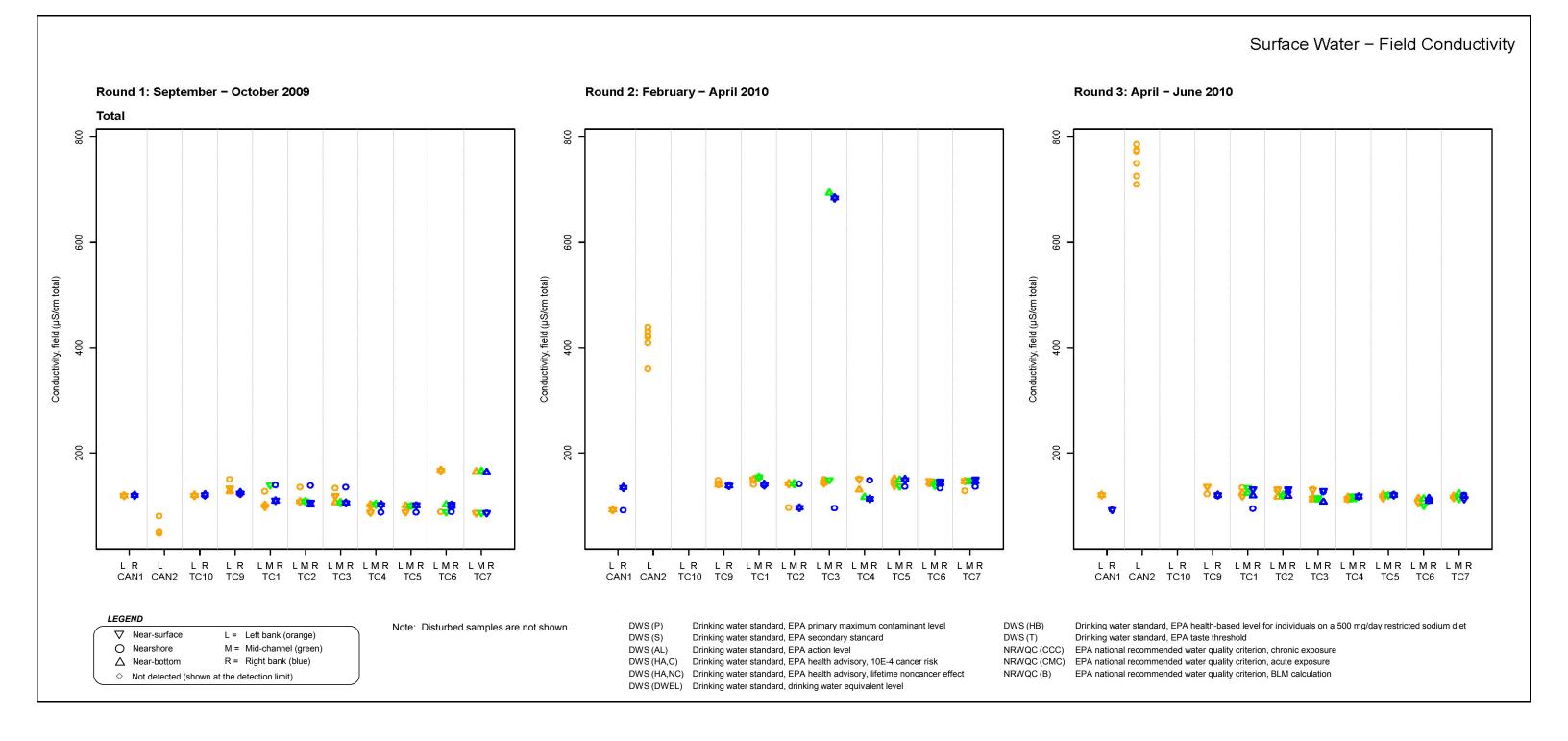
Table 2 – Database History Notes Relating to Non-Detect Reporting

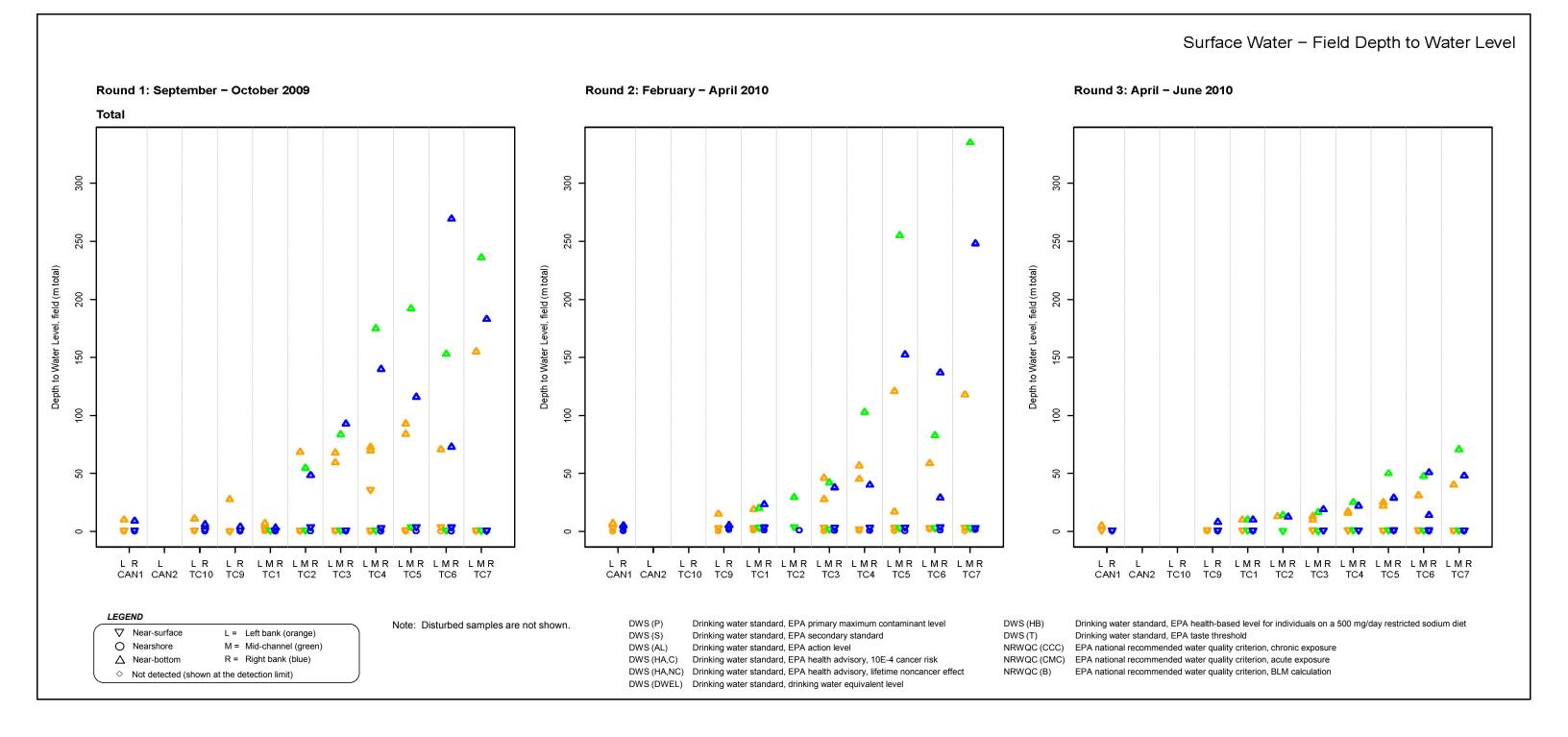
Comments	Data Manager	Change Date
For the Teck 2009 sturgeon toxicity studies, 247 pH results records updated by the removal of the "U*" validation flag. The U* flags were originally assigned based on review of the measured values only, and an undetected flag is not appropriate for a pH measurement.	C. Kessel	9/12/2011
For the Teck 2009 fish study lab sample K0911736-005 mercury analysis of rinse water, updated the detection limit from 0.2 to 0.02 per review of EDD and lab report.	C. Kessel	9/13/2011
For the Teck 2009 fish study, 5 non-detect result records were updated per correction from Vista; the 5 records have the following note added to the comments field: "Missing detection limit added, and meas_value updated from reporting_limit to detection_limit on 10/4/2011 per correction from Vista.".	C. Kessel	10/4/2011
For the Teck 2009 fish study and 3 rounds of surface water, undetected, estimated and validator_flags fields were updated for 37 records per corrections from validator. All affected records contains details of updates made plus "per validation correction, 10/4/11." in the comments field.	C. Kessel	10/4/2011
For the Teck 2010 Sturgeon Toxicity study, updated 990 undetected results detection limit field to equal the measured value per review by M. Hecker, 9/26/11. Updated measured values for 4 nitrite results from <0.02 to <0.25; and removed the "<" lab flag from 7 records per review by D. Vardy, 10/6/11 & 10/7/11.	C. Kessel	10/7/2011
For the Teck 2009 and 2010 Beach Sediment and 2009 round 1 Surface Water, 1339 undetected results records were updated for the reporting limit, detection limit, and/or measured value per updates received from SGS NC. See the lab report addendums for specific details.	C. Kessel	11/14/2011
For the Teck 2009 fish, and 2010 Round 2 and 3 Surface Water studies, 15 non-detect records measured value and/or detection limit fields updated per review by CAS and Vista. See lab results comments field for specific details.	C. Kessel	11/16/2011

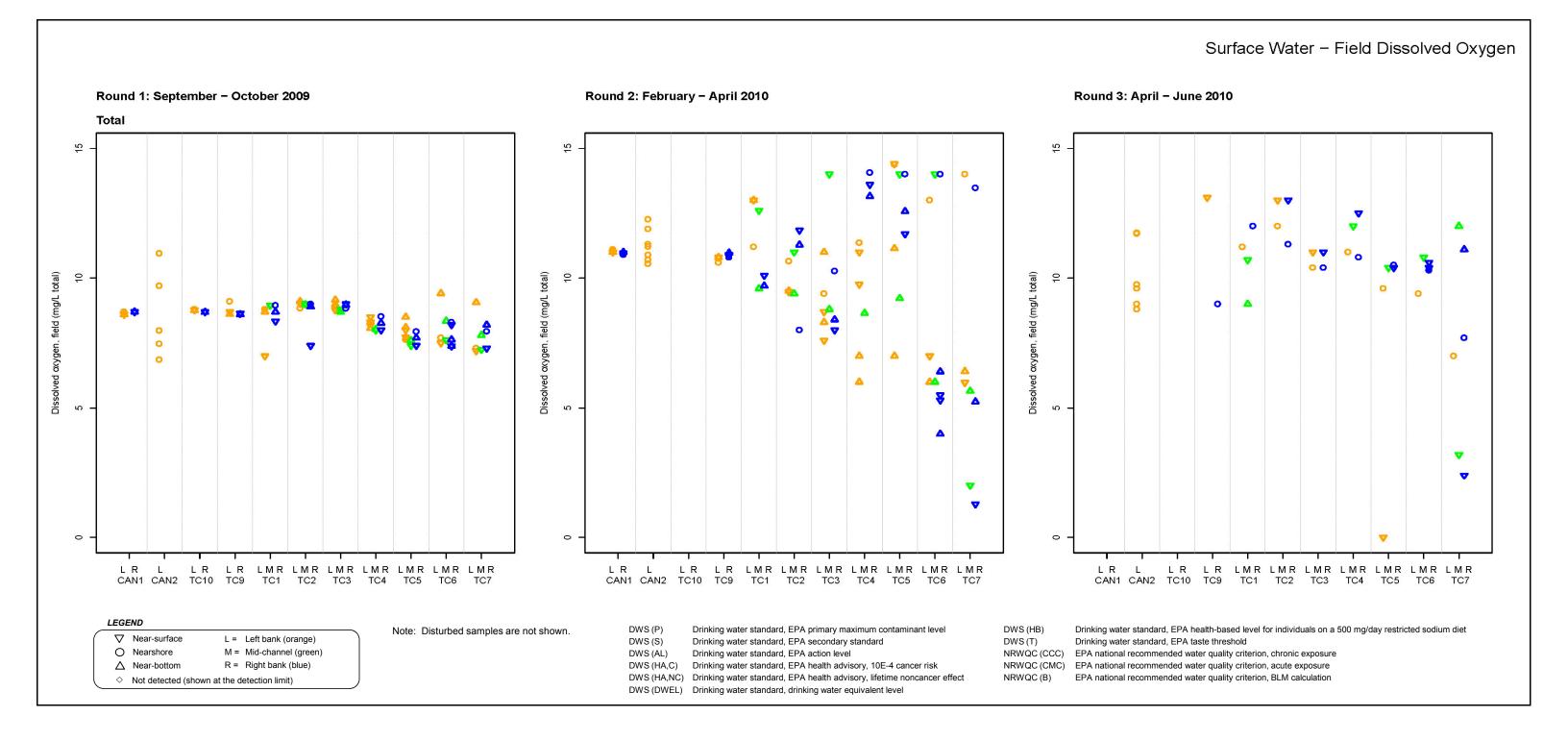
Once the above listed items were addressed and all updates made to the database, the summary shown in Table 3 below was prepared to compare non-detect reporting in the database with requirements of the program QAPPs as listed above in Table 1.

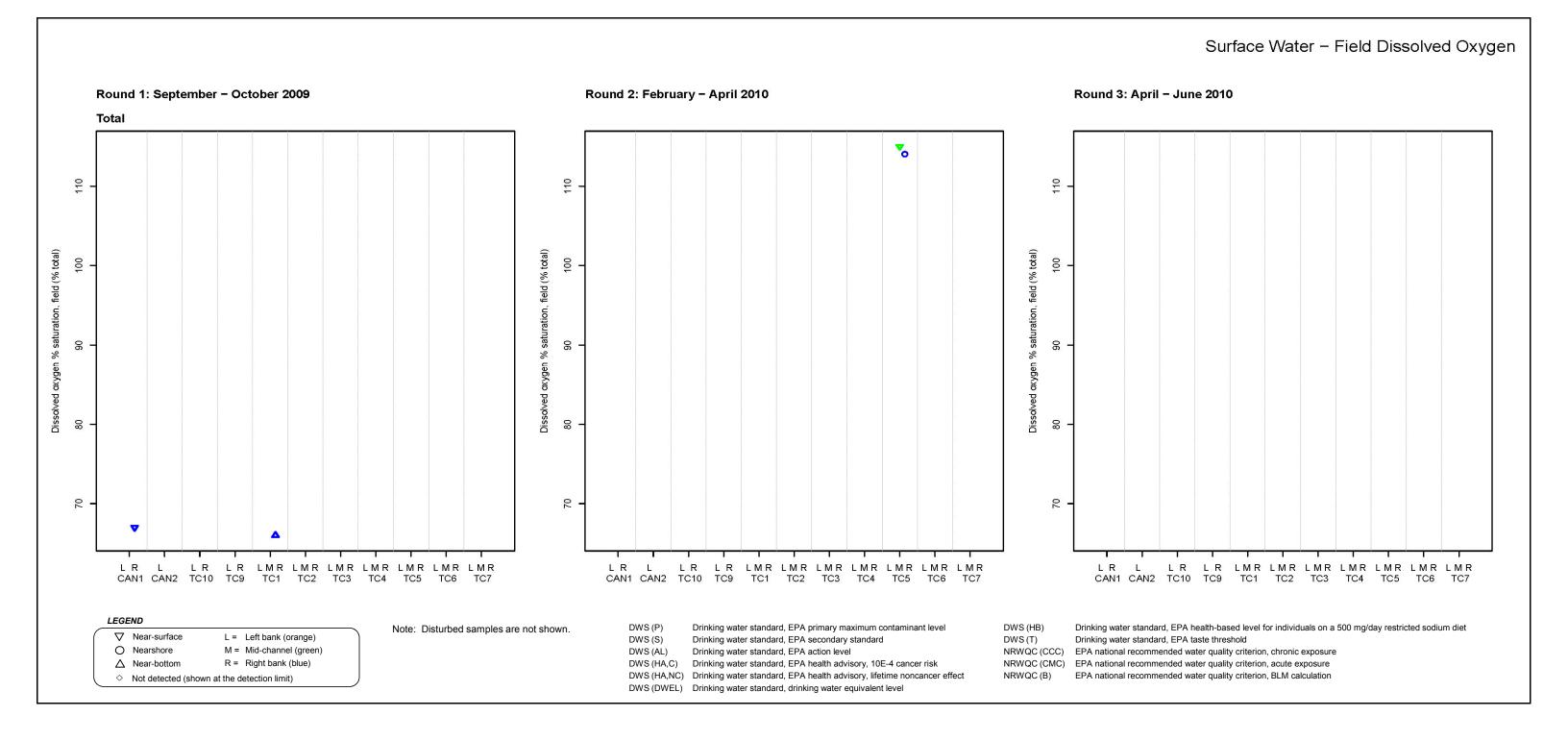
Table 3 – Summary of Non-detect Values Reported from Teck UCR RI/FS Studies

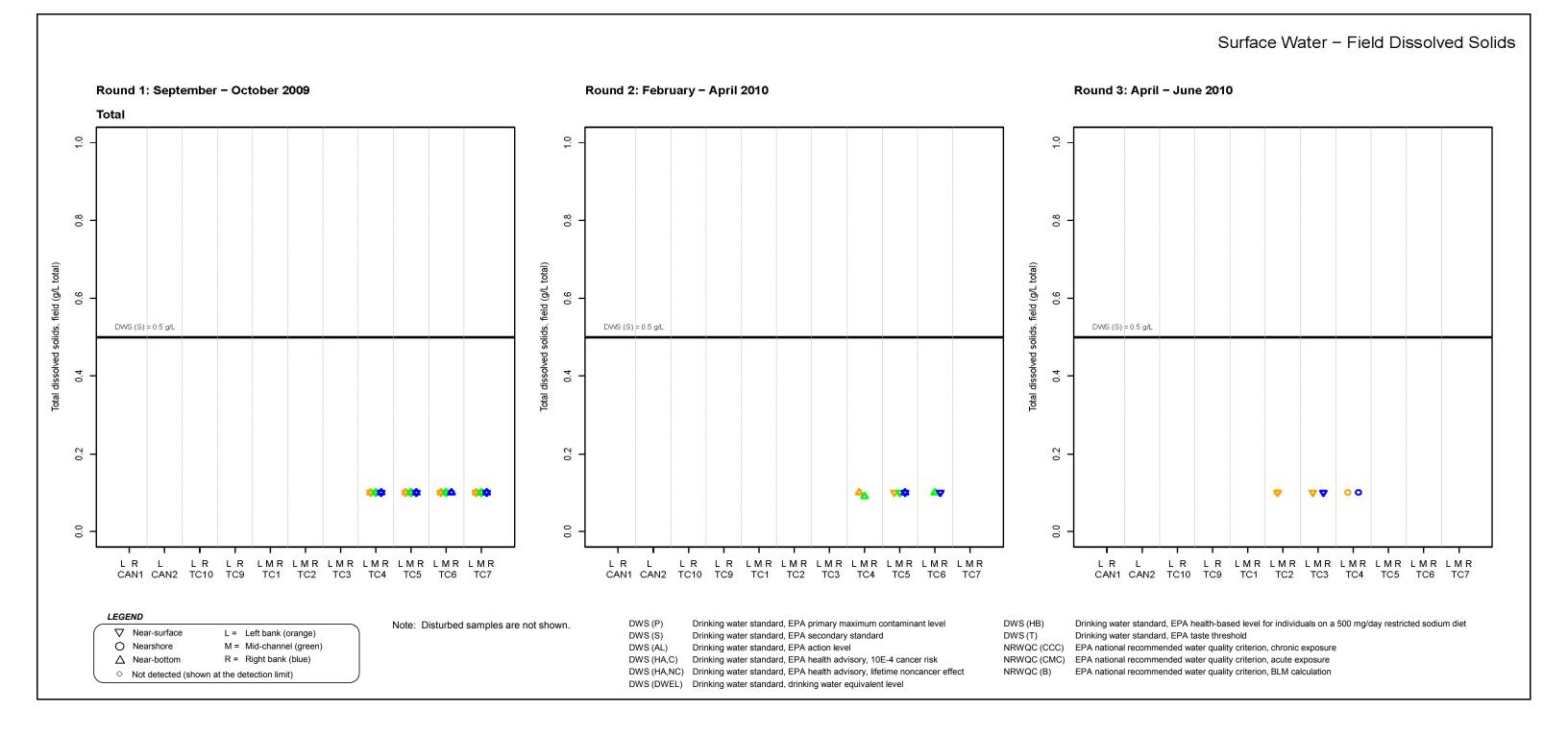
Teck Program	NDs reported at MRL	NDs reported at MDL	NDs not reported at MRL or MDL	Notes - NDs not reported at MRL or MDL	Total count of NDs	QAPP requirement	NDs reported as per QAPP	NDs NOT reported as per QAPP
2009 Beach Sediment	73	1,332	37	1 ^a , 34 ^b , 2 ^e	1,442			
2010 Beach Sediment	67	2,168	33	28 ^b , 1 ^d , 4 ^e	2,268			
2011 Beach Sediment	510	14,686	310	220 ^b , 76 ^d , 14 ^e	15,506			
Beach Sediment Total	650	18,186	380		19,216	ND=MRL	650	18,566
2009 Surface Water Round 1	3,976	26,811	307	$2^{a}, 295^{b}, 10^{e}$	31,094			
Non-HRGC/HRMS Data	3,030	15,482	10		18,522	ND=MRL	3,030	15,482
HRGC/HRMS Data	946	11,329	297		12,572	ND=MDL	11,329	946
2010 Surface Water Round 2	11,697	13,794	16	1 ^b , 15 ^e	25,507			
Non-HRGC/HRMS Data	2,077	12,584	15		14,676	ND=MRL	2,077	12,584
HRGC/HRMS Data	9,620	1,210	1		10,831	ND=MDL	1,210	9,620
2010 Surface Water Round 3	11,791	12,951	14	14 ^e	24,756			
Non-HRGC/HRMS Data	2,180	11,679	14		13,873	ND=MRL	2,180	11,679
HRGC/HRMS Data	9,611	1,272			10,883	ND=MDL	1,272	9,611
Non-HRGC/HRMS Data Total	7,287	39,745	39		47,071	ND=MRL	7,287	39,784
HRGC/HRMS Data Total	20,177	13,811	298		34,286	ND=MDL	13,811	20,475
Surface Water Total	27,464	53,556	337		81,357		21,098	60,259
2009 Fish Total		80,221	11	11 ^b	80,232	ND=MDL	80,221	11 ^b
2010 Sturgeon Sediment Toxicity Total	8,623	14,793	1,947	1,904°, 43 ^d	25,363	ND=MRL	8,623	16,740
All Programs Total	36,737	166,756	2,675		206,168		110,592	95,565

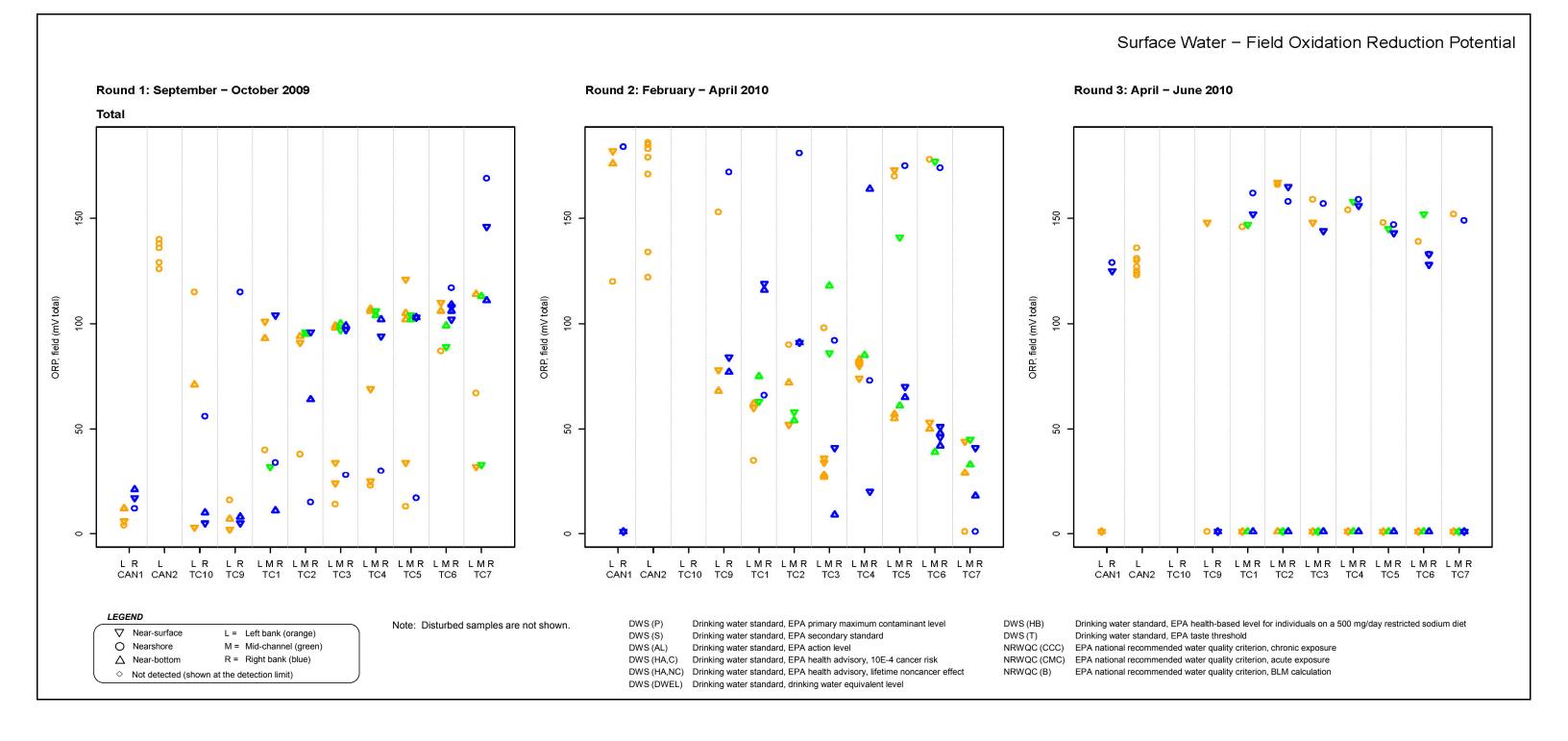

a - U* flag assigned by validator. U* definition: analyte should be considered "not-detected" because it was detected in an associated blank at a similar level.

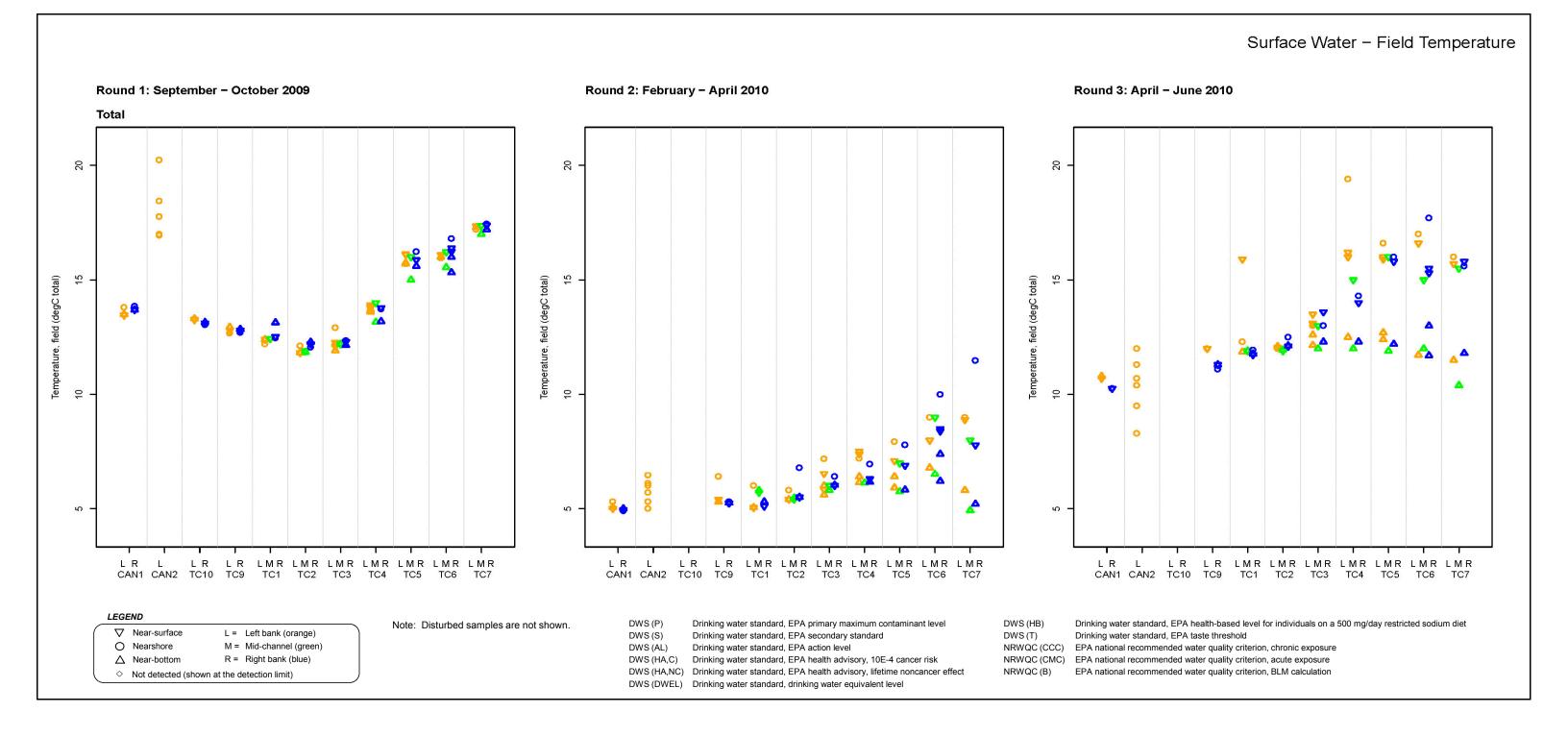

b - EMPC flag assigned by lab or validator. EMPC definition: the detection limit represents the estimated maximum possible concentration if the compound was present.

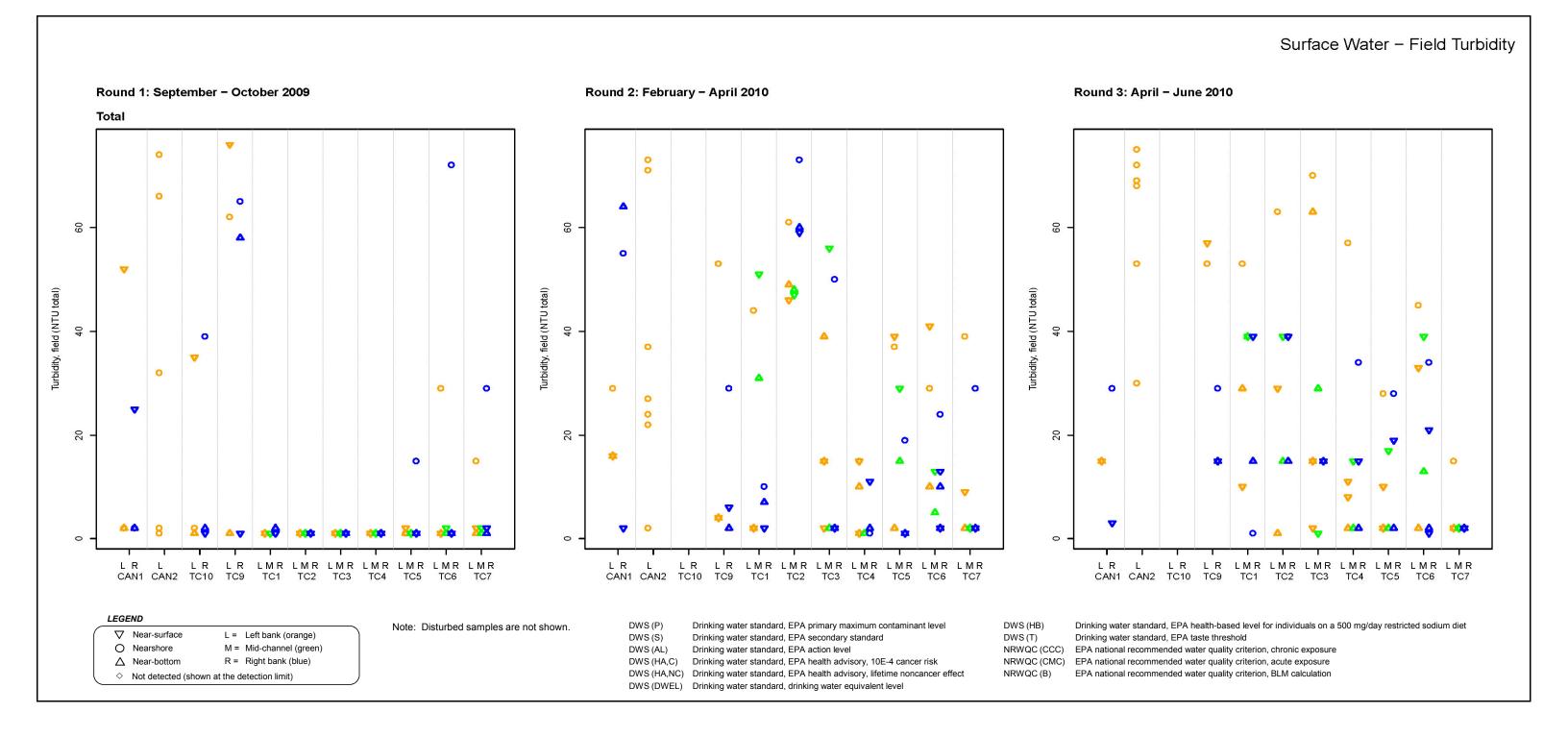

c - The reported measured value contains the calculated concentration from the DGT probe; see the "comments" field of these records for more details.

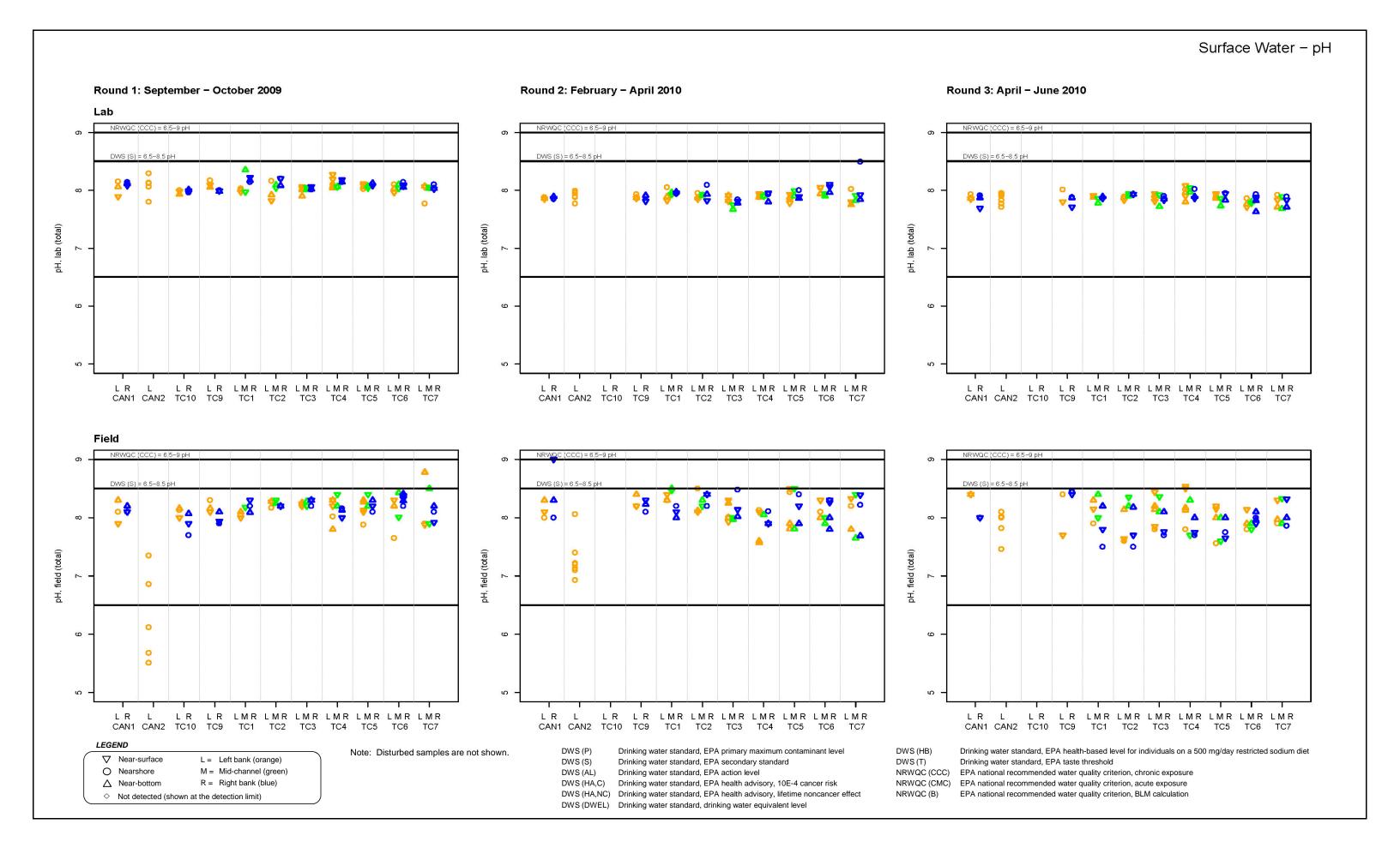

d - These records are CAS grain size results where all of the measured values = 0, and there are no detection/reporting/quantification limits for grain size analysis. The validator assigned the "UJ" flag to these records stating "large discrepancies were observed between the results for these particle size fractions in the associated field duplicate analyses".

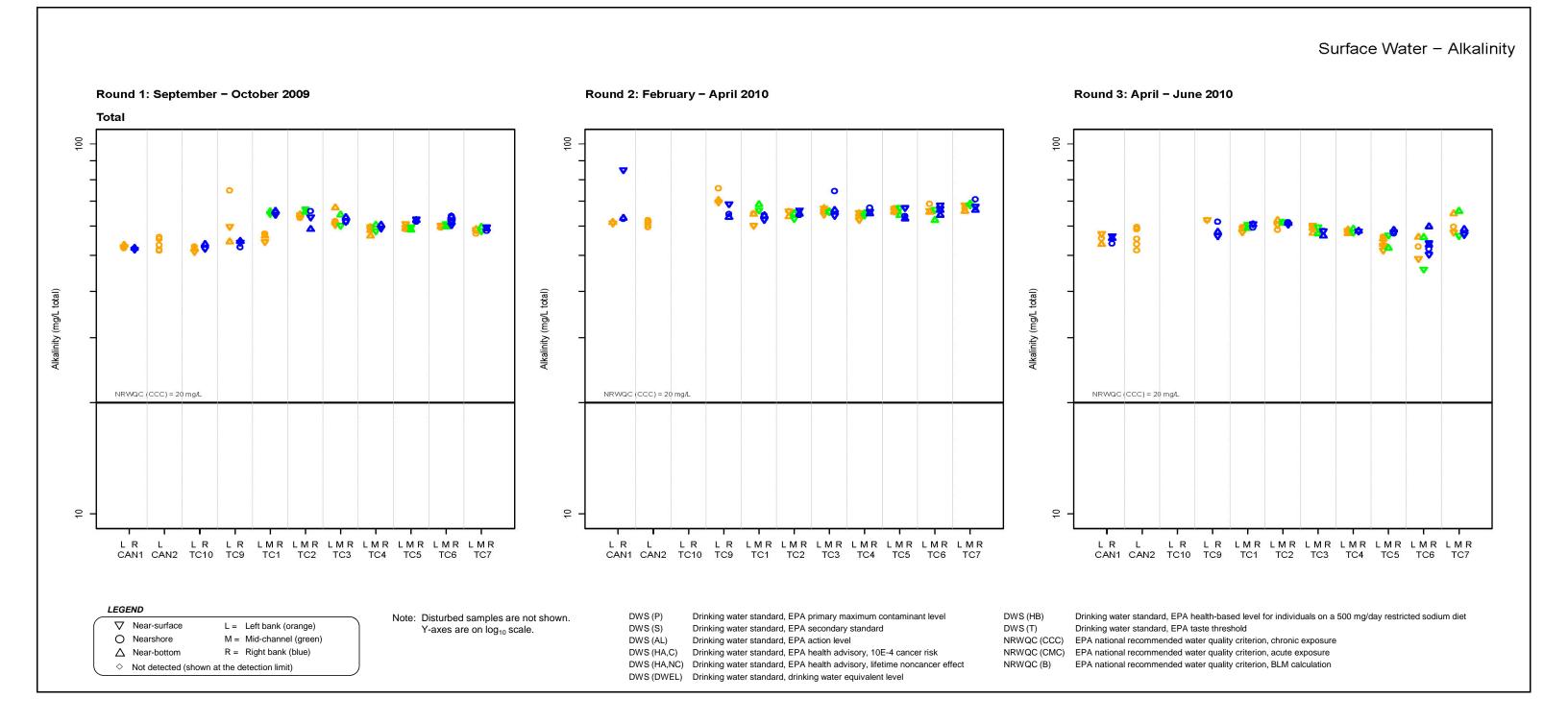

e - Pace radionuclides non-detect results: The typical environmental term, method detection limit (MDL) is not applicable to radiochemistry as the detection limit is unique to each sample as well as each method. Therefore following a prescribed methodology such as that described in CFR Part 136 Appendix B would not result in the actual detection limit for the actual sample.

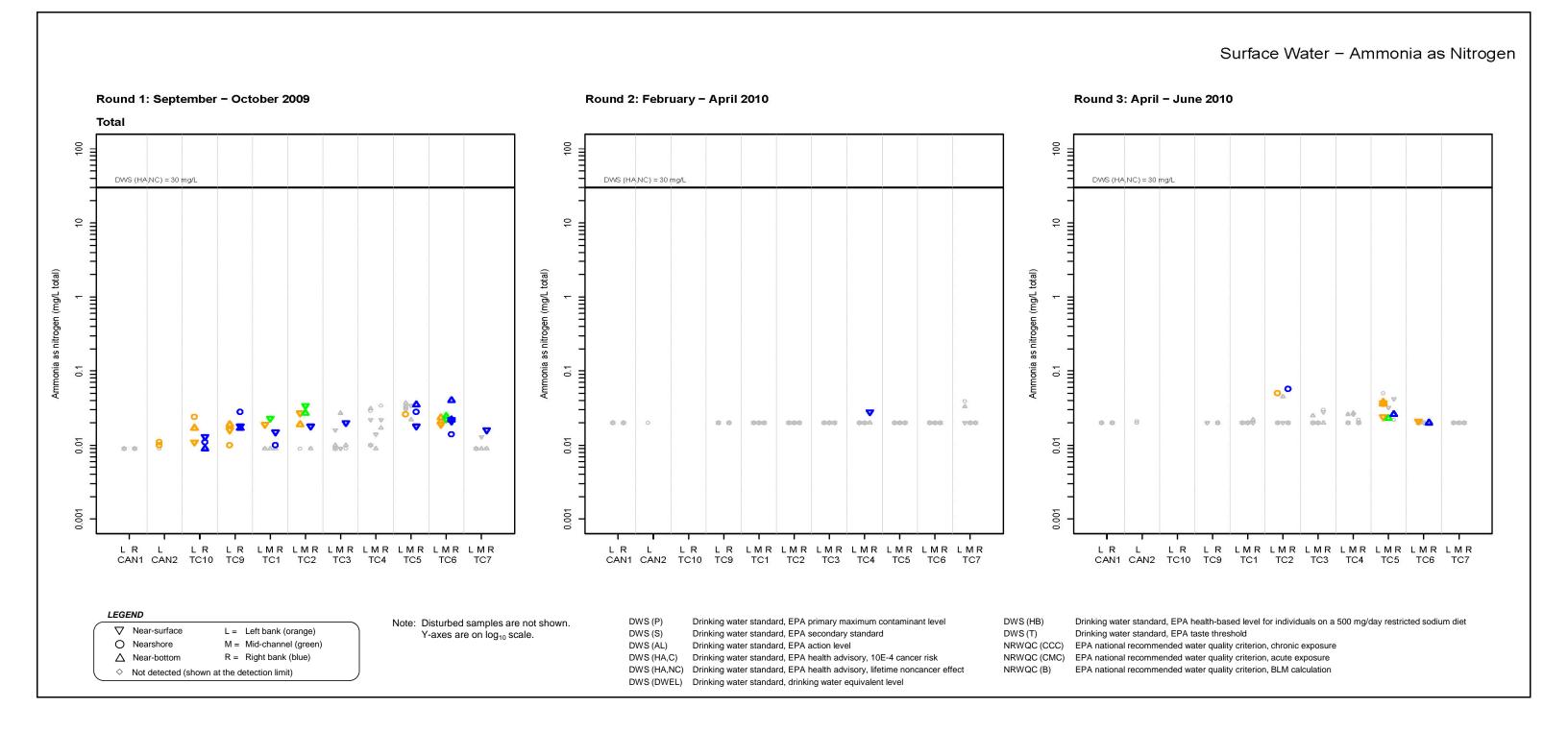


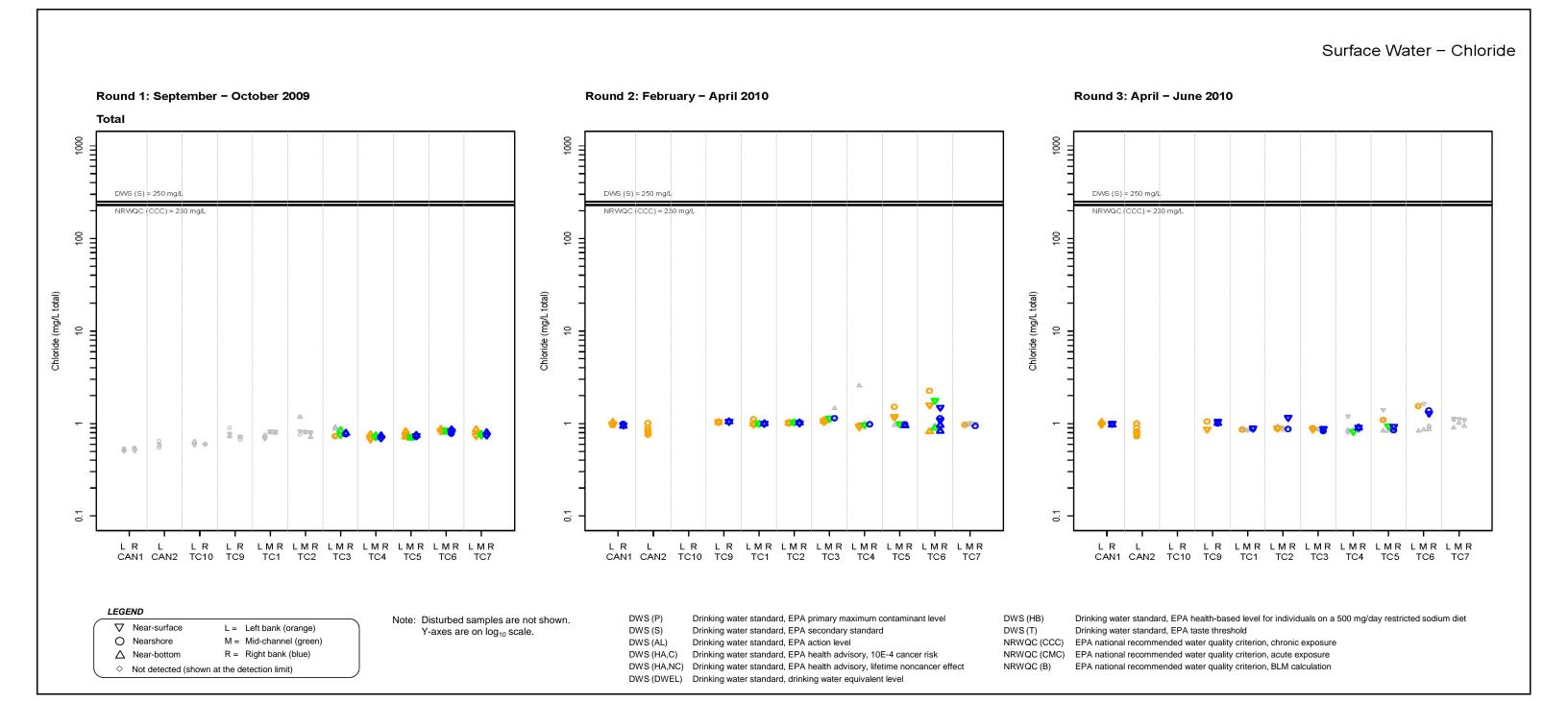


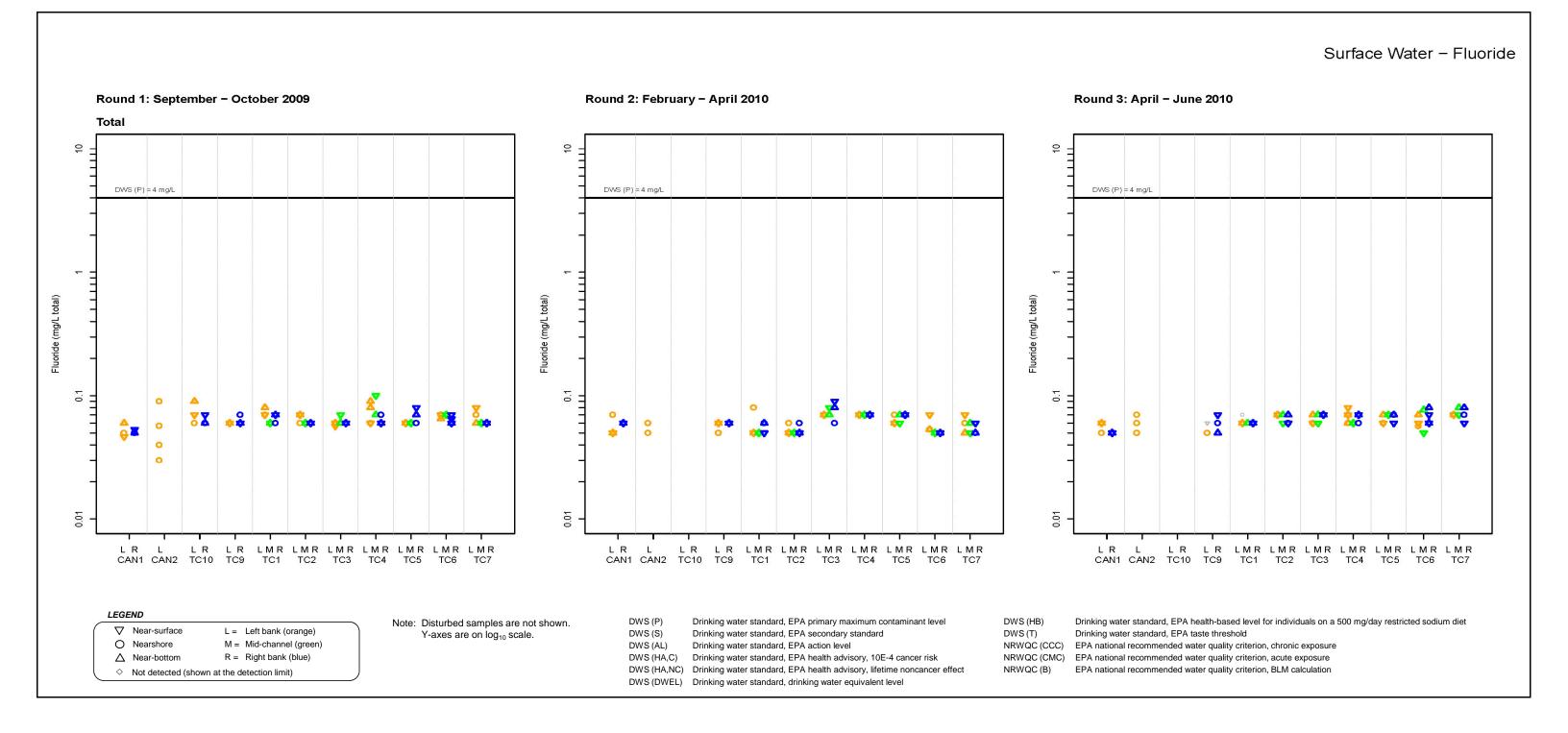


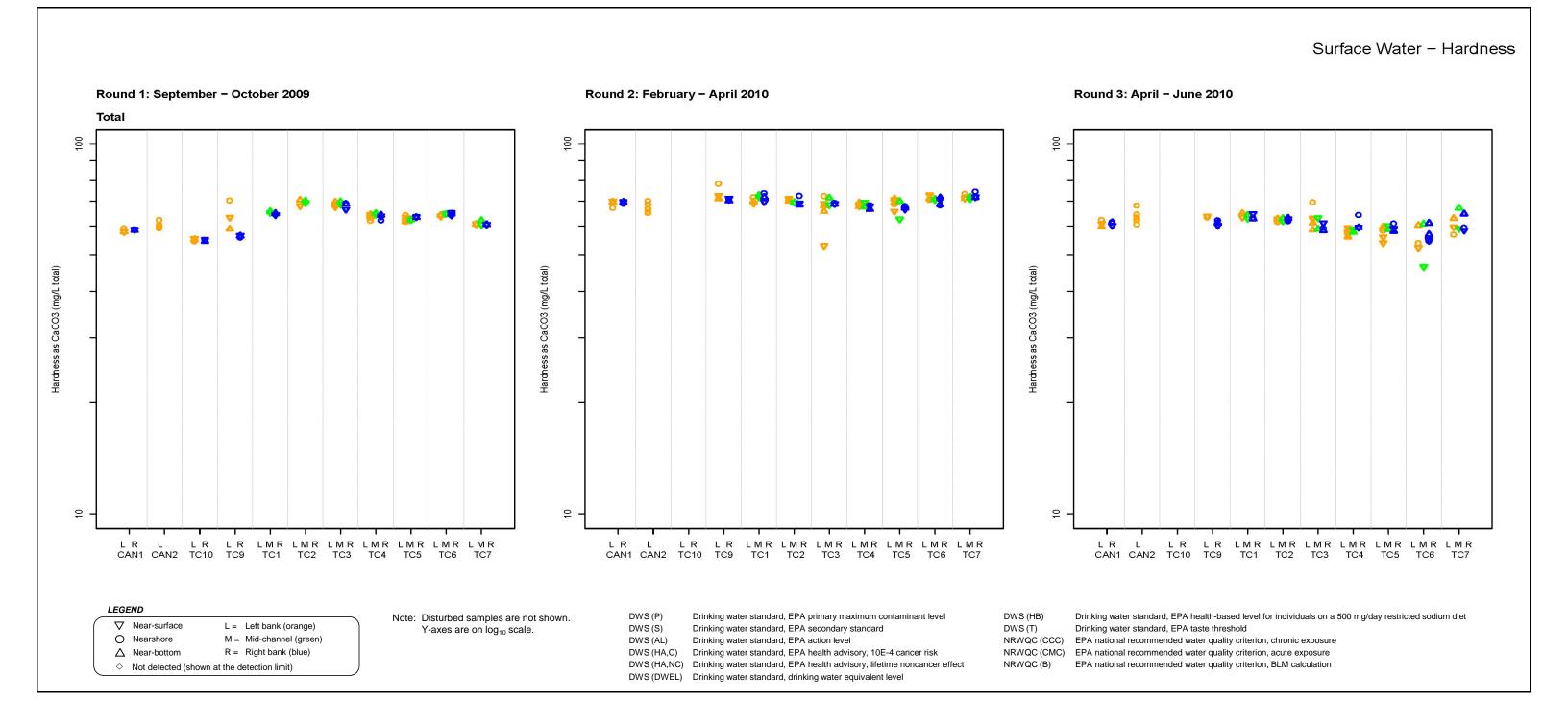


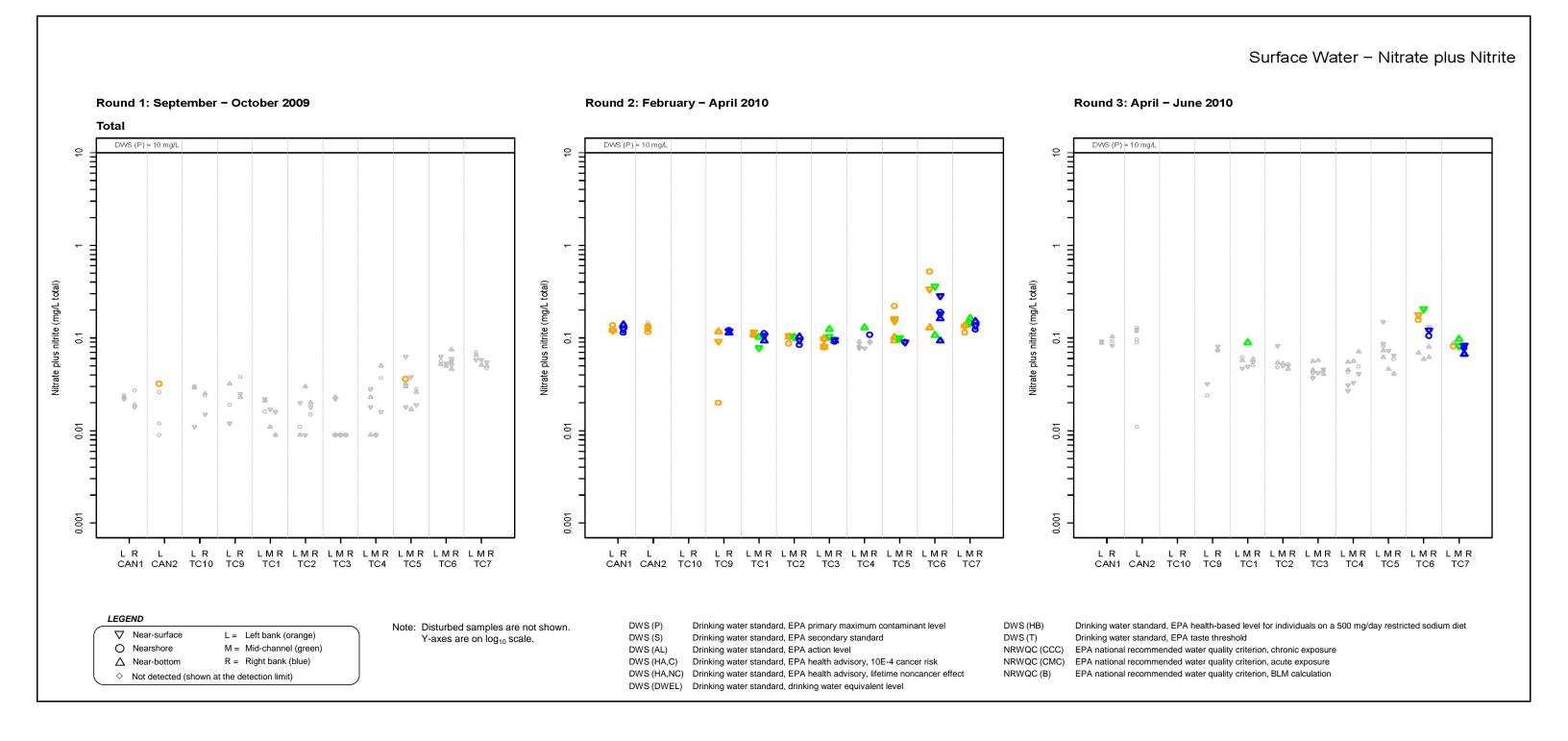


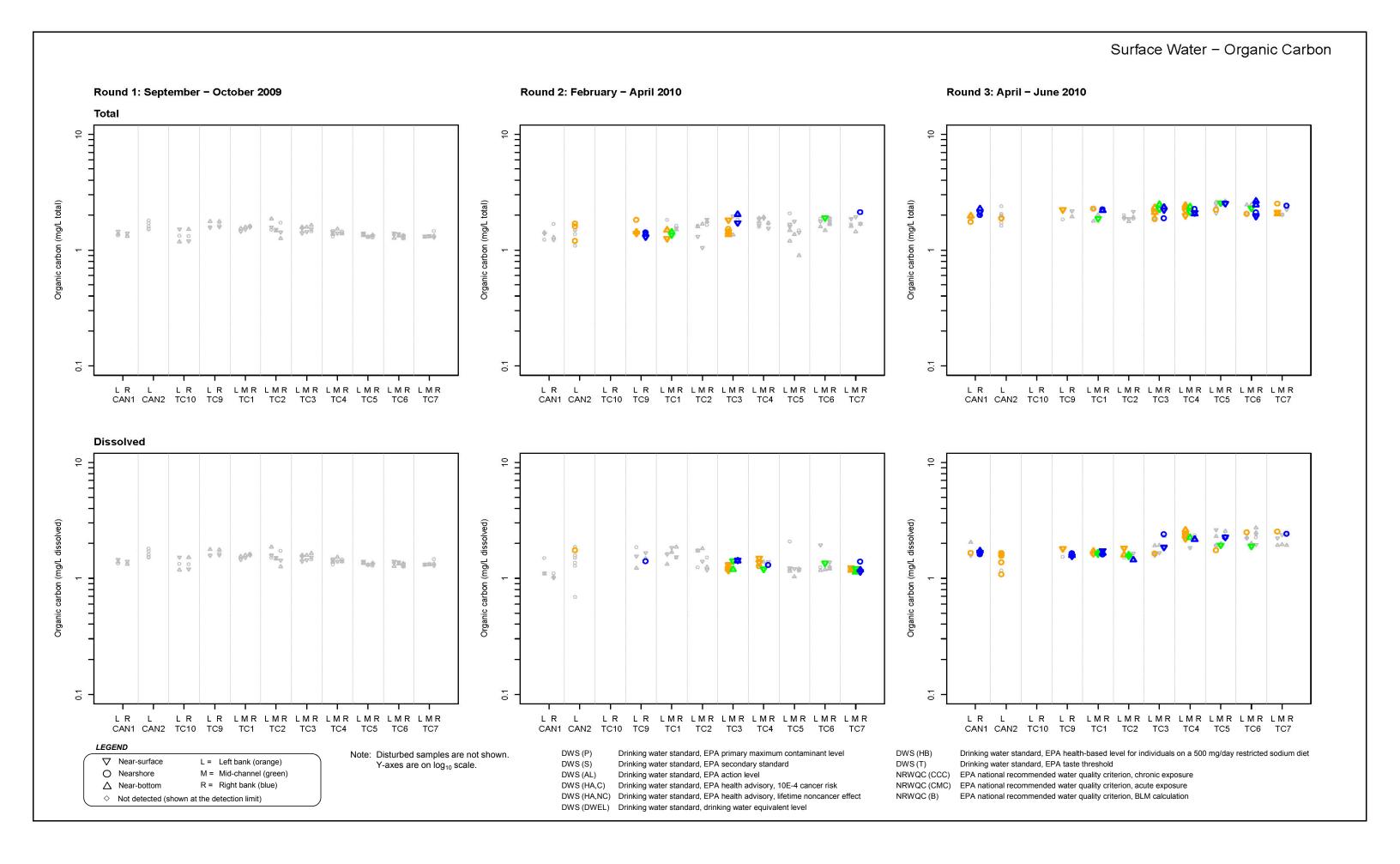


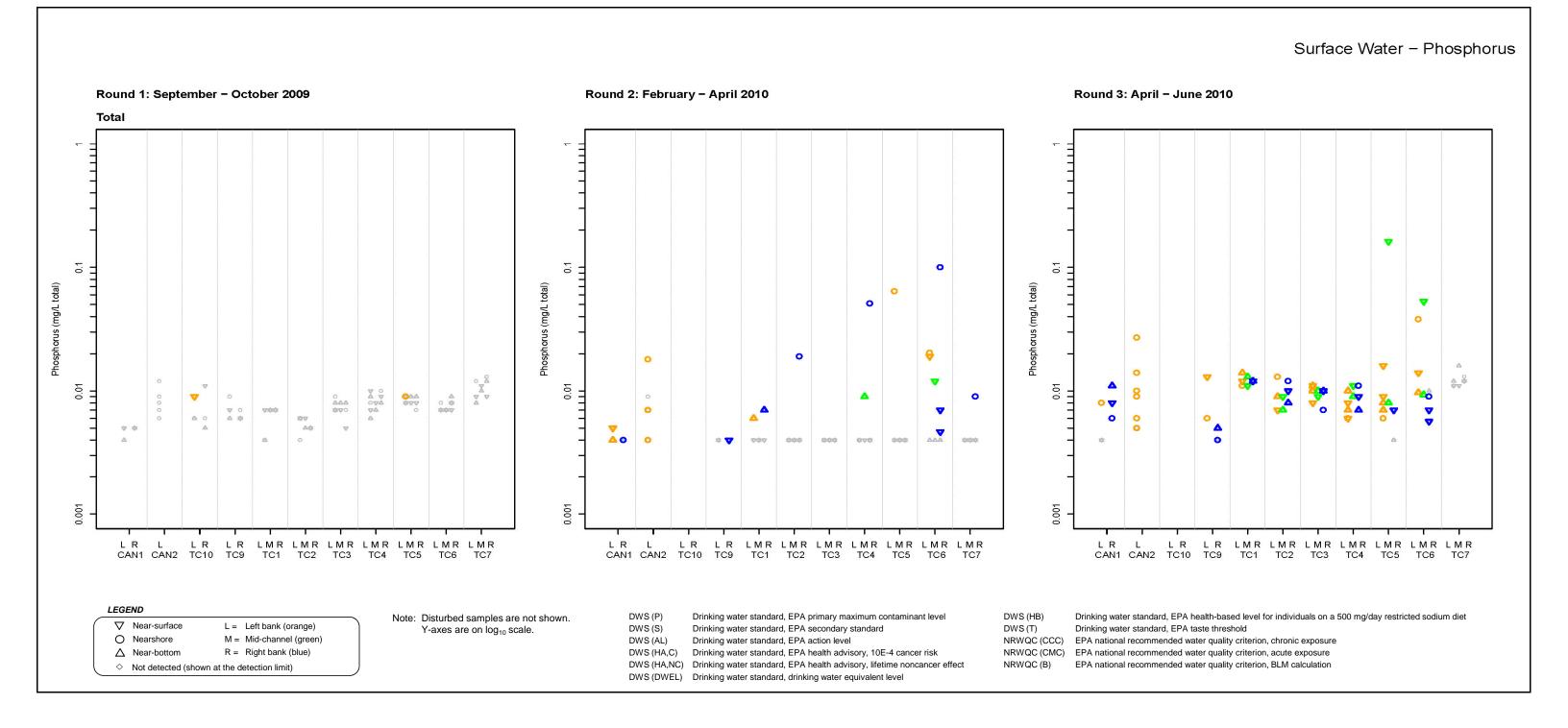


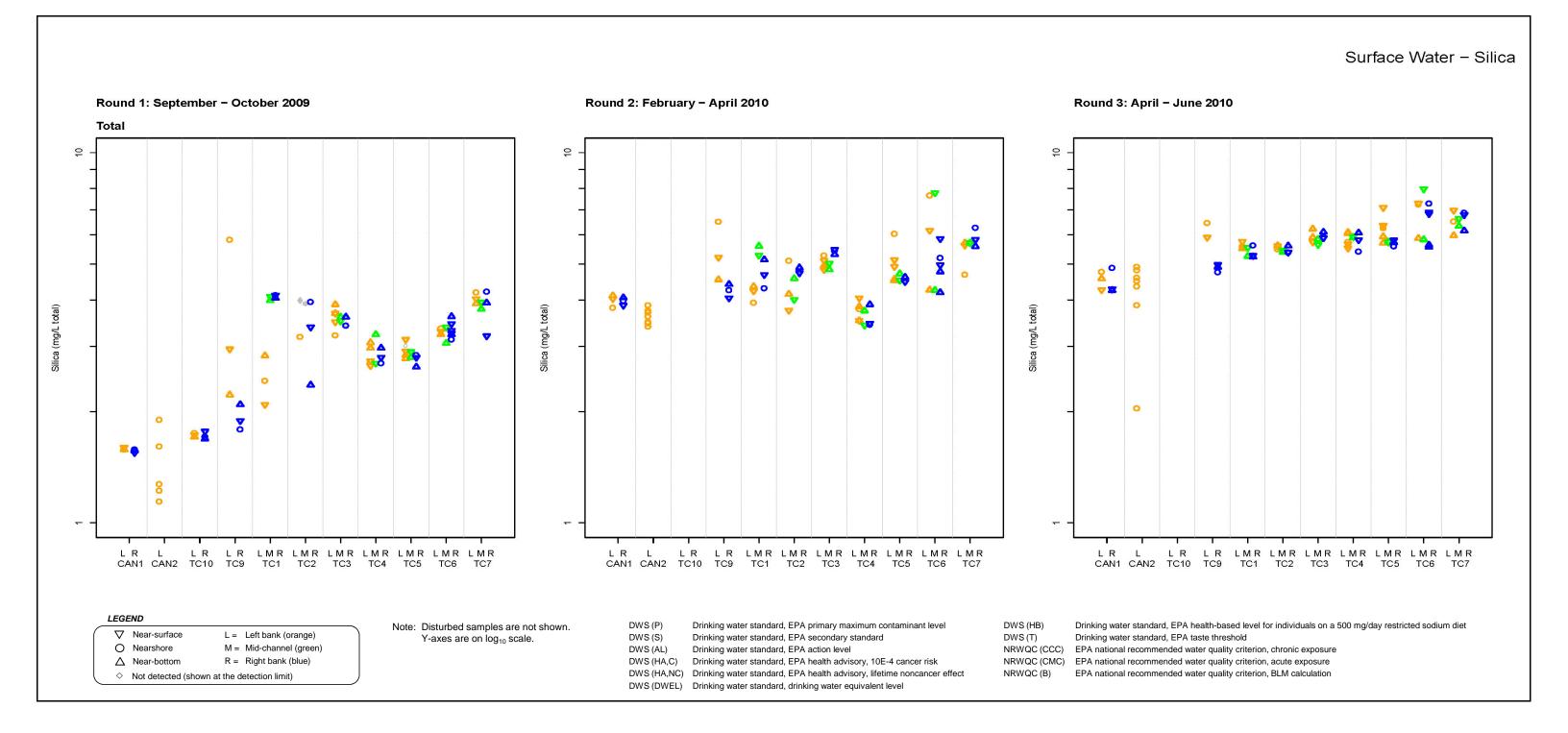


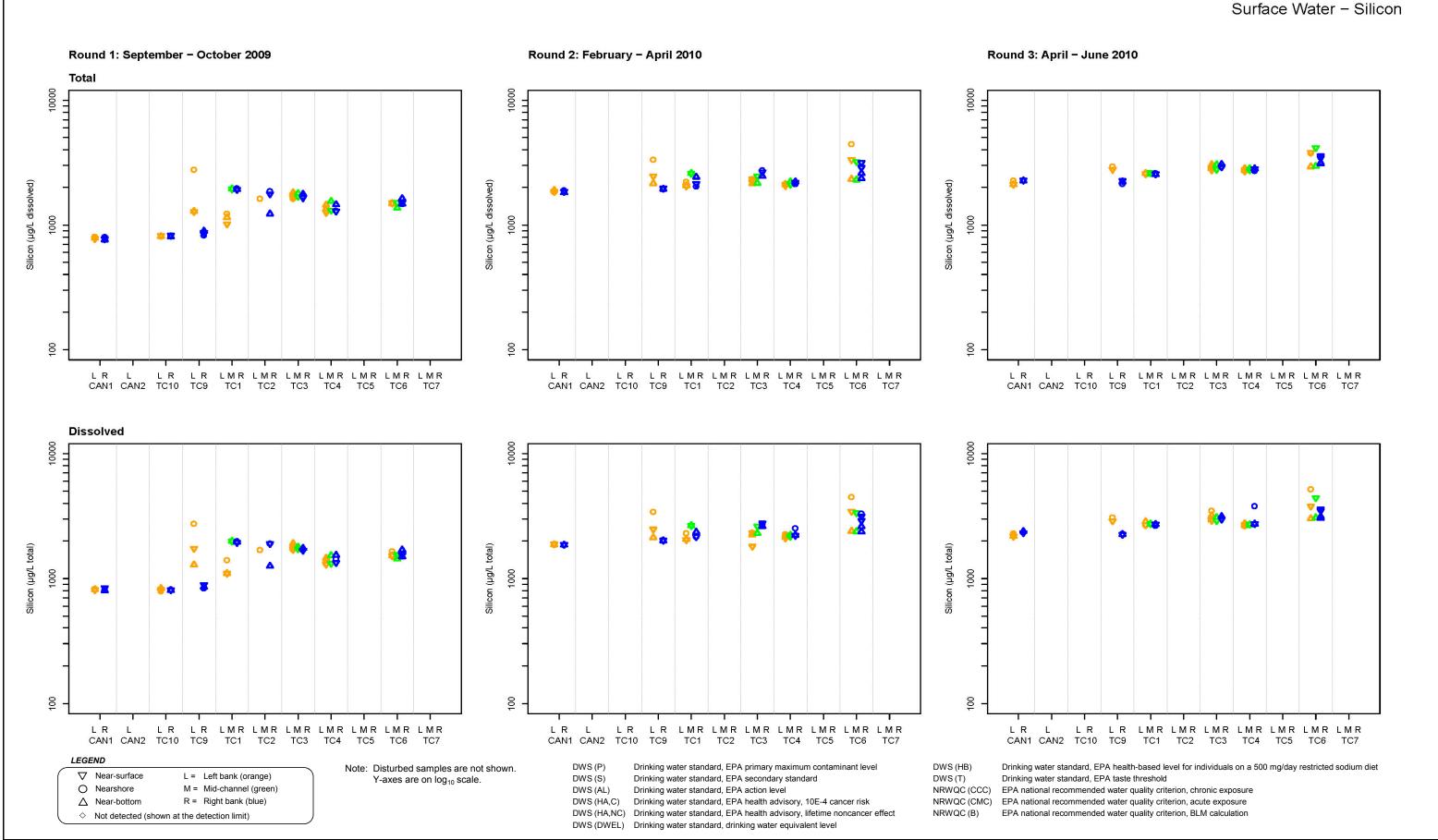


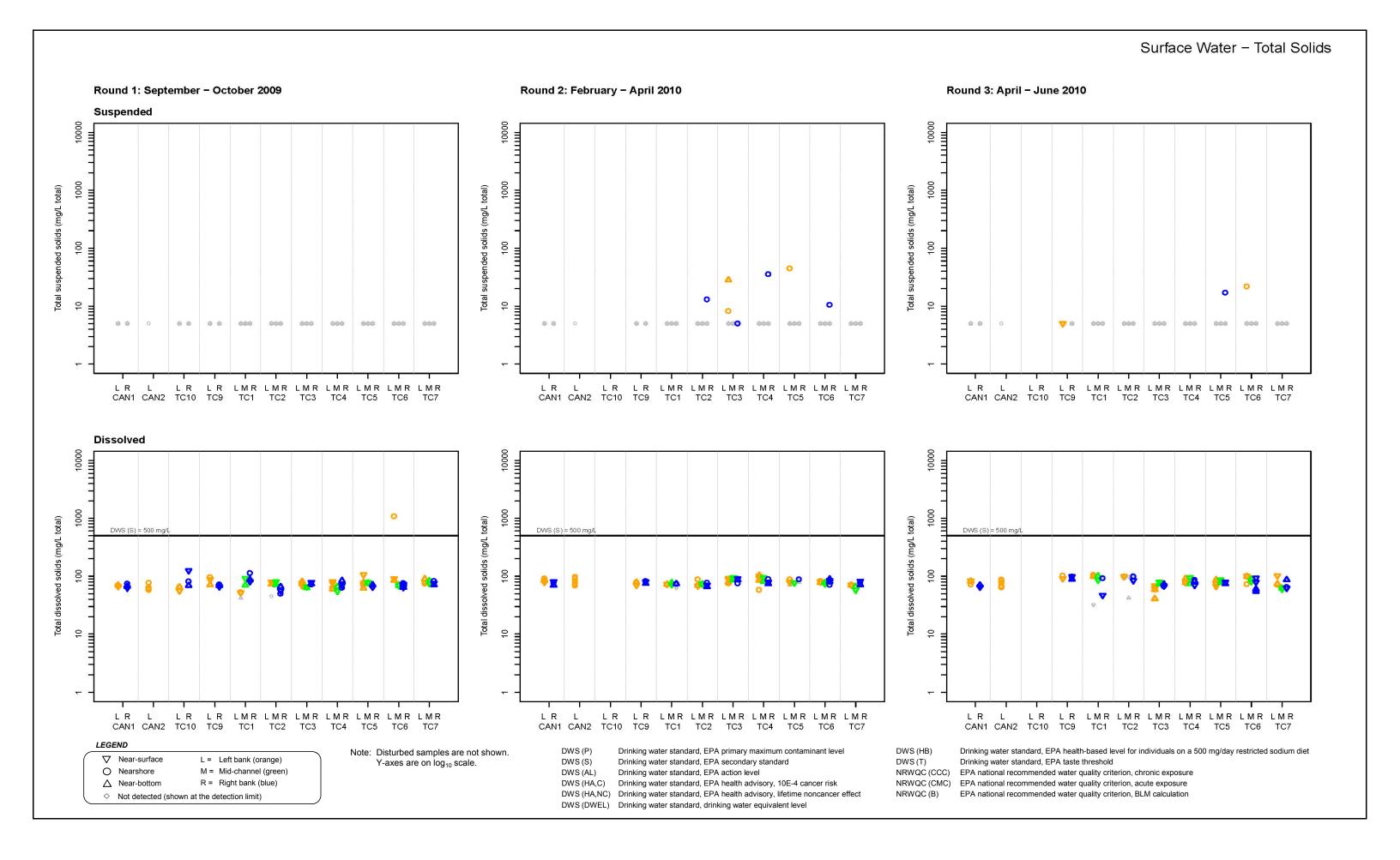


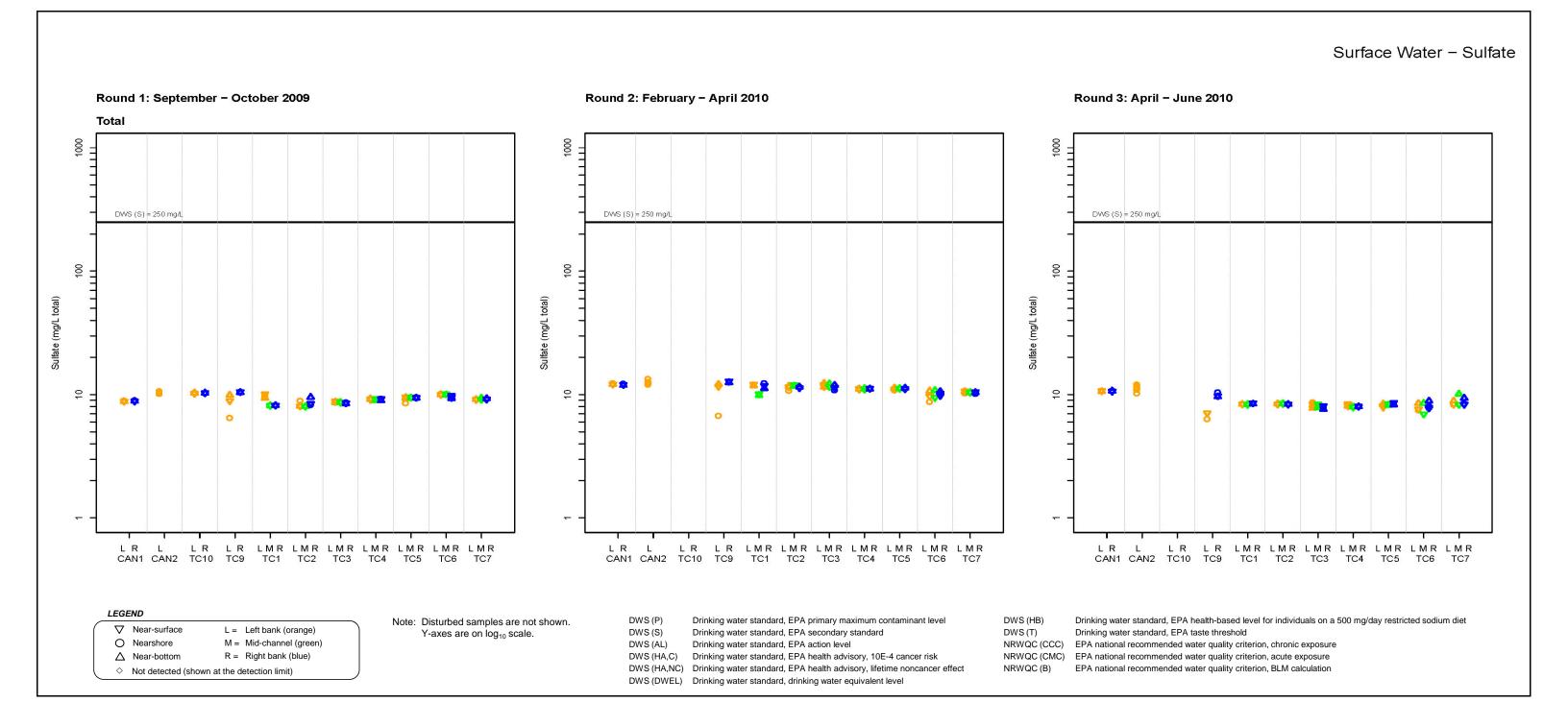


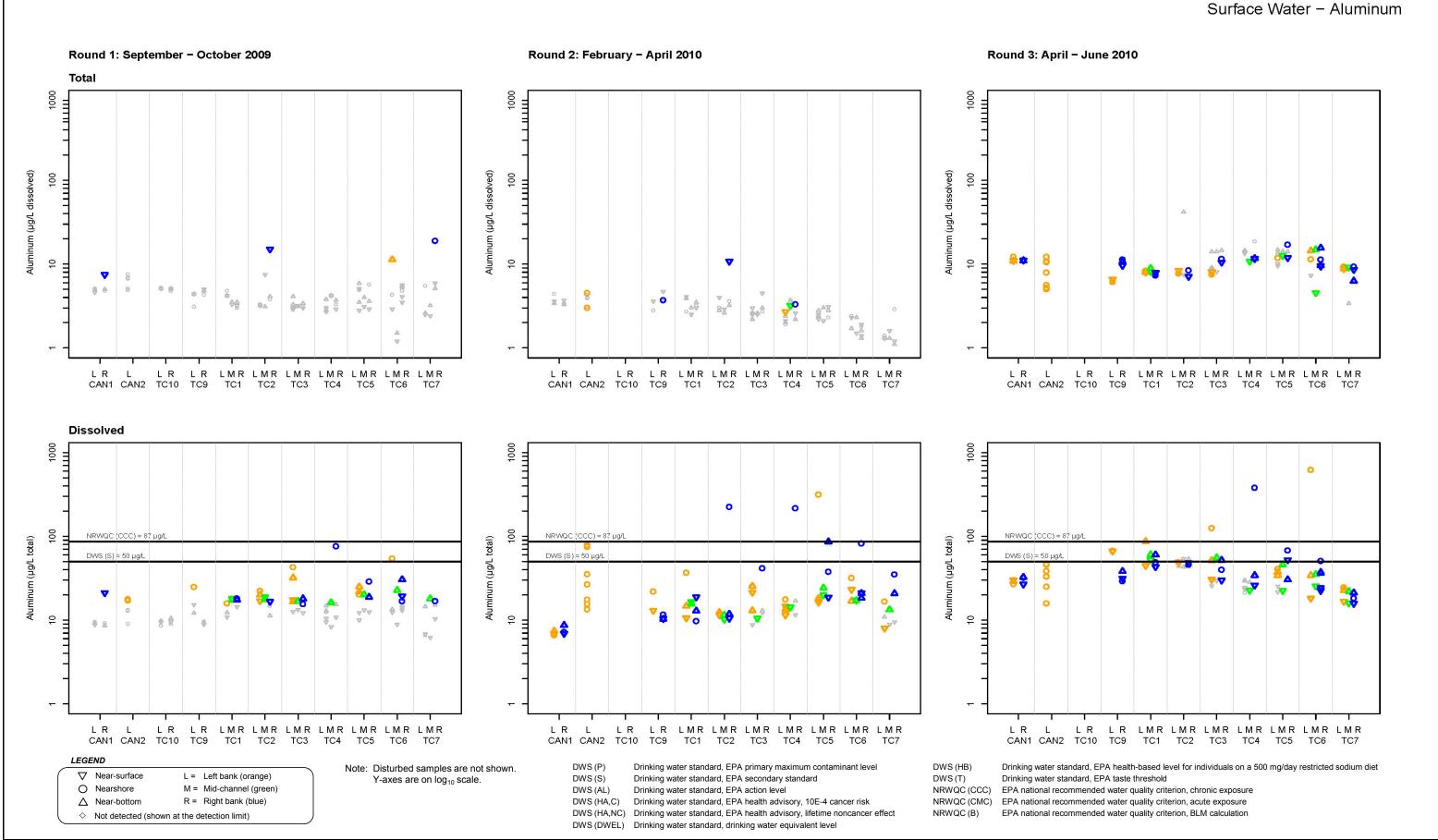


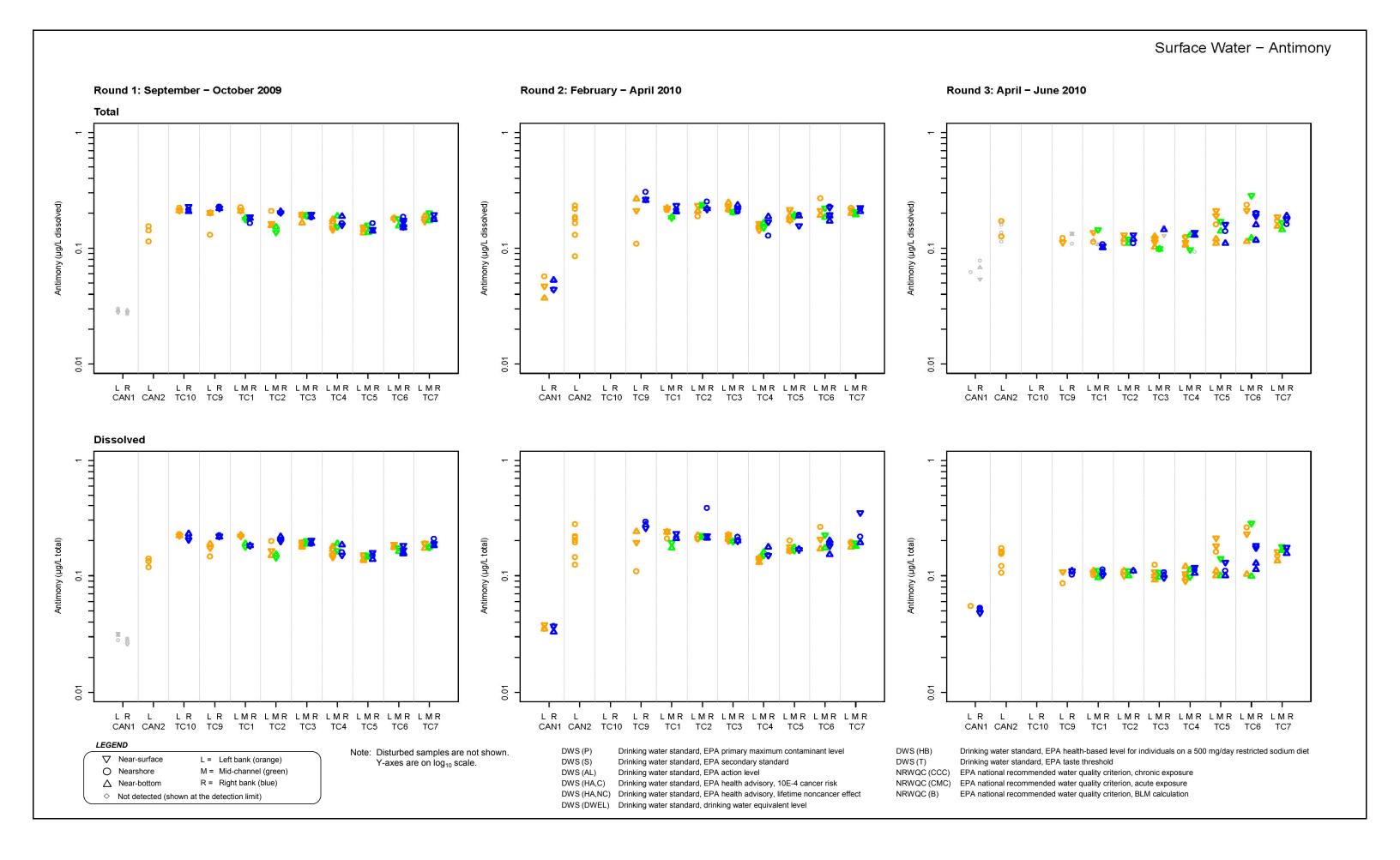


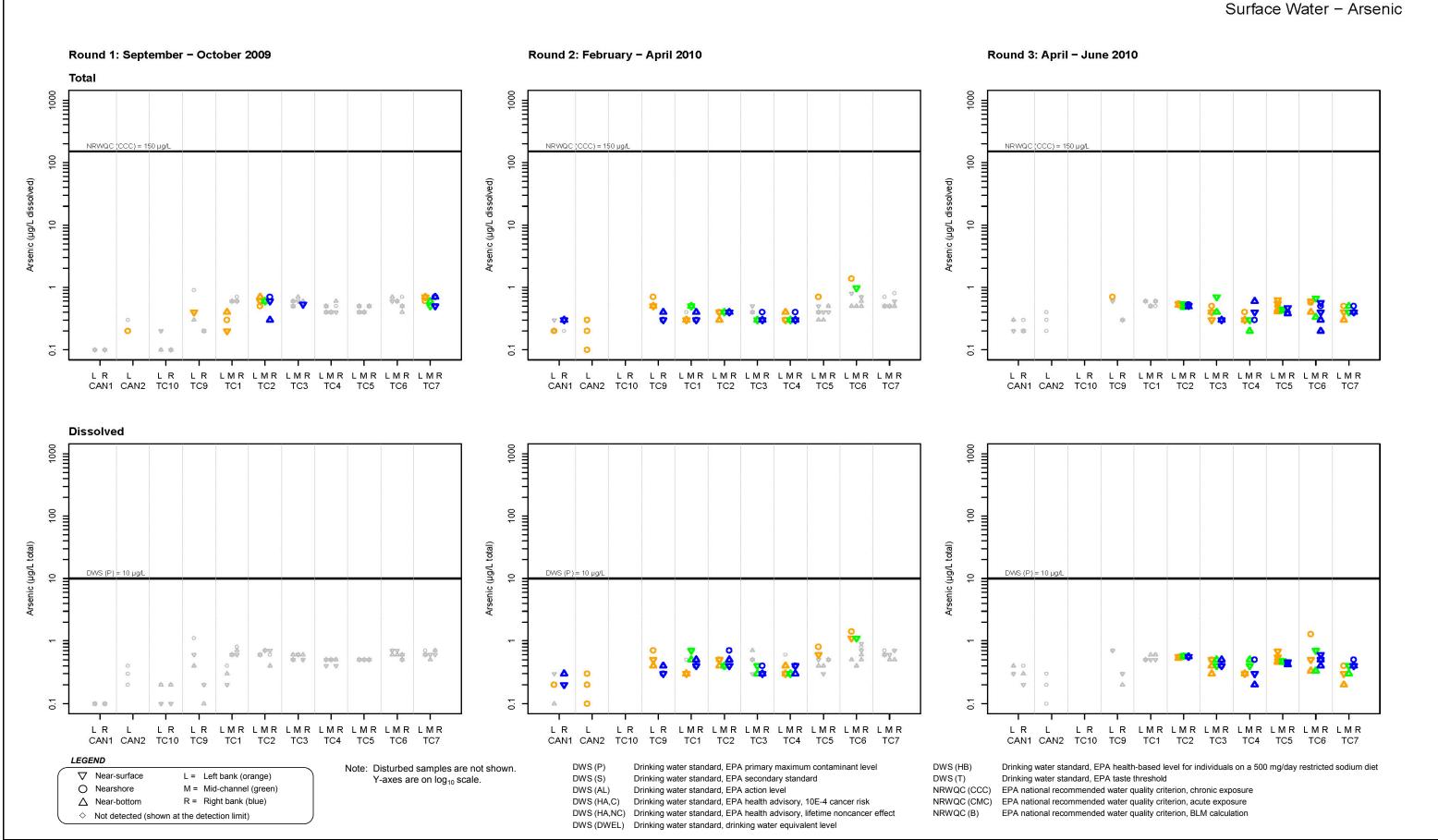


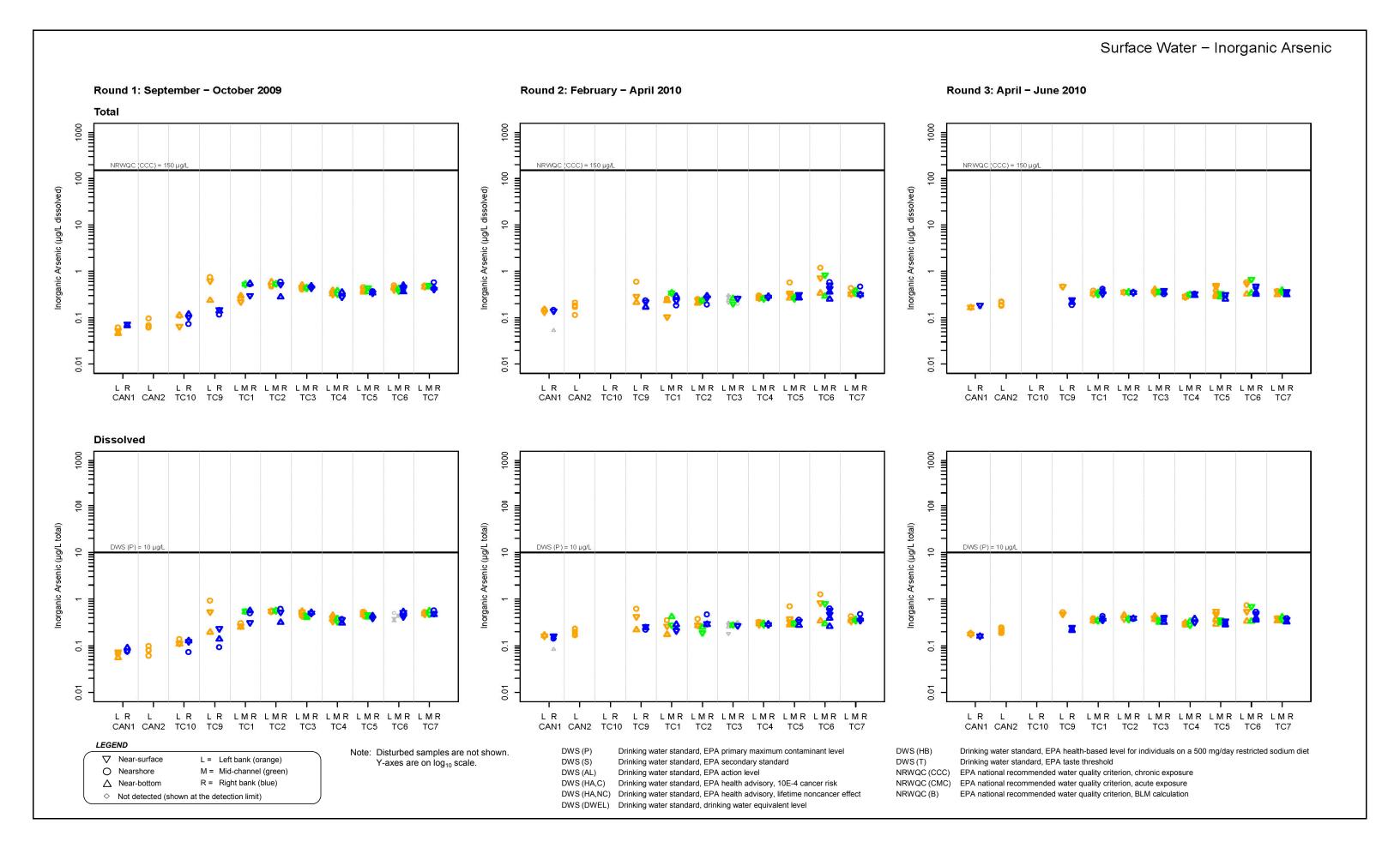


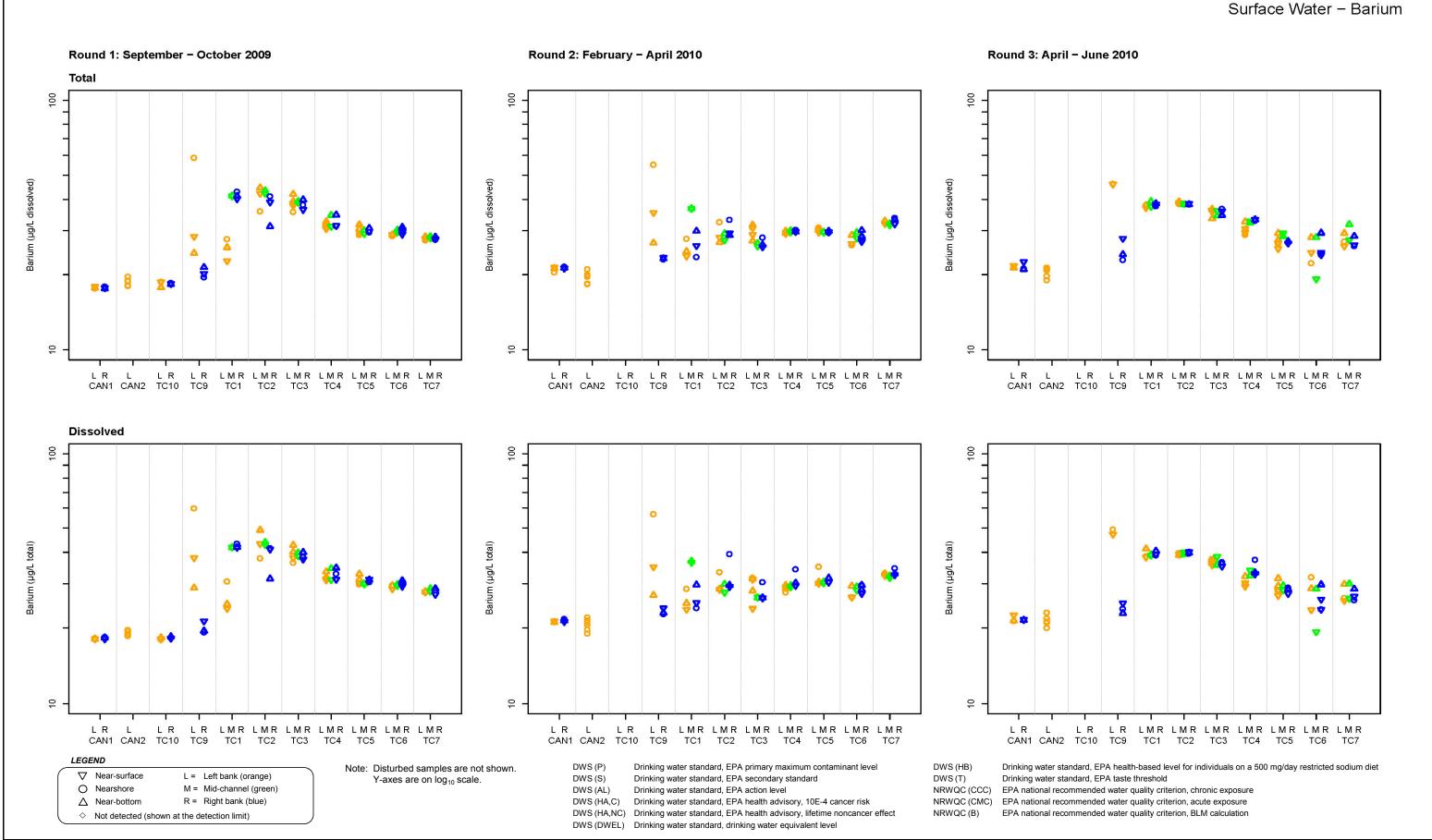


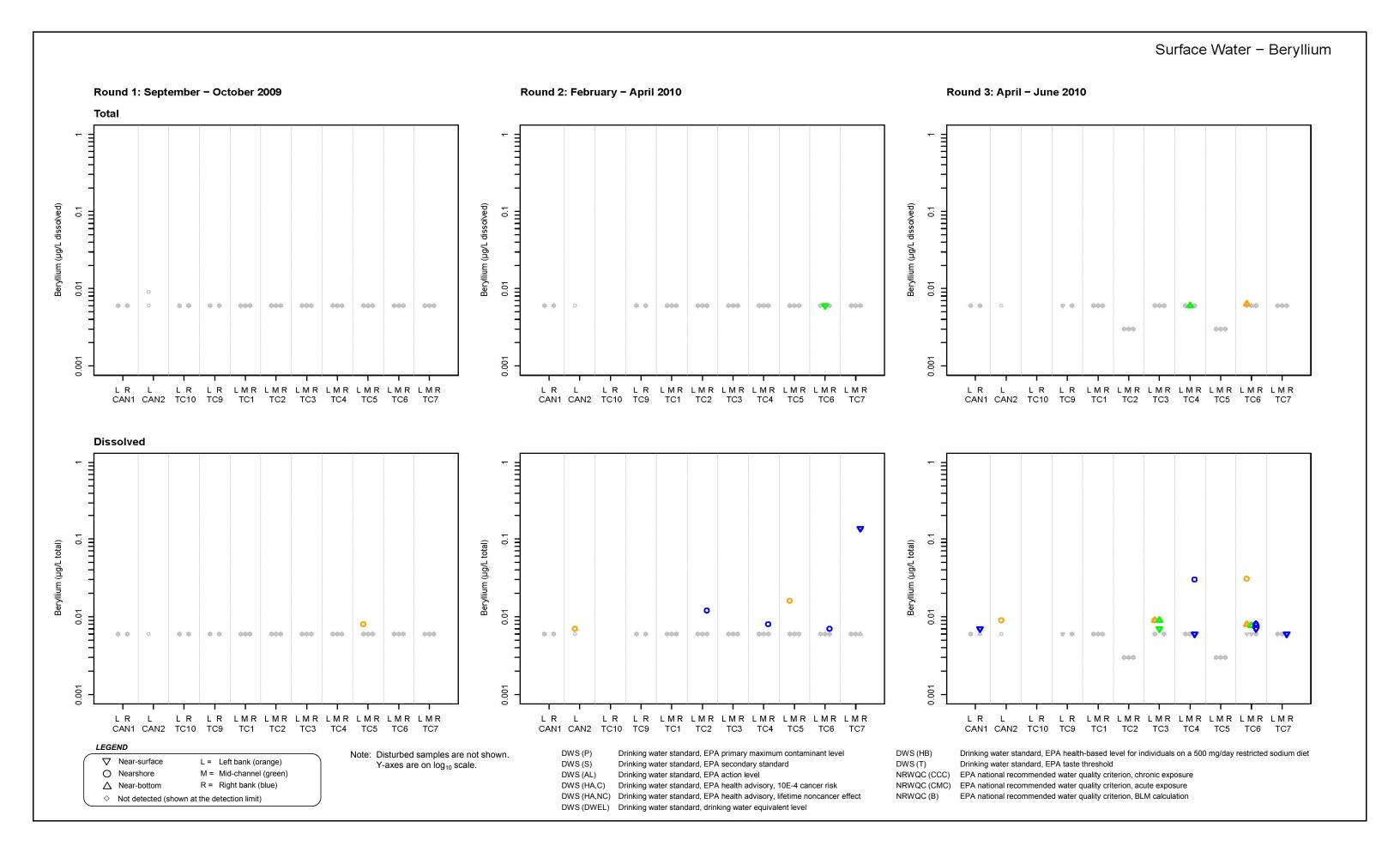


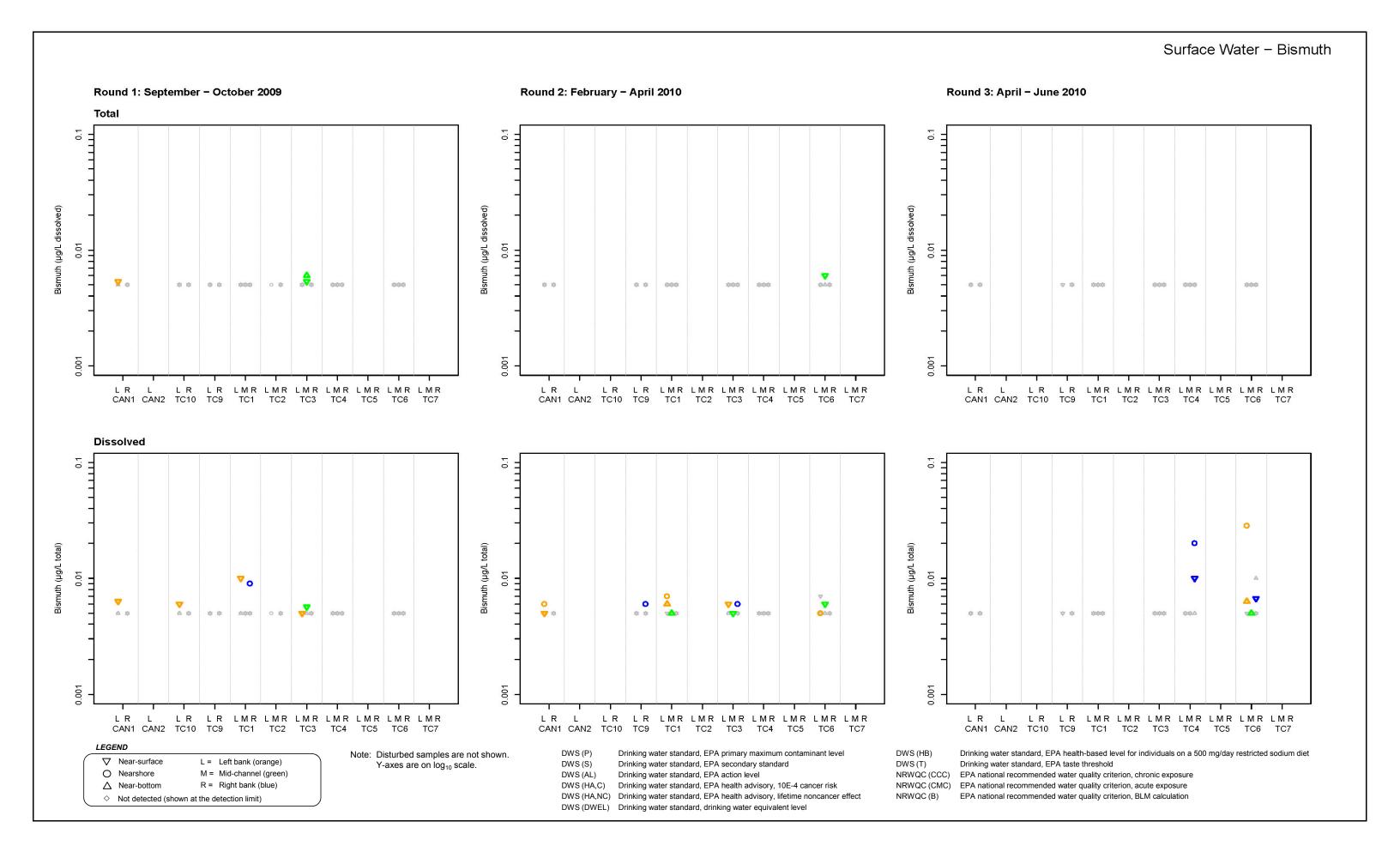


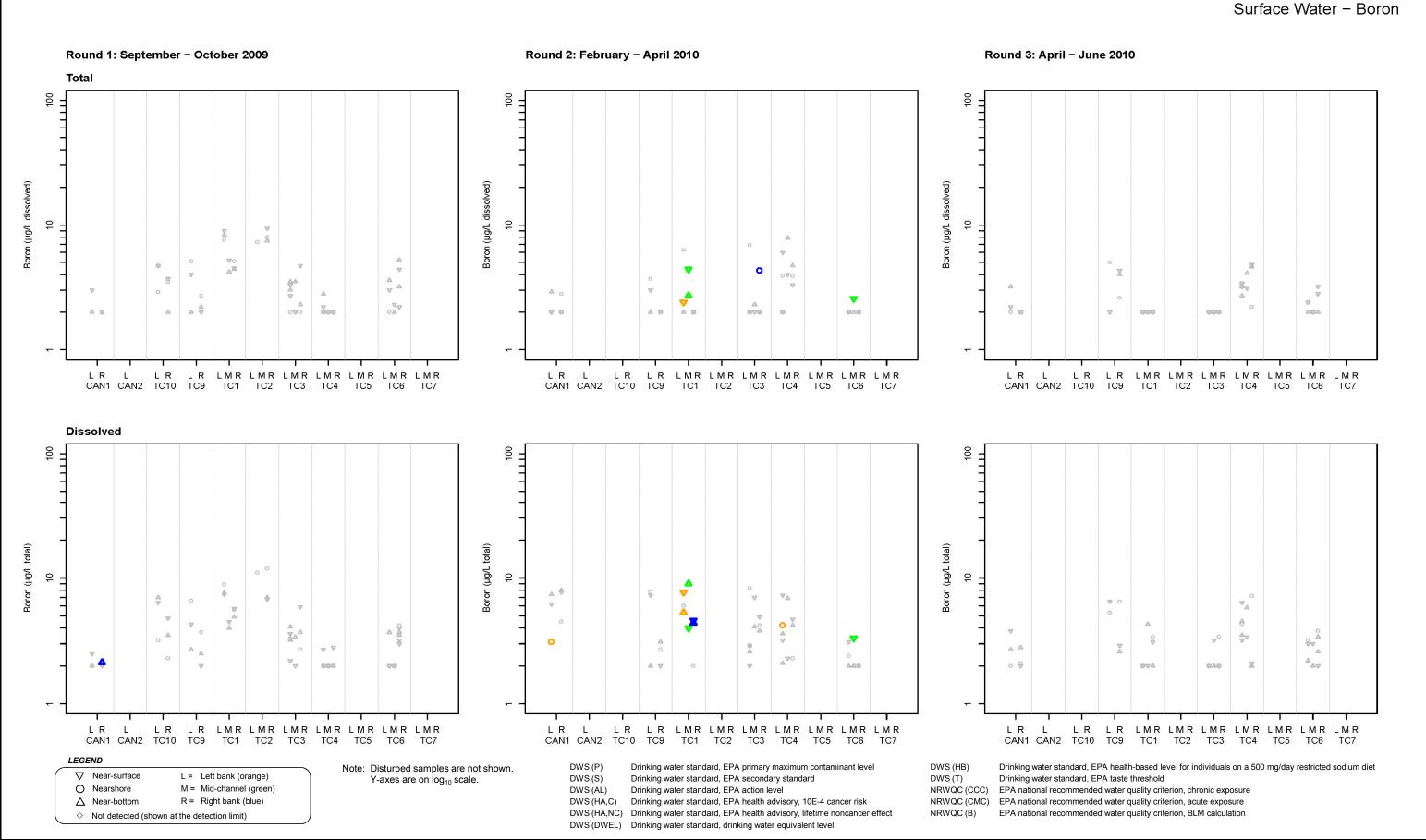


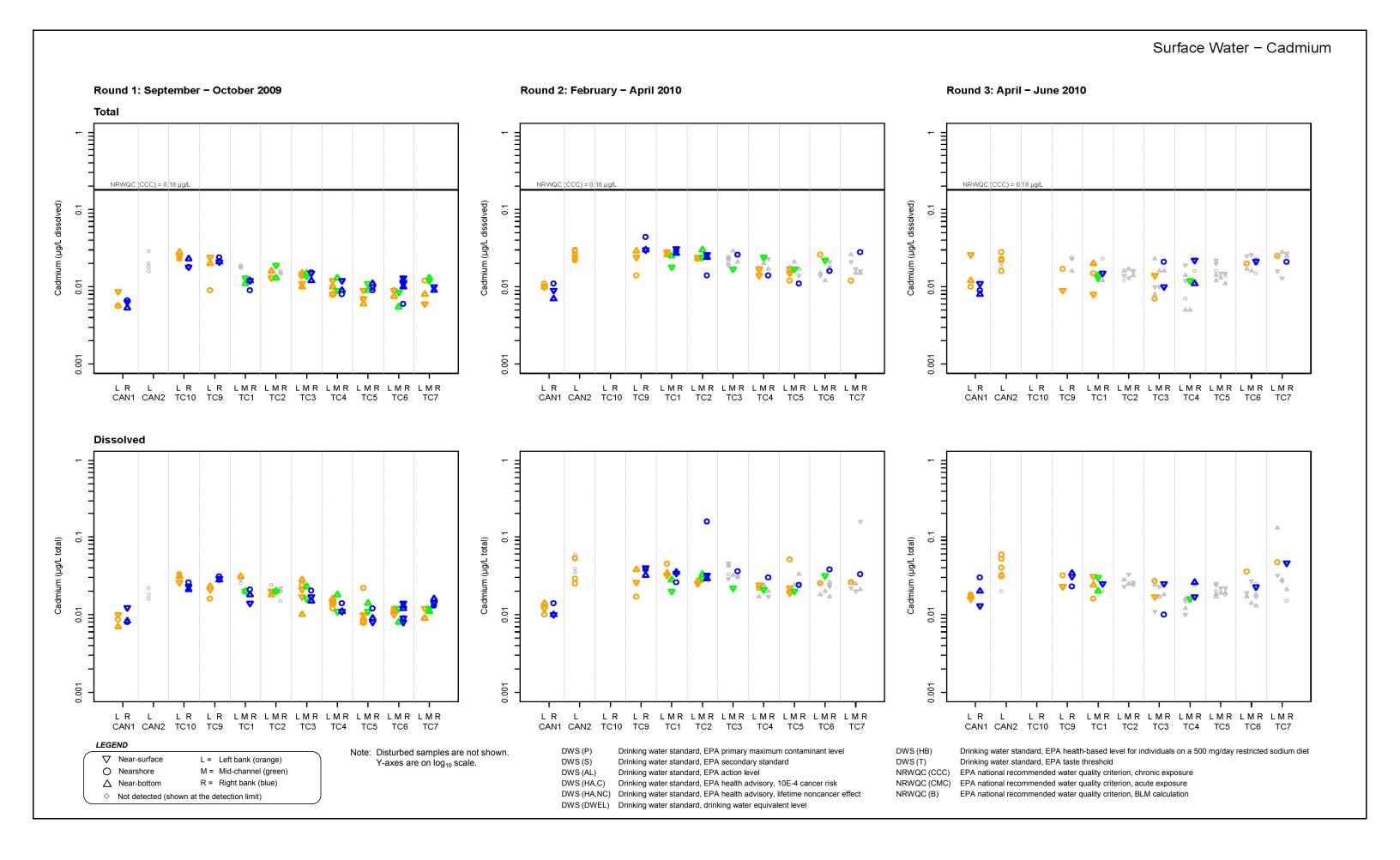


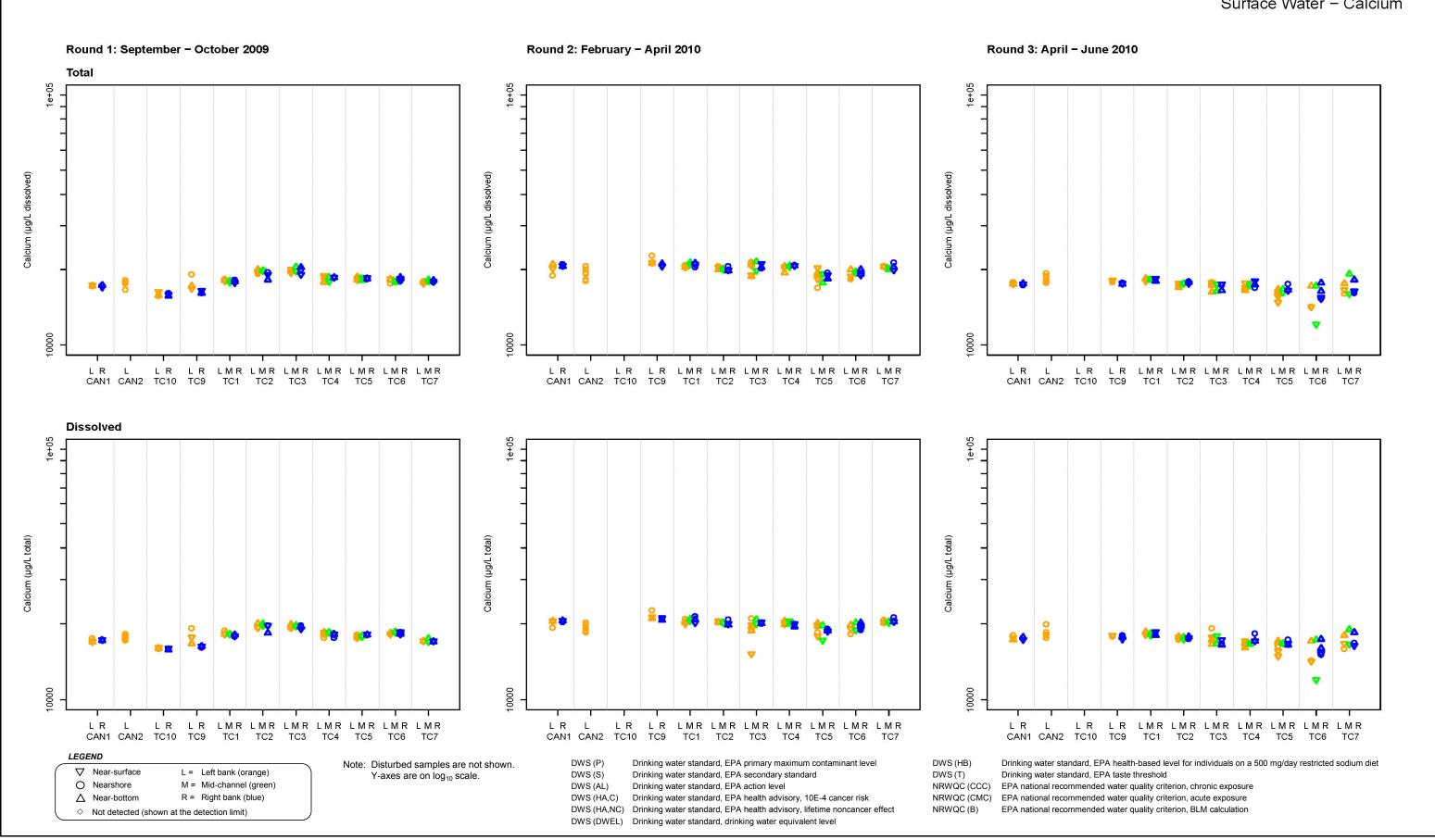


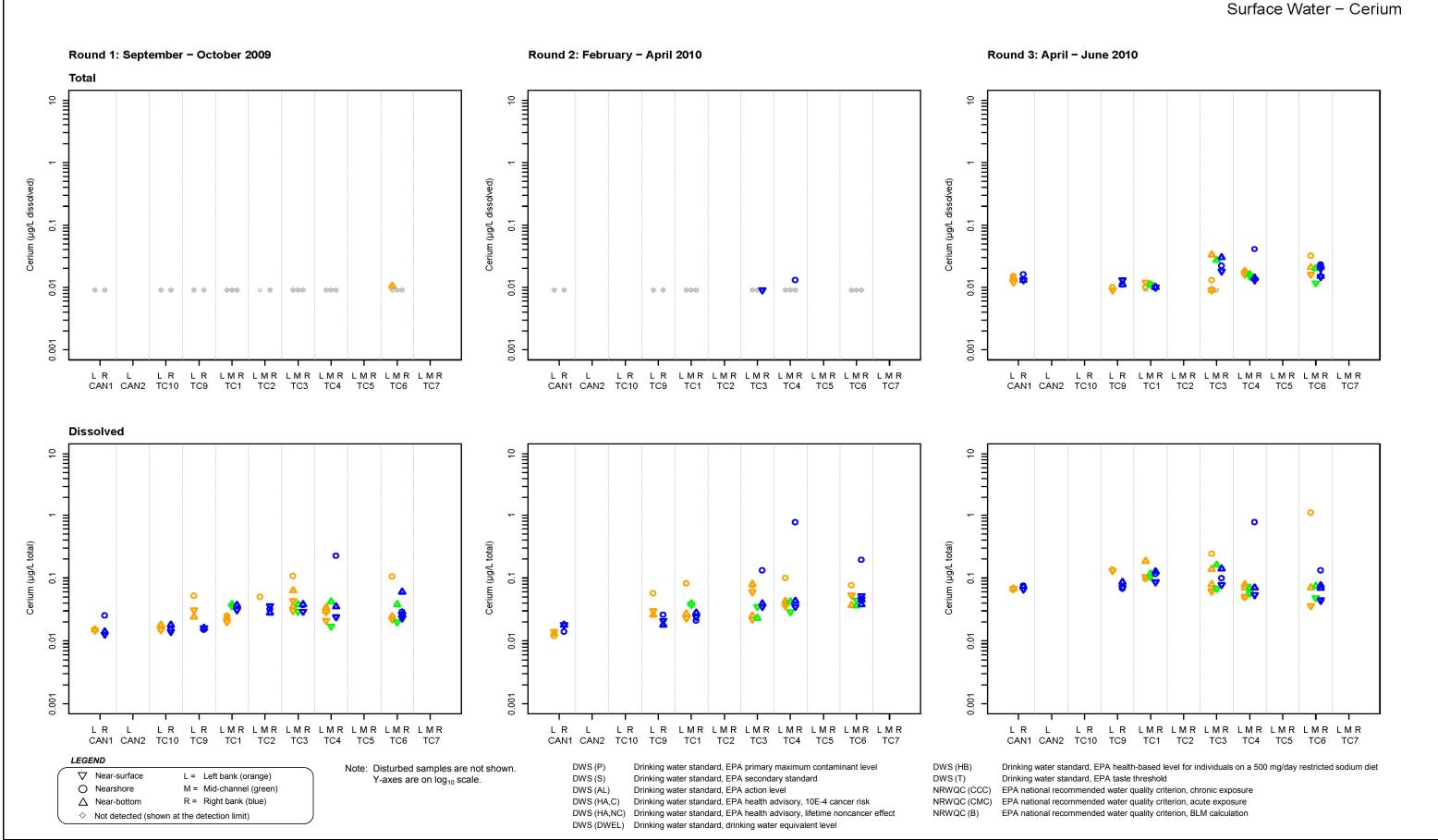


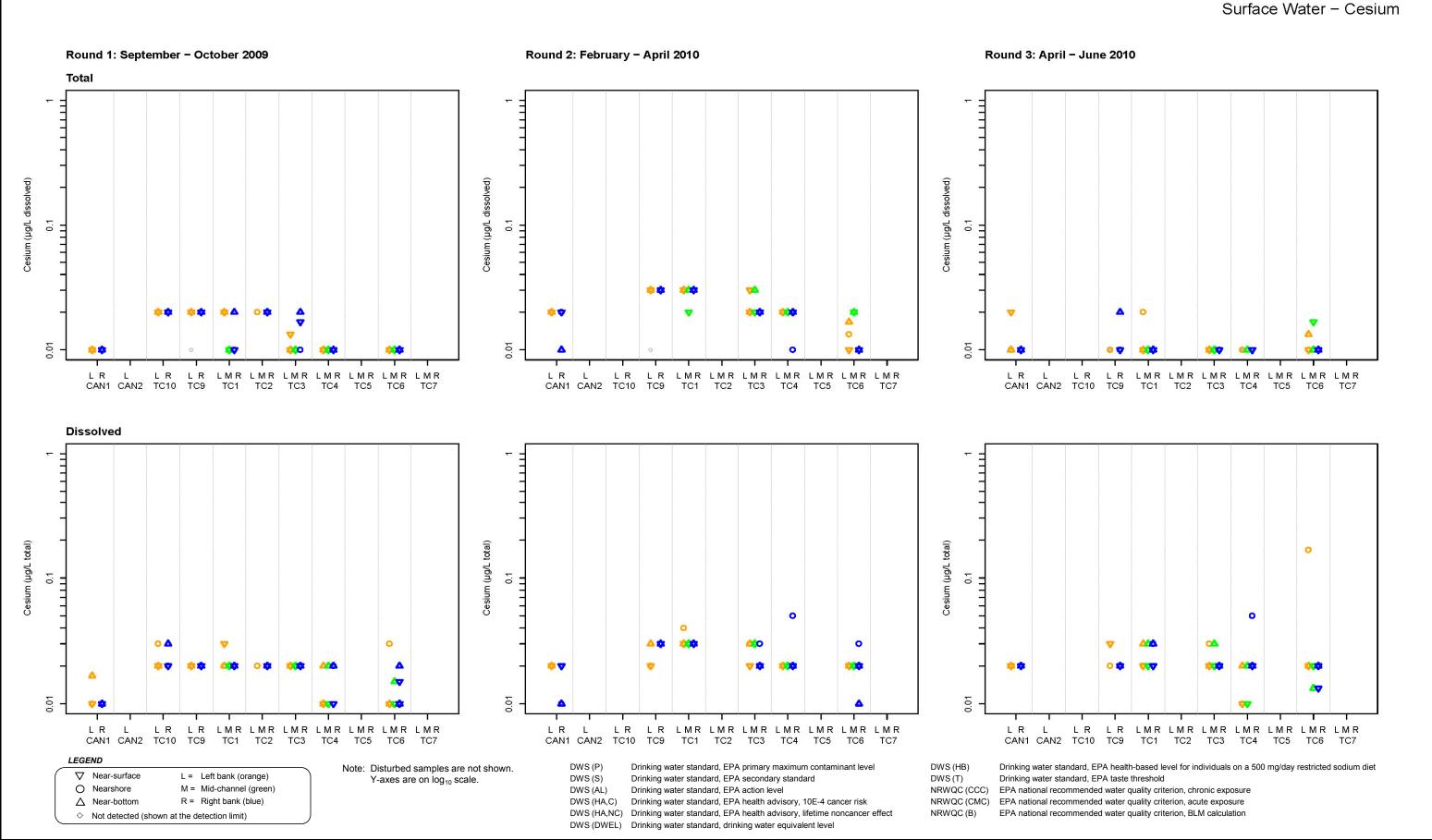


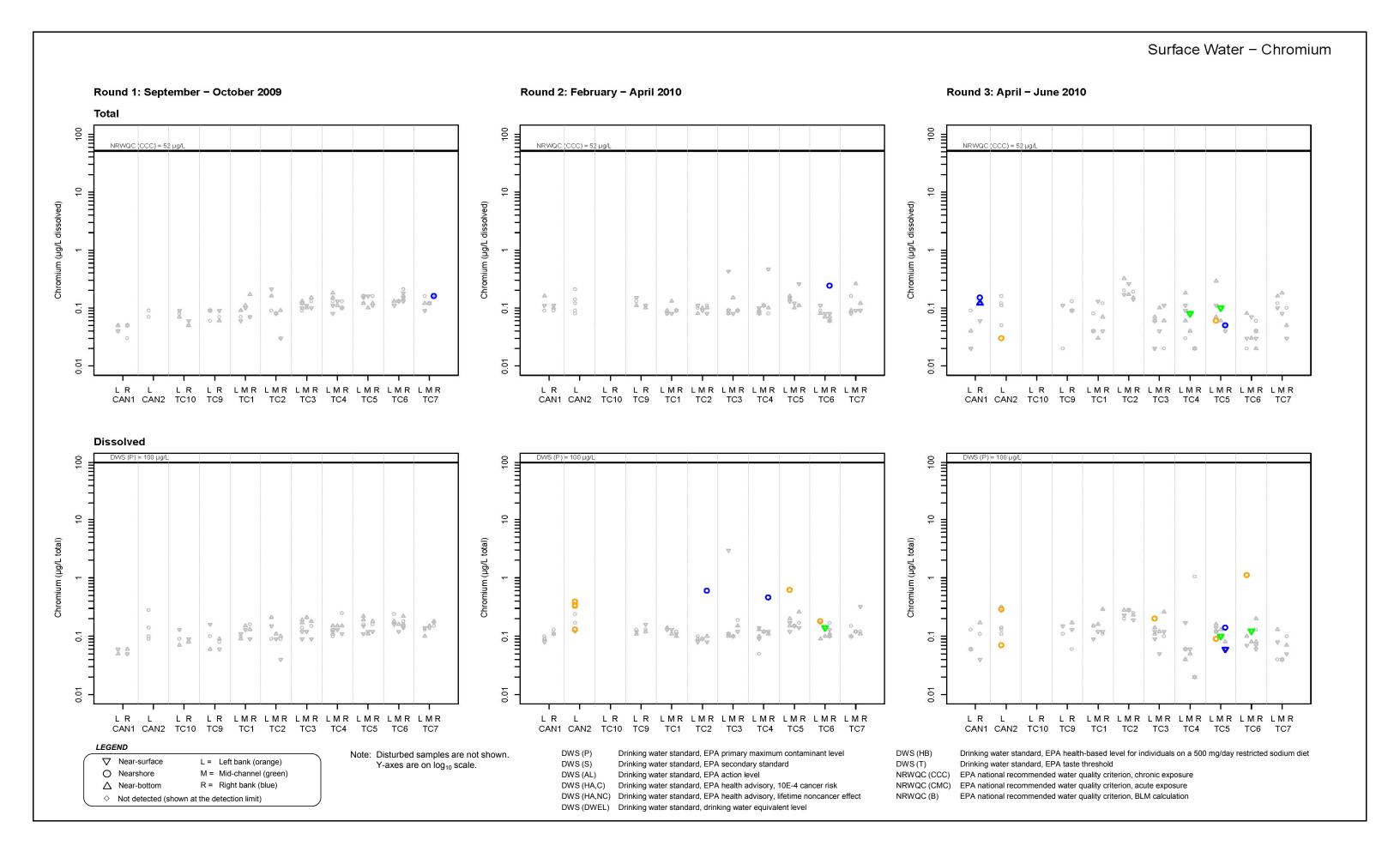


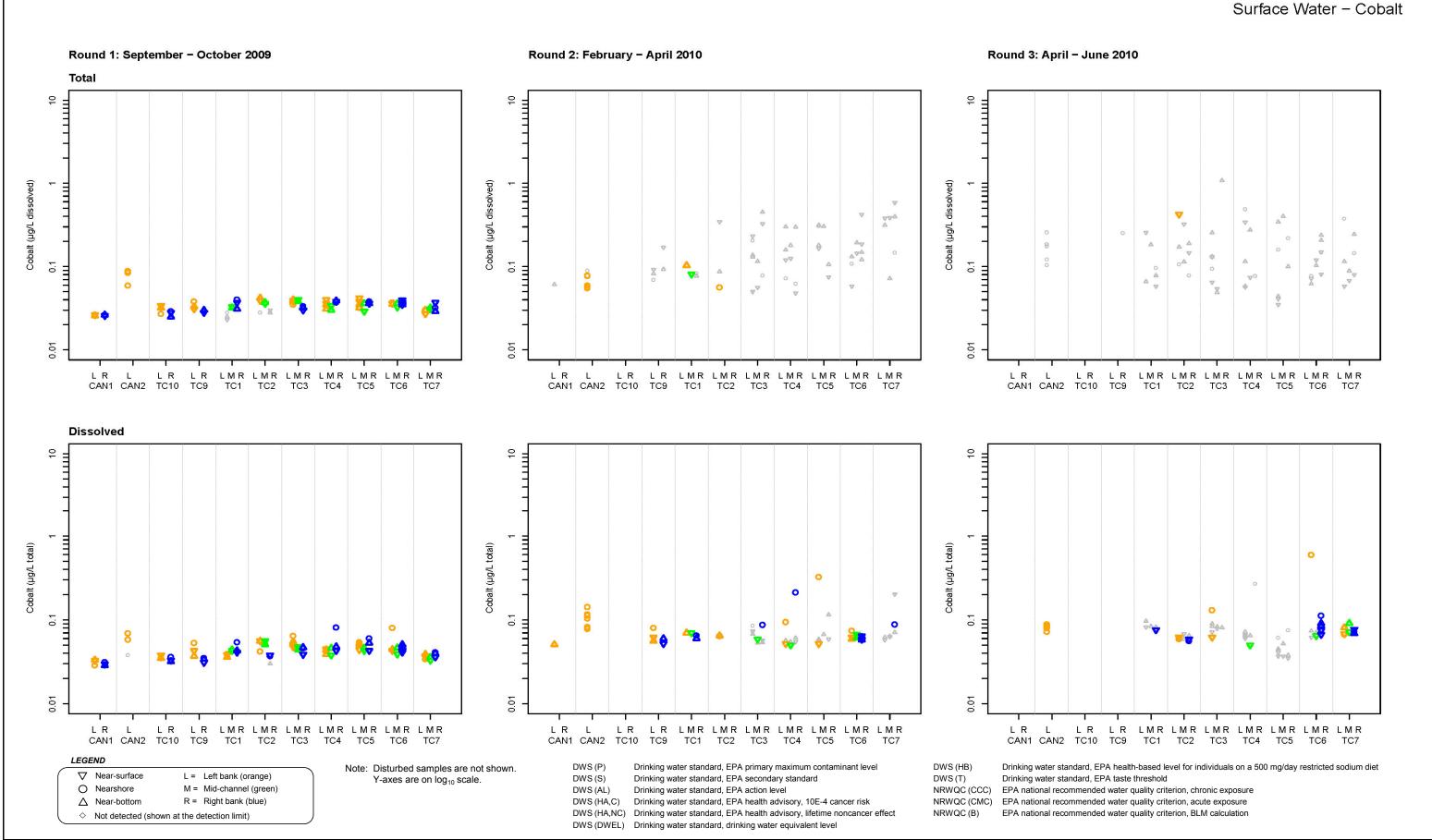


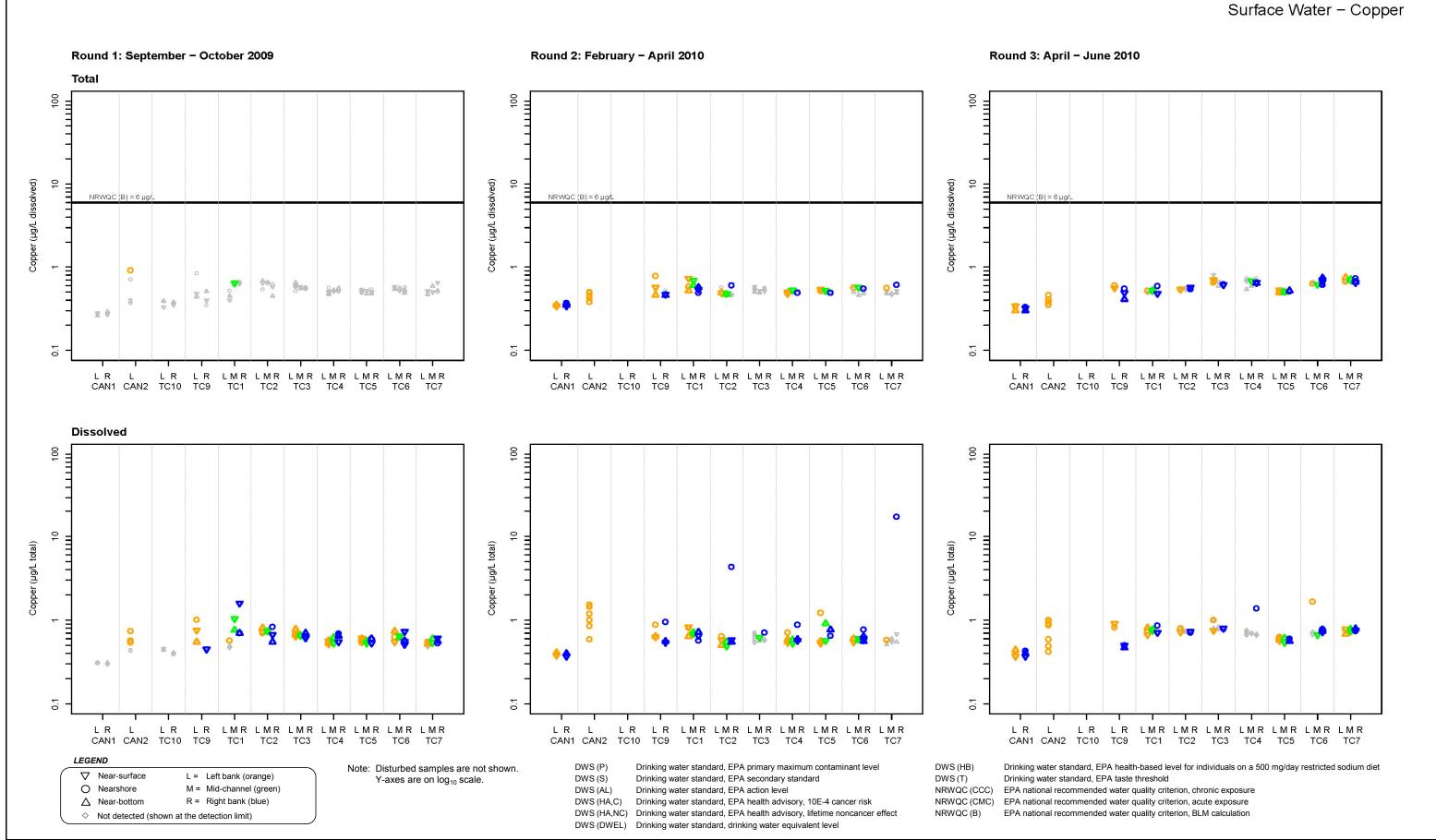


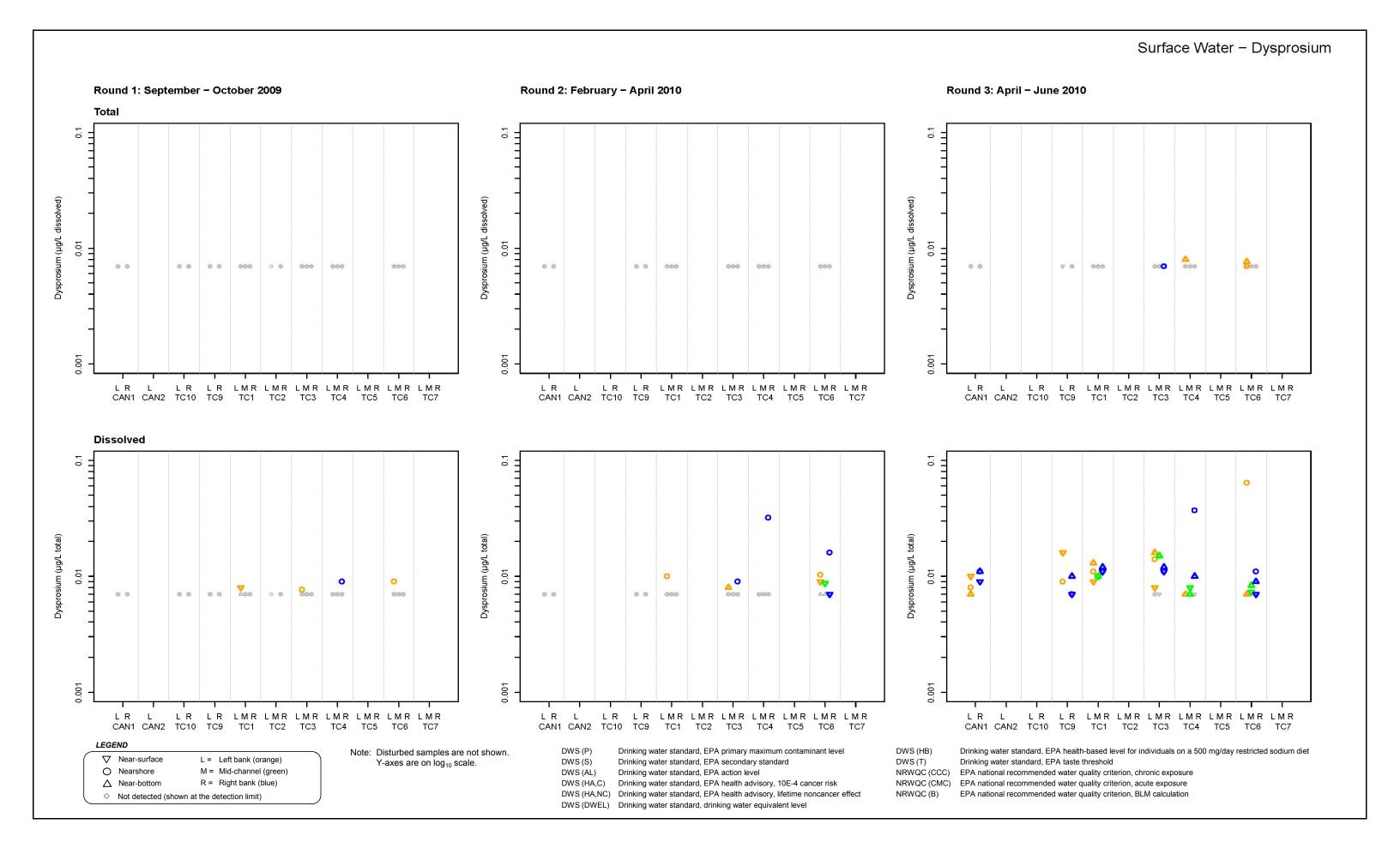


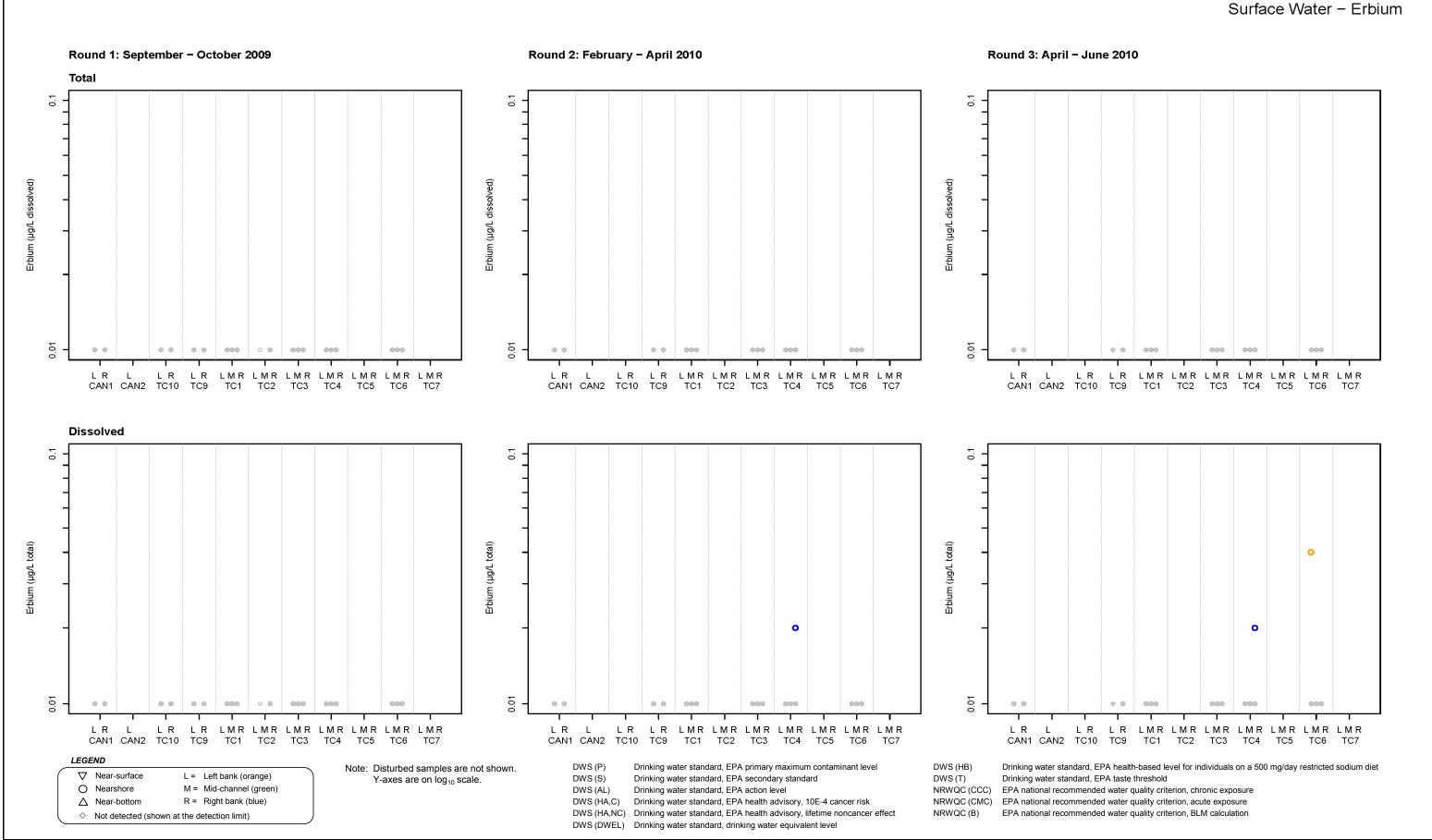


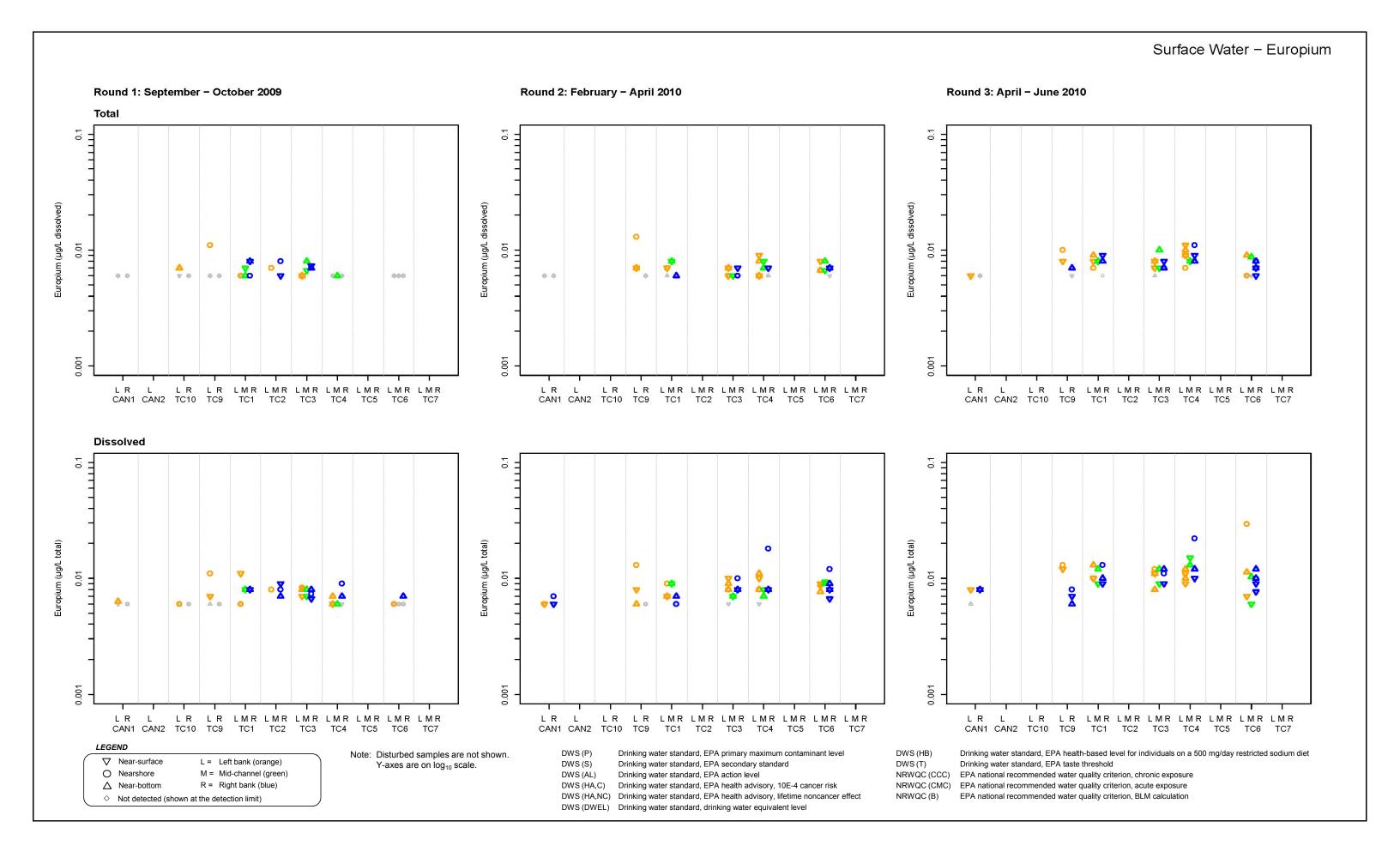


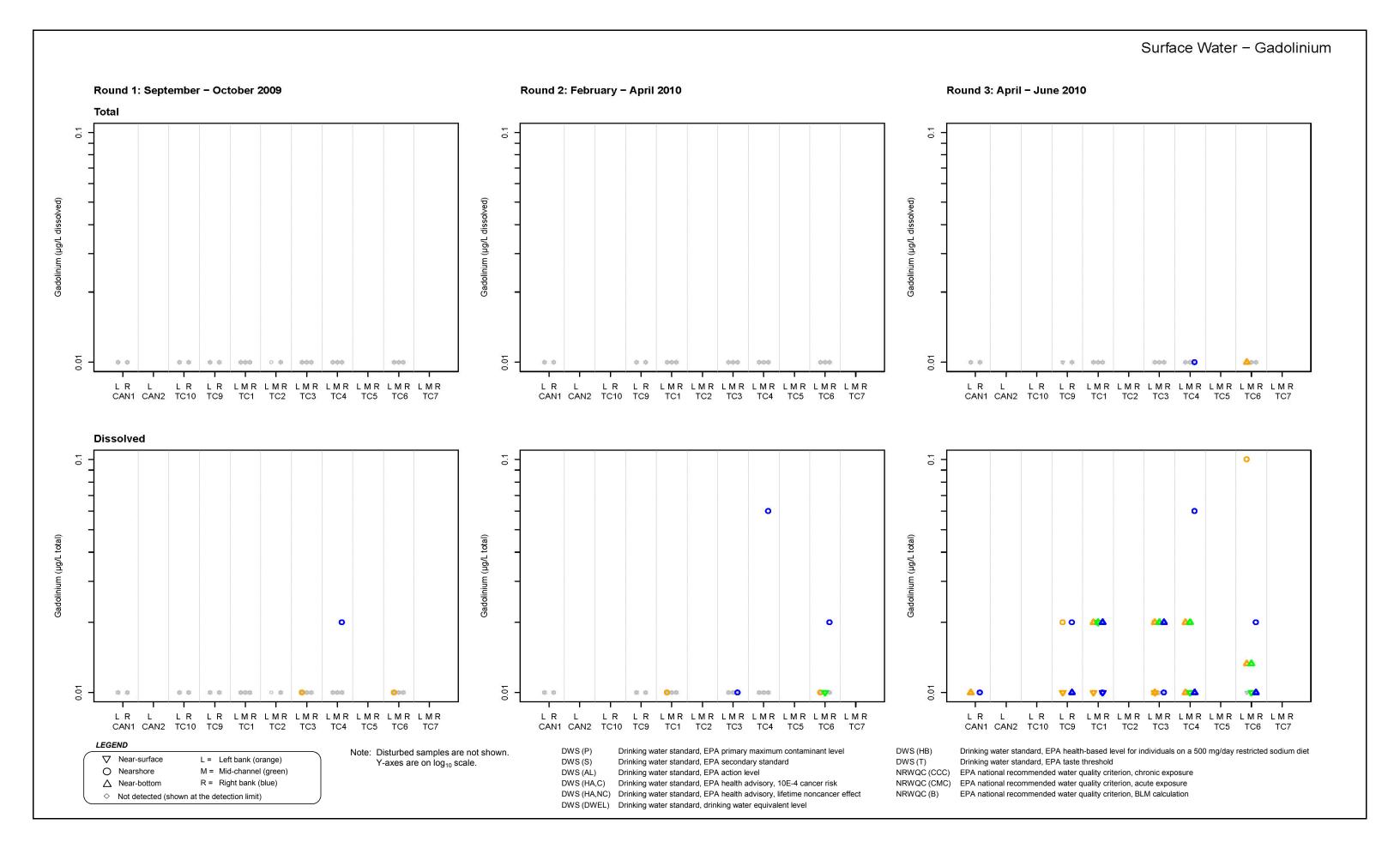


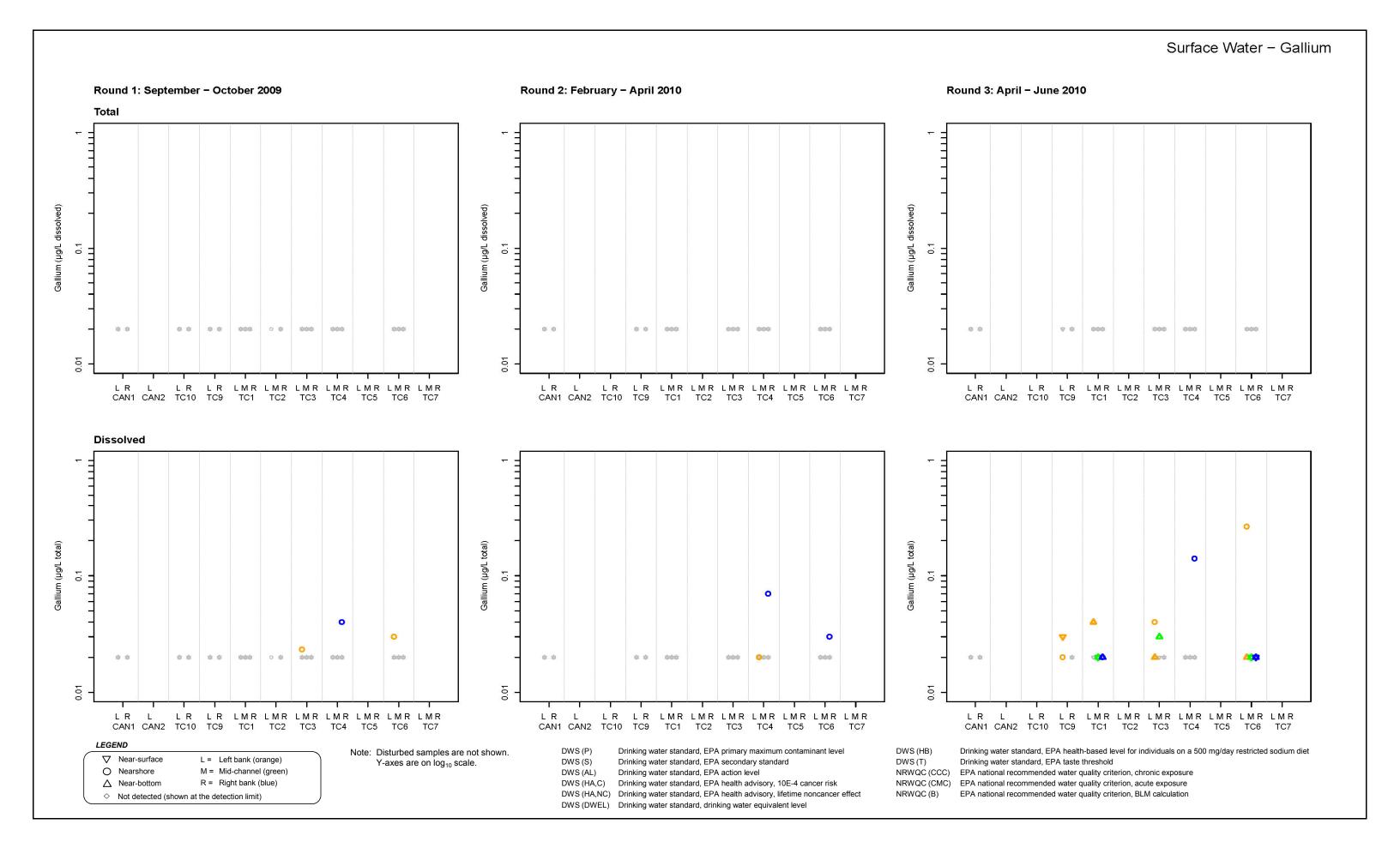


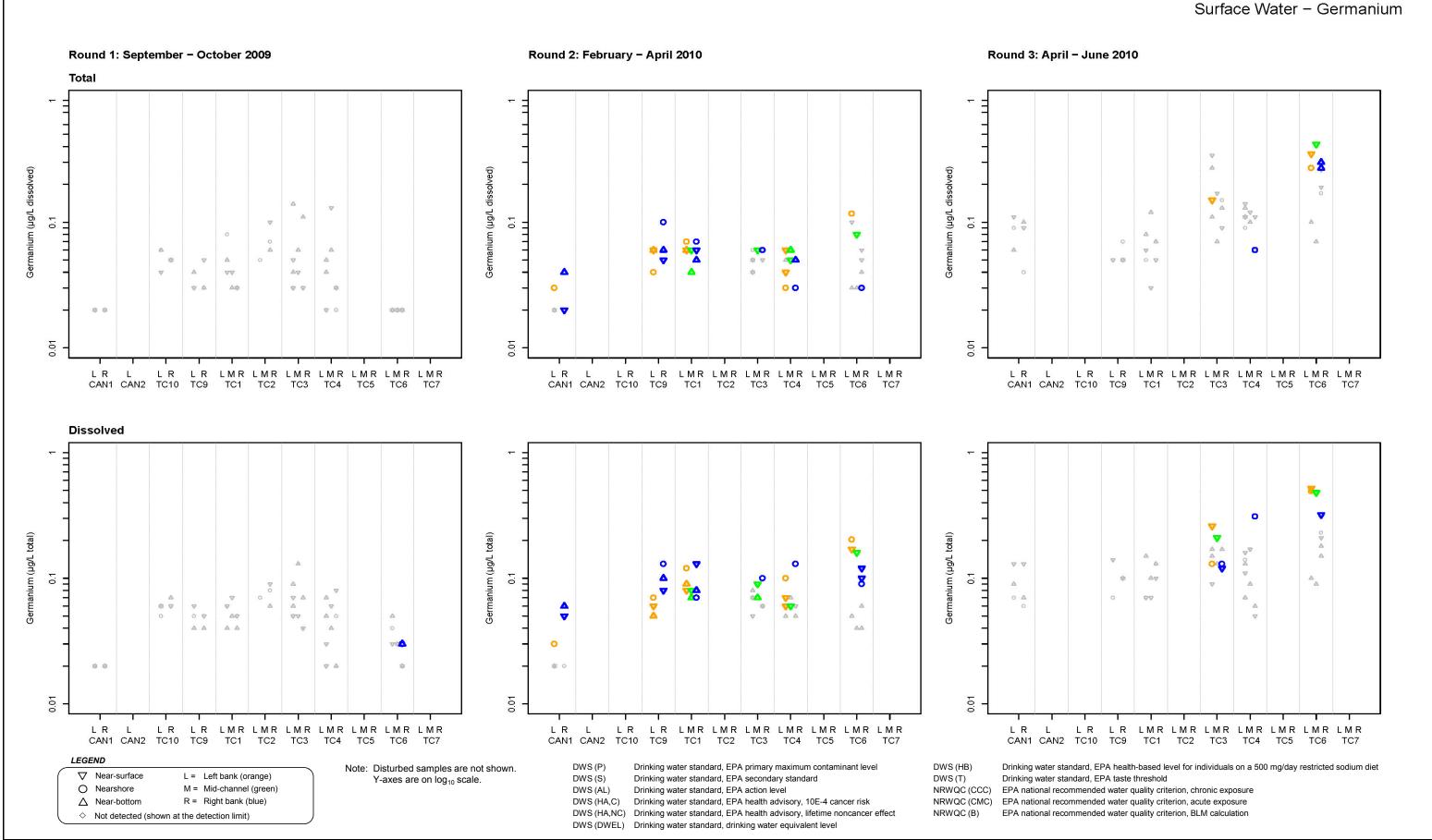


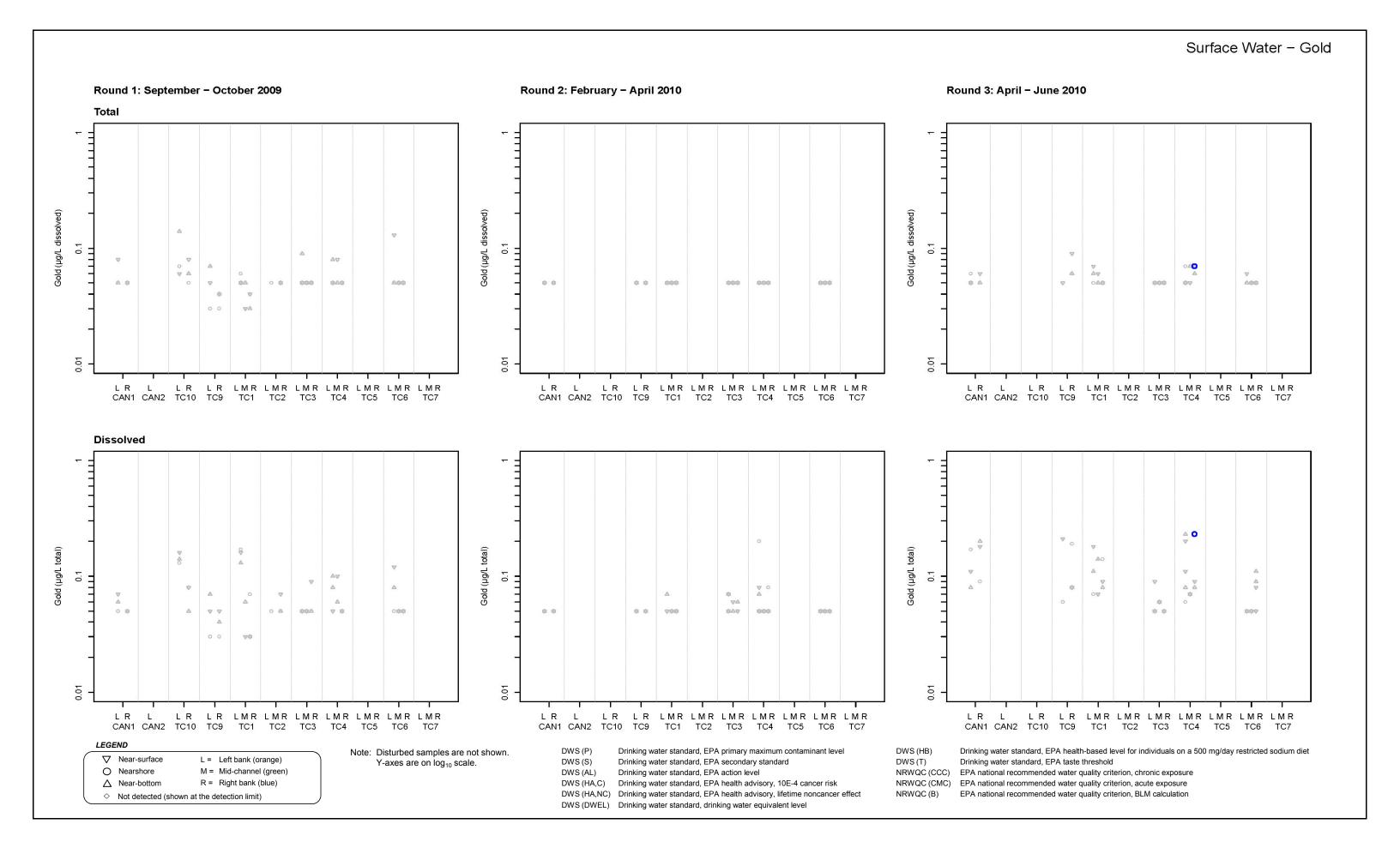


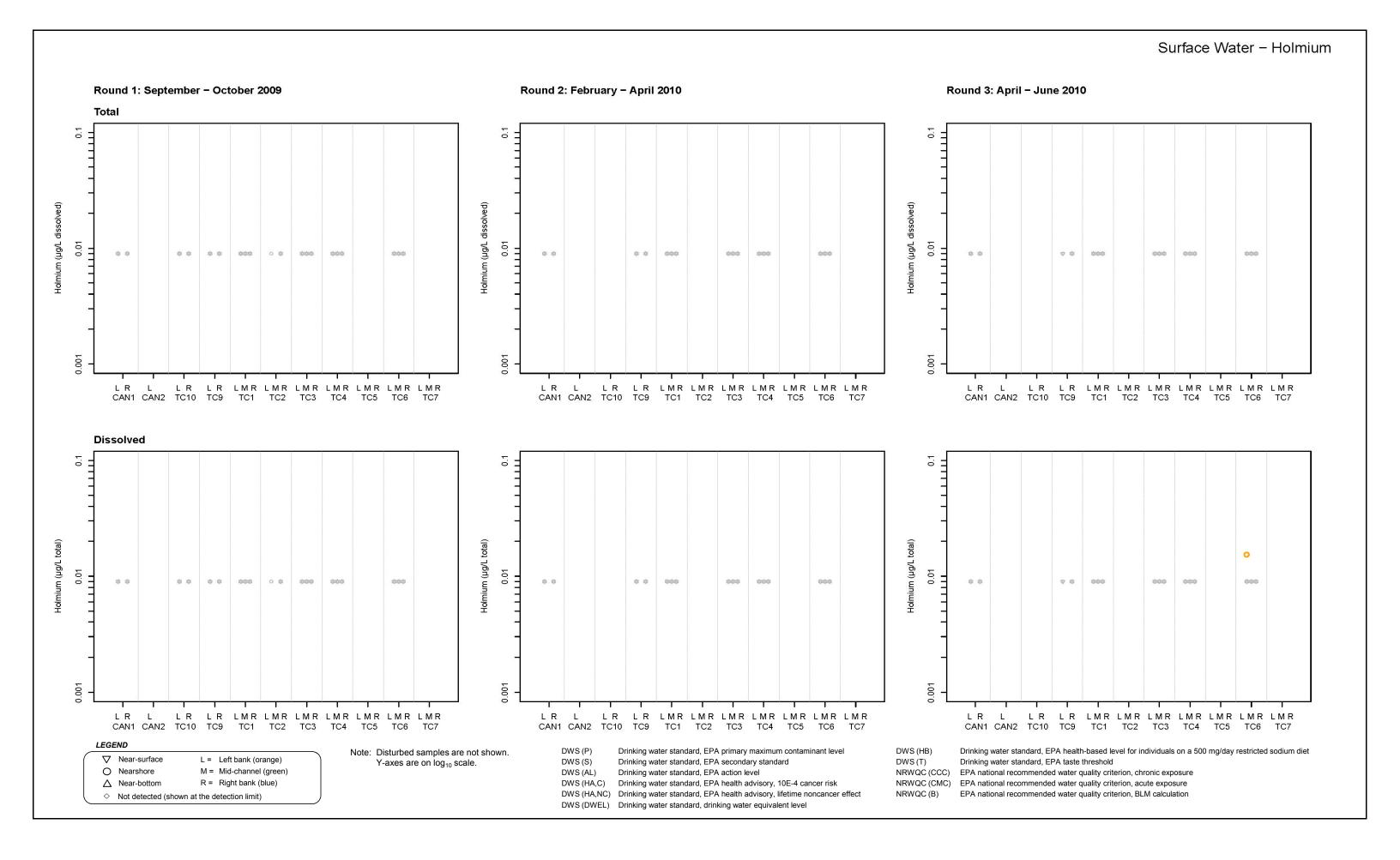


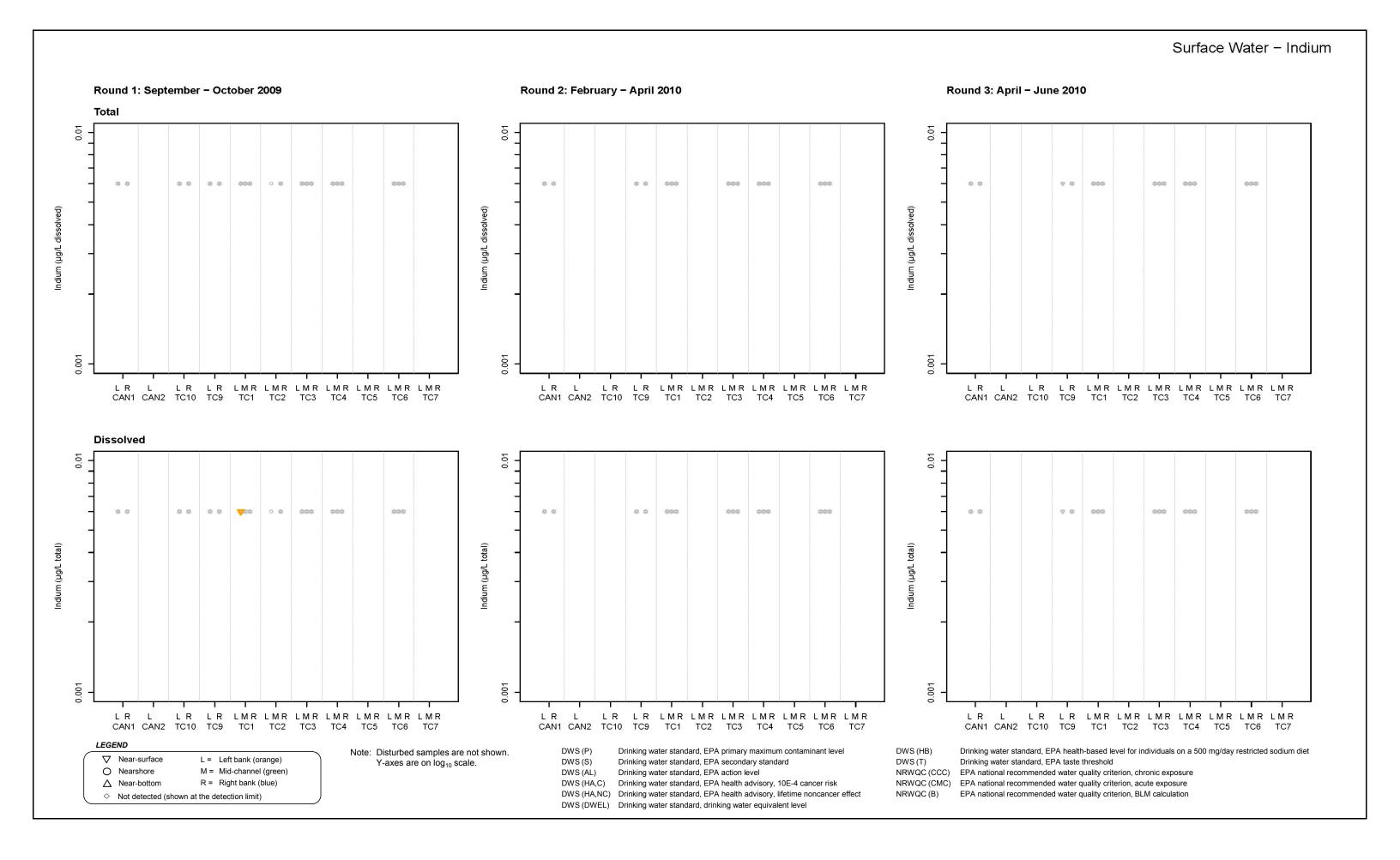


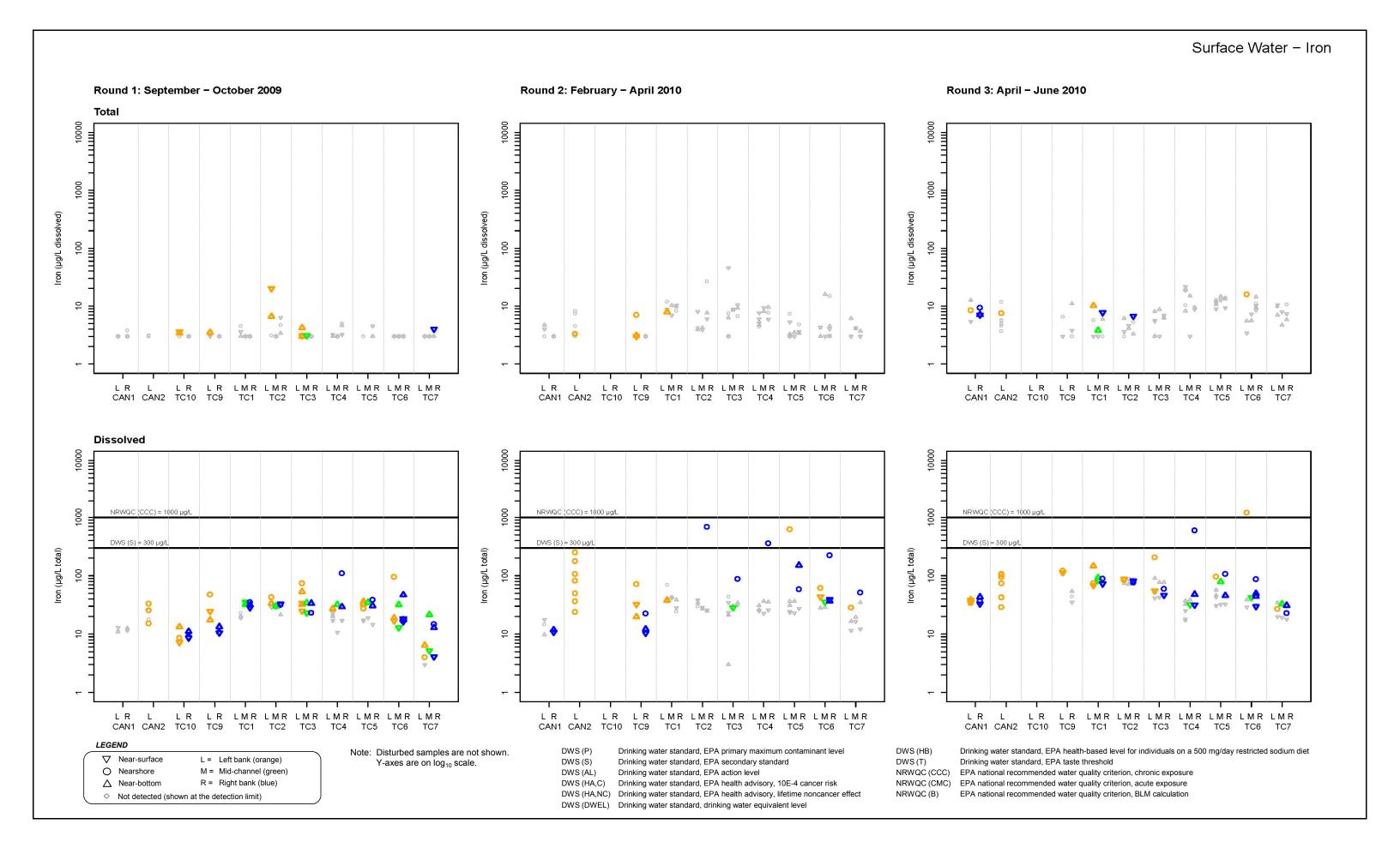


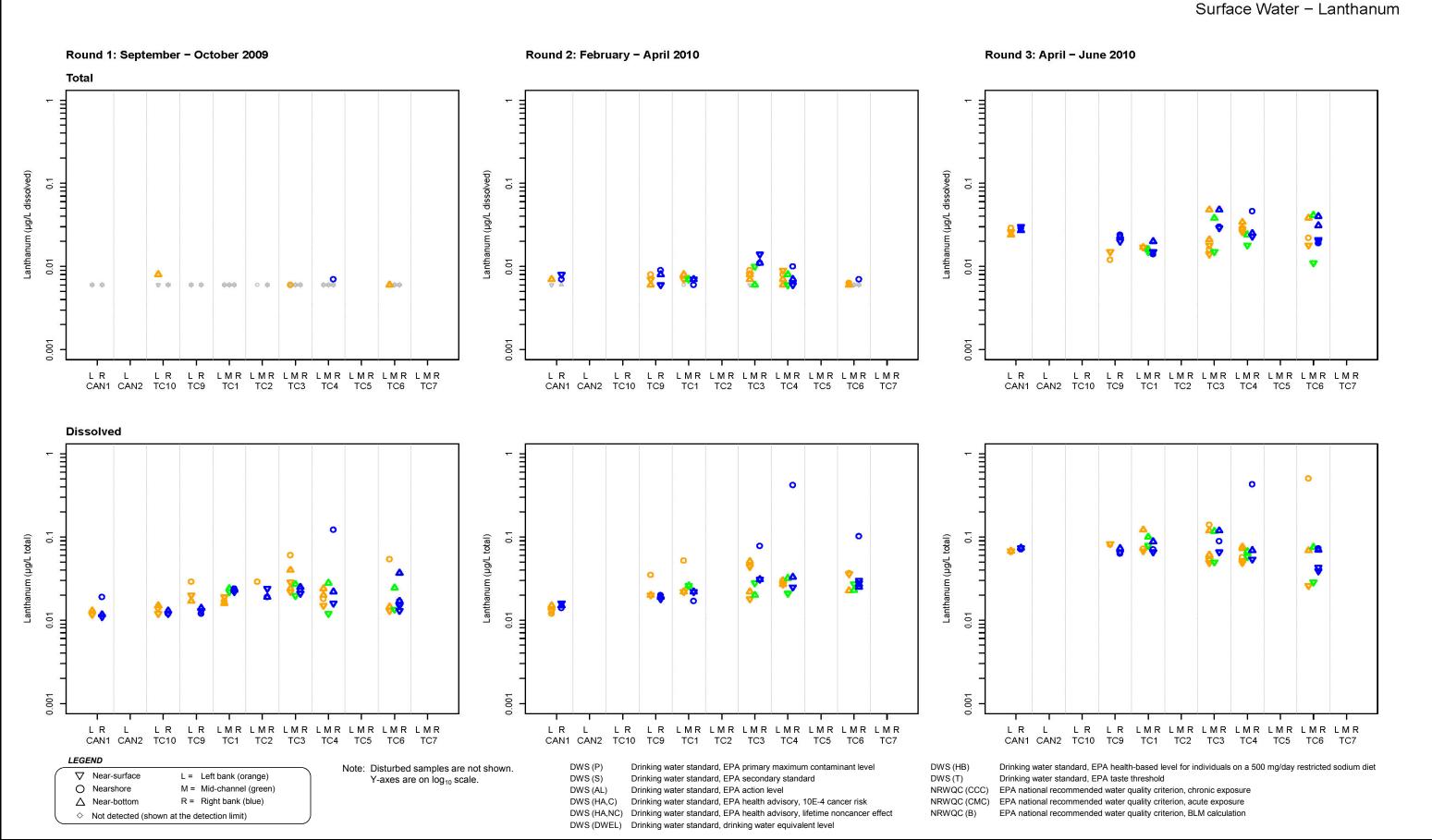


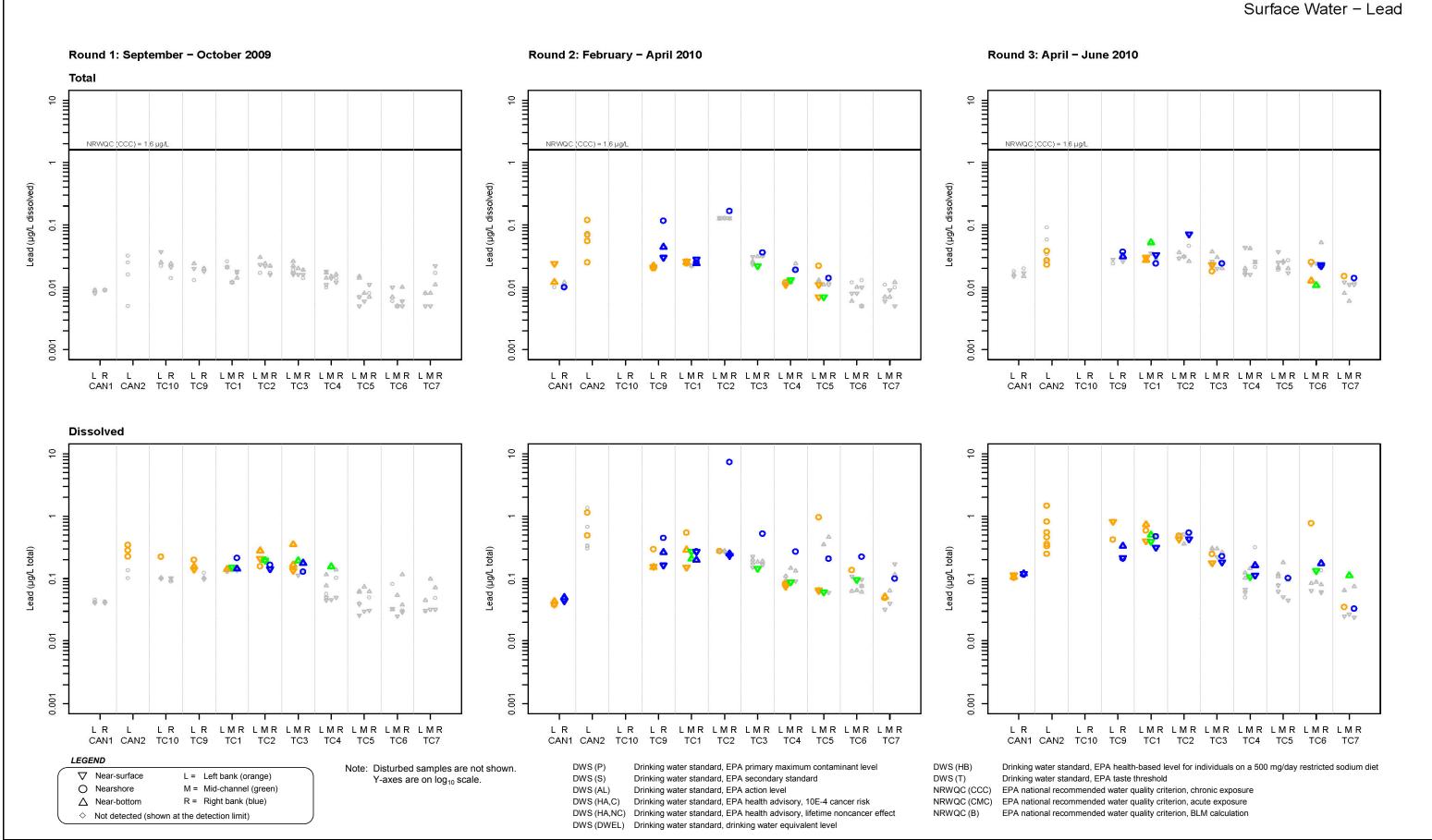


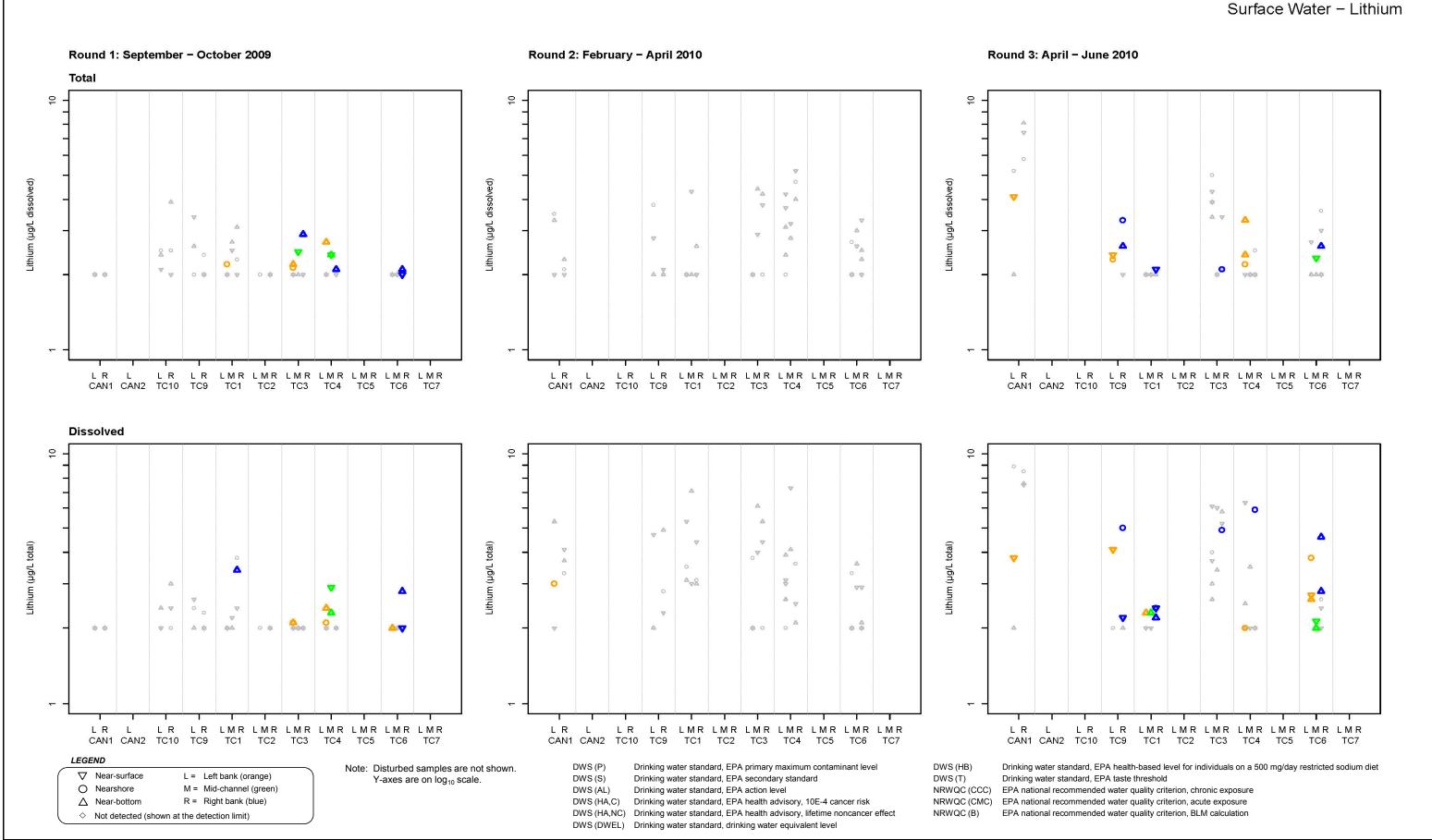


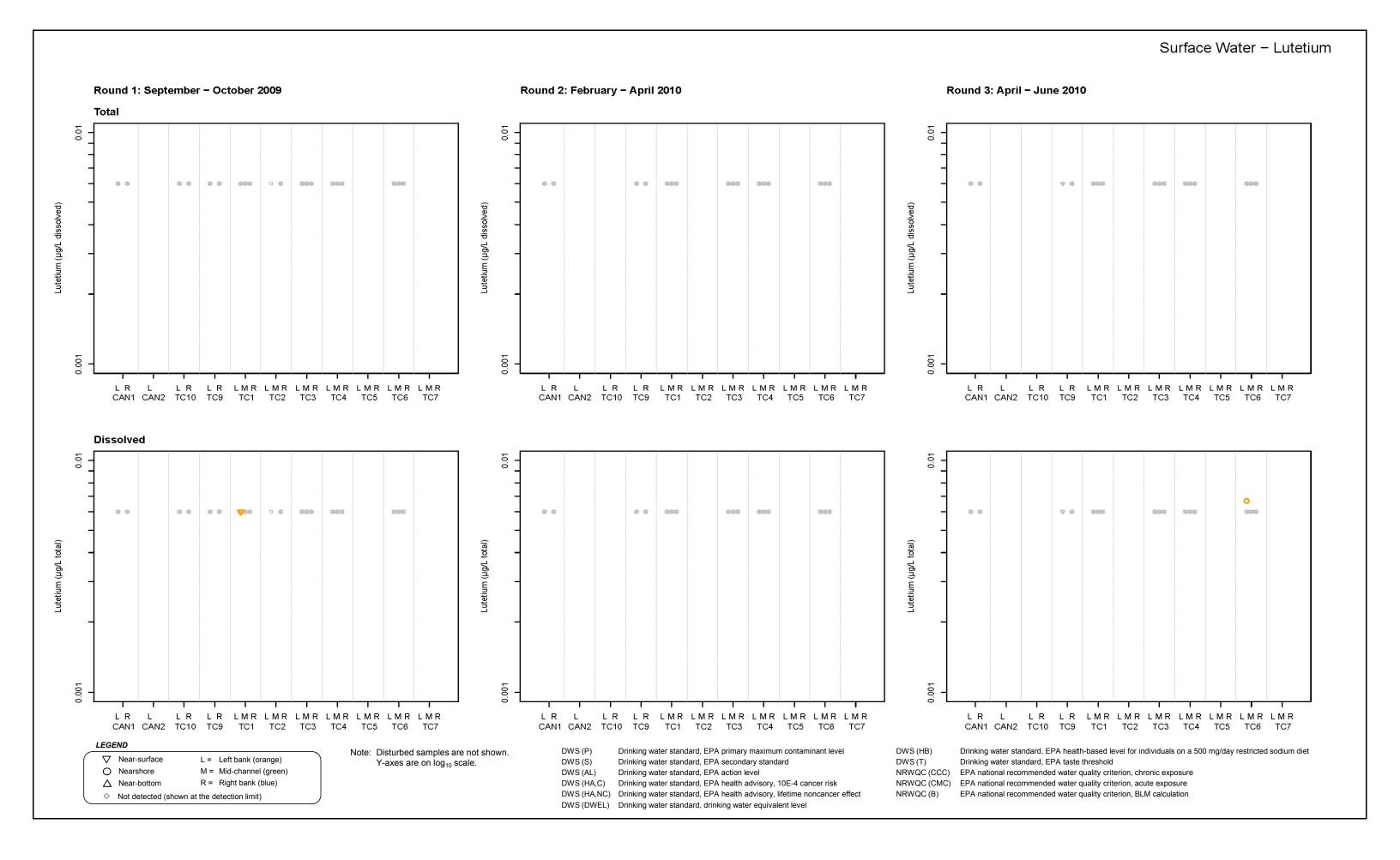


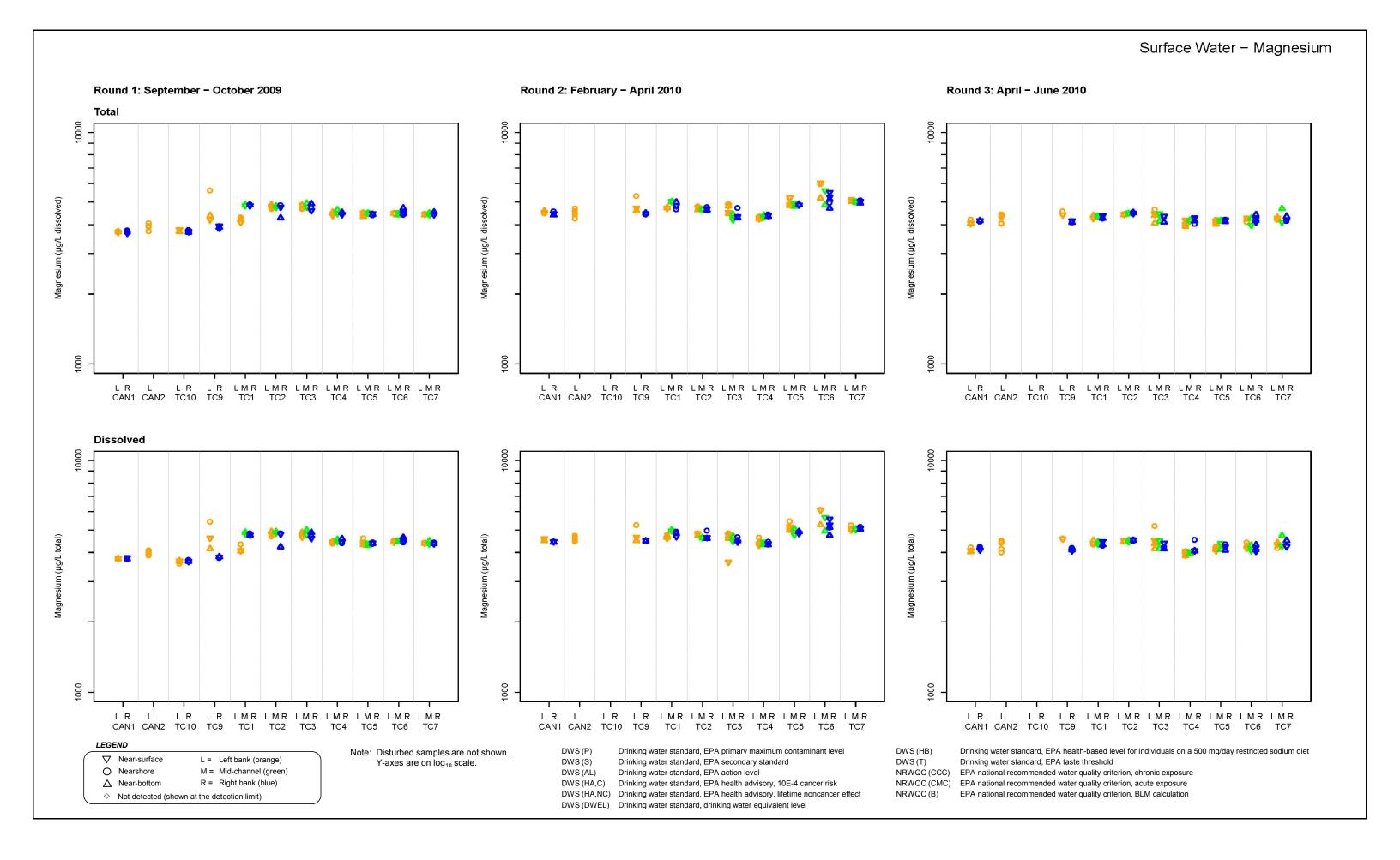


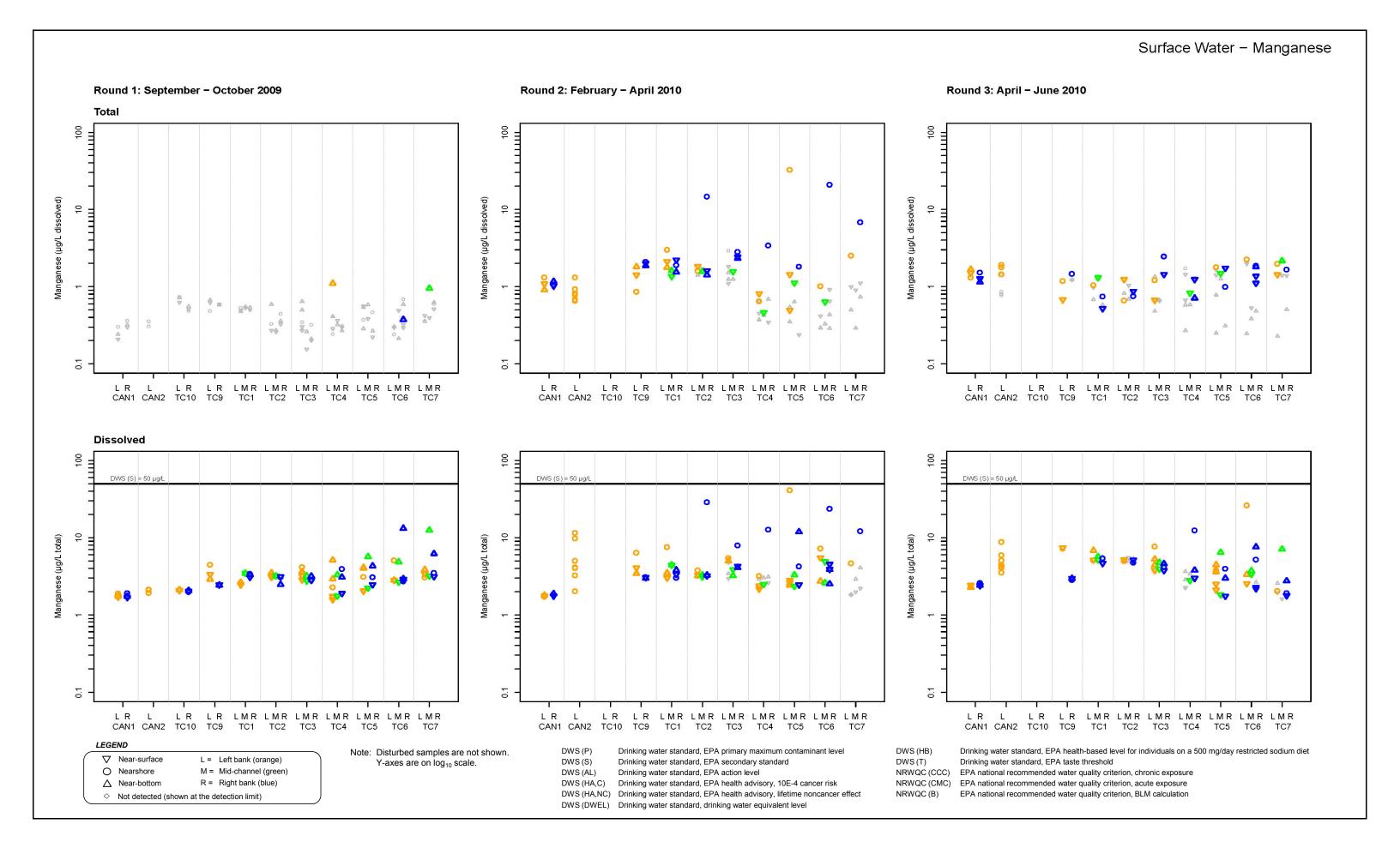


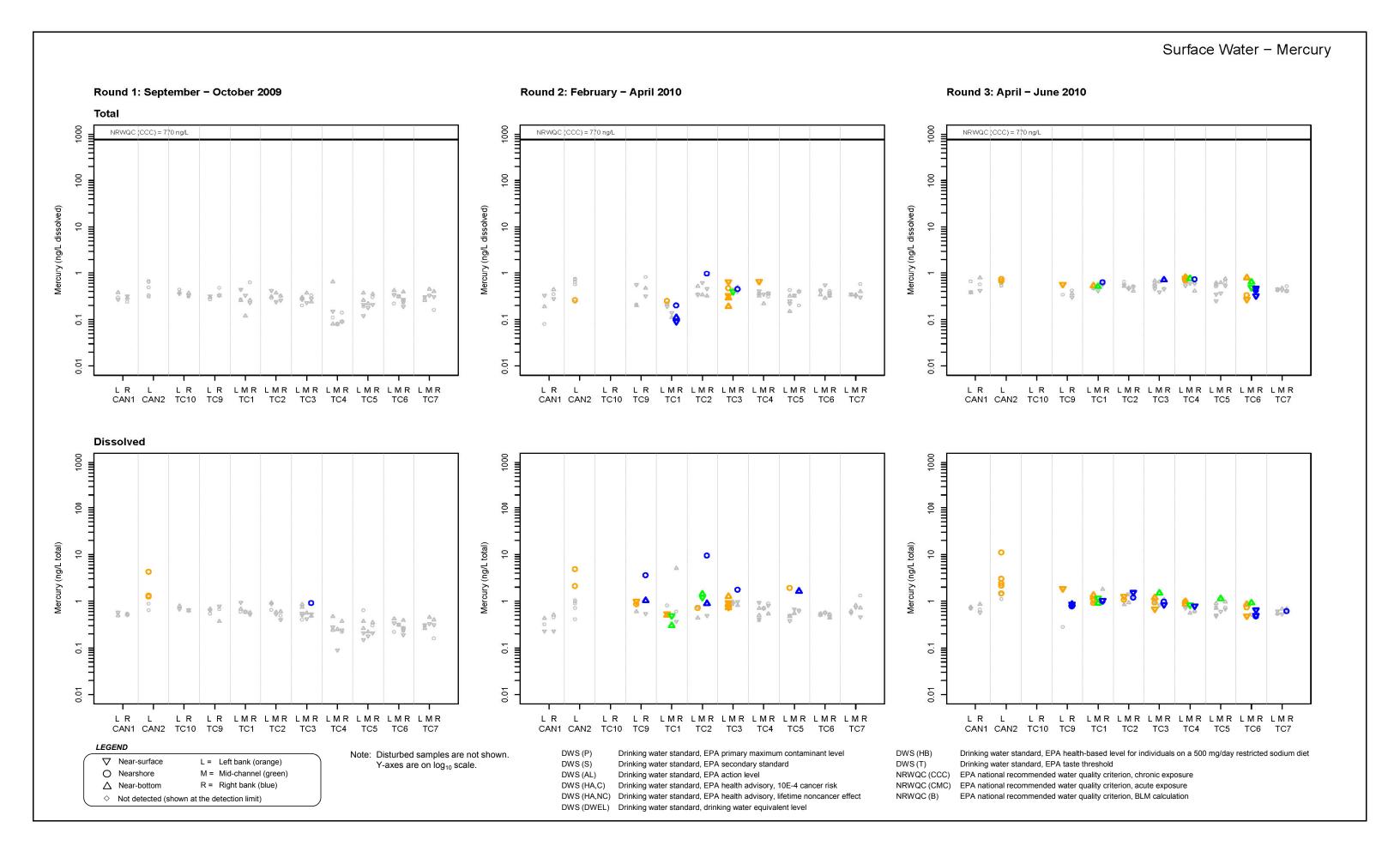


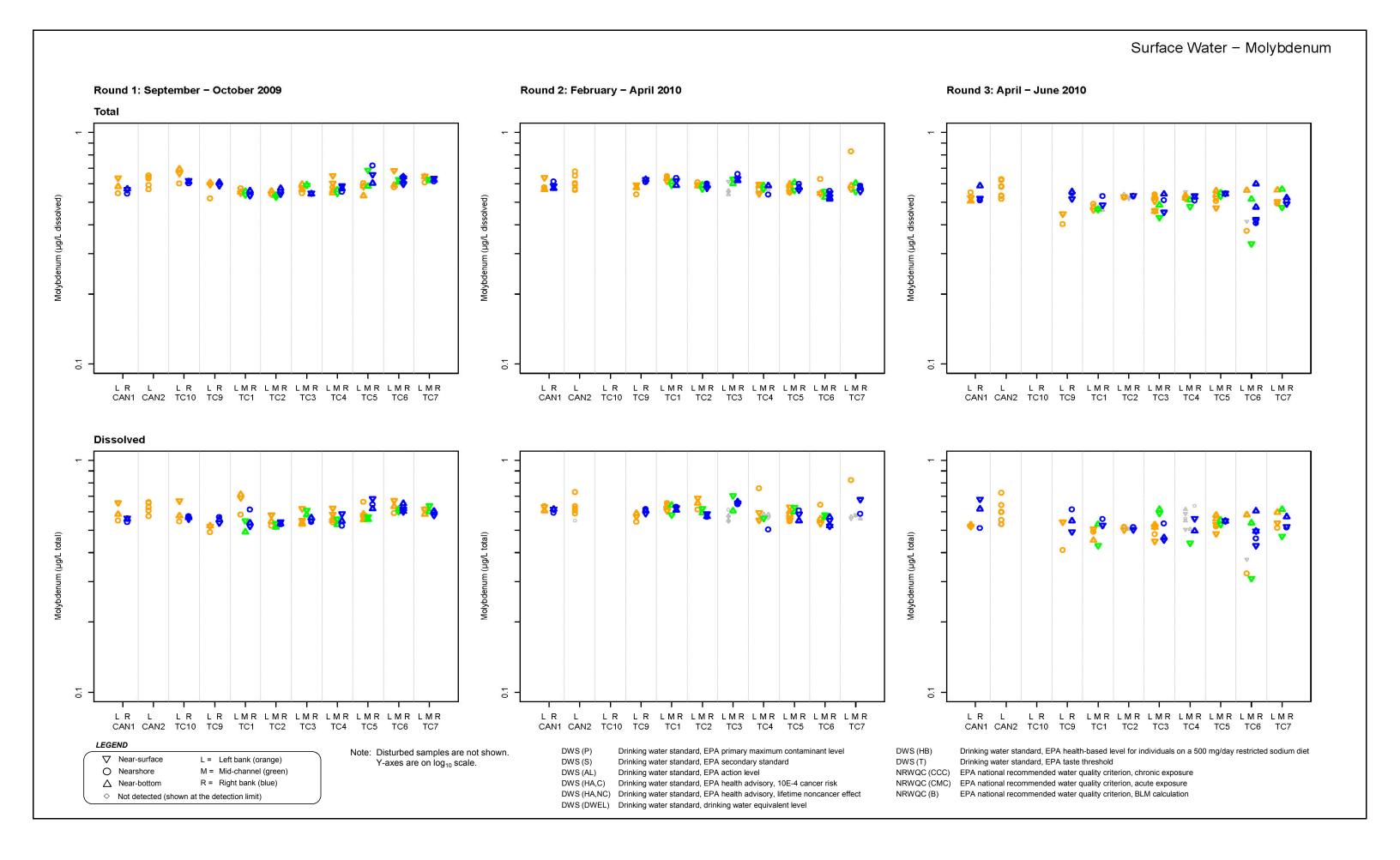


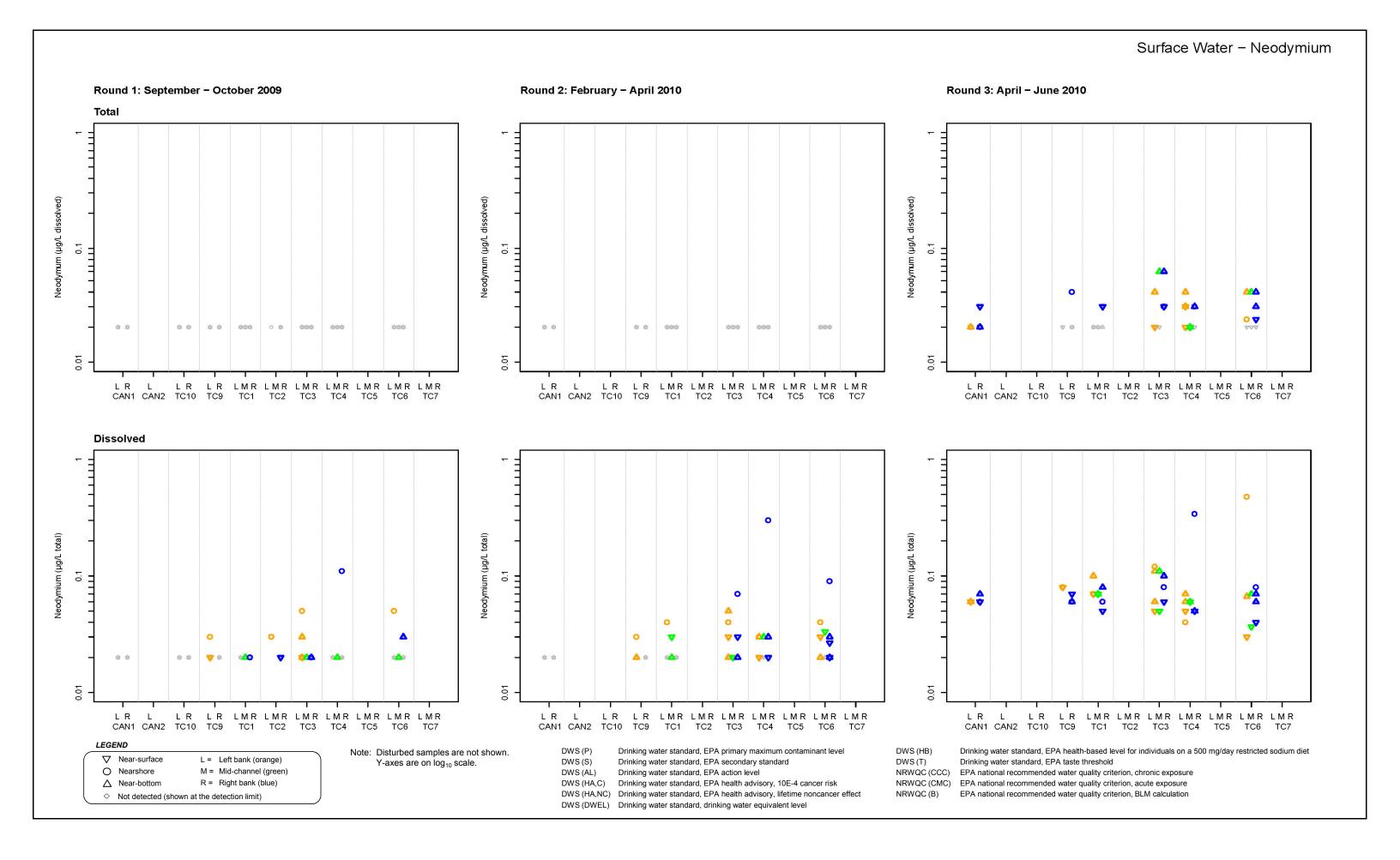


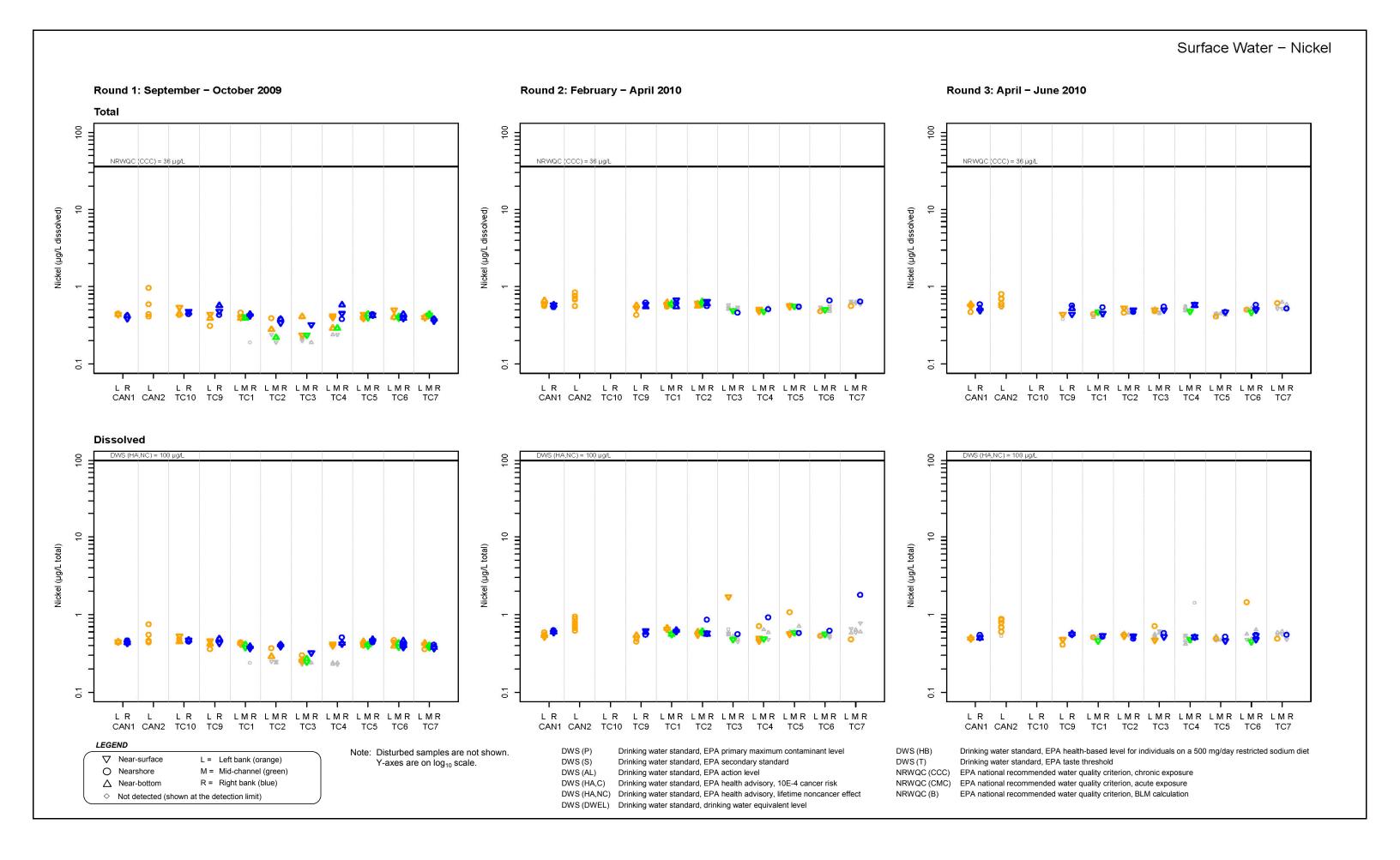


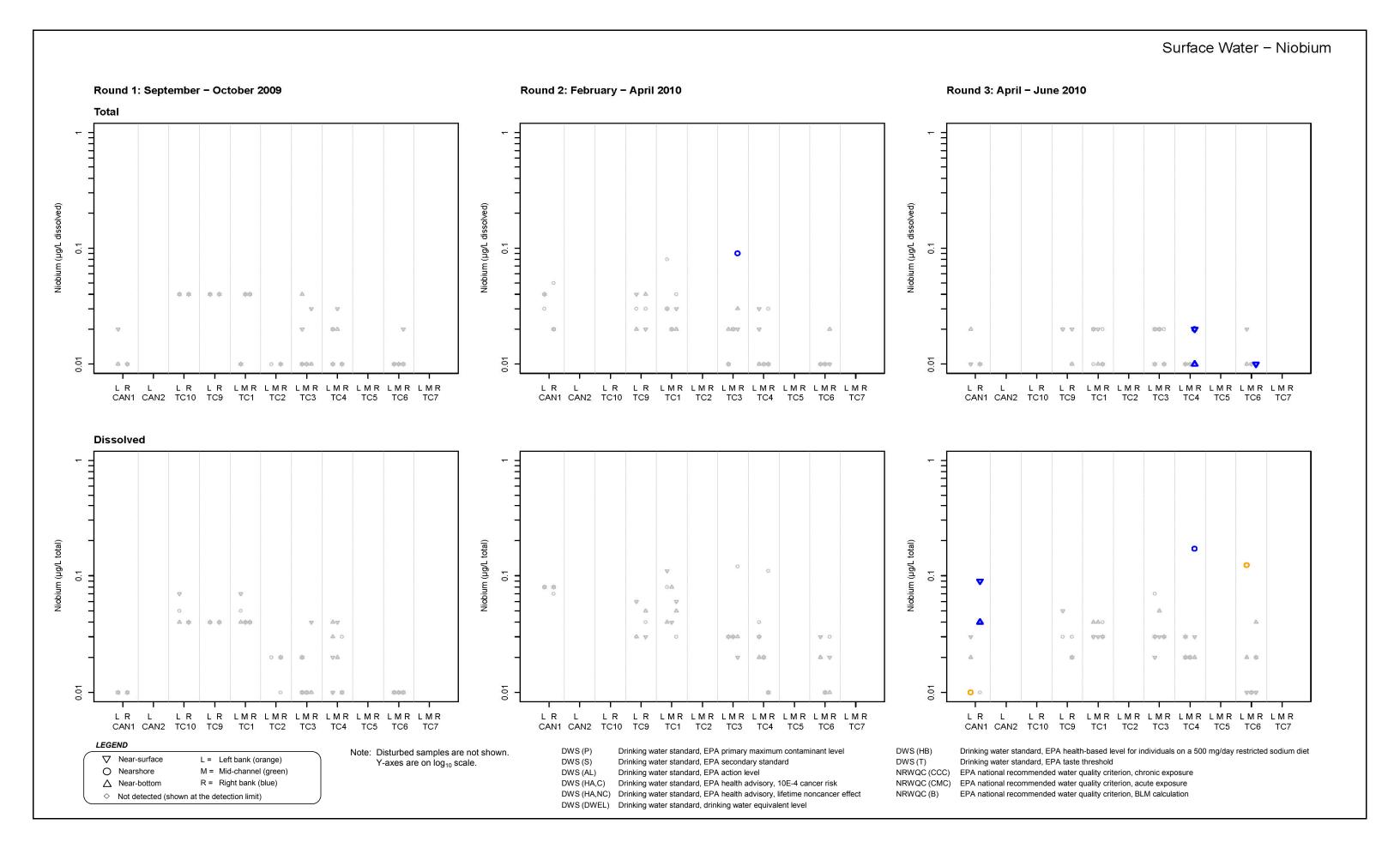


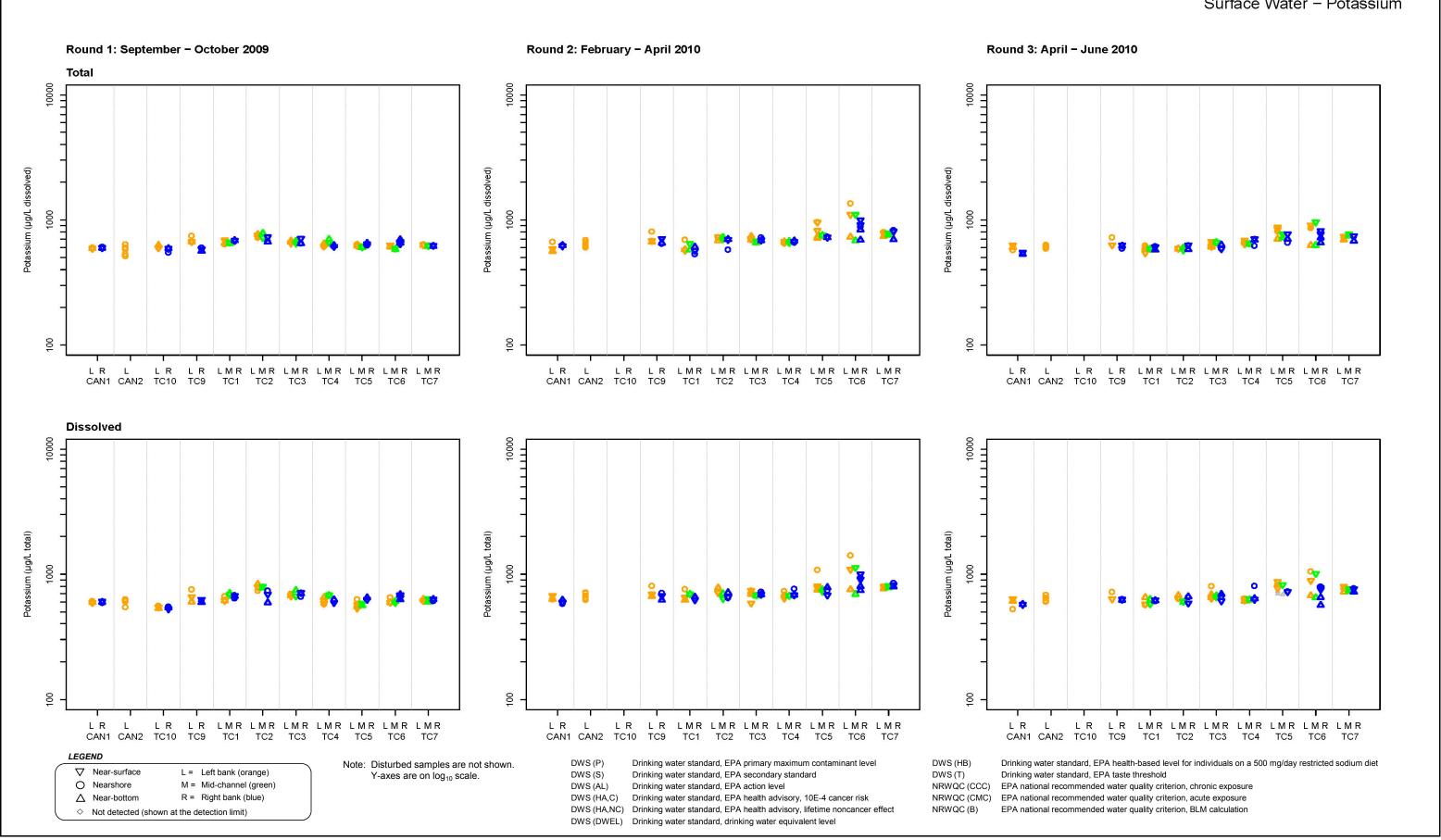


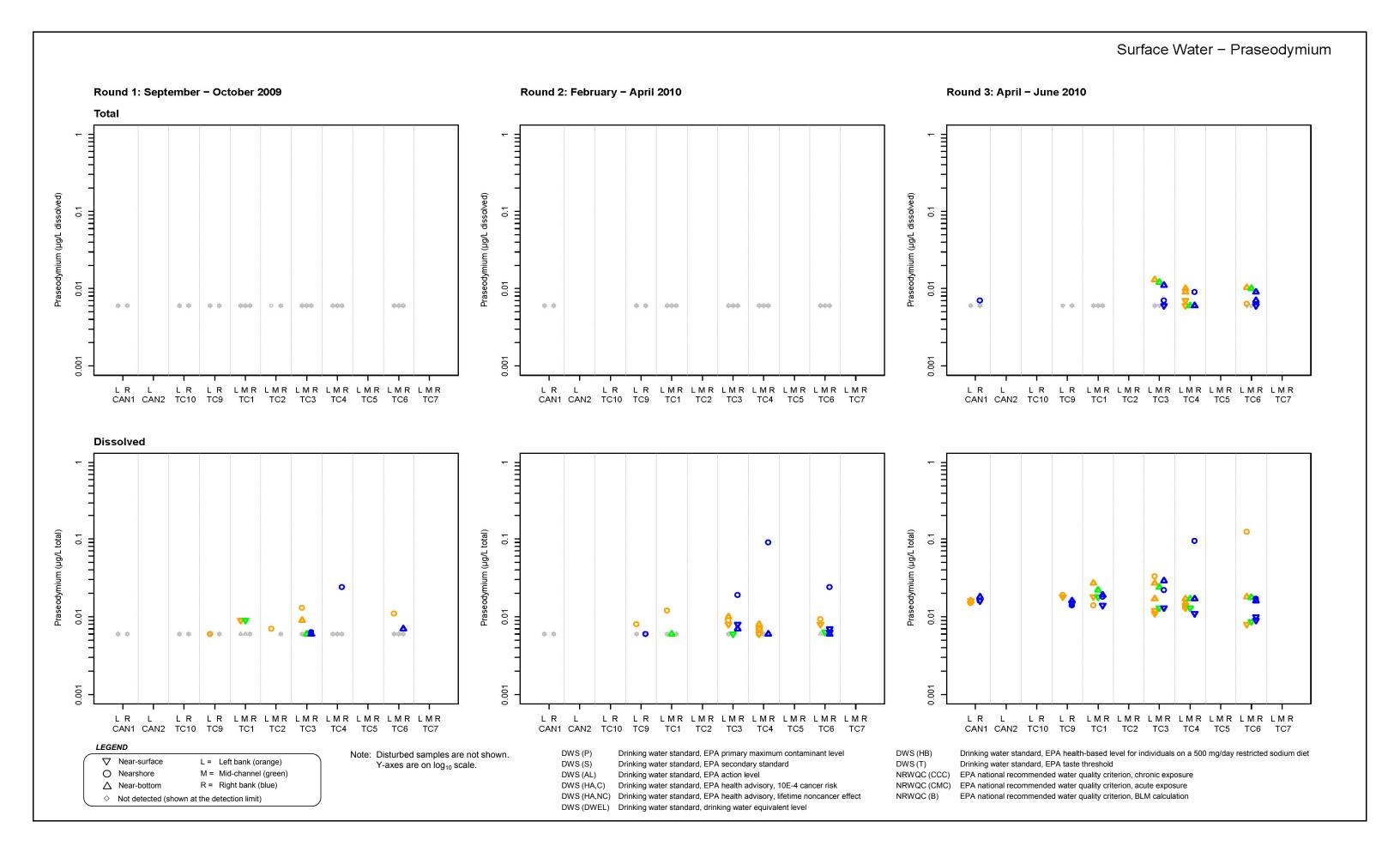


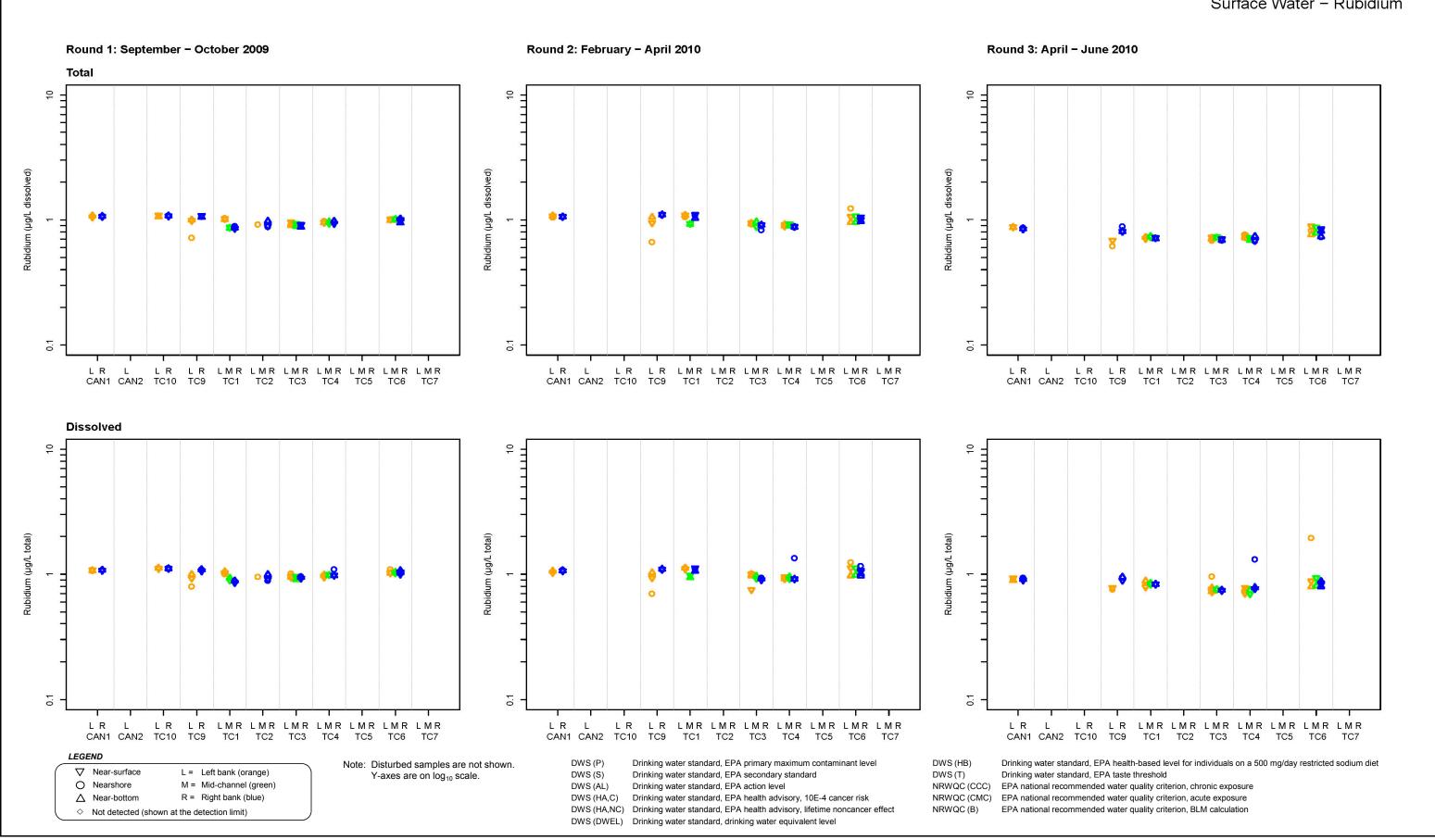


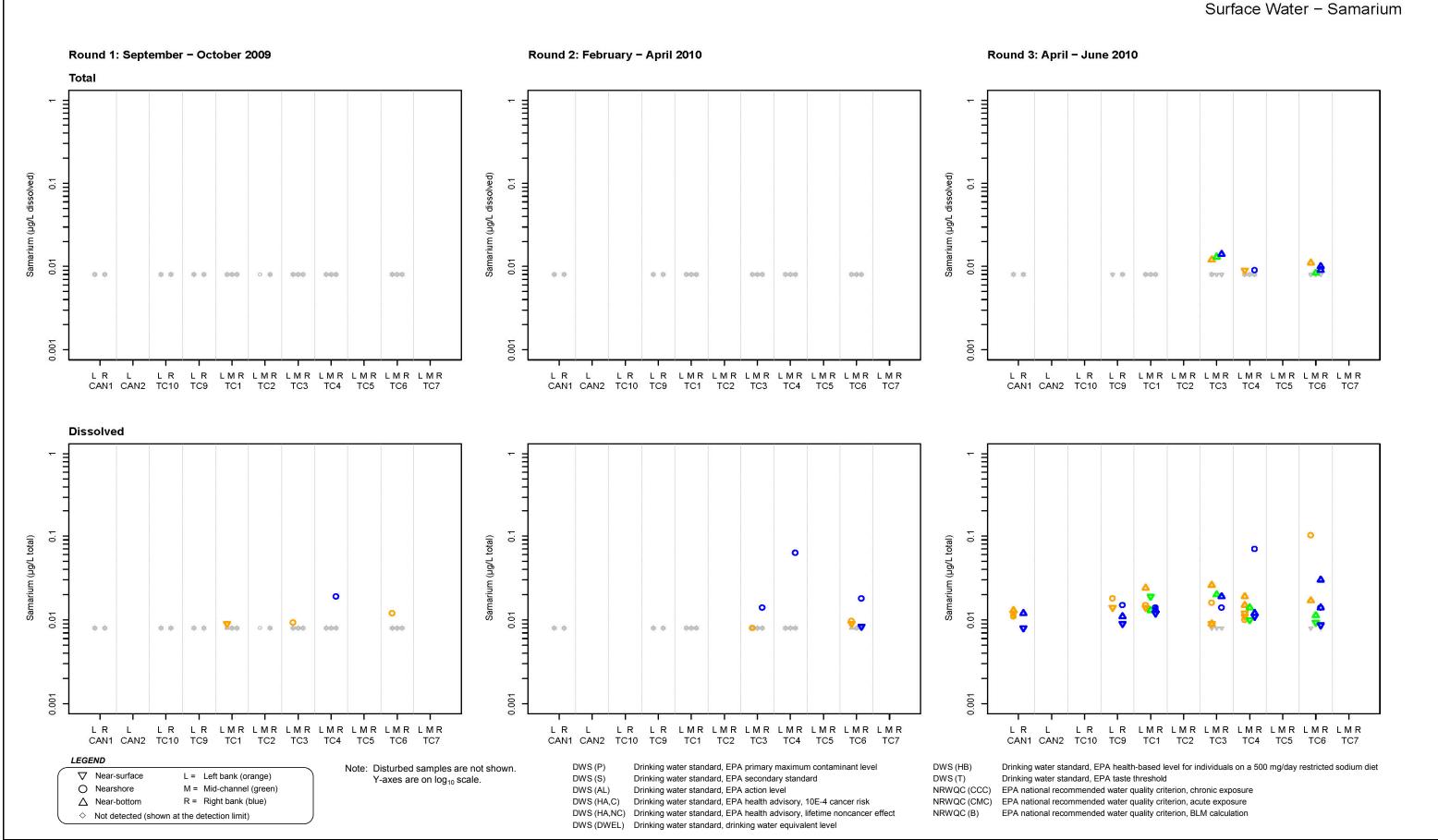


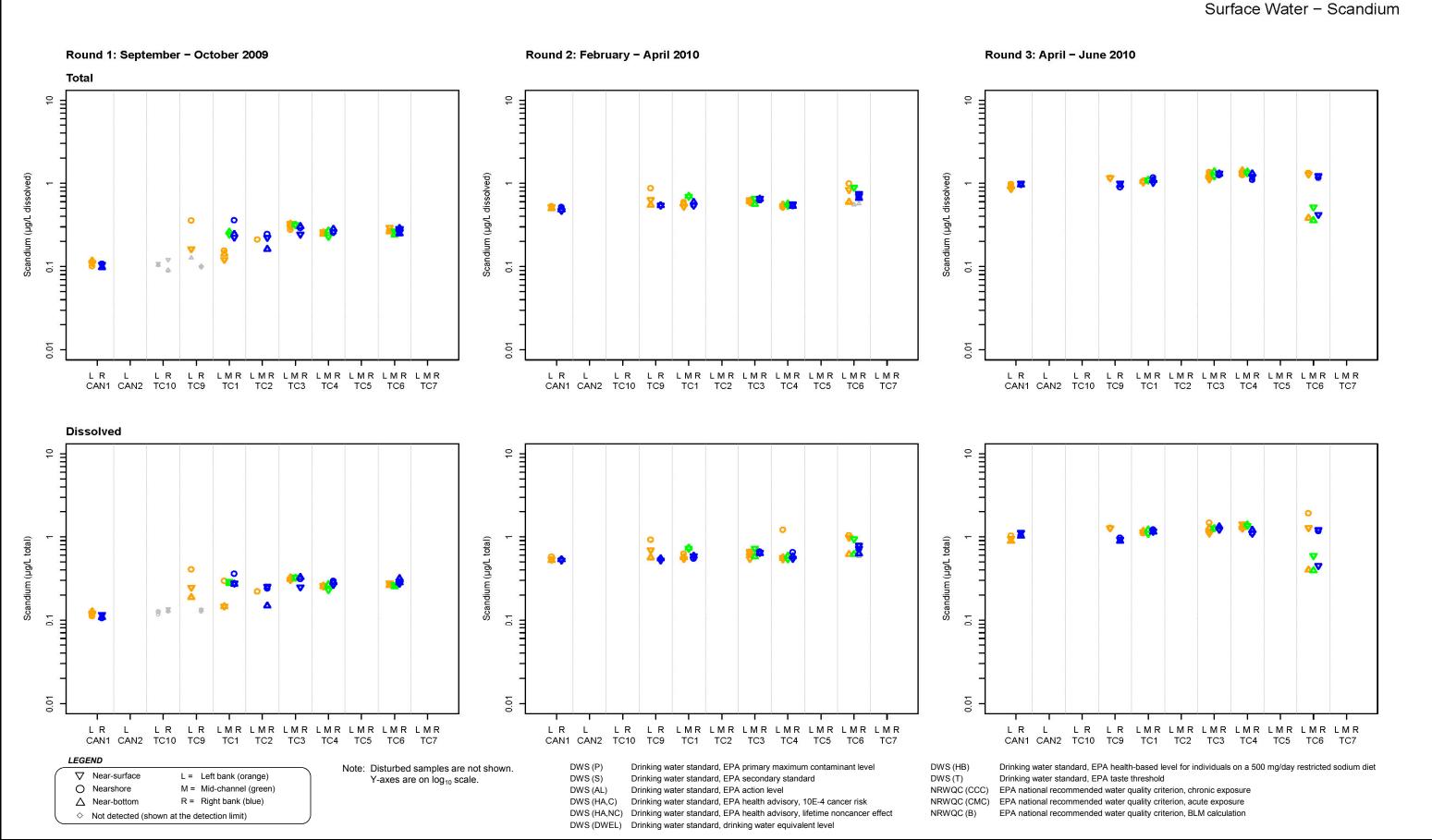


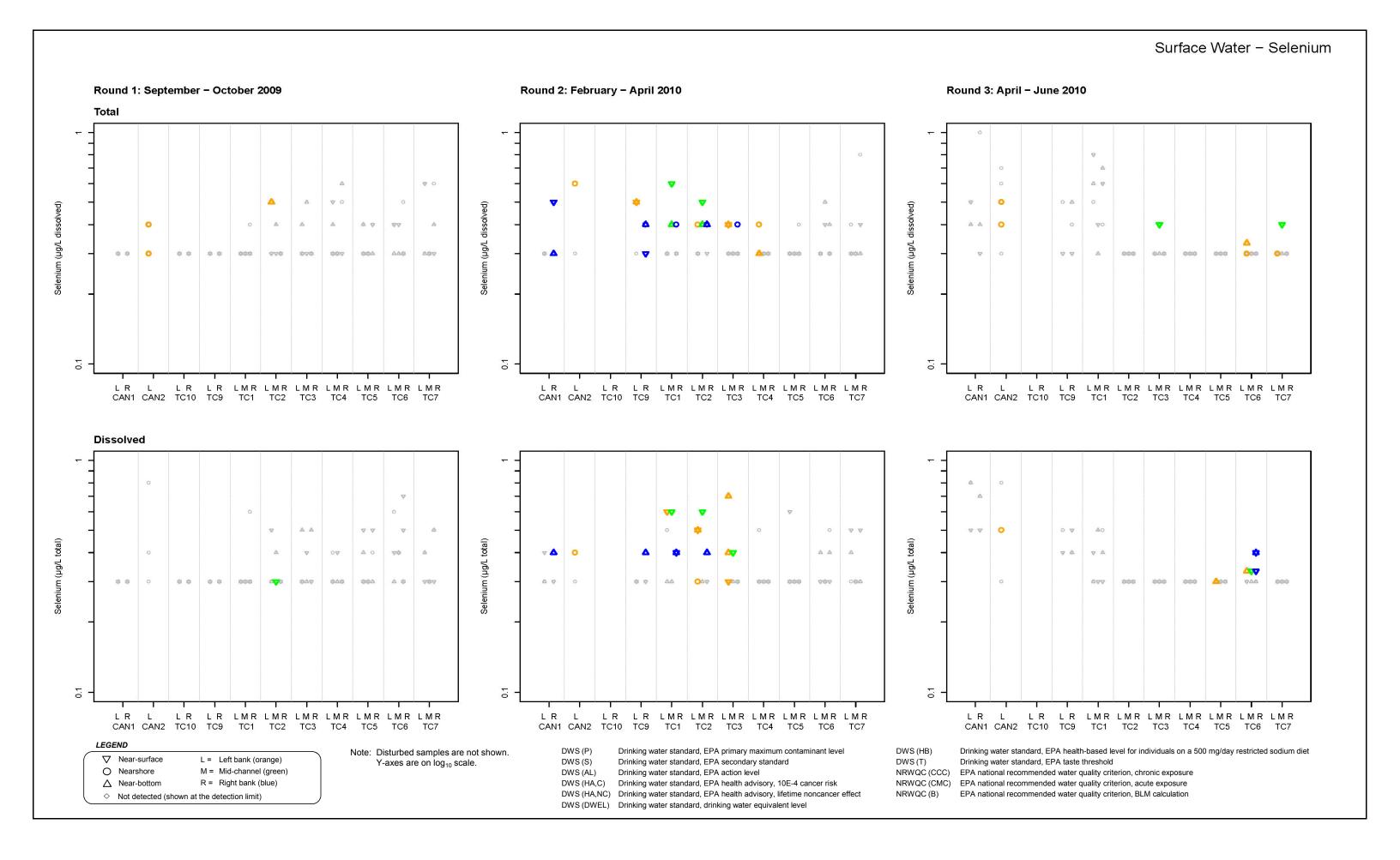


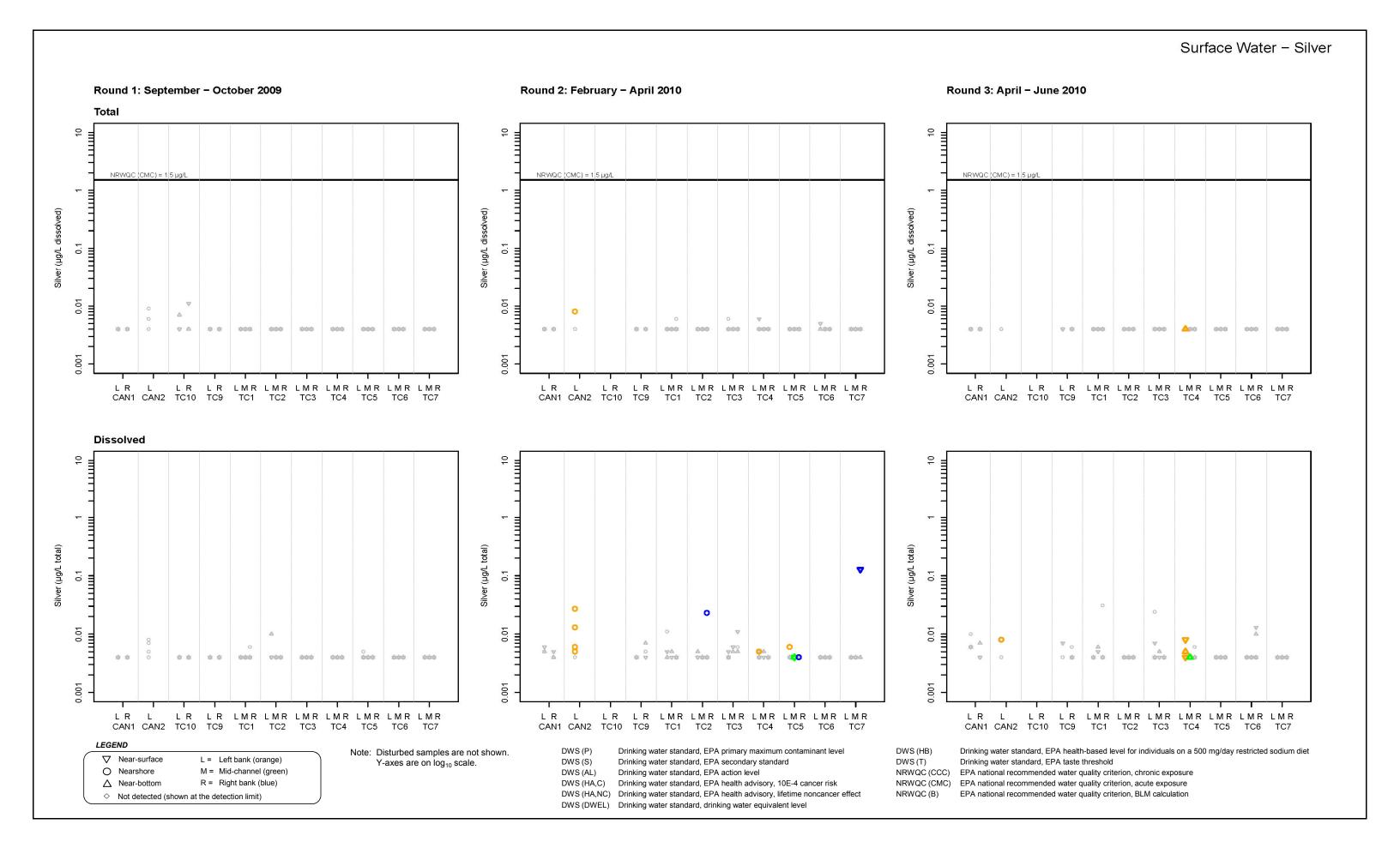


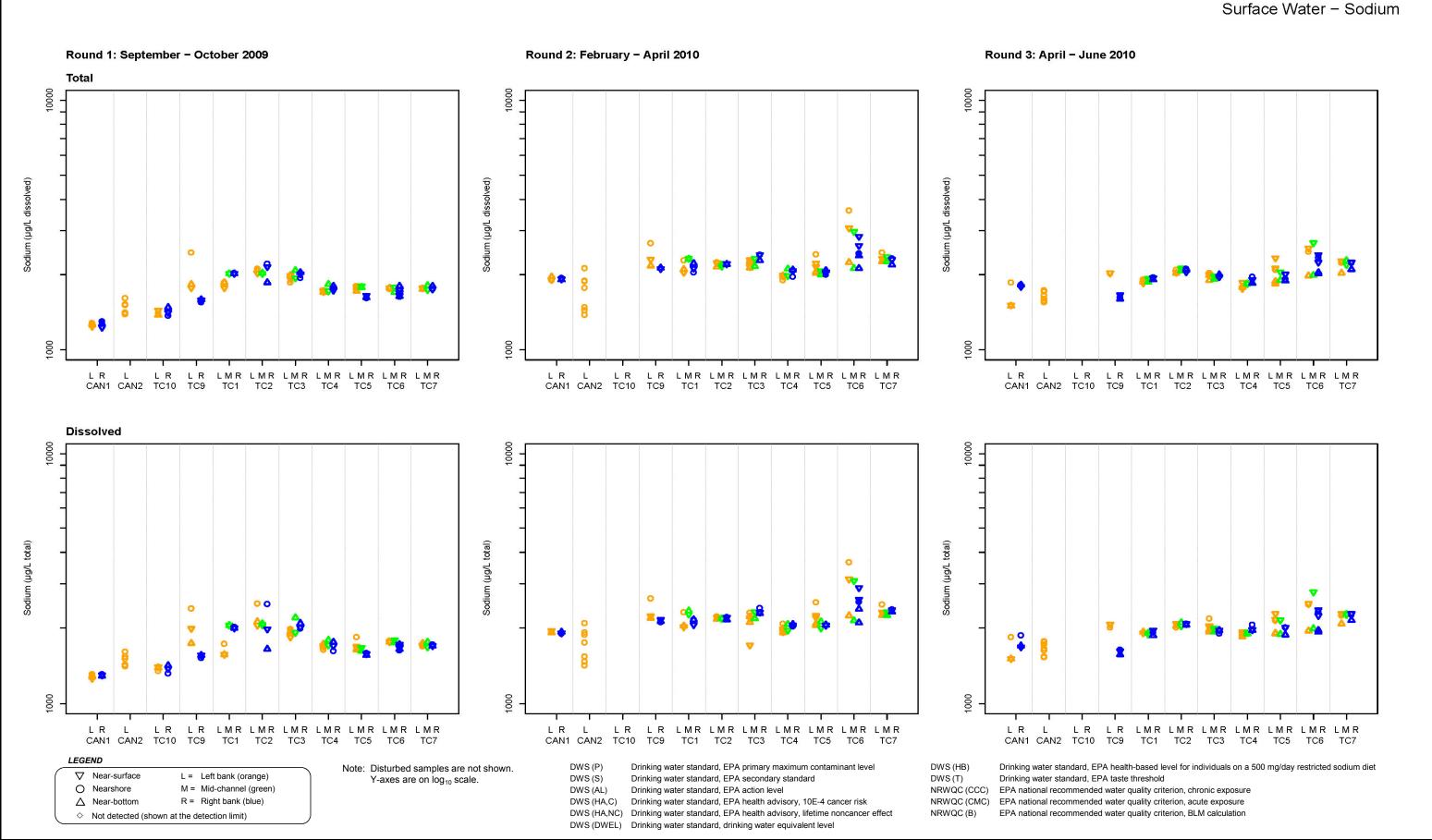


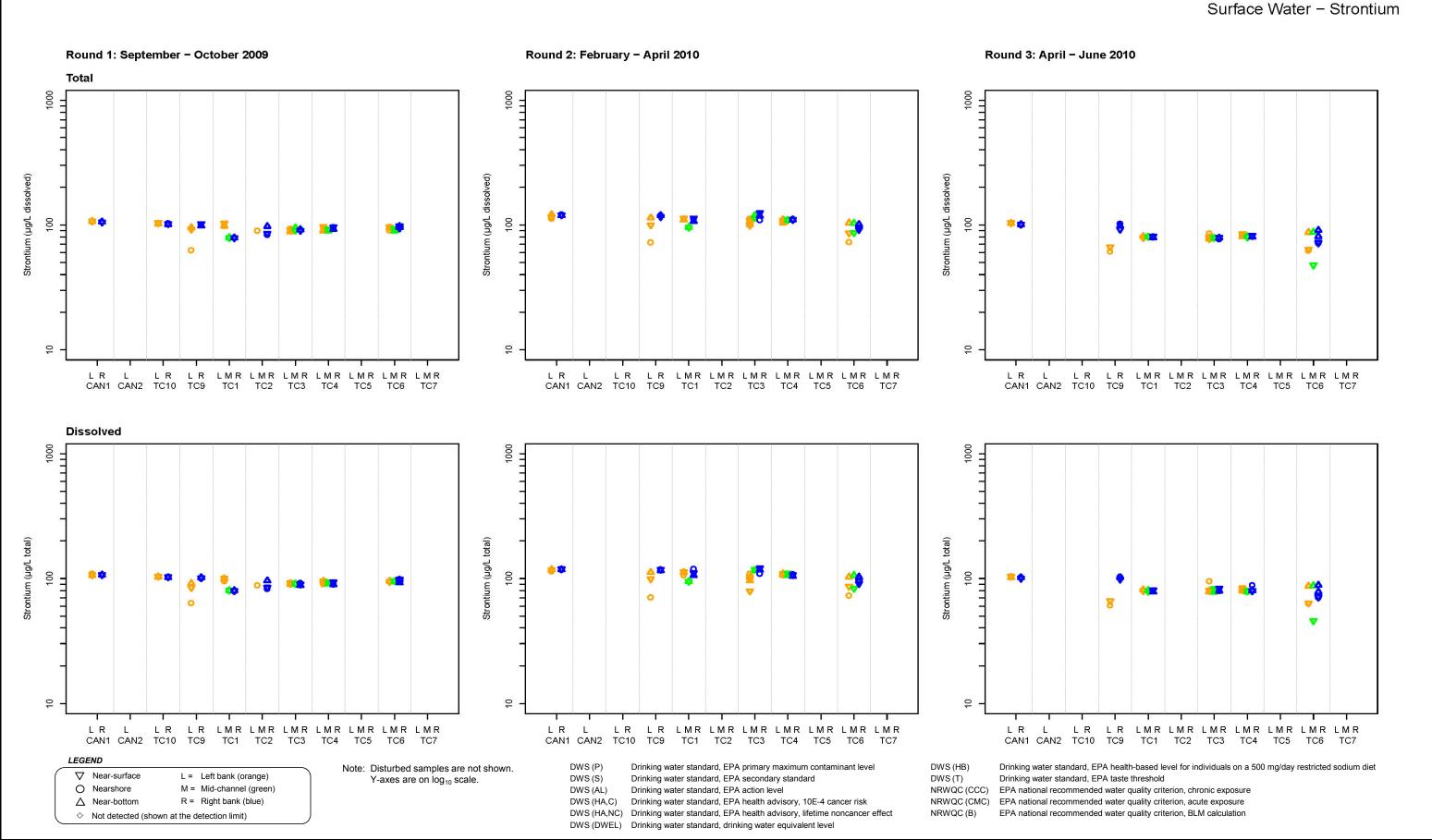


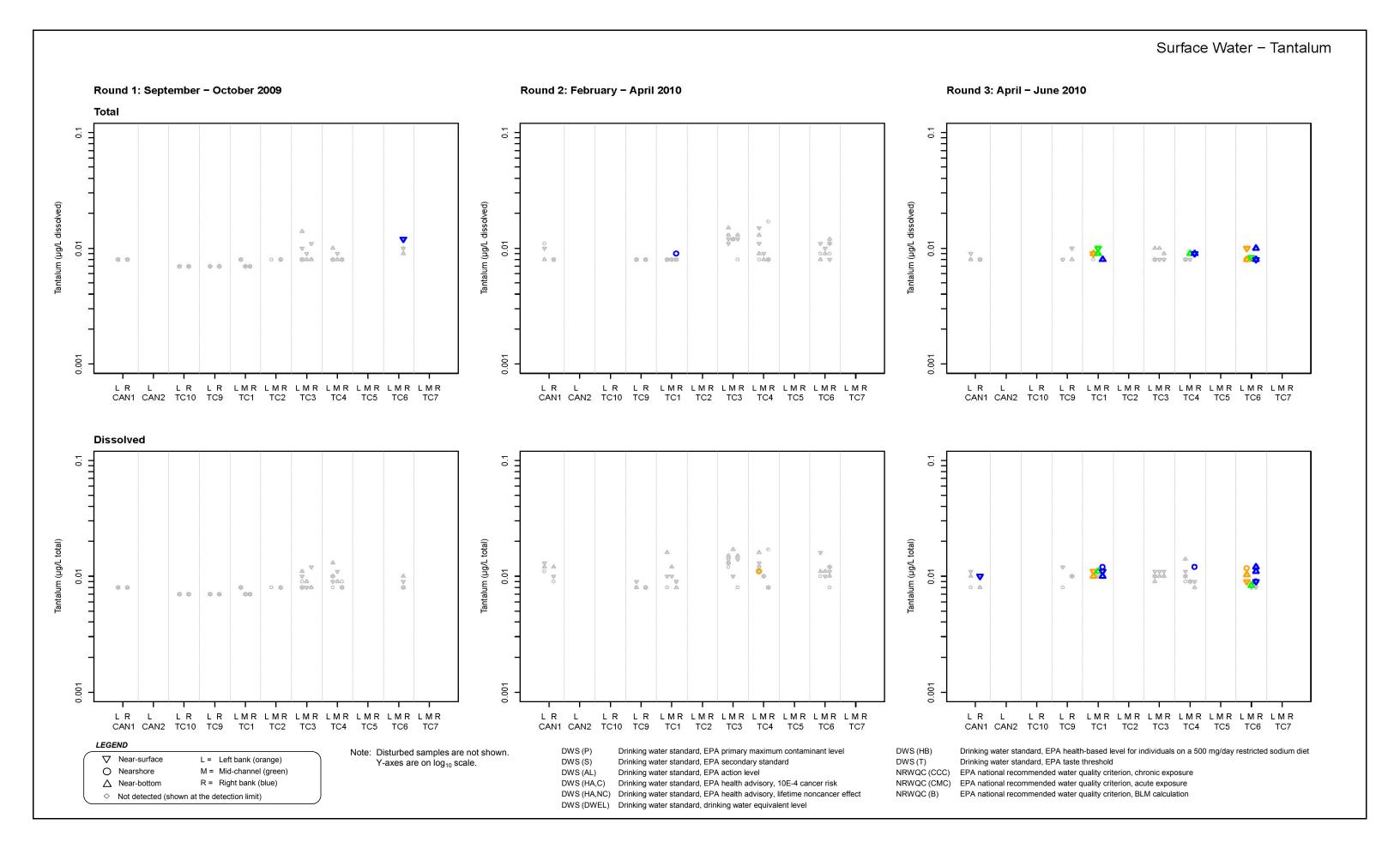


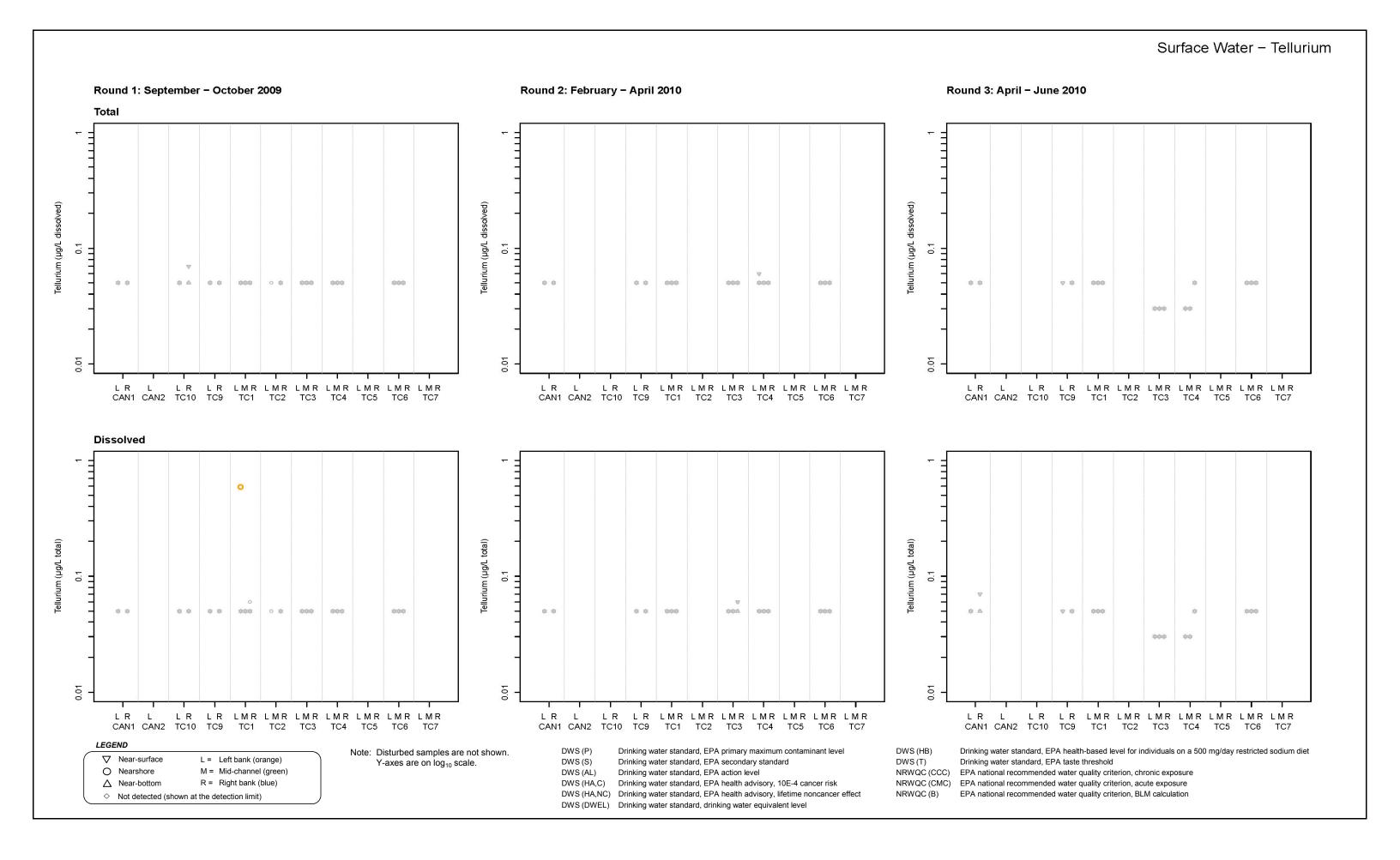


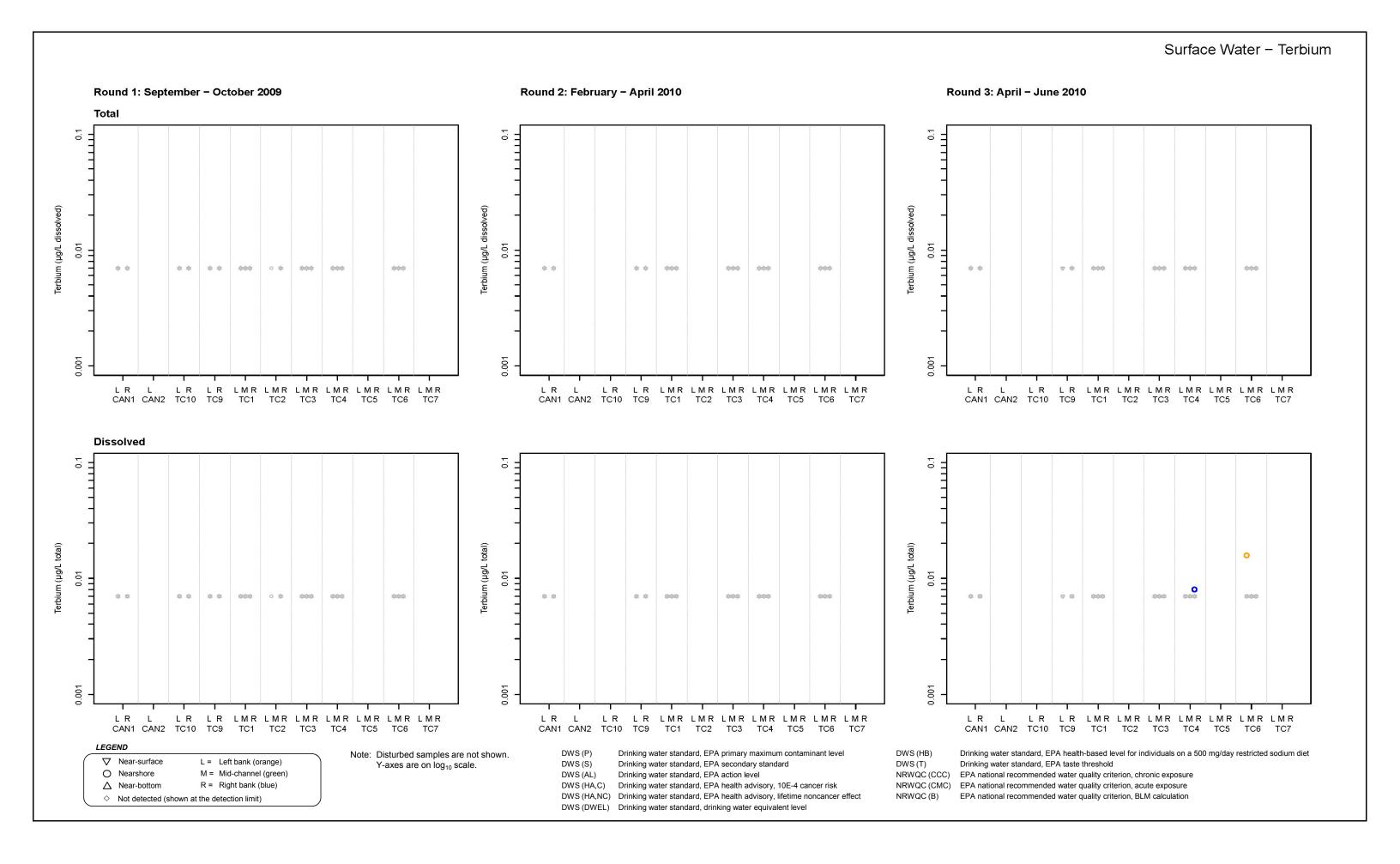


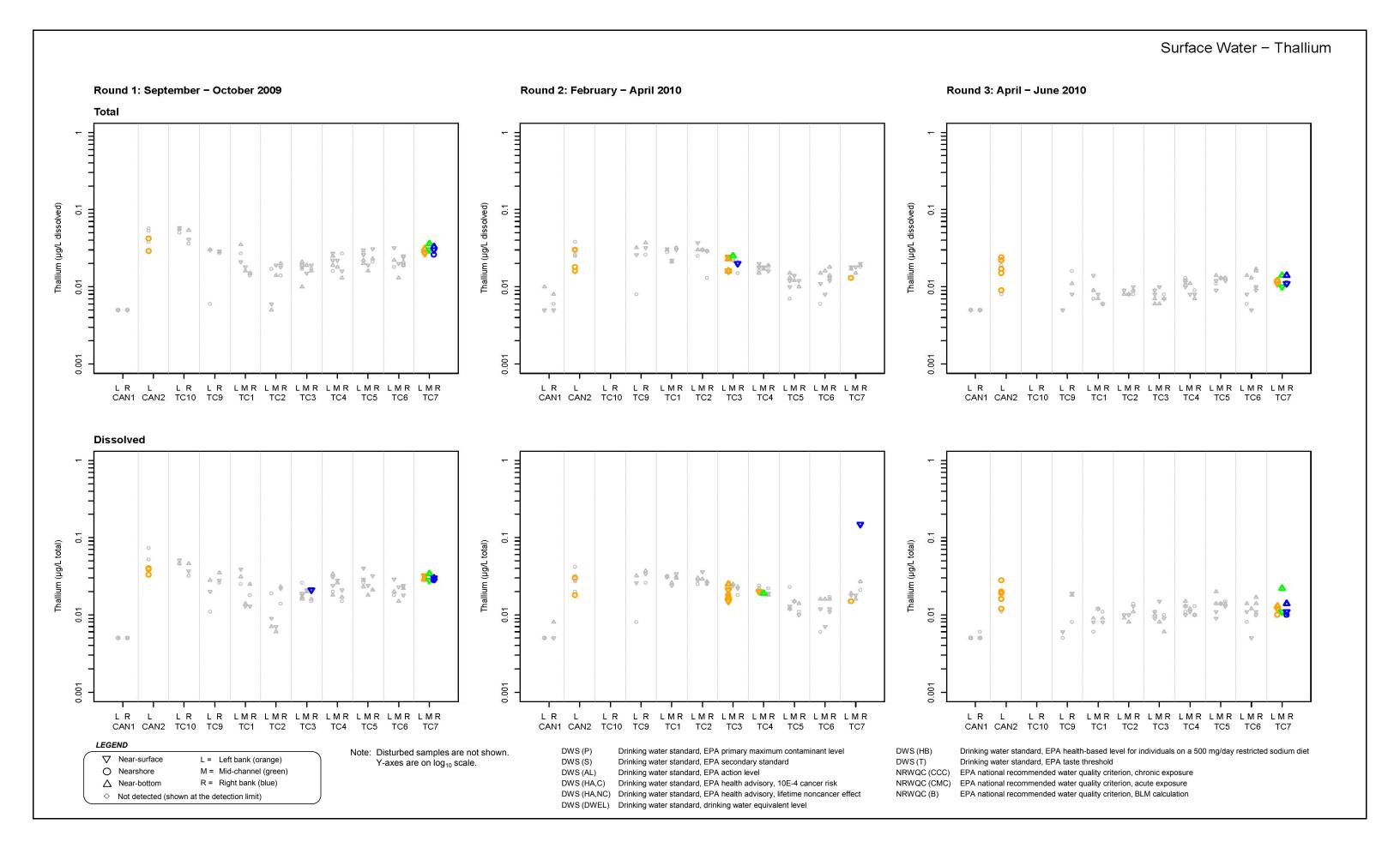


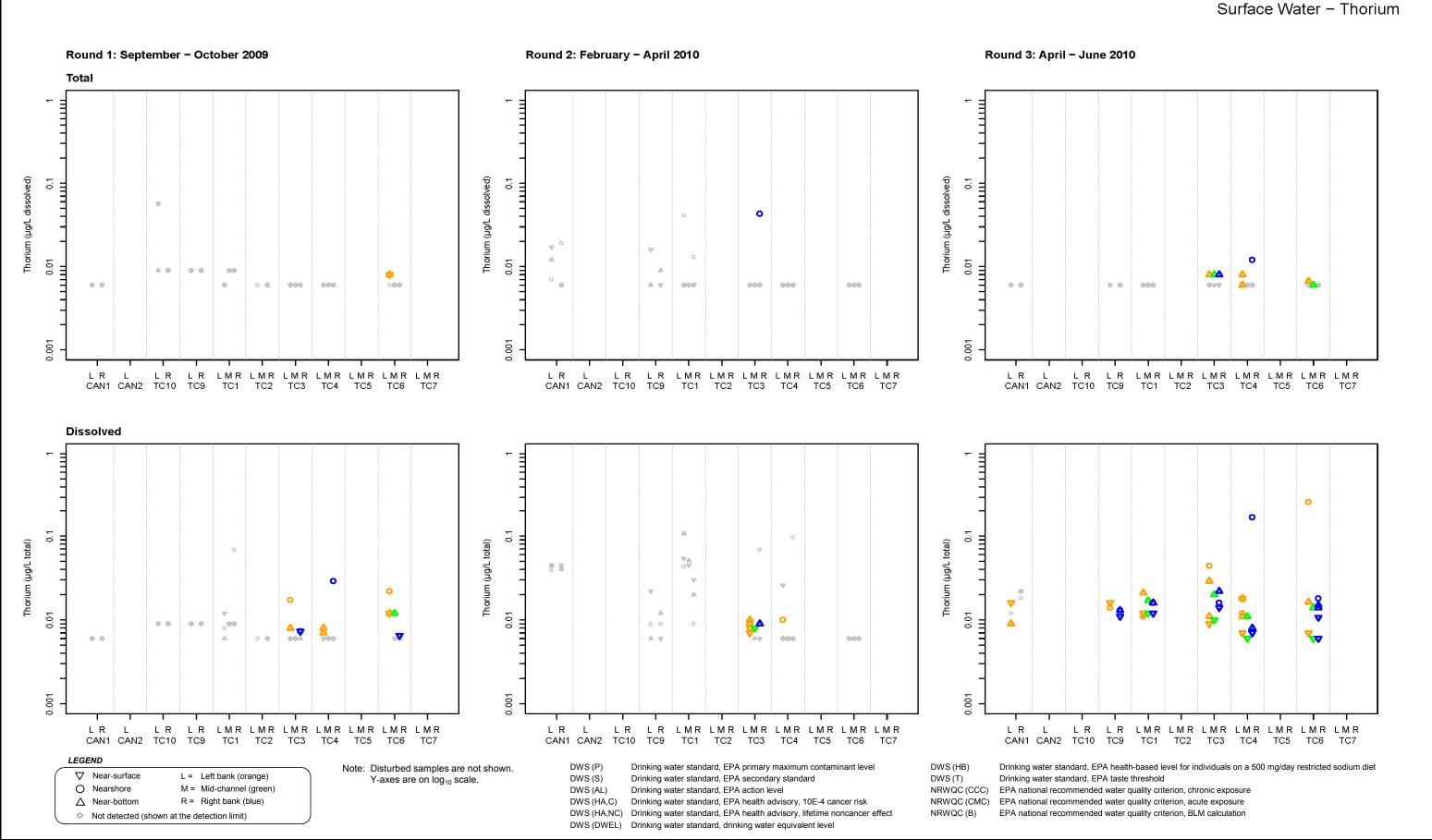


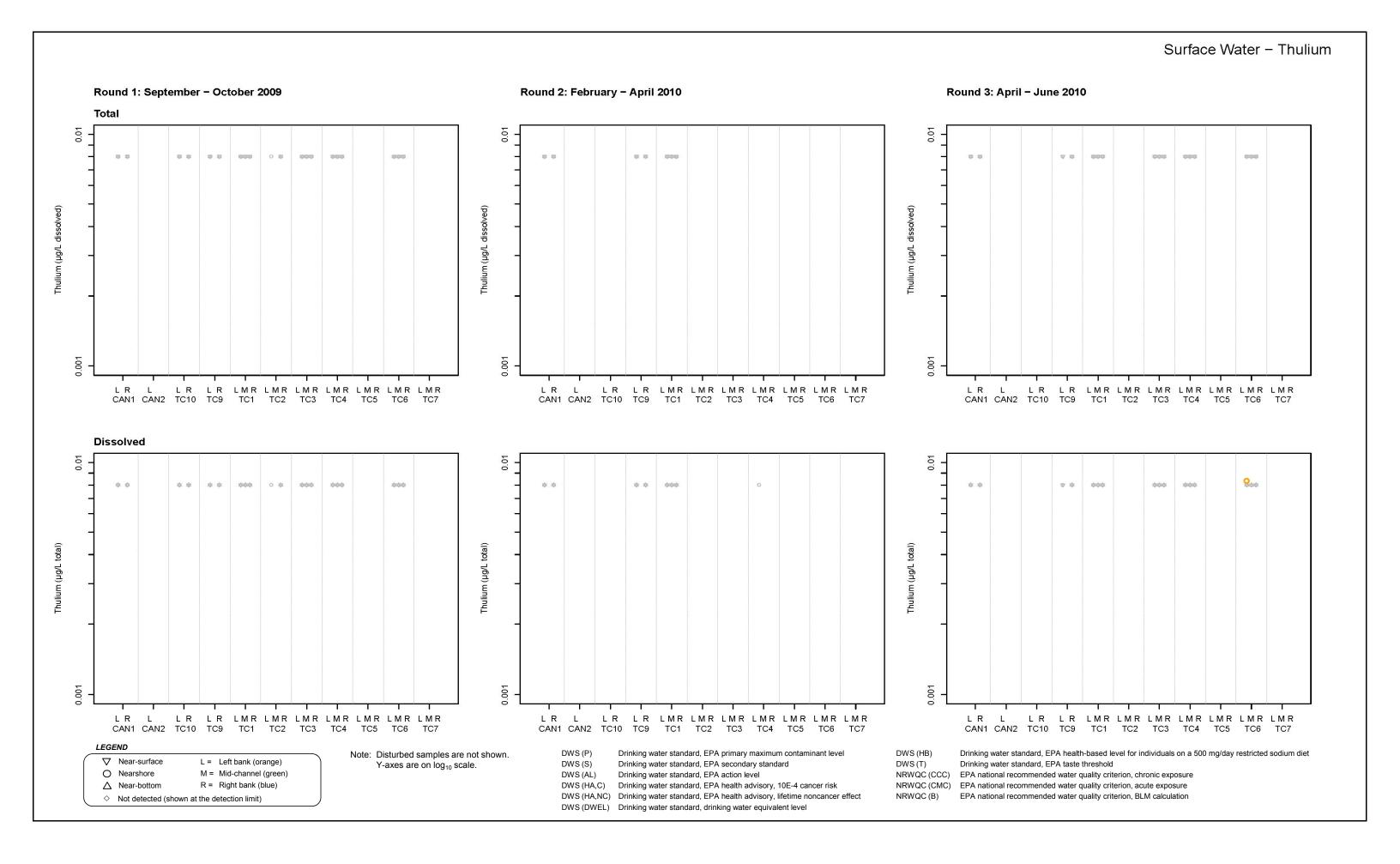


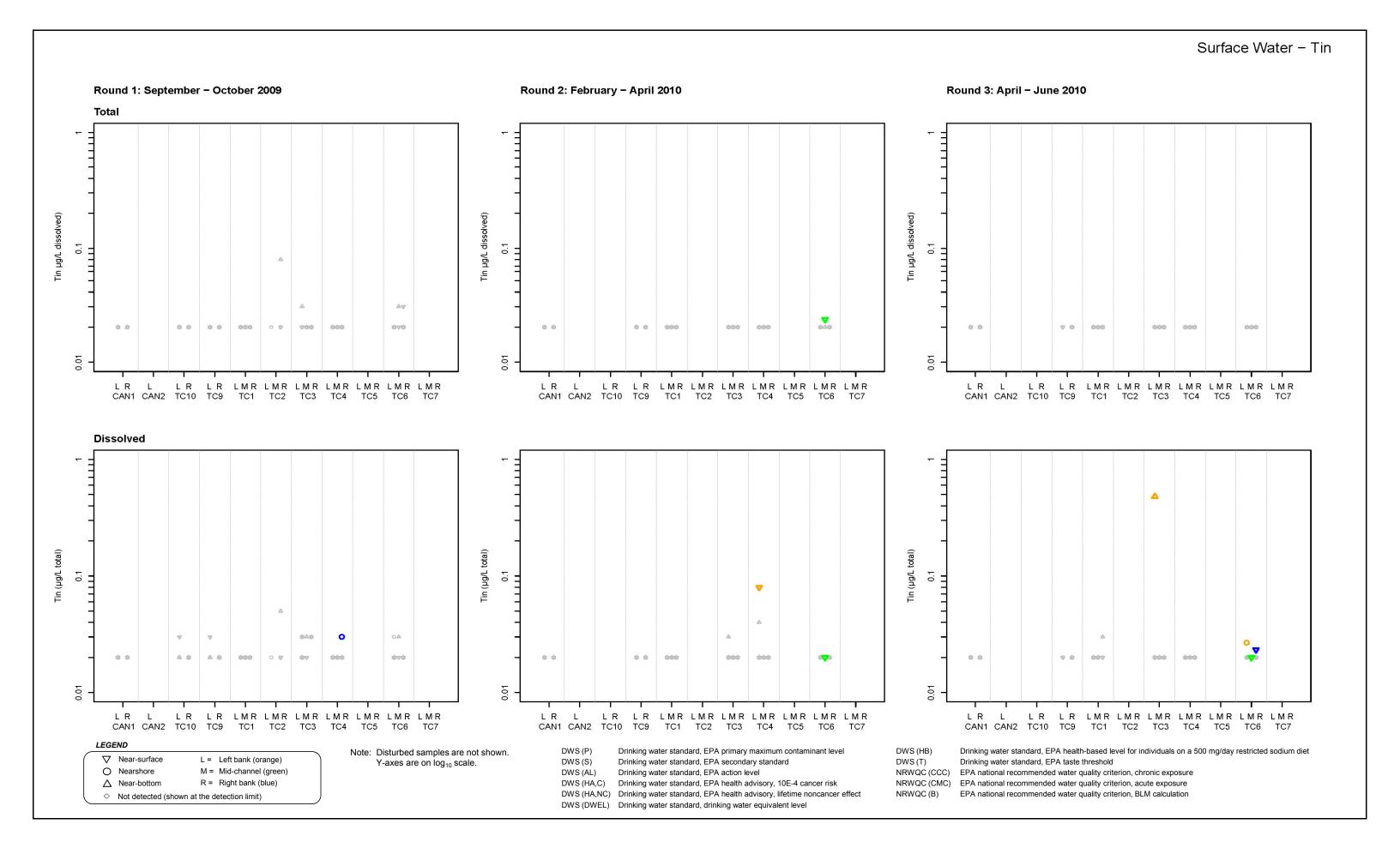


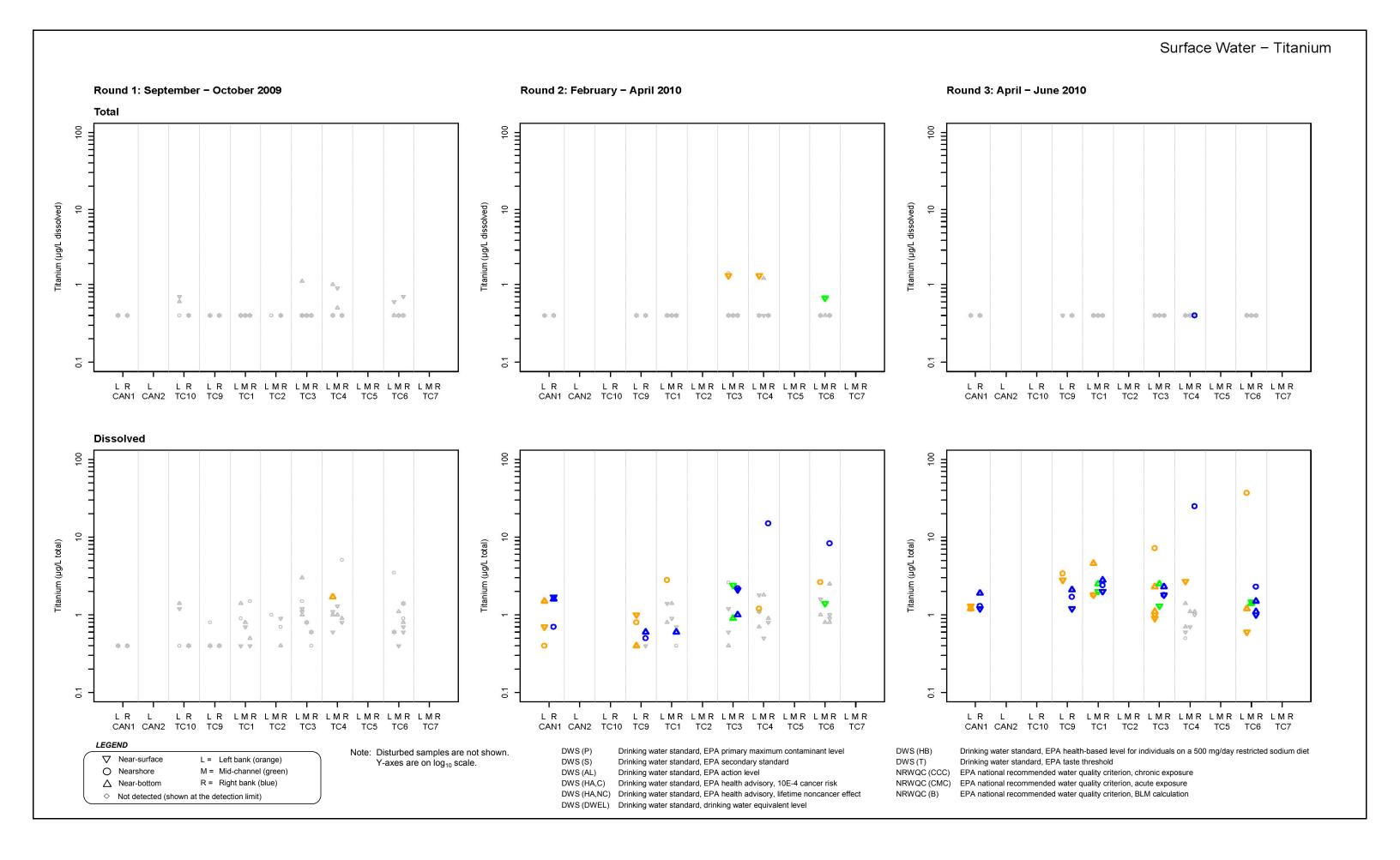


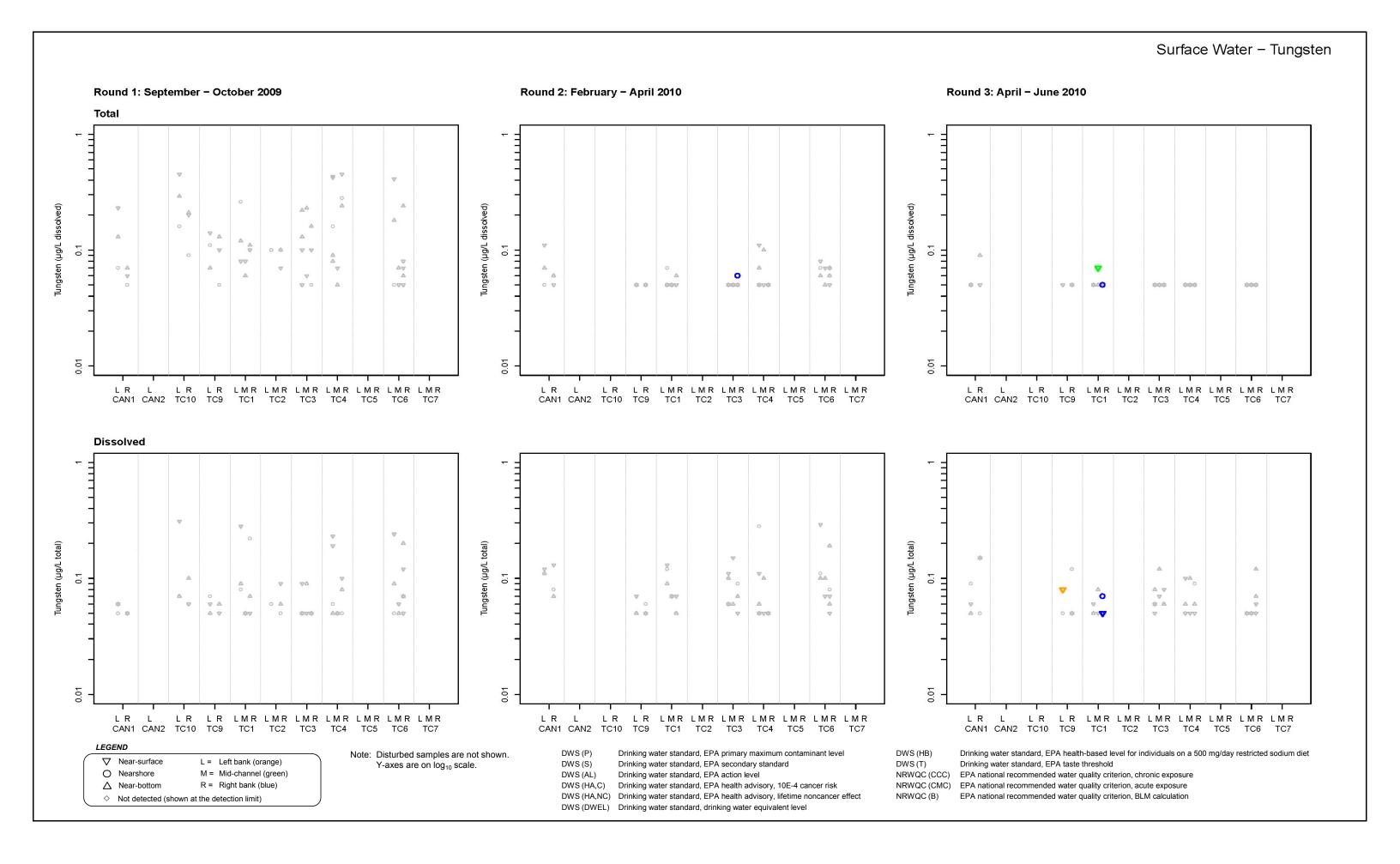


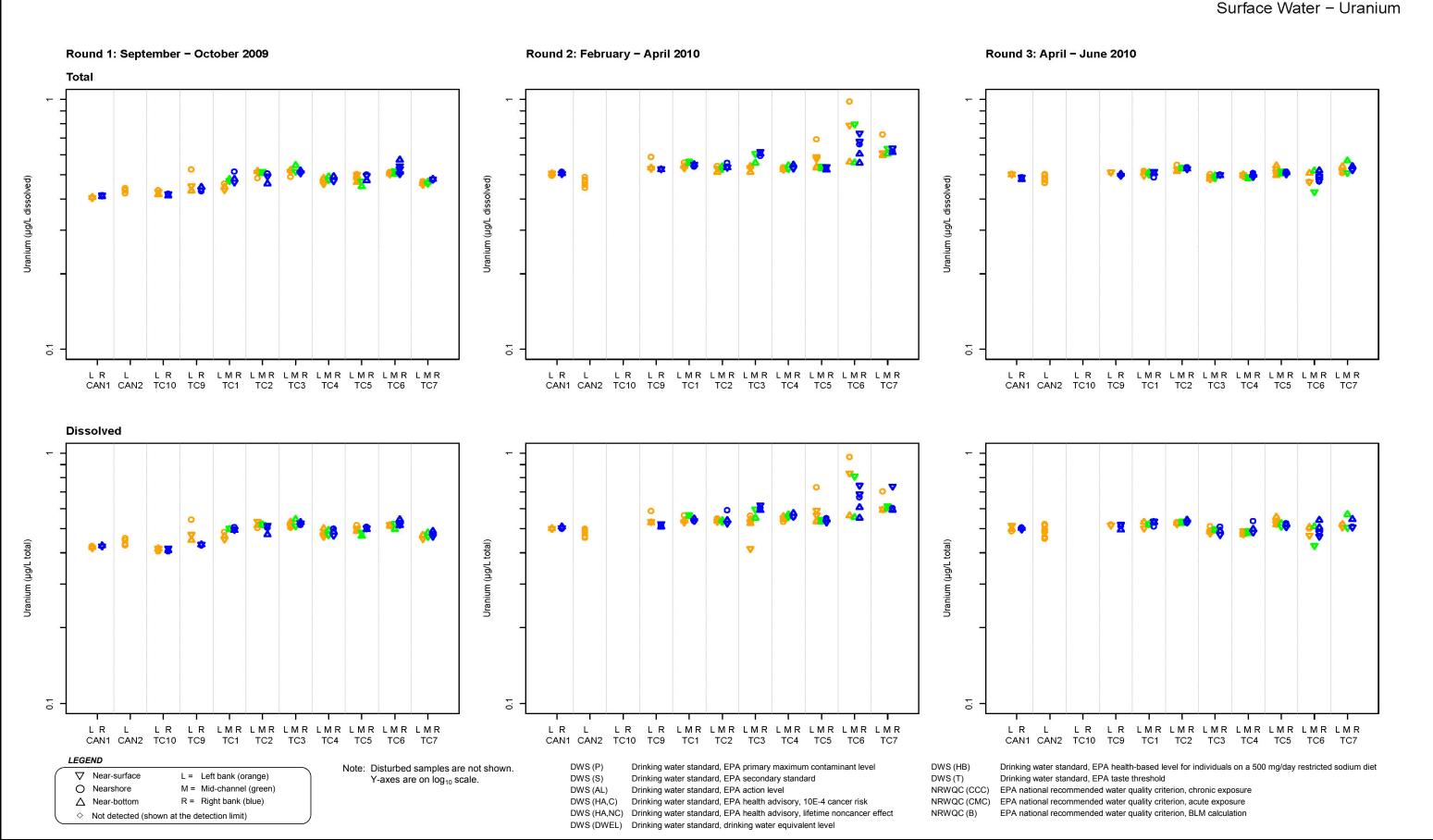


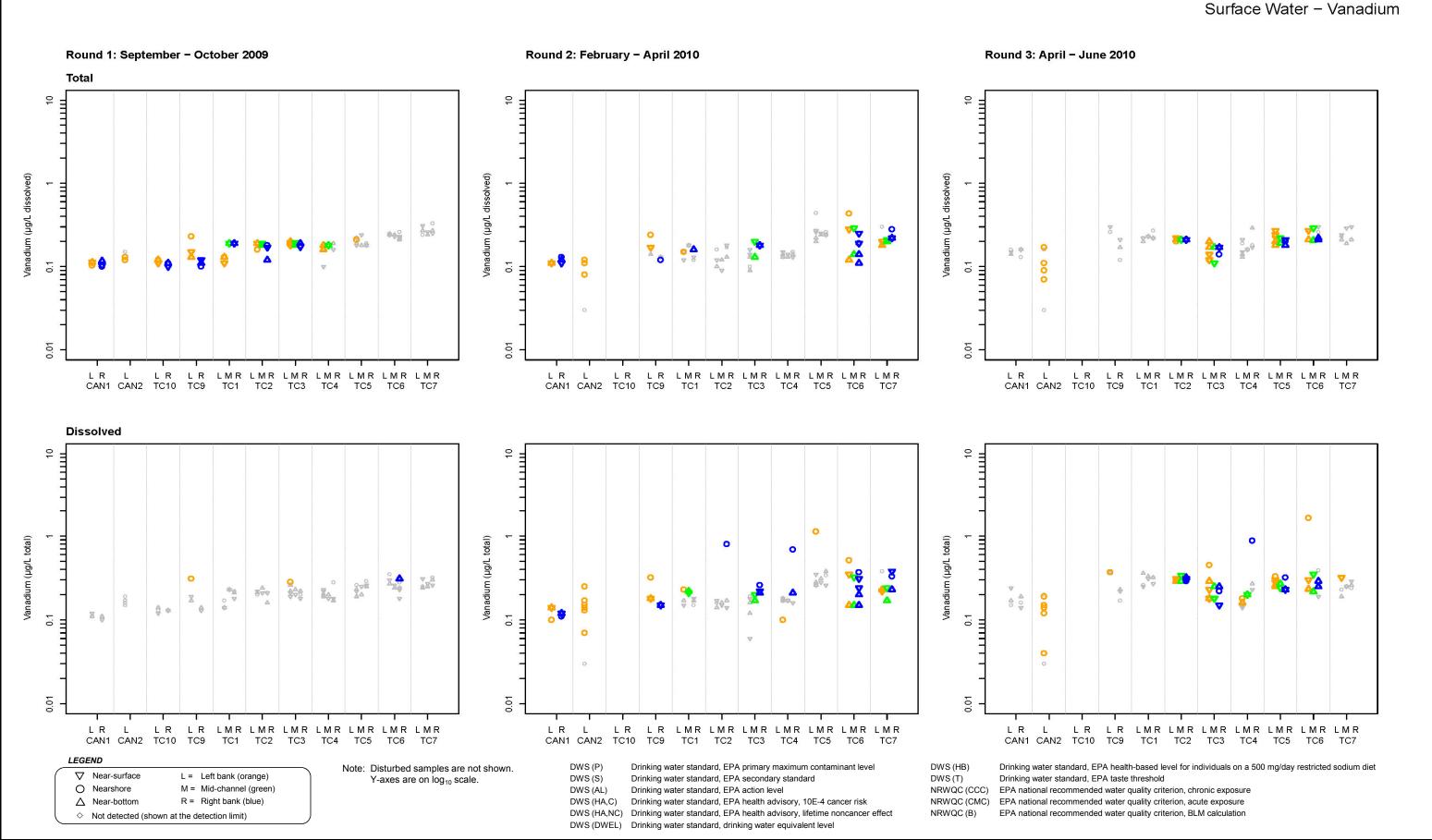


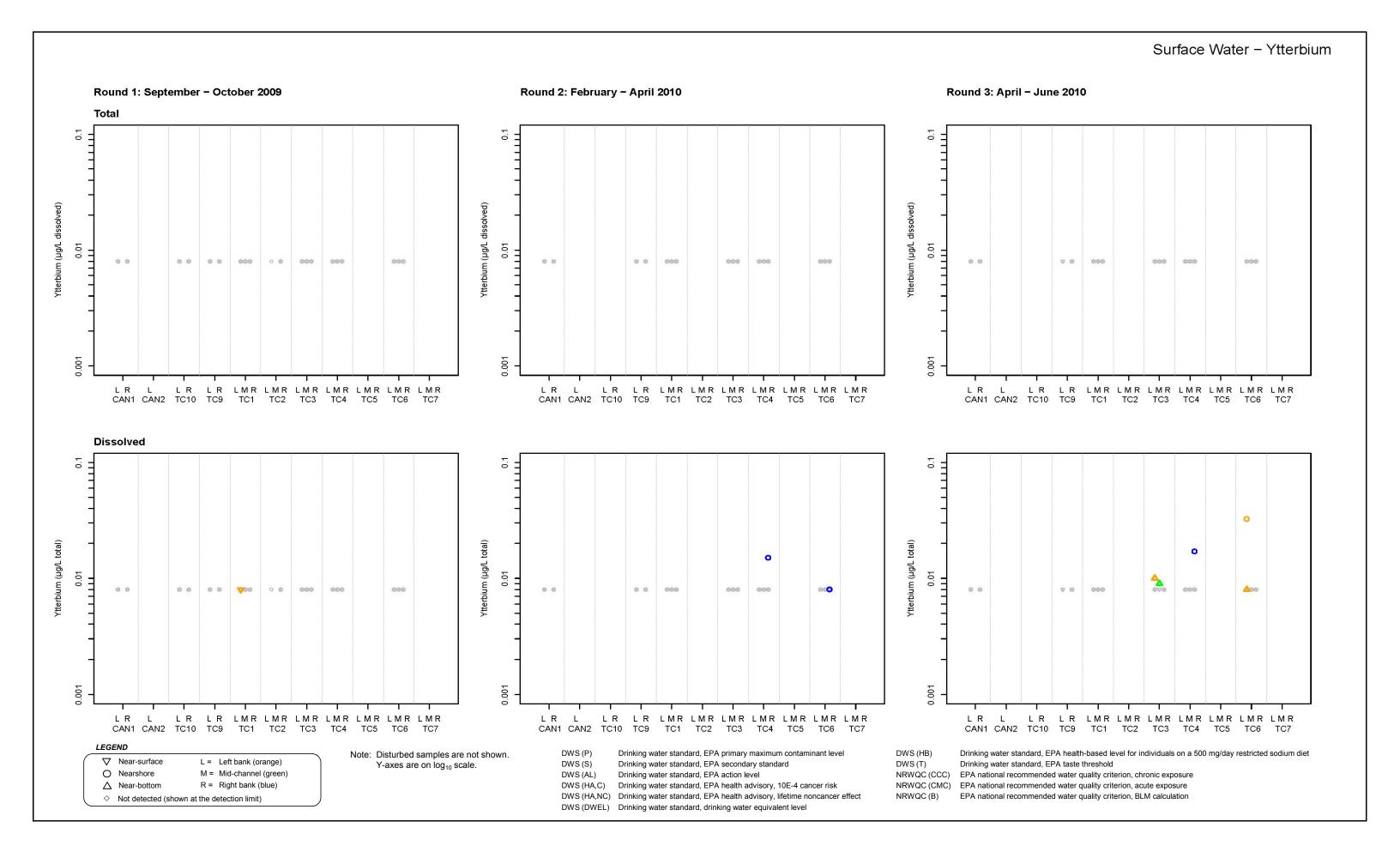


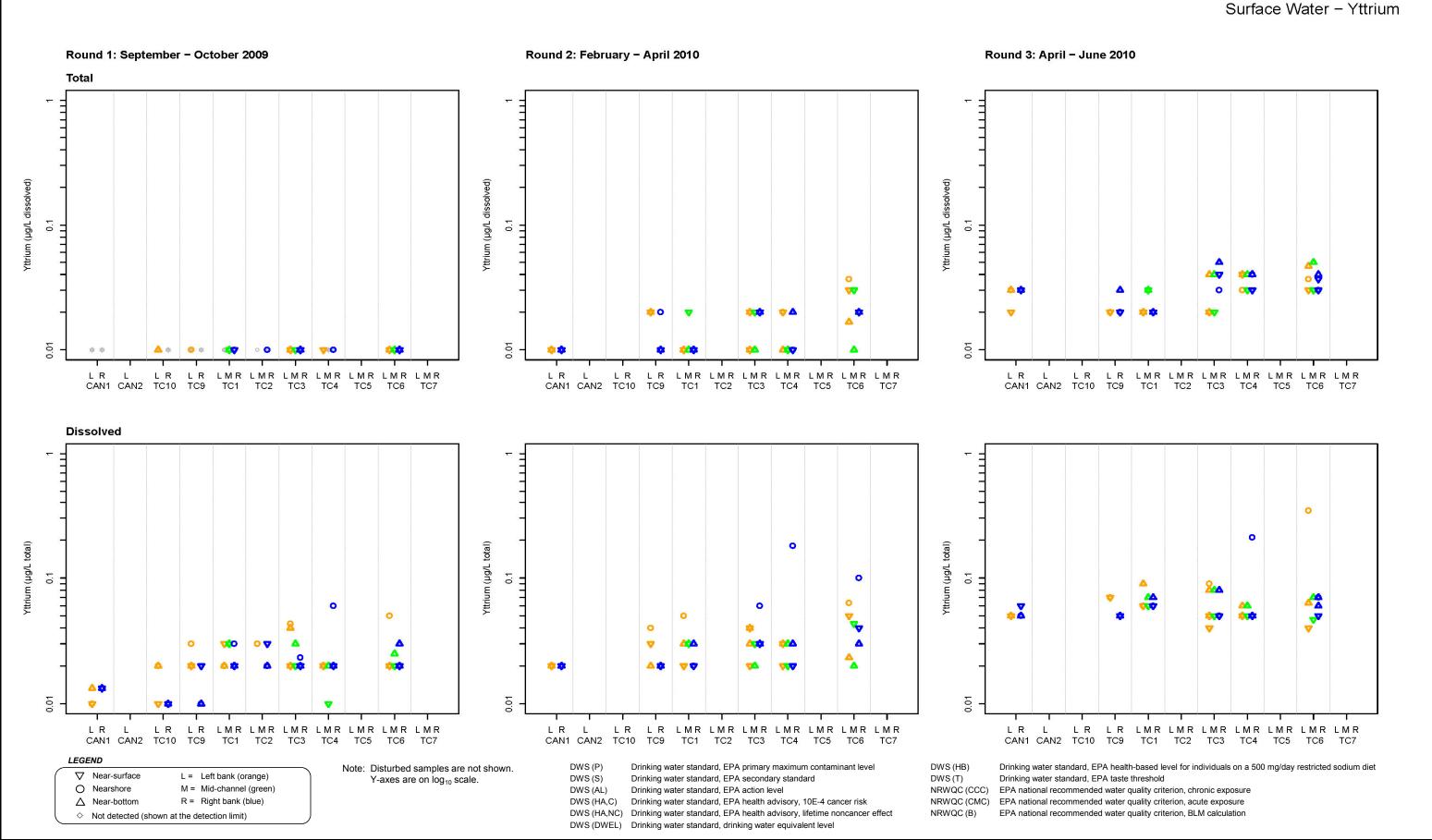


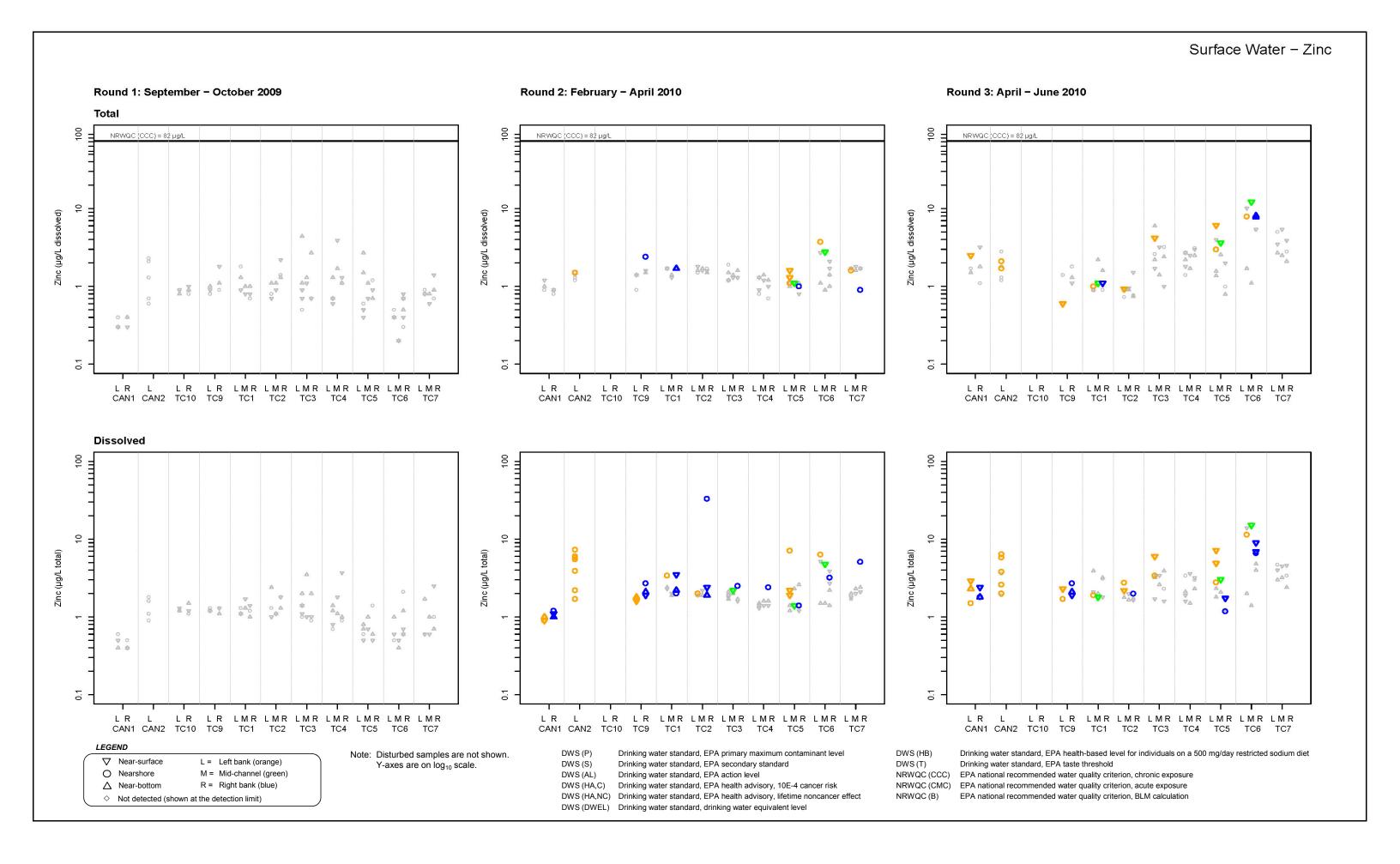


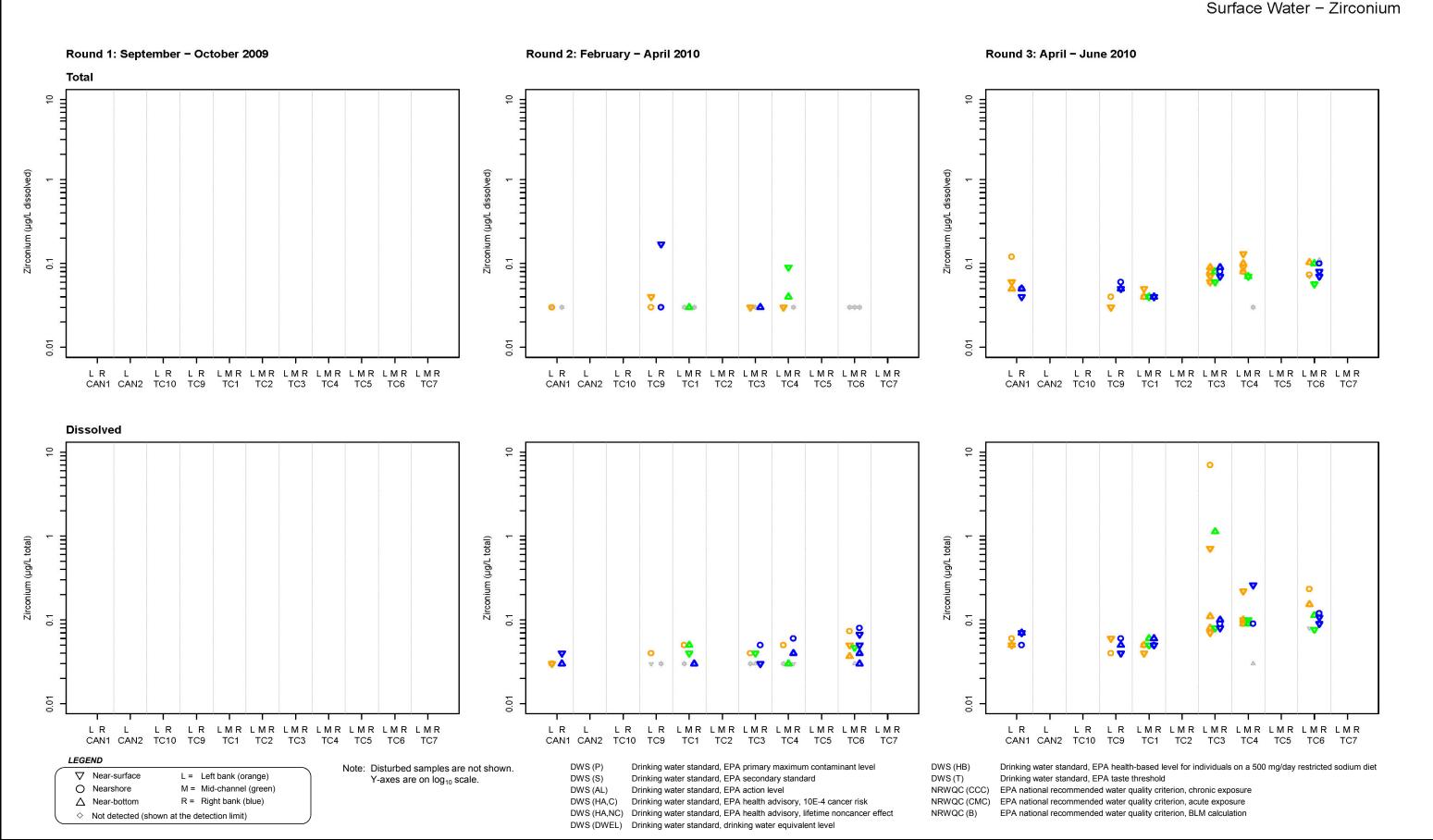


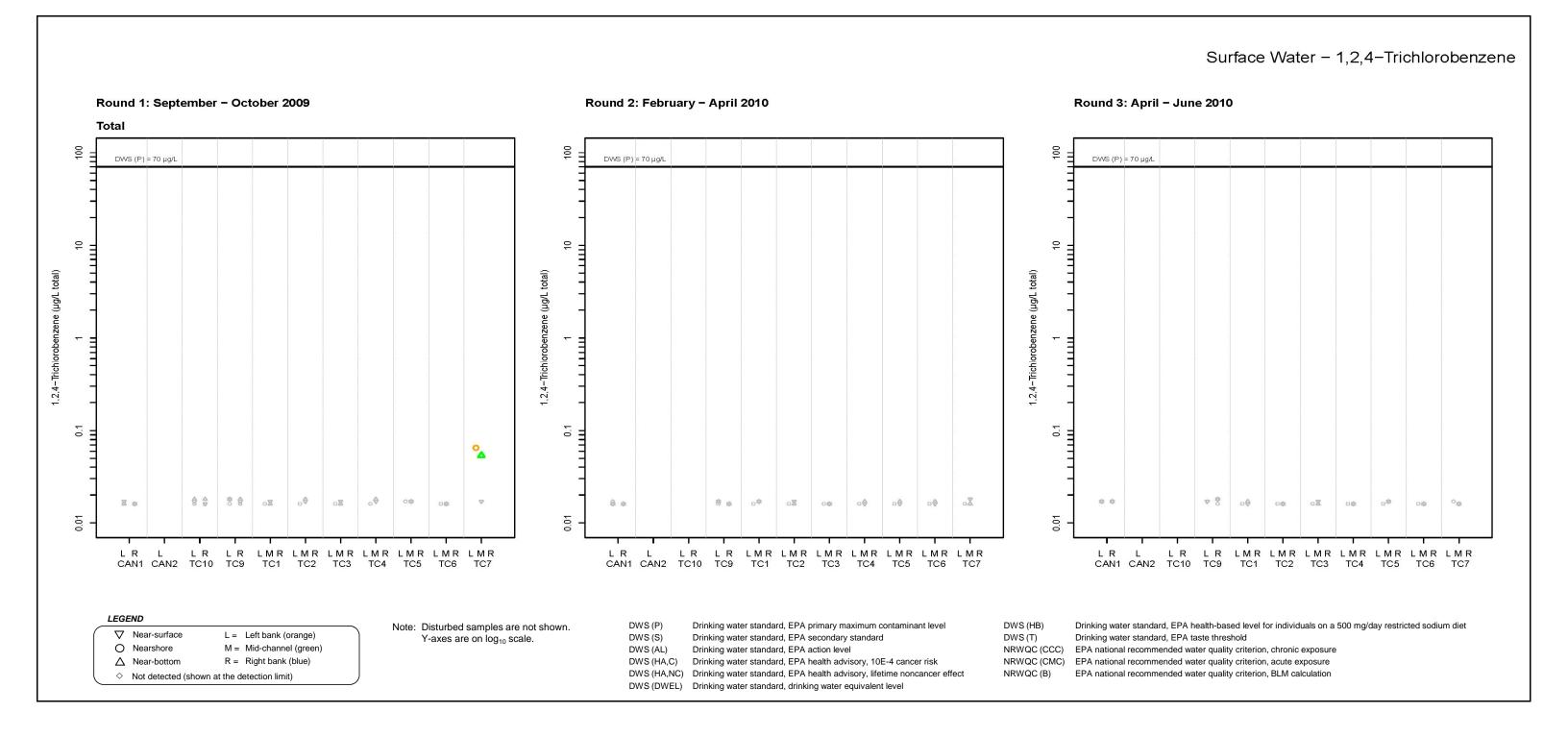


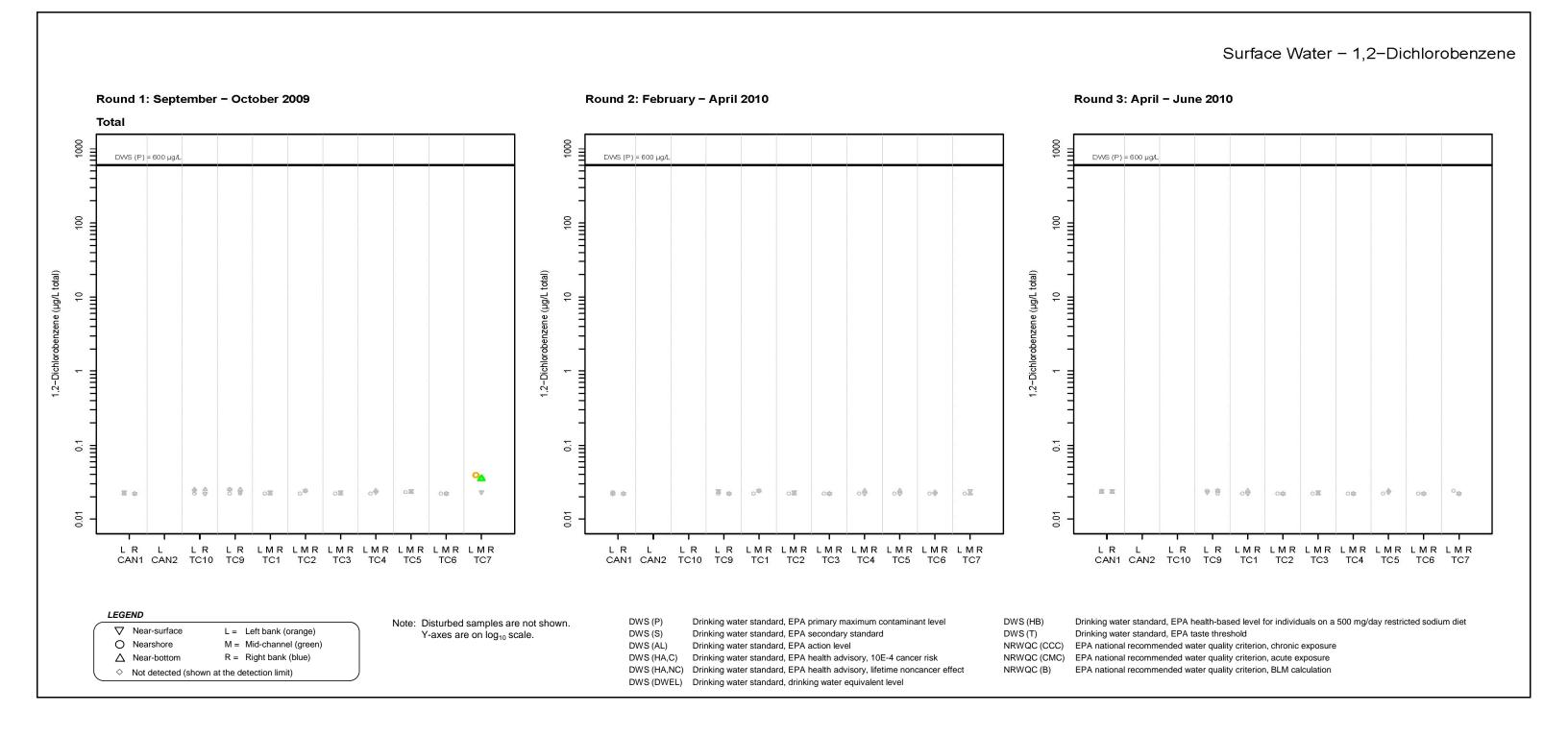


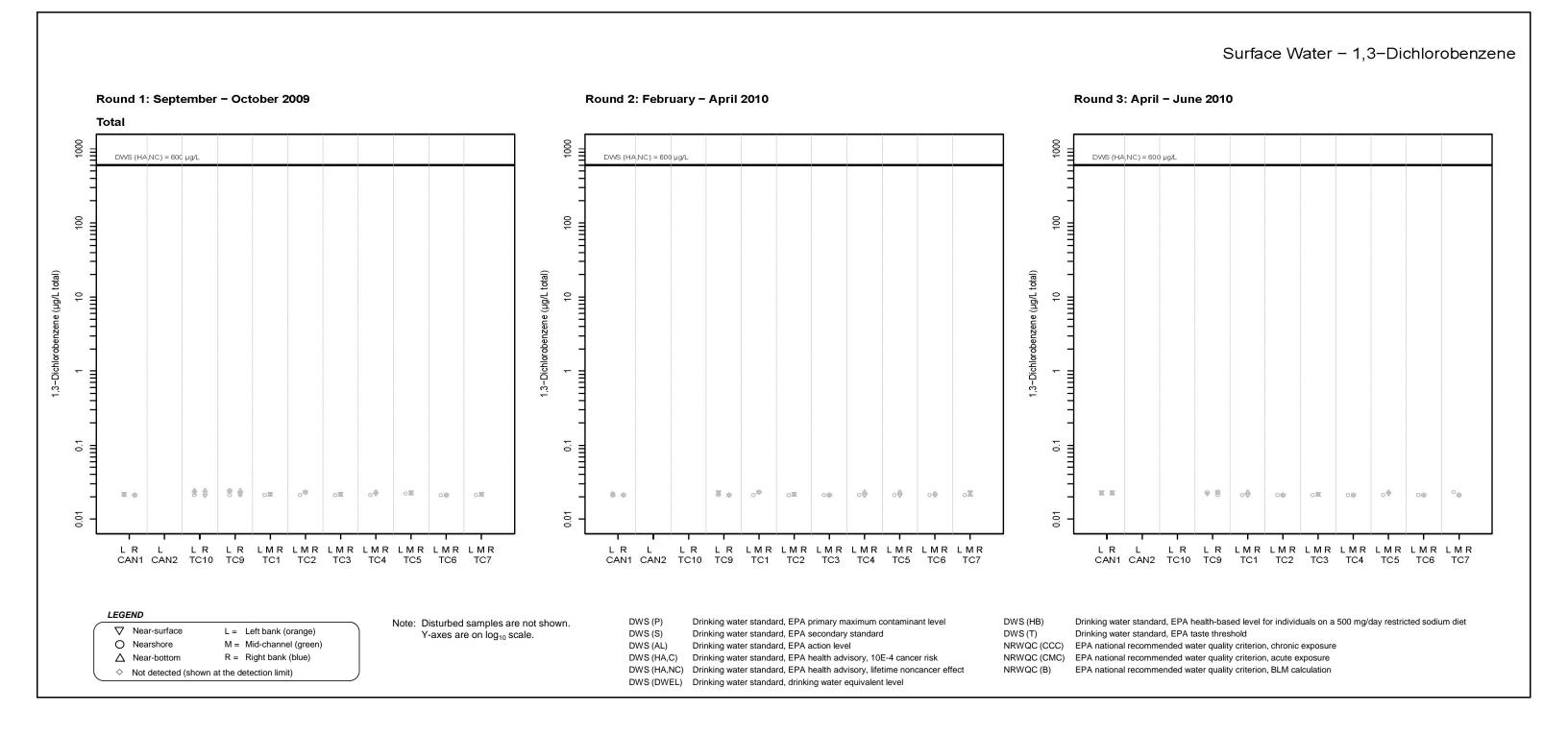


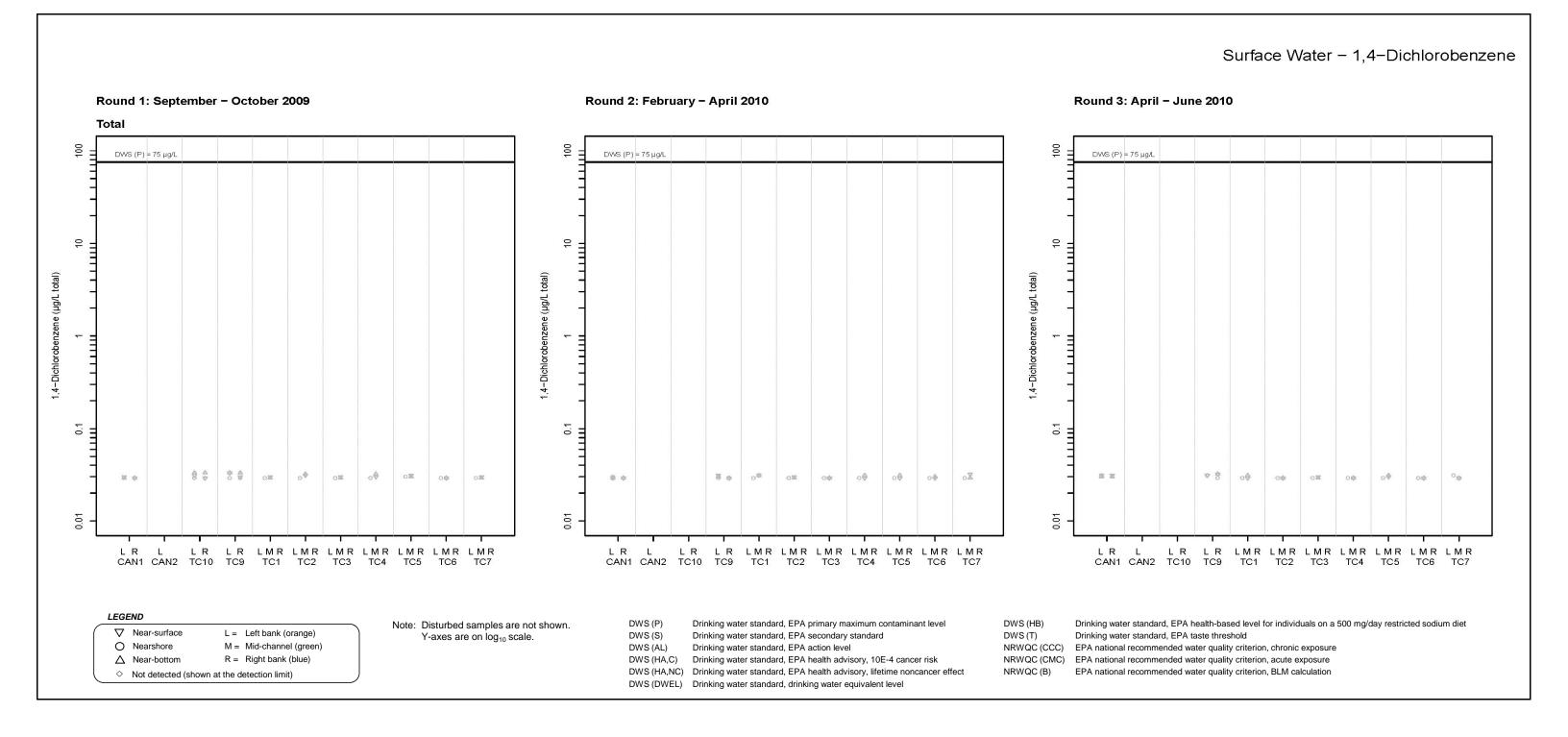


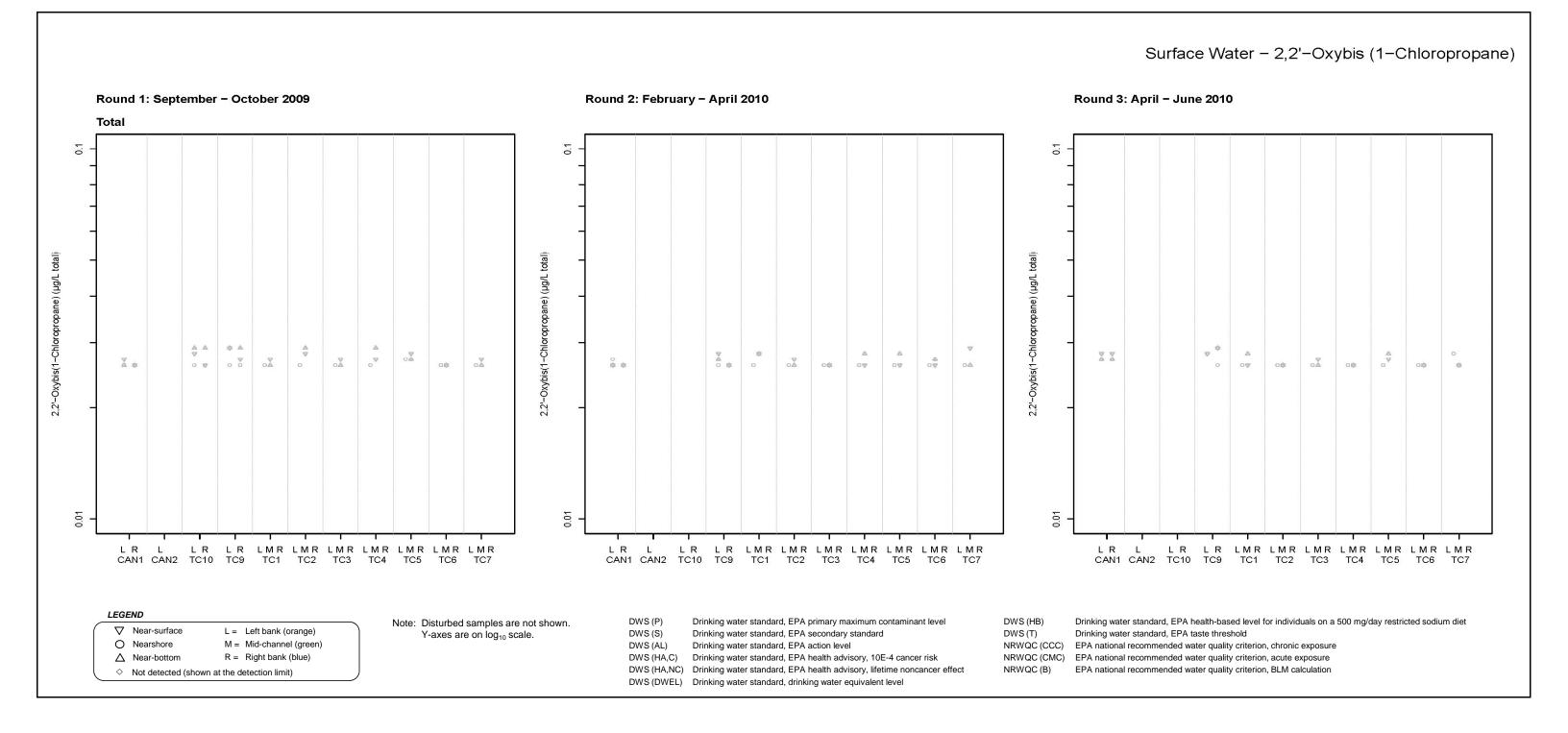


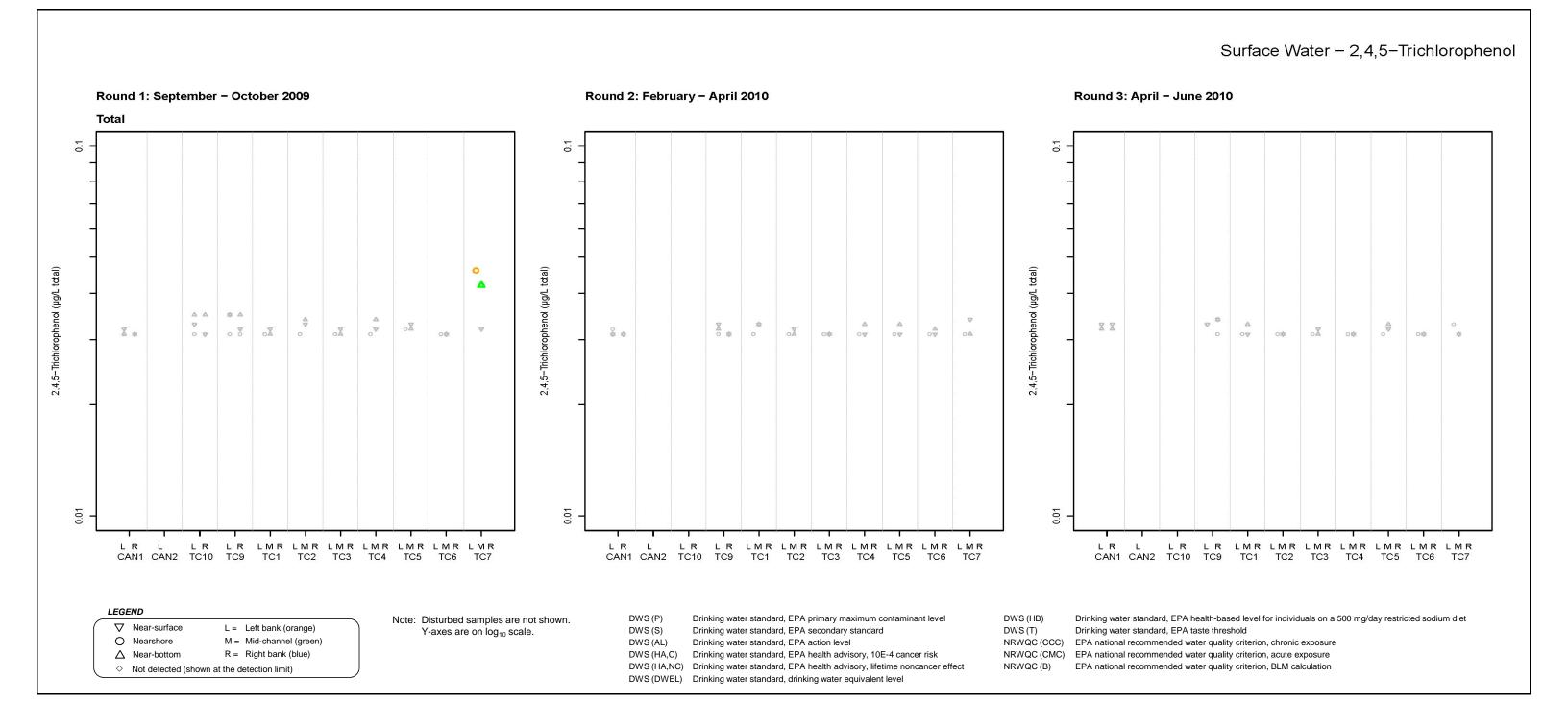


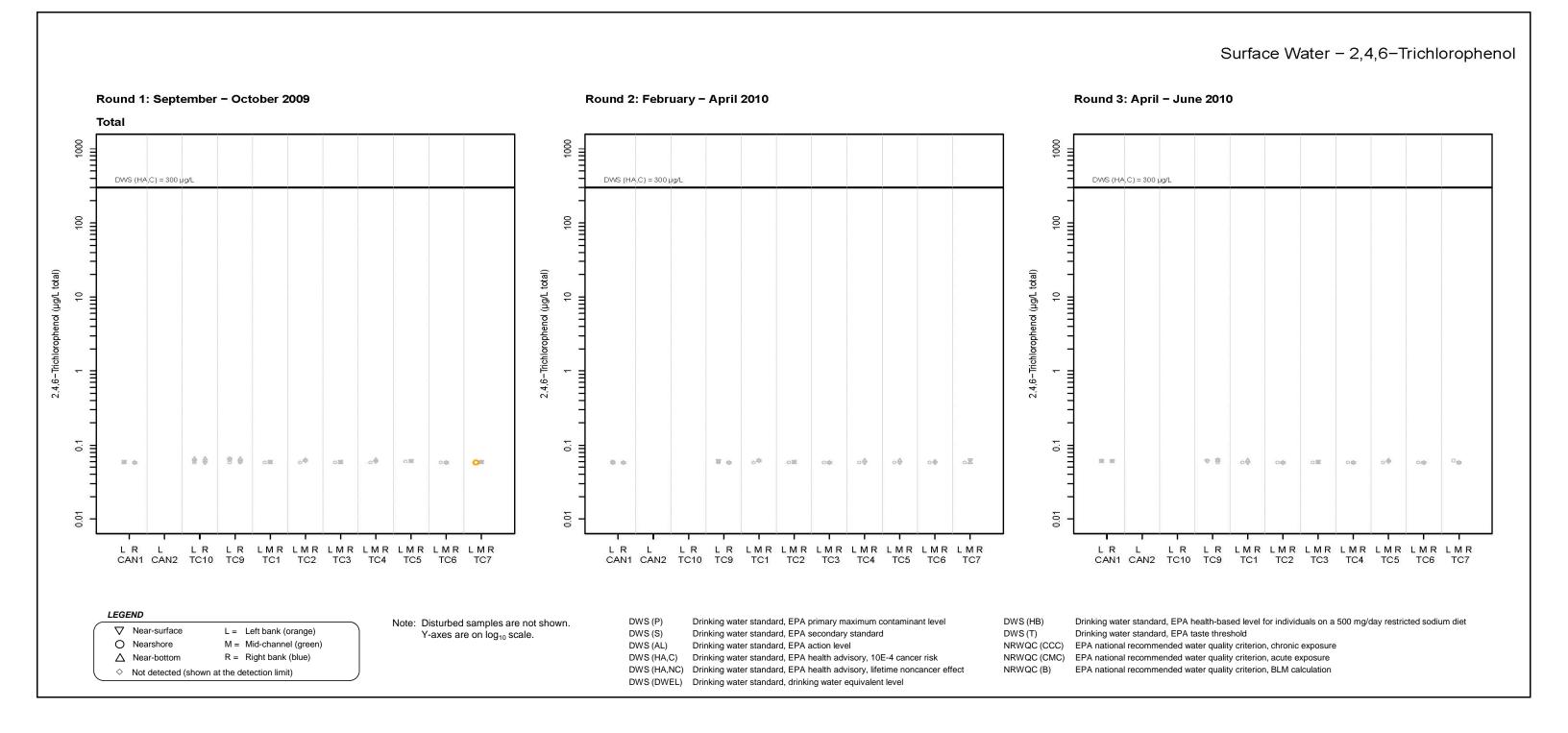


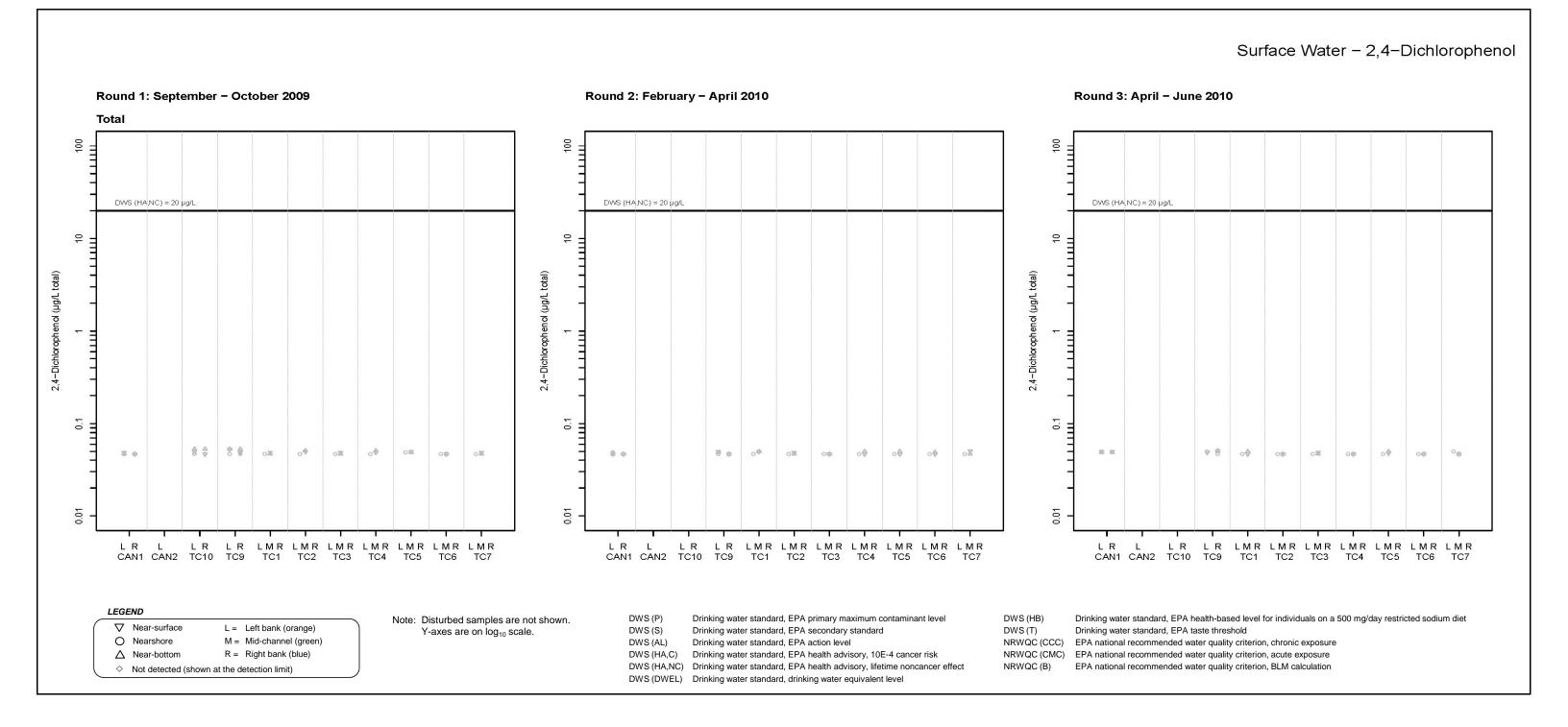


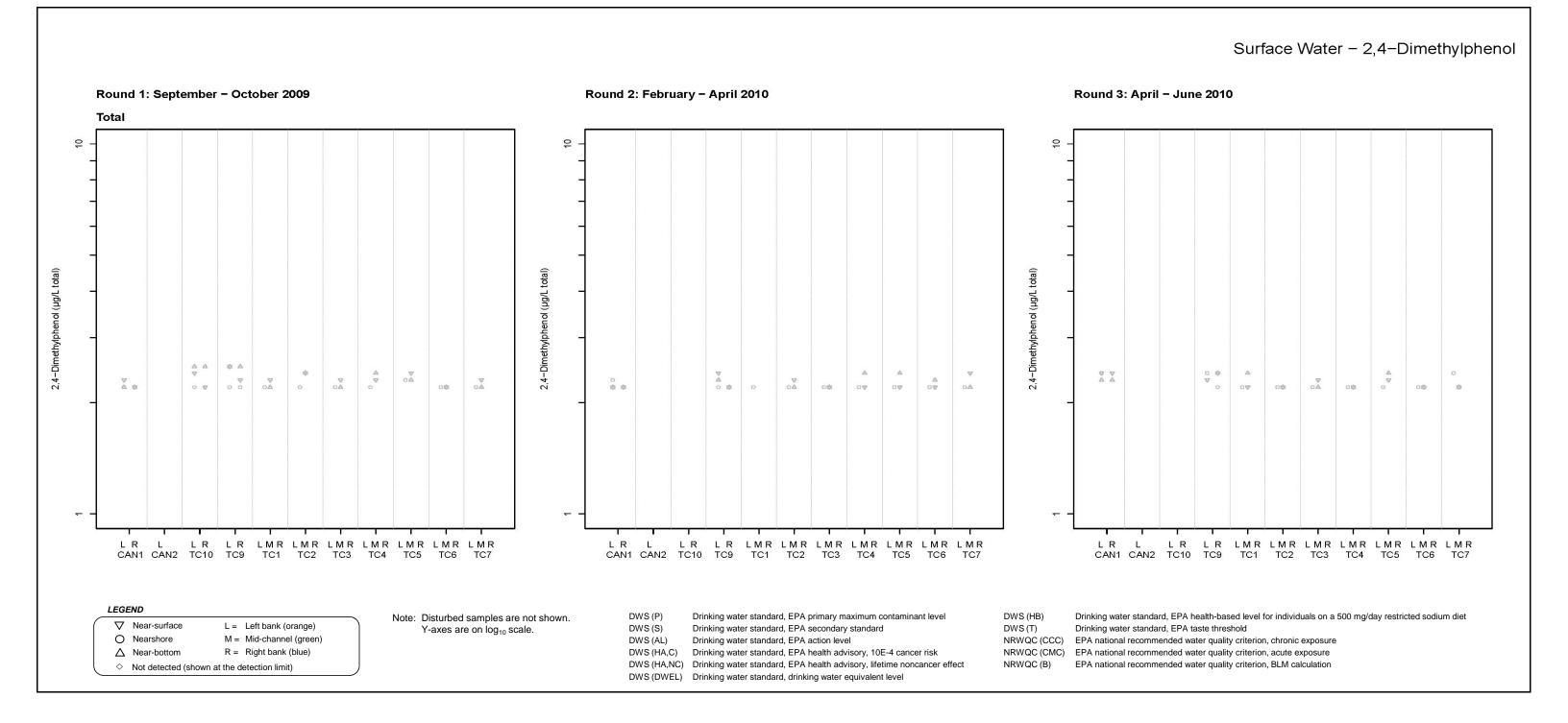


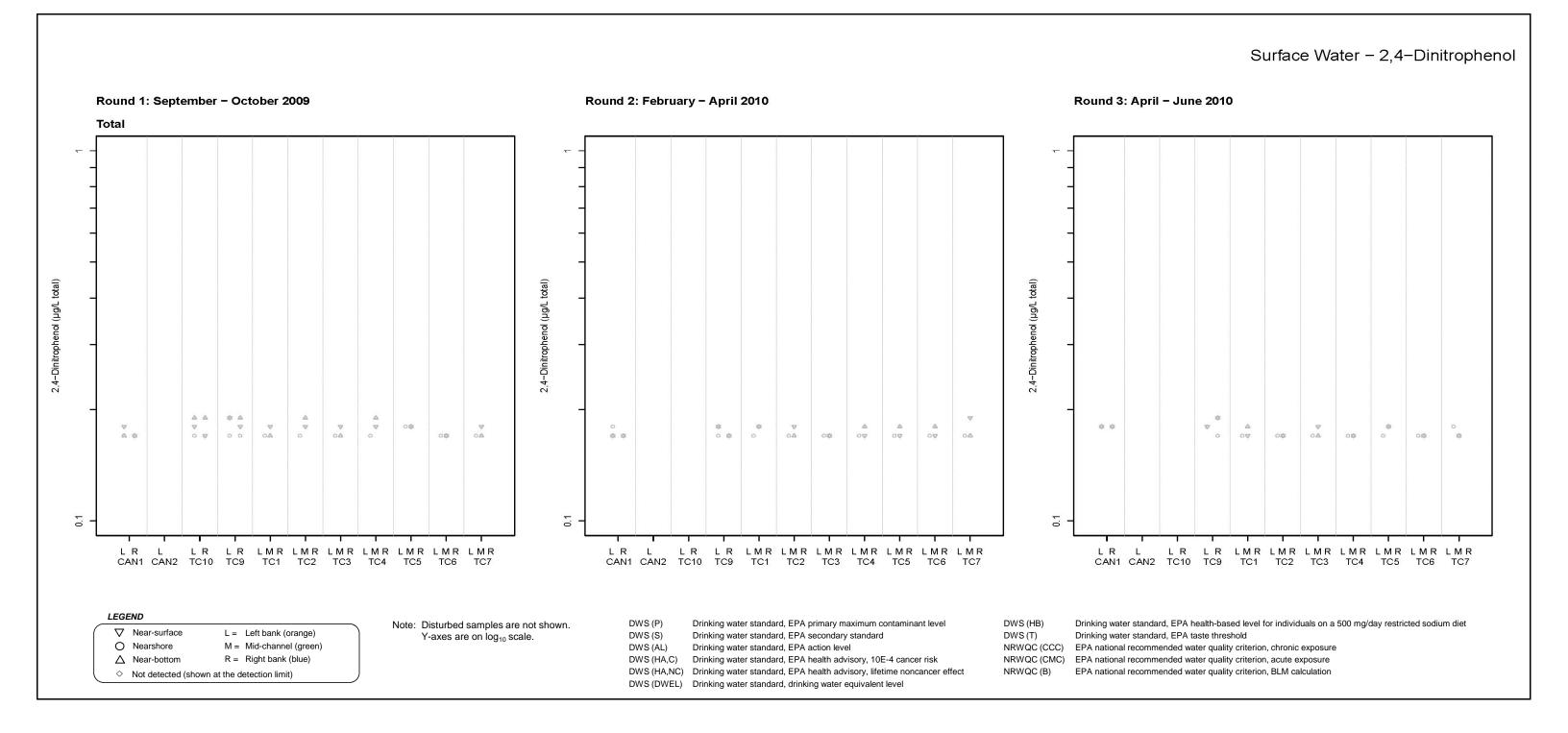


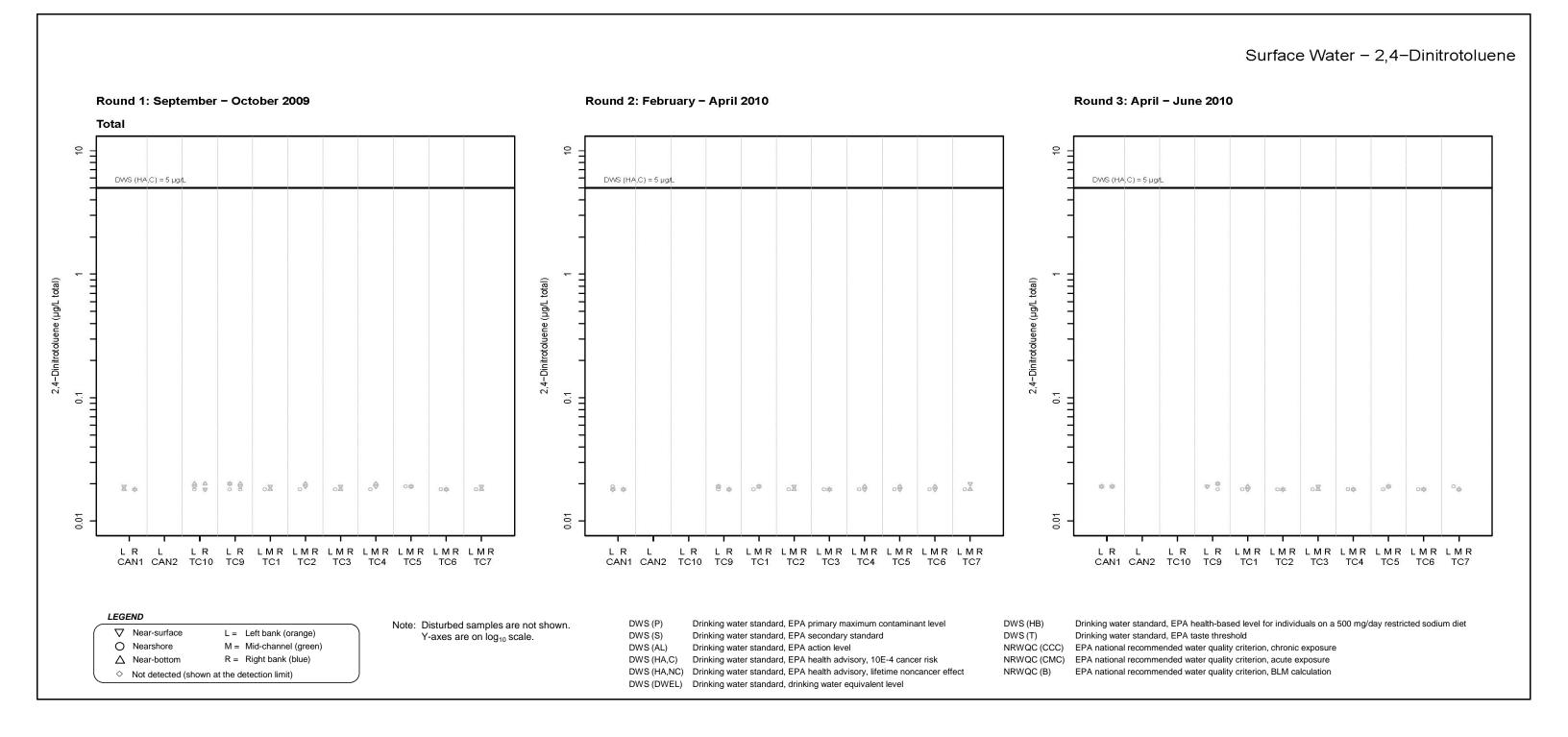


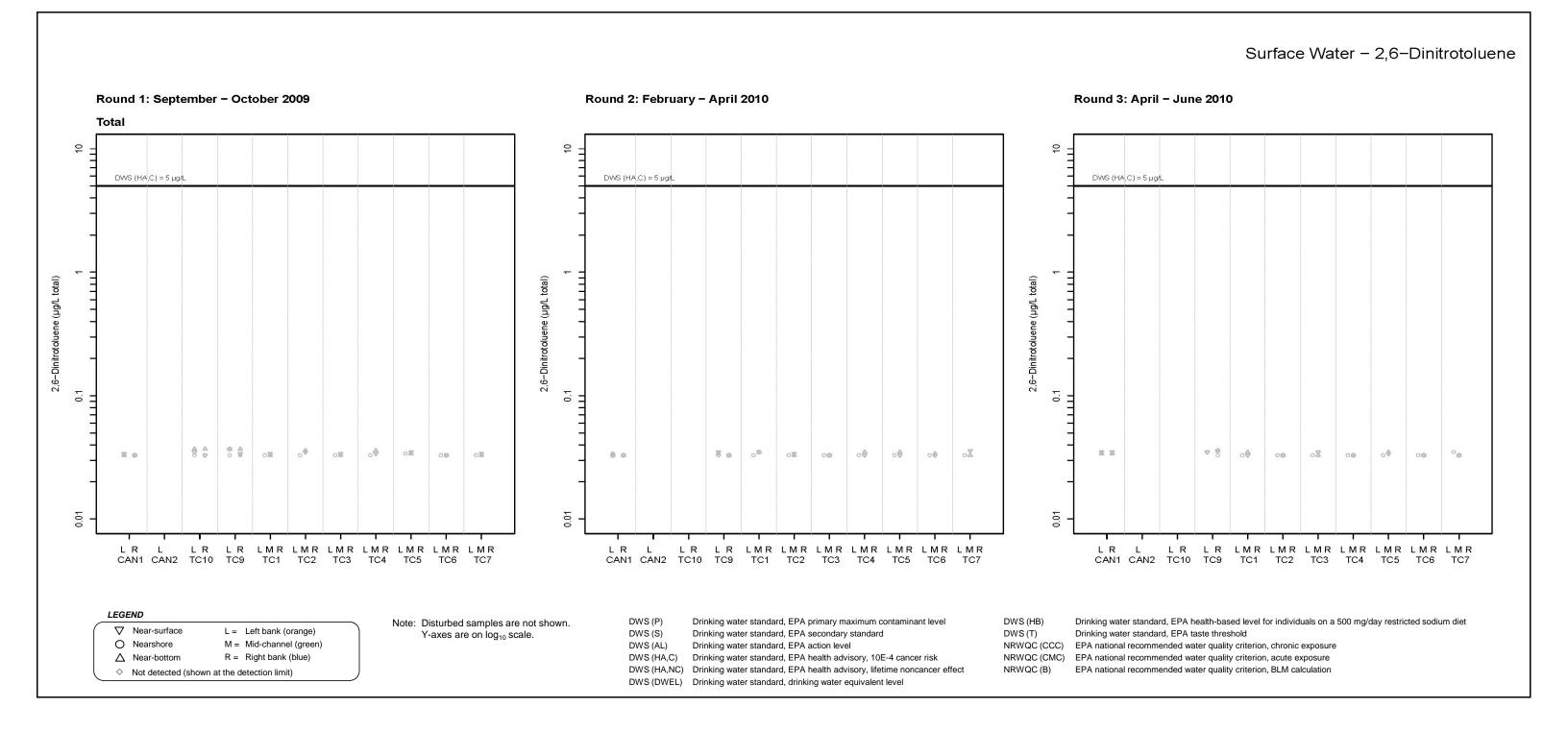


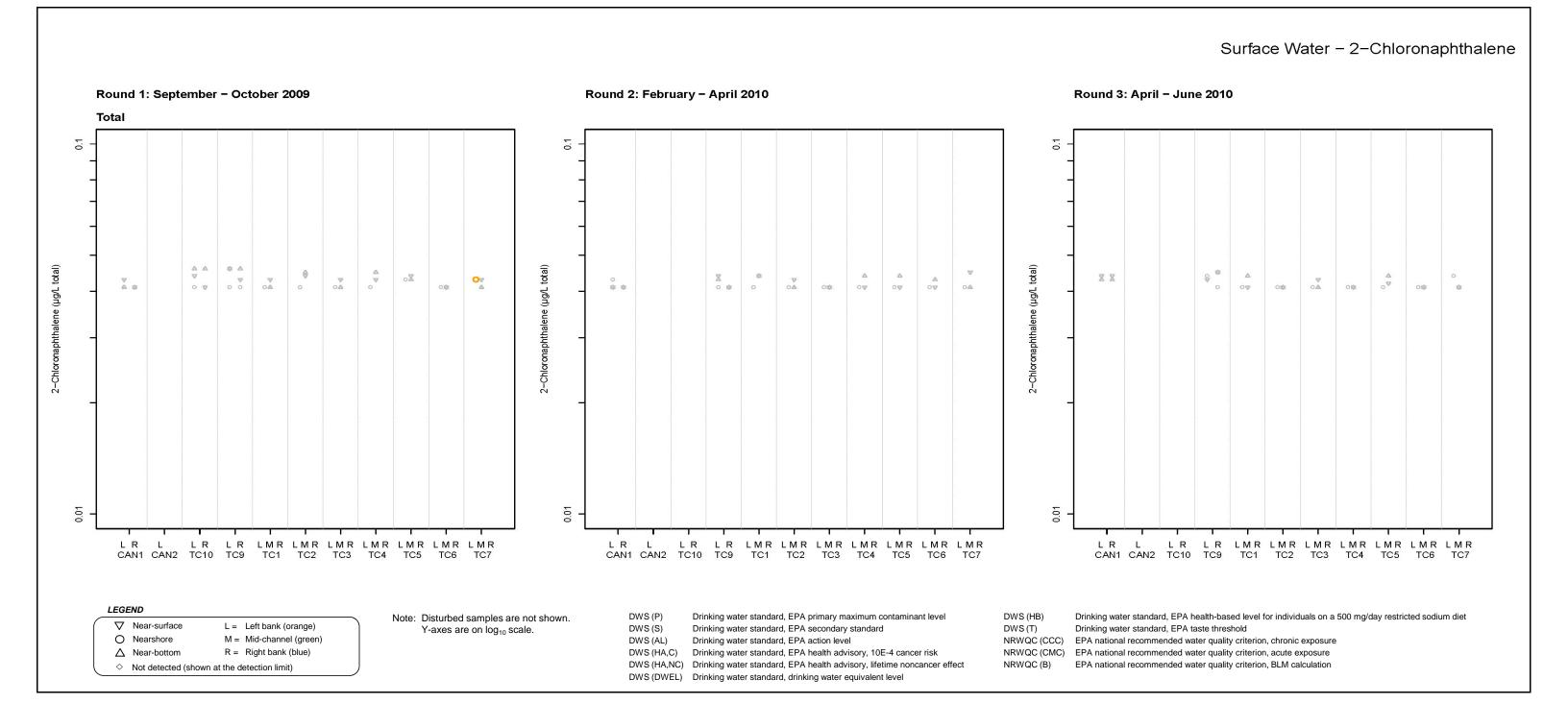


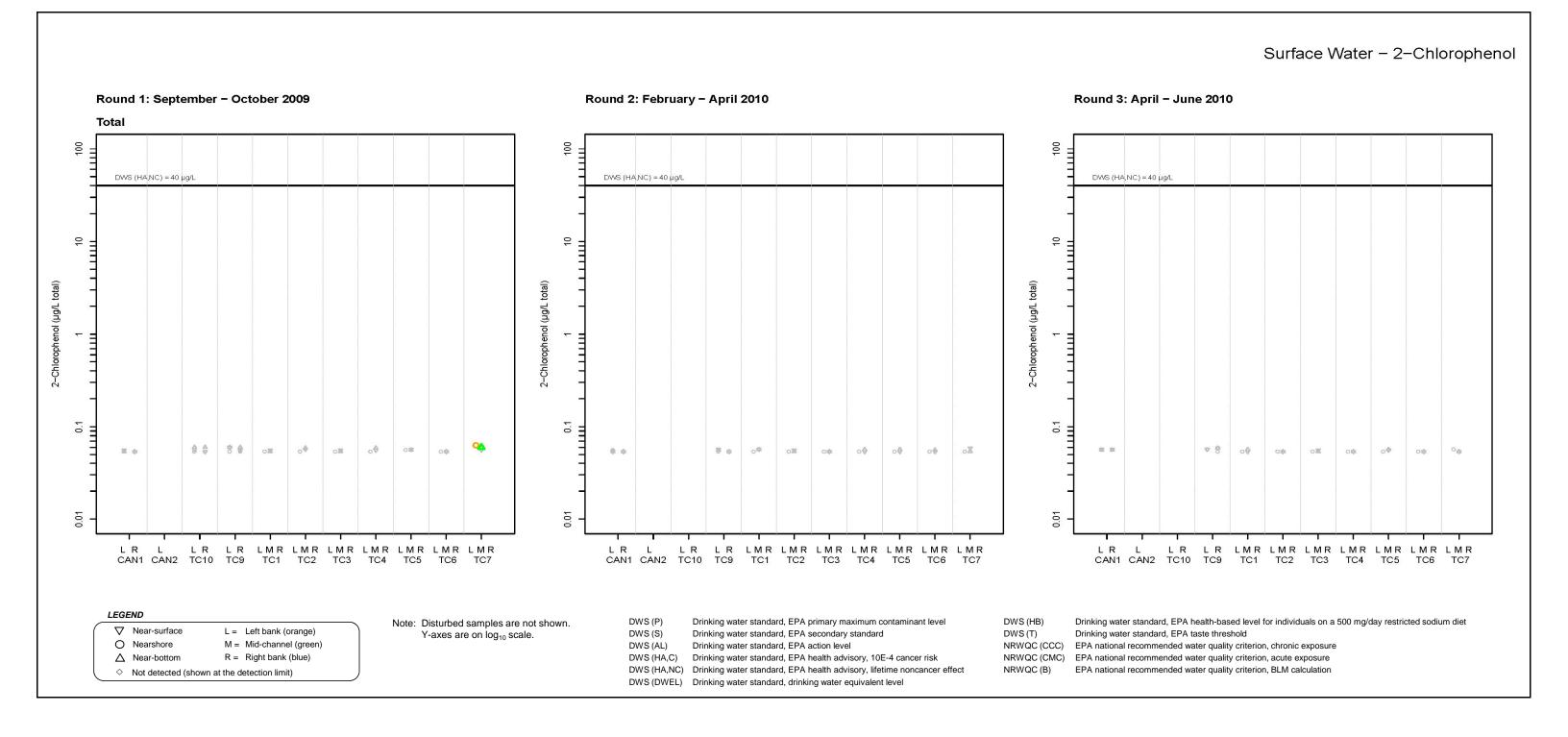


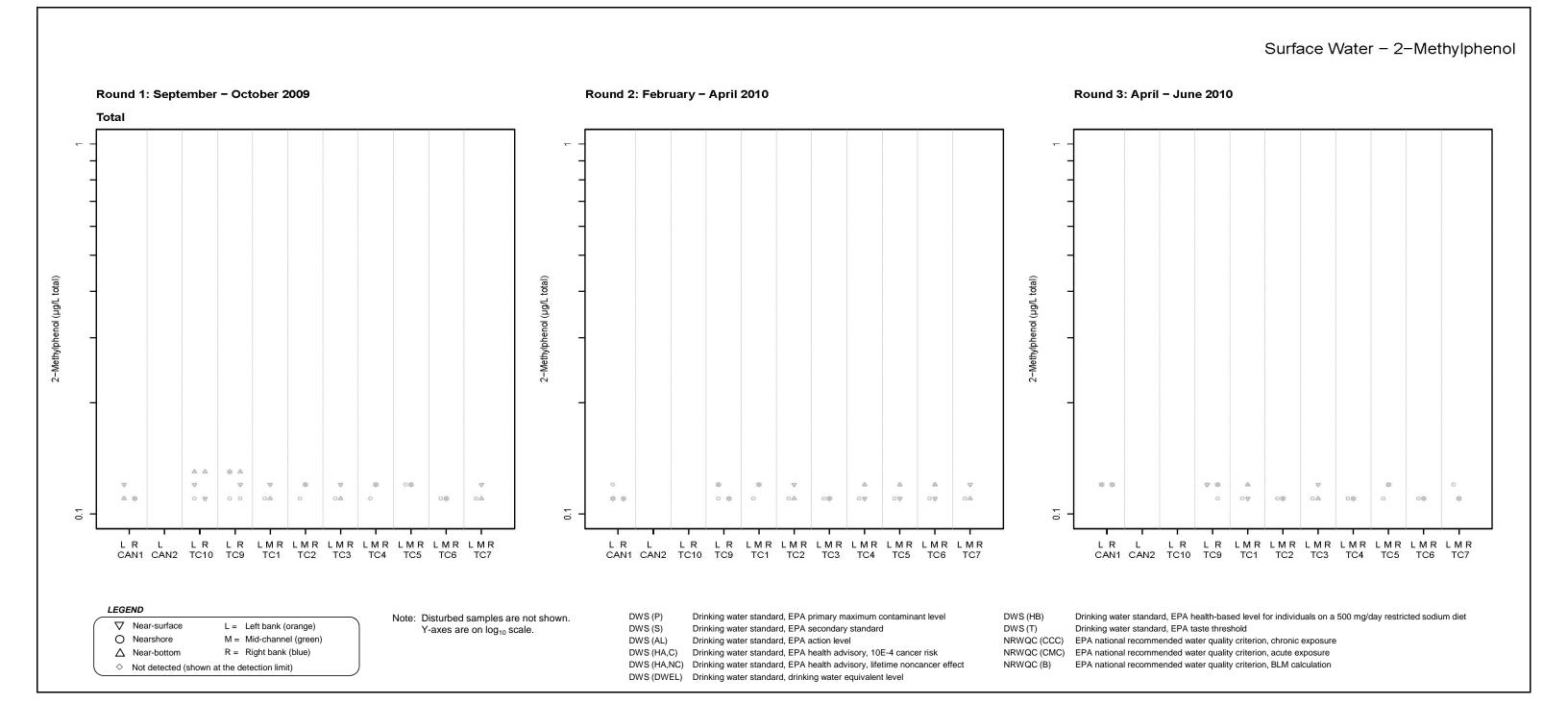


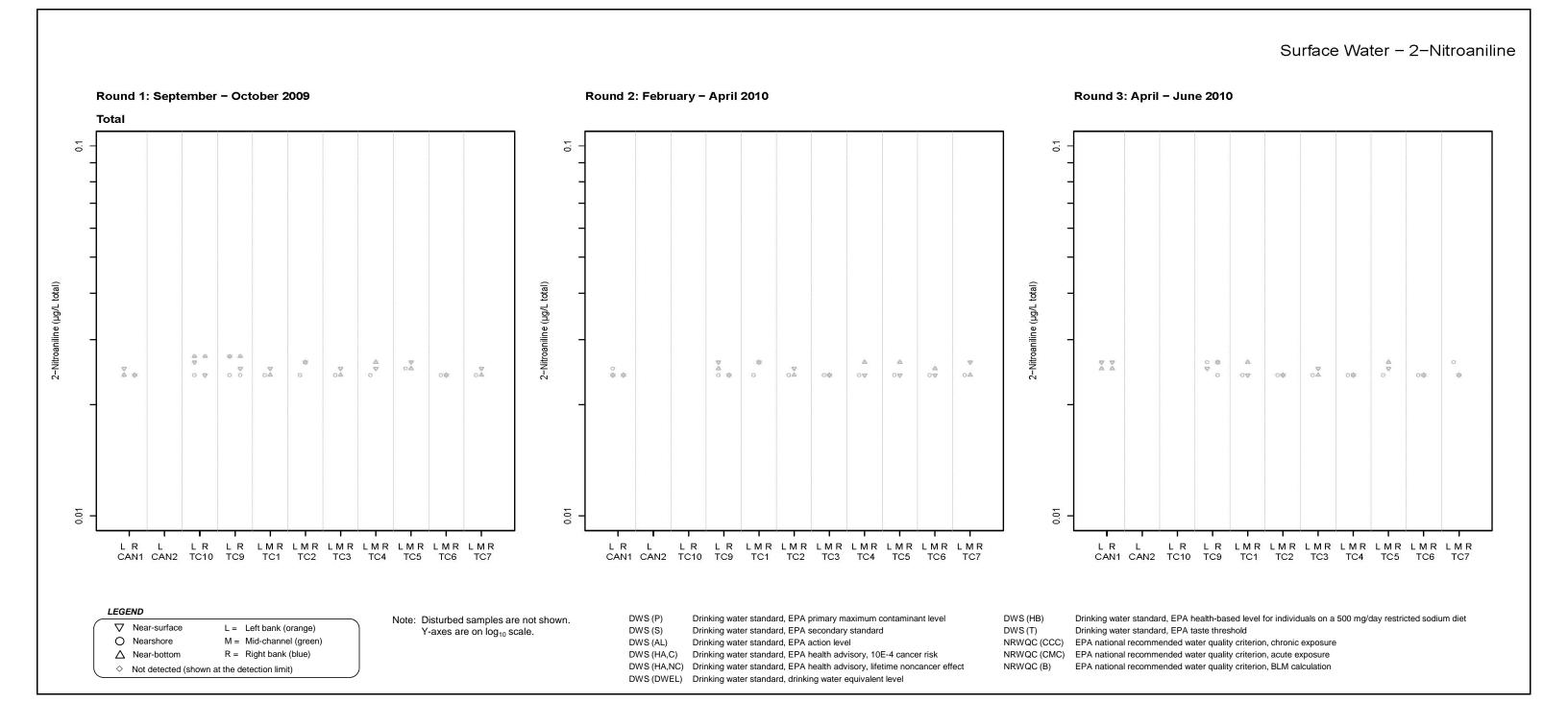


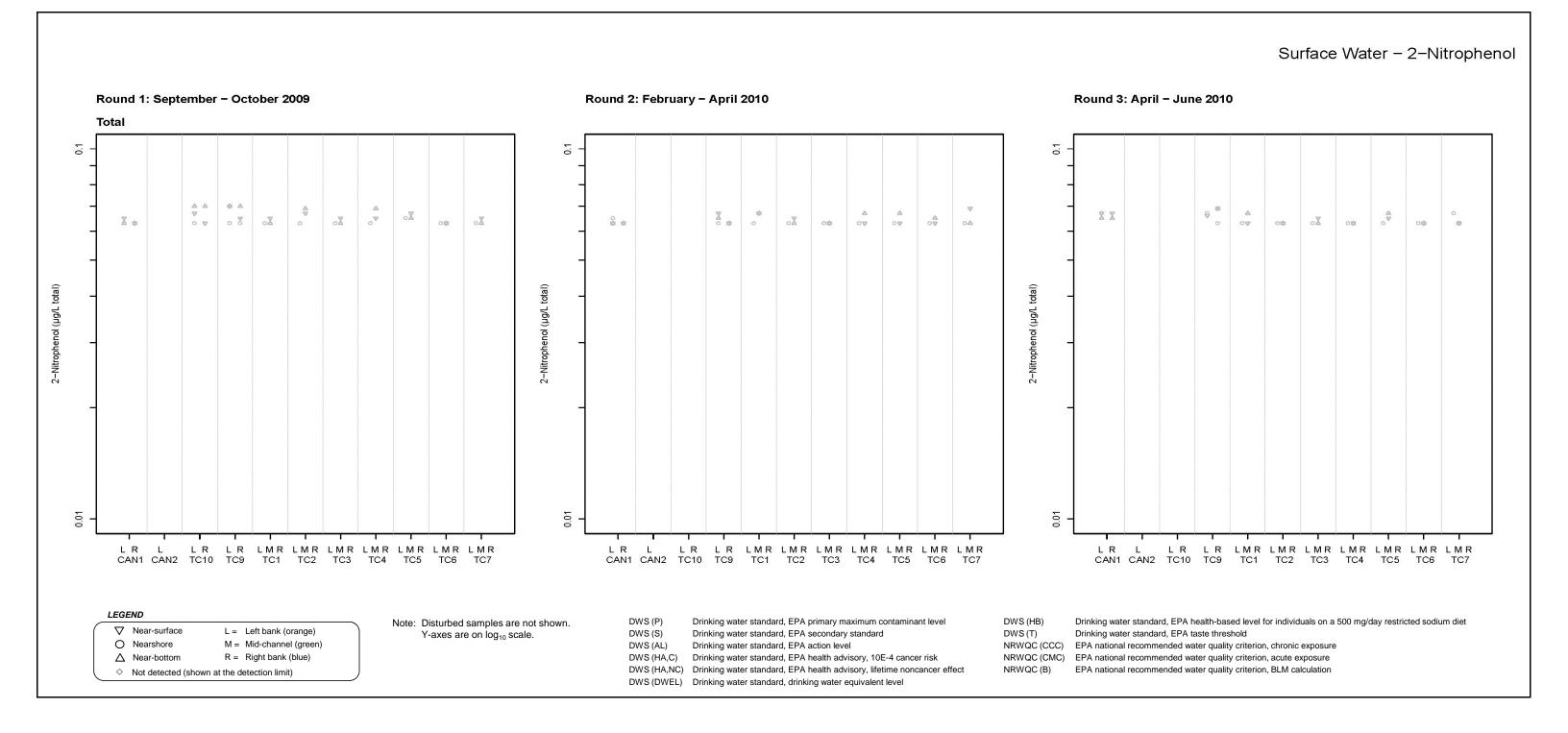


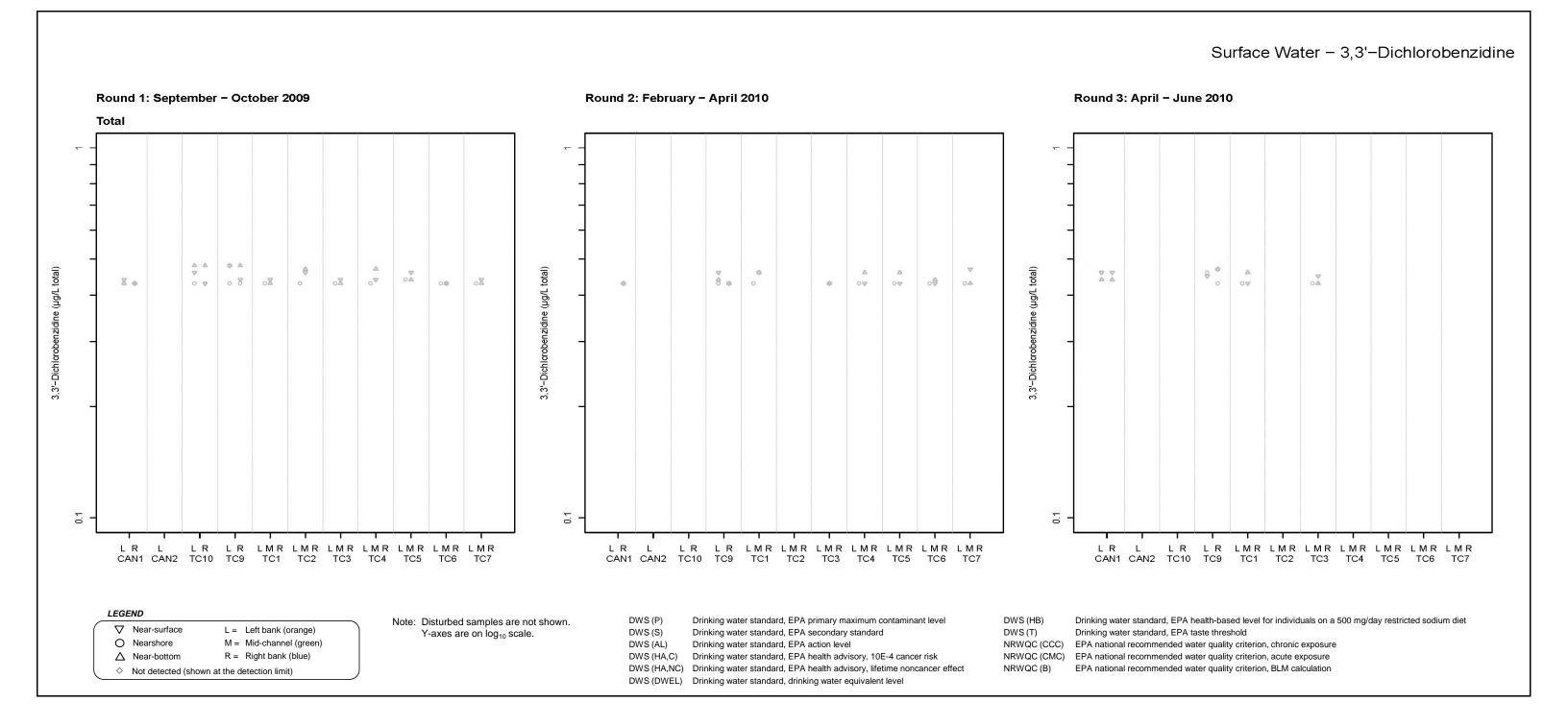


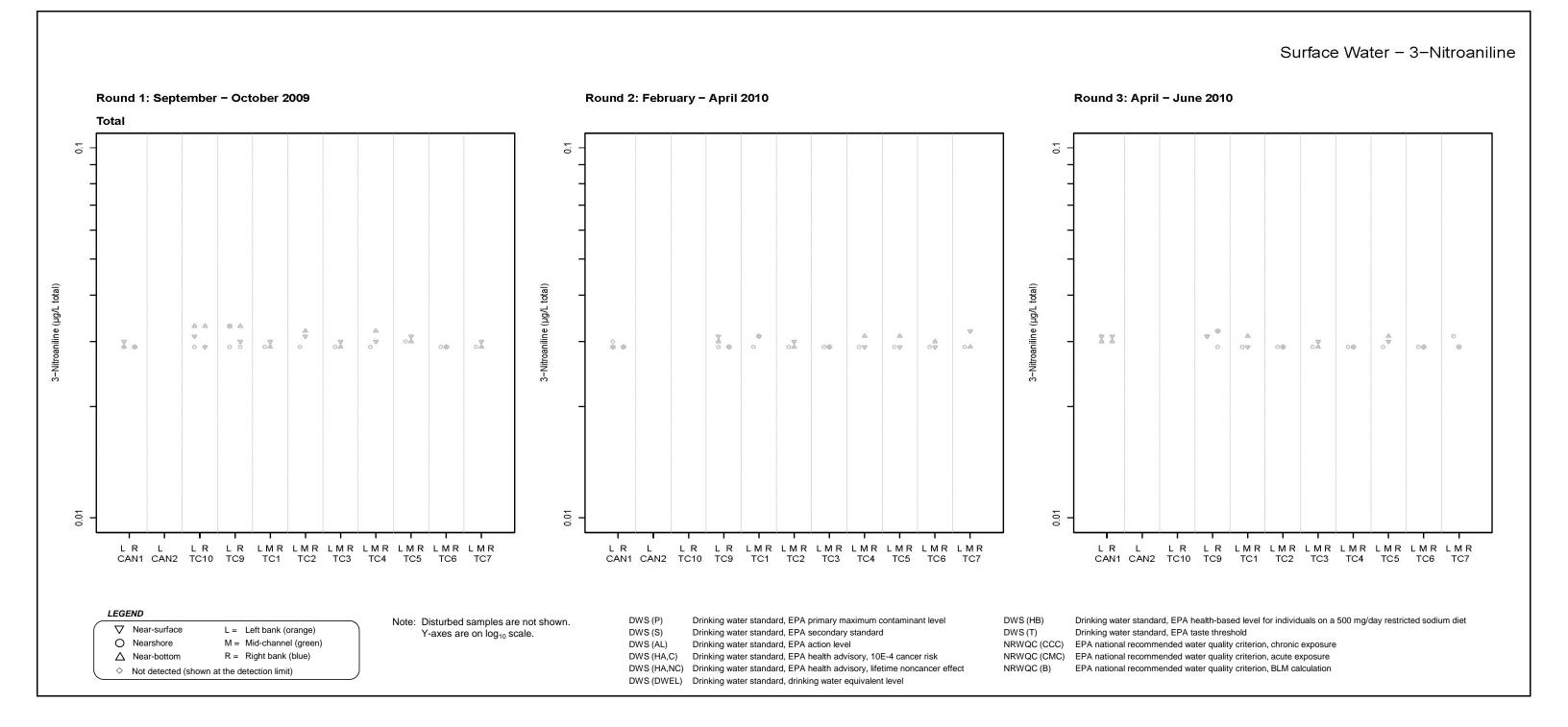


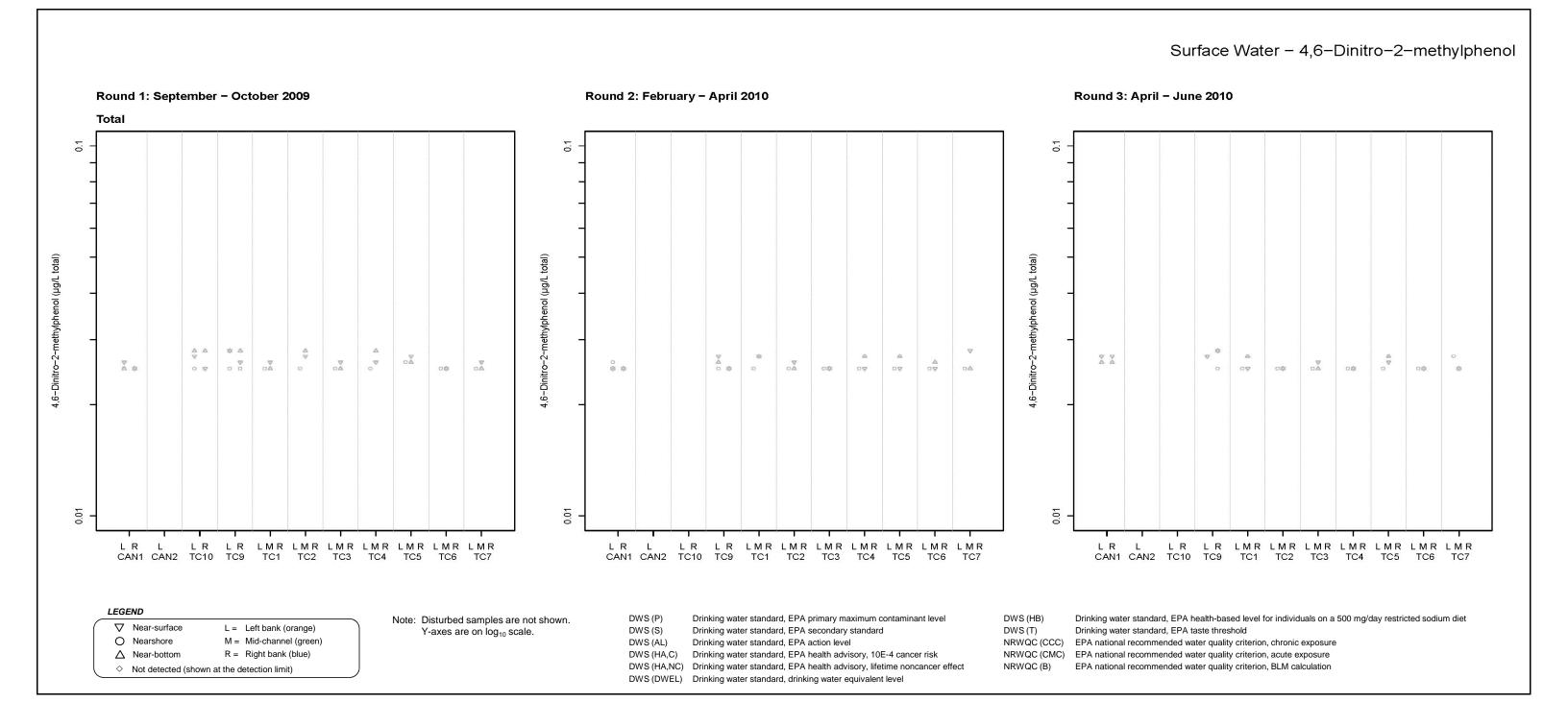


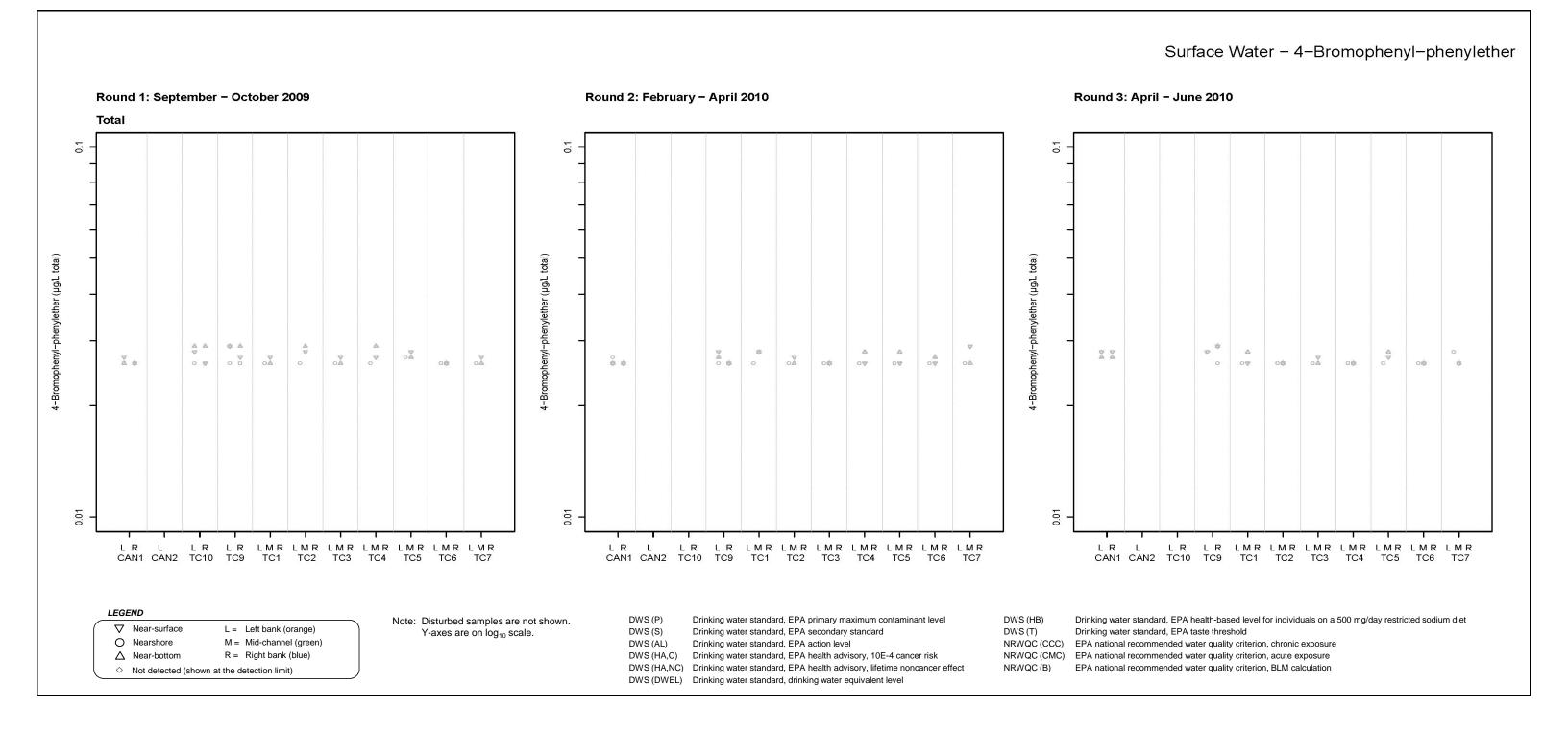


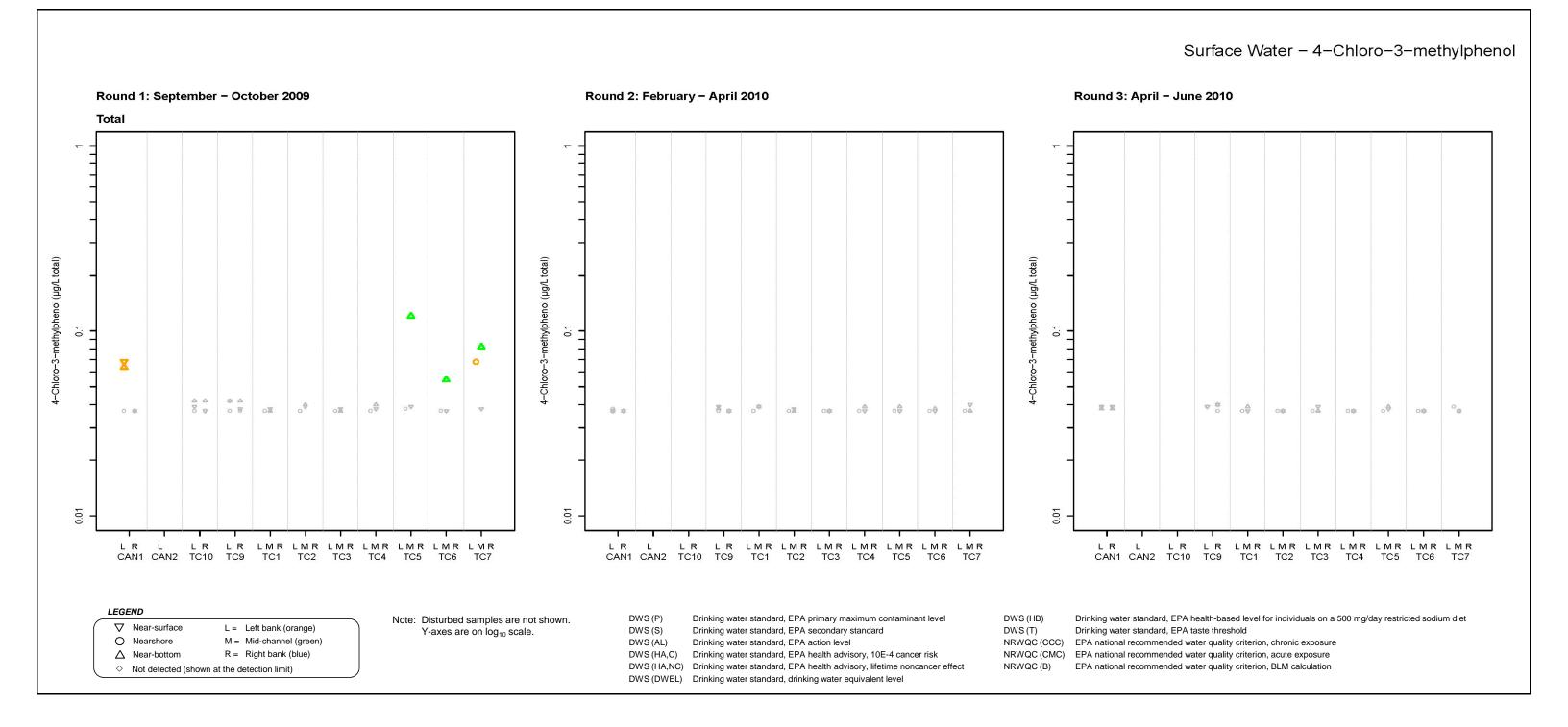


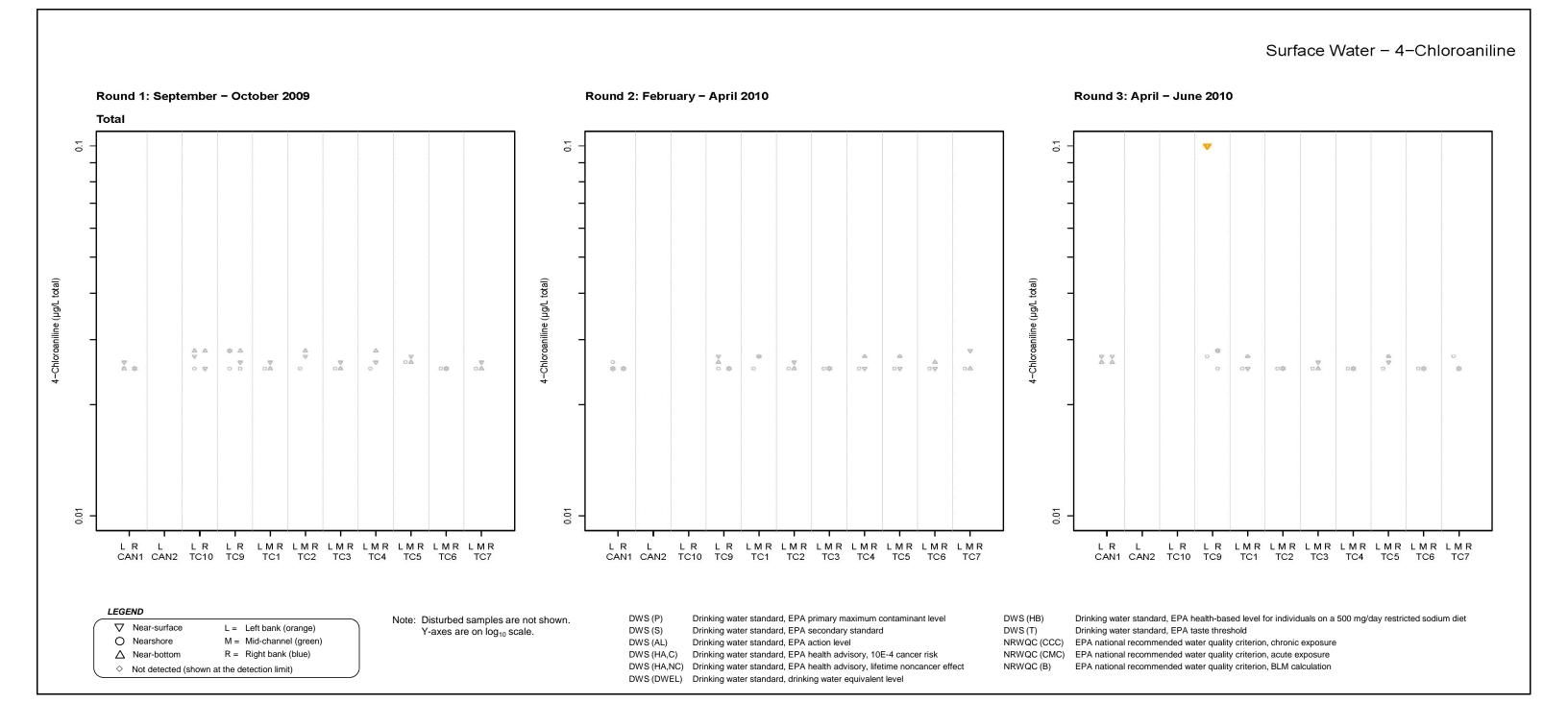


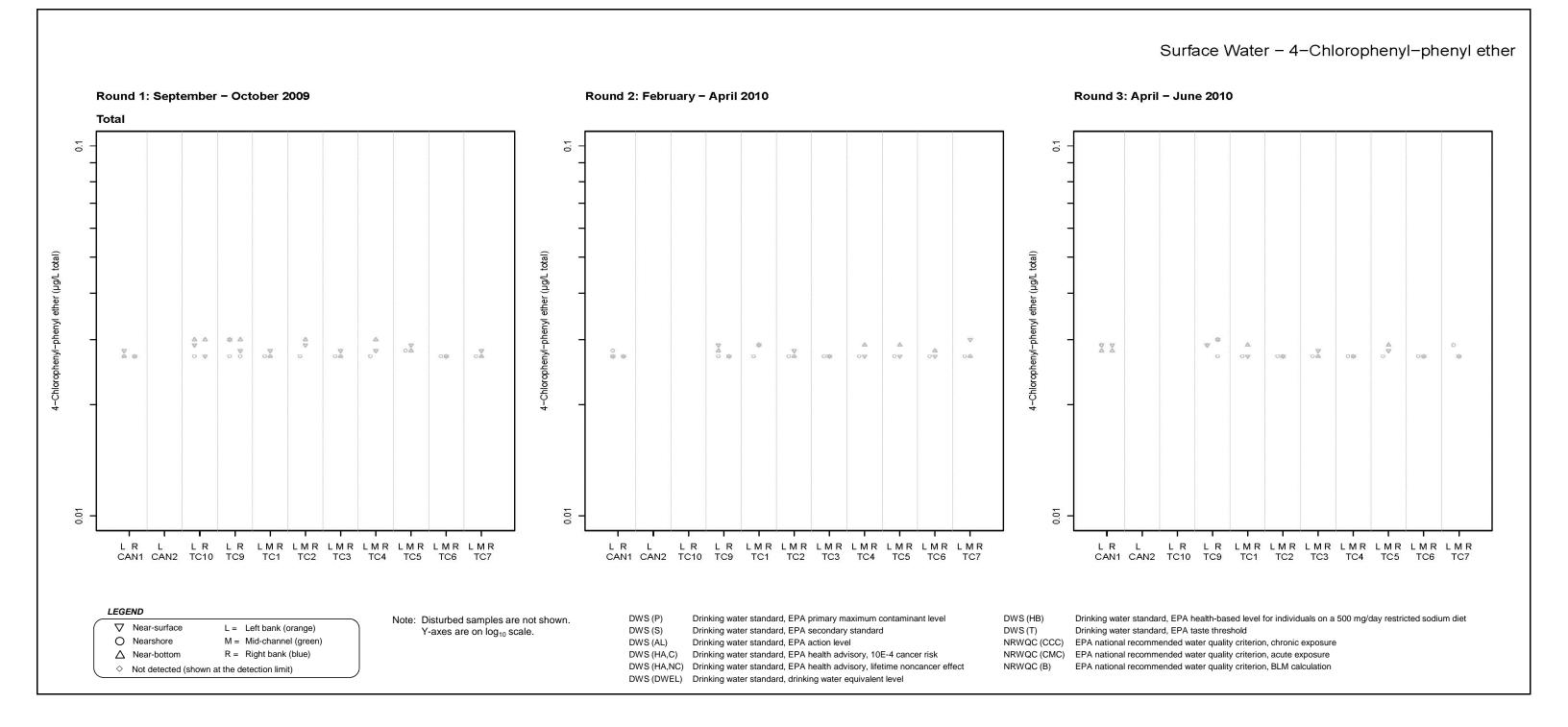


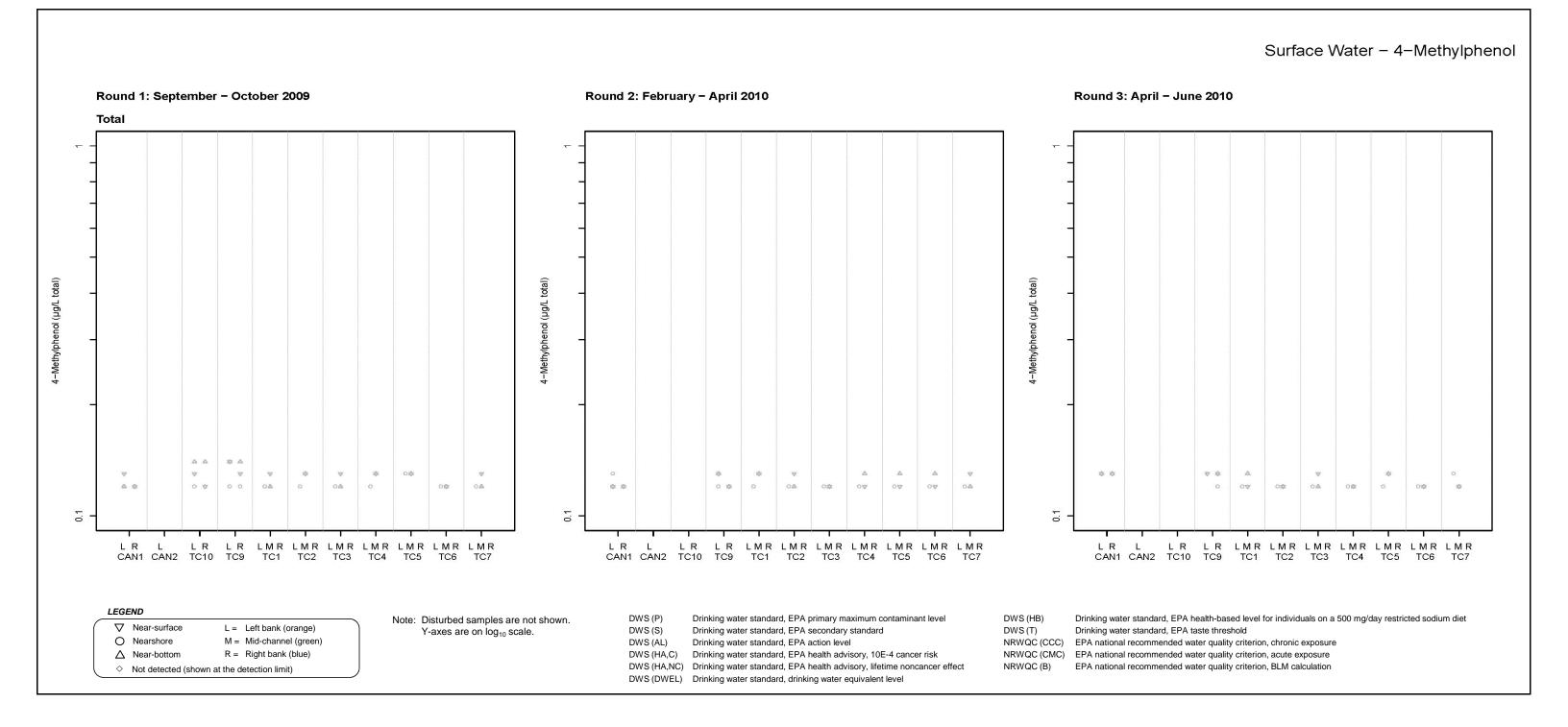


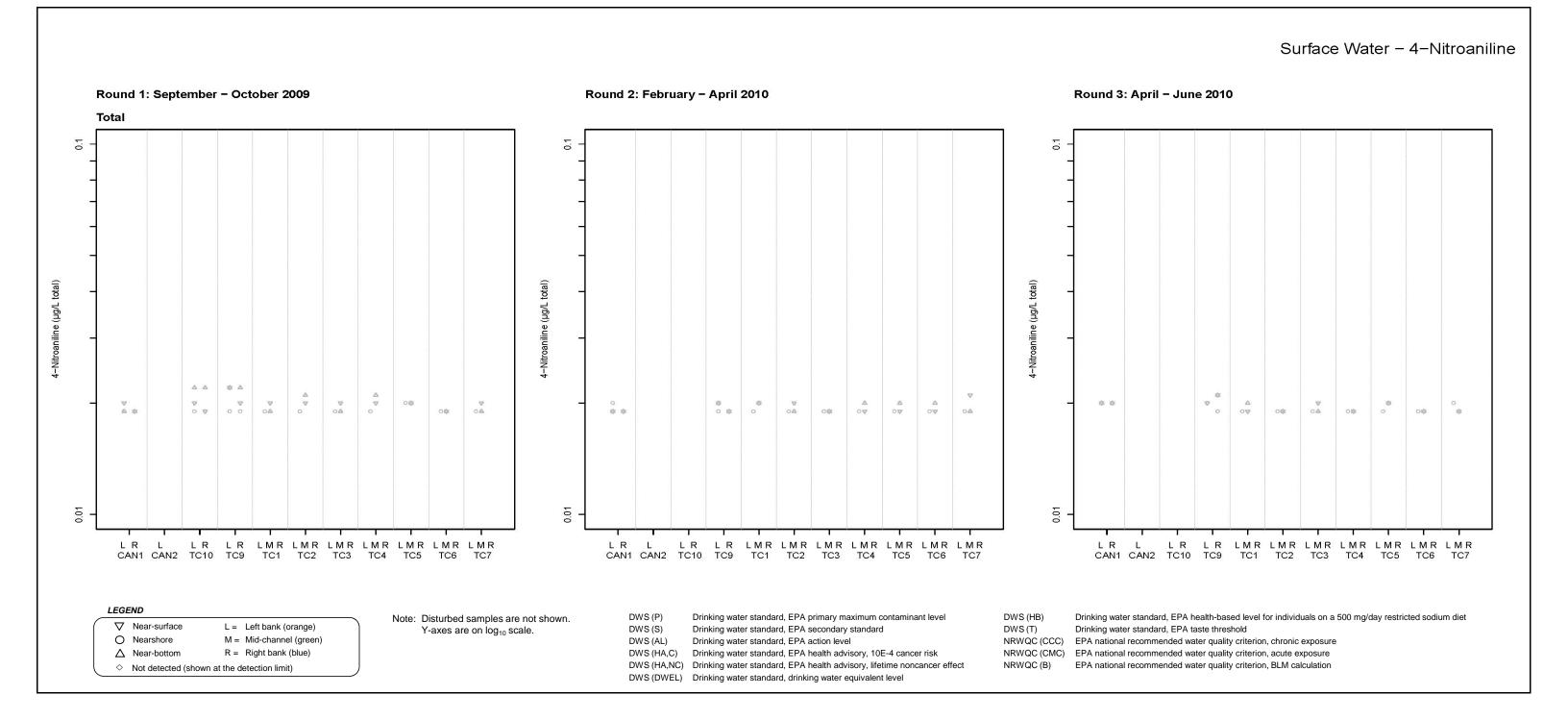


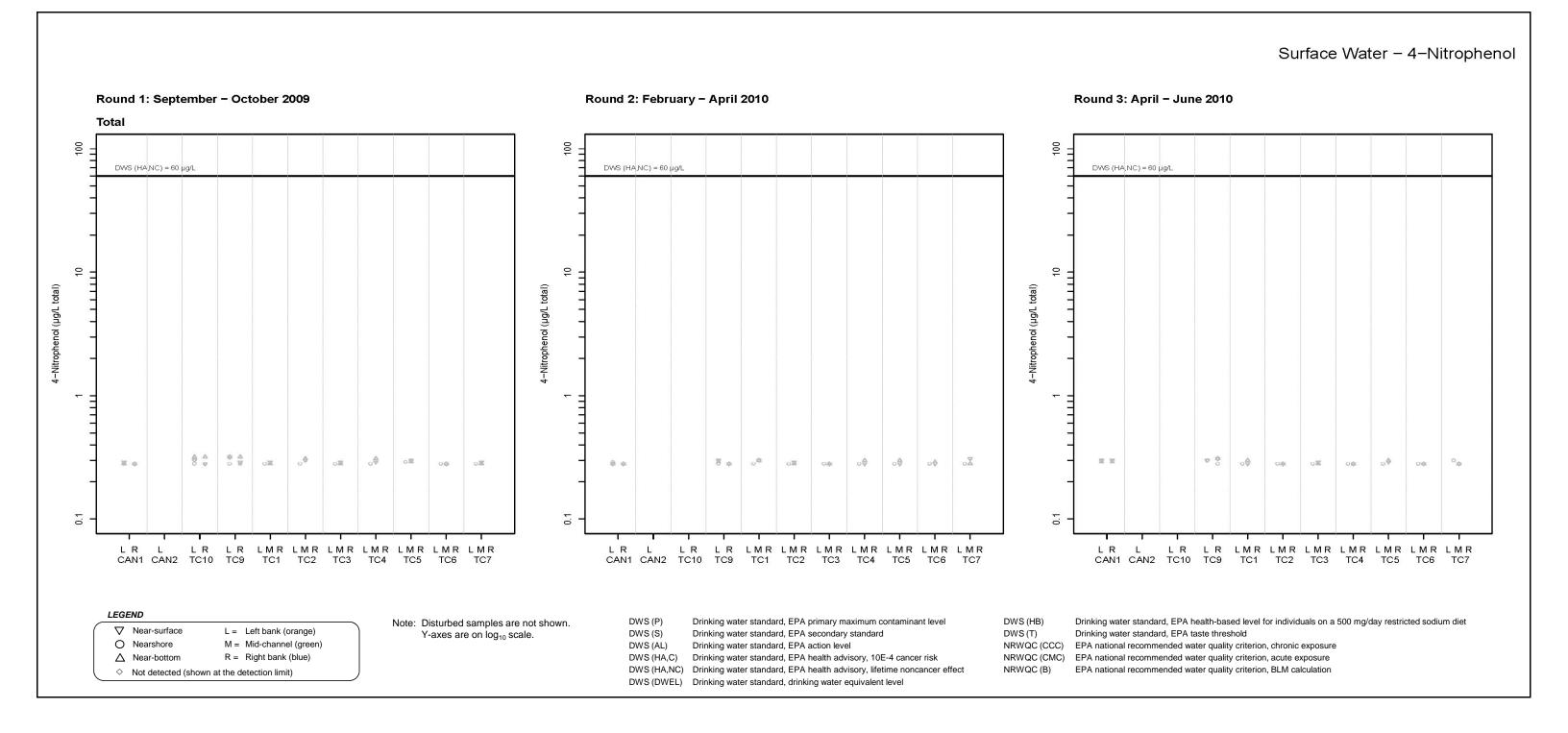


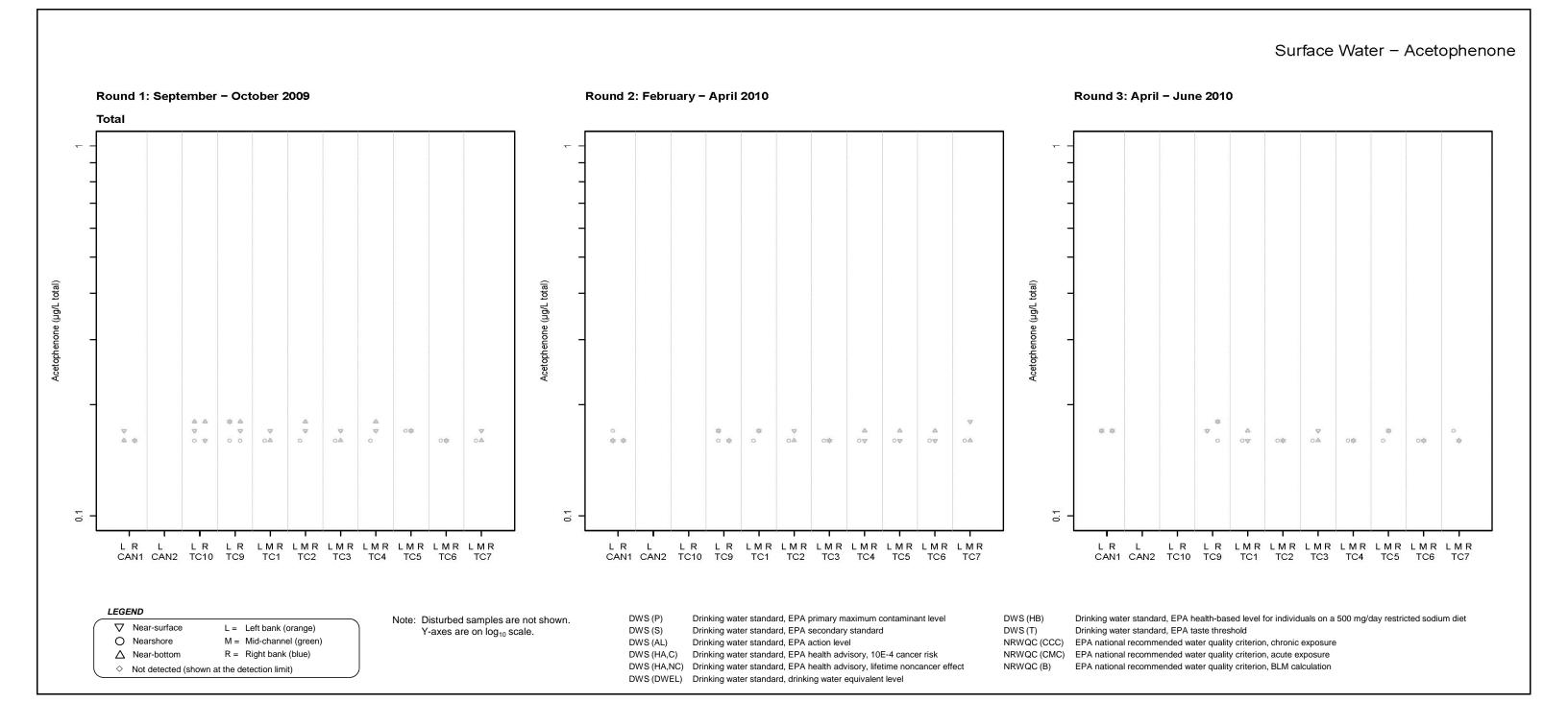


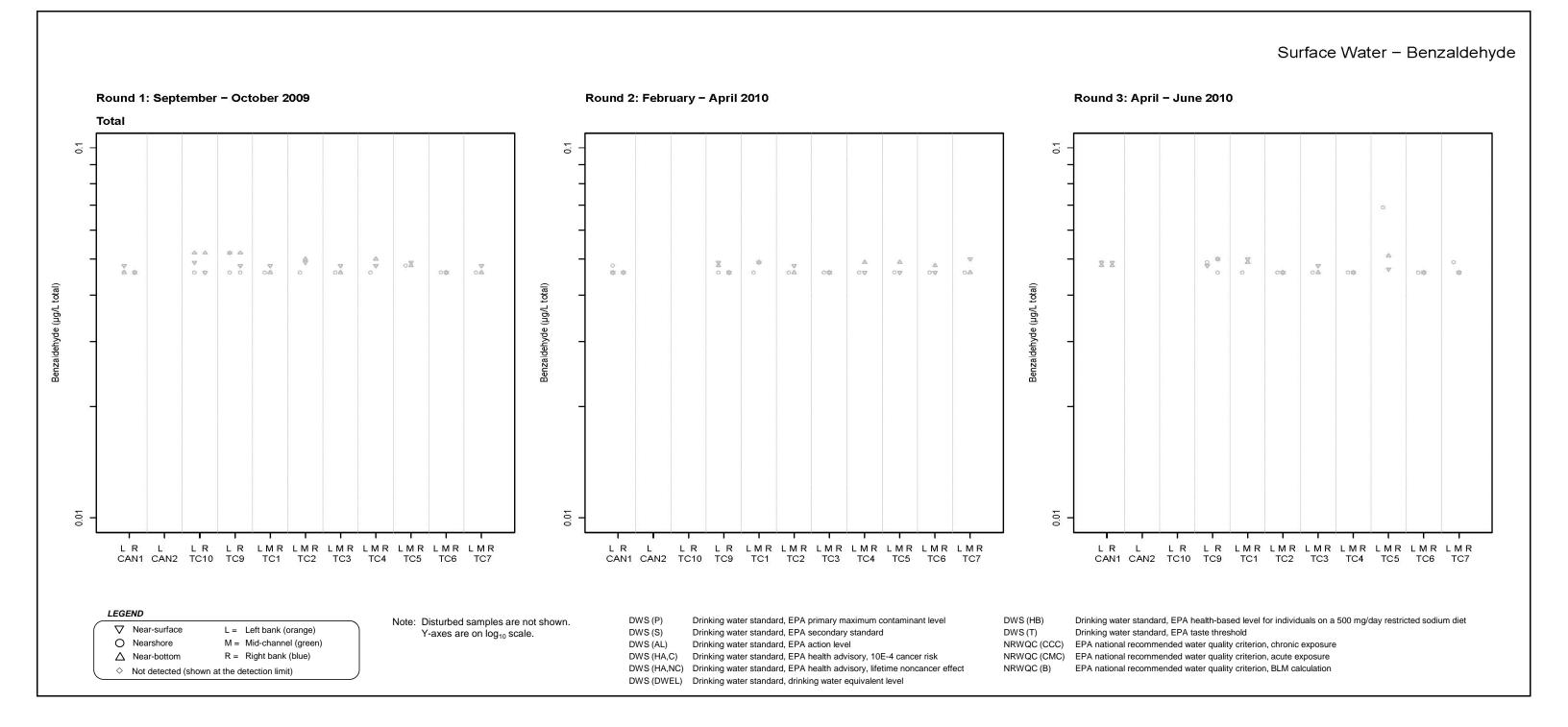


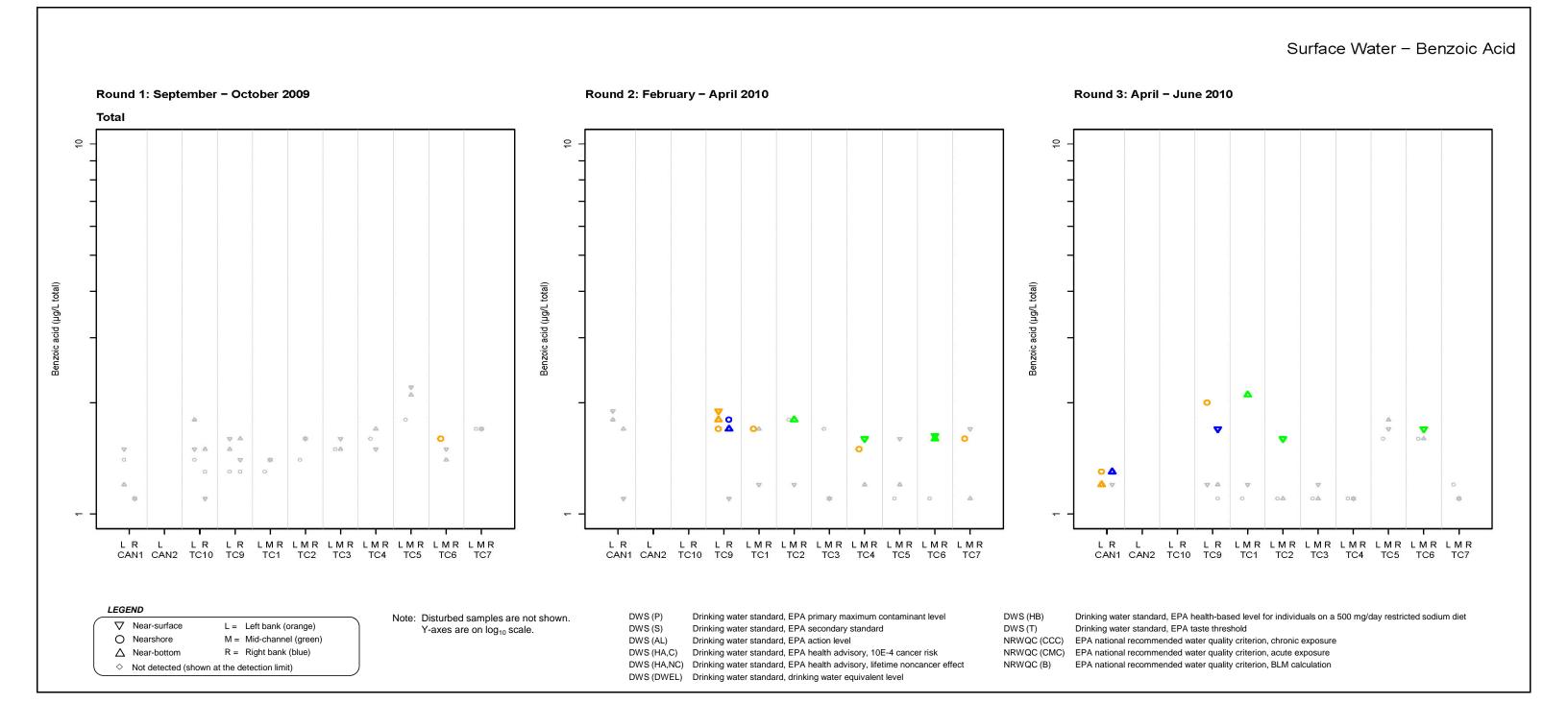


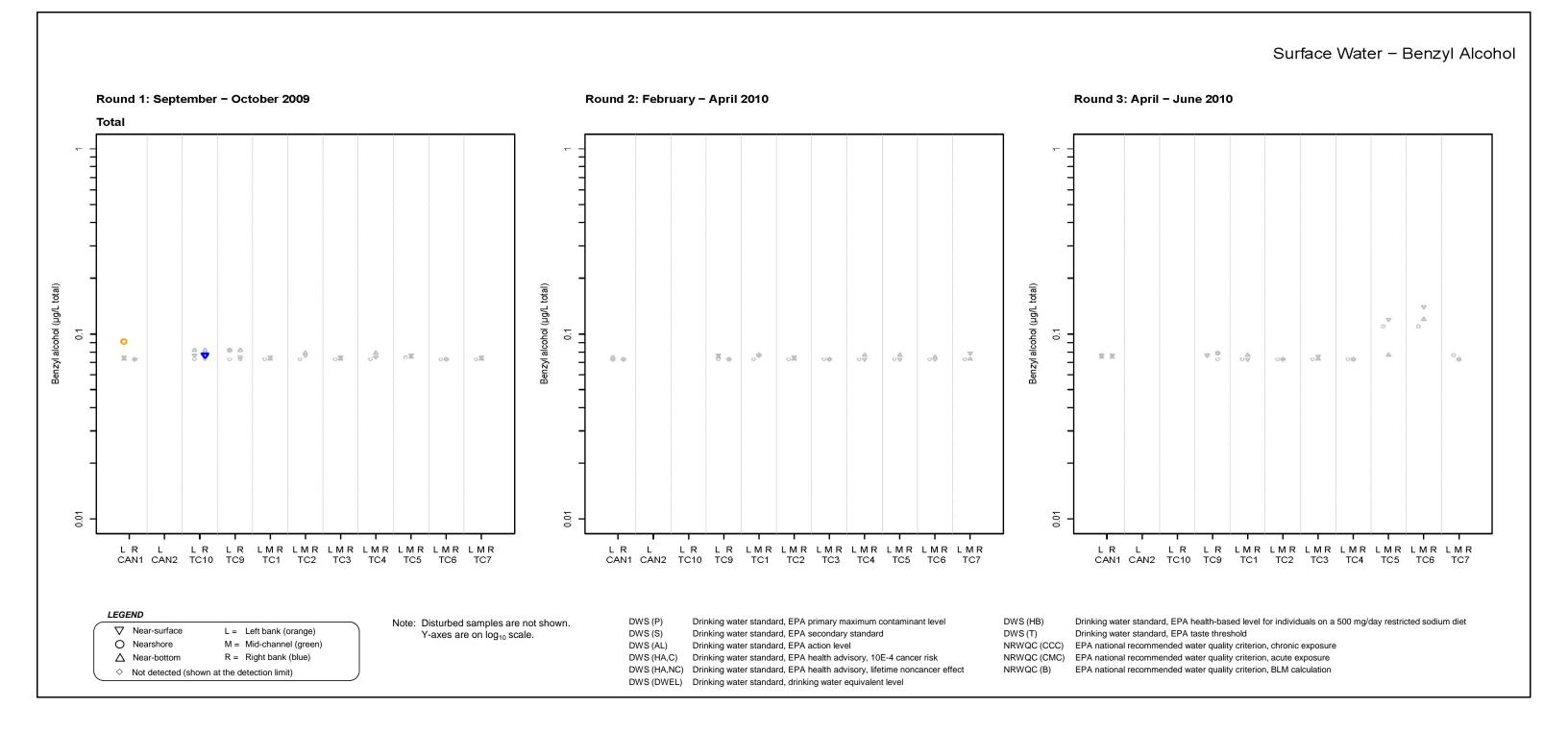


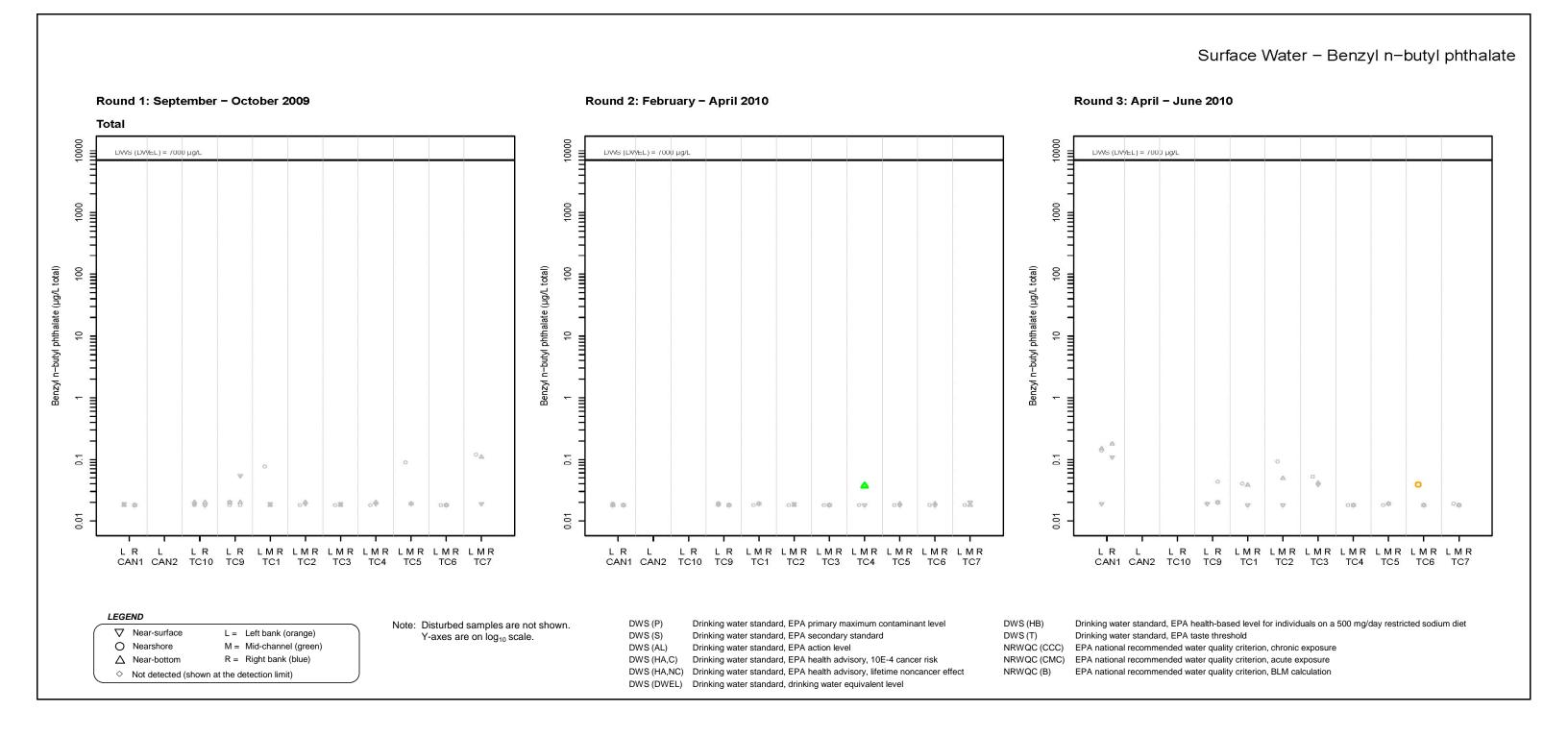


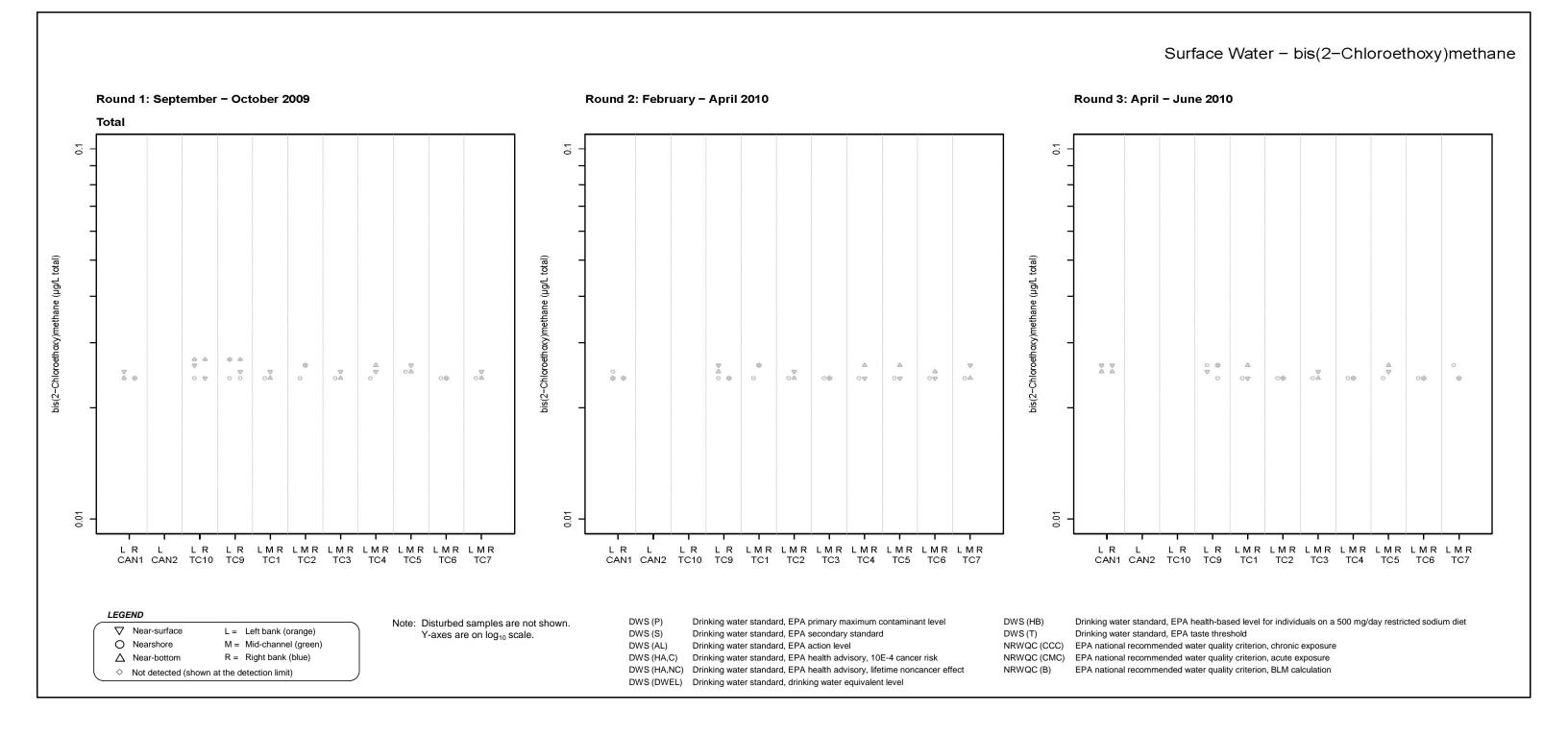


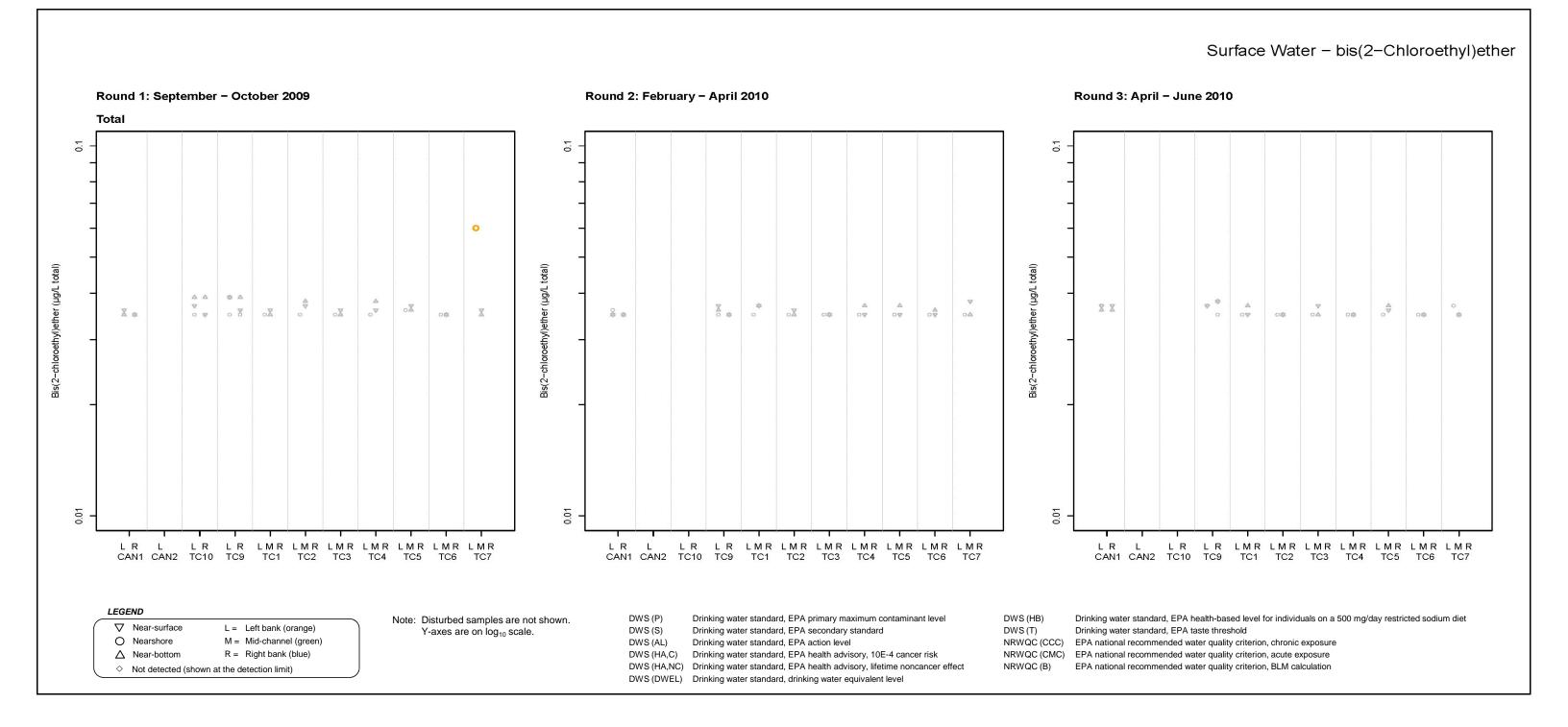


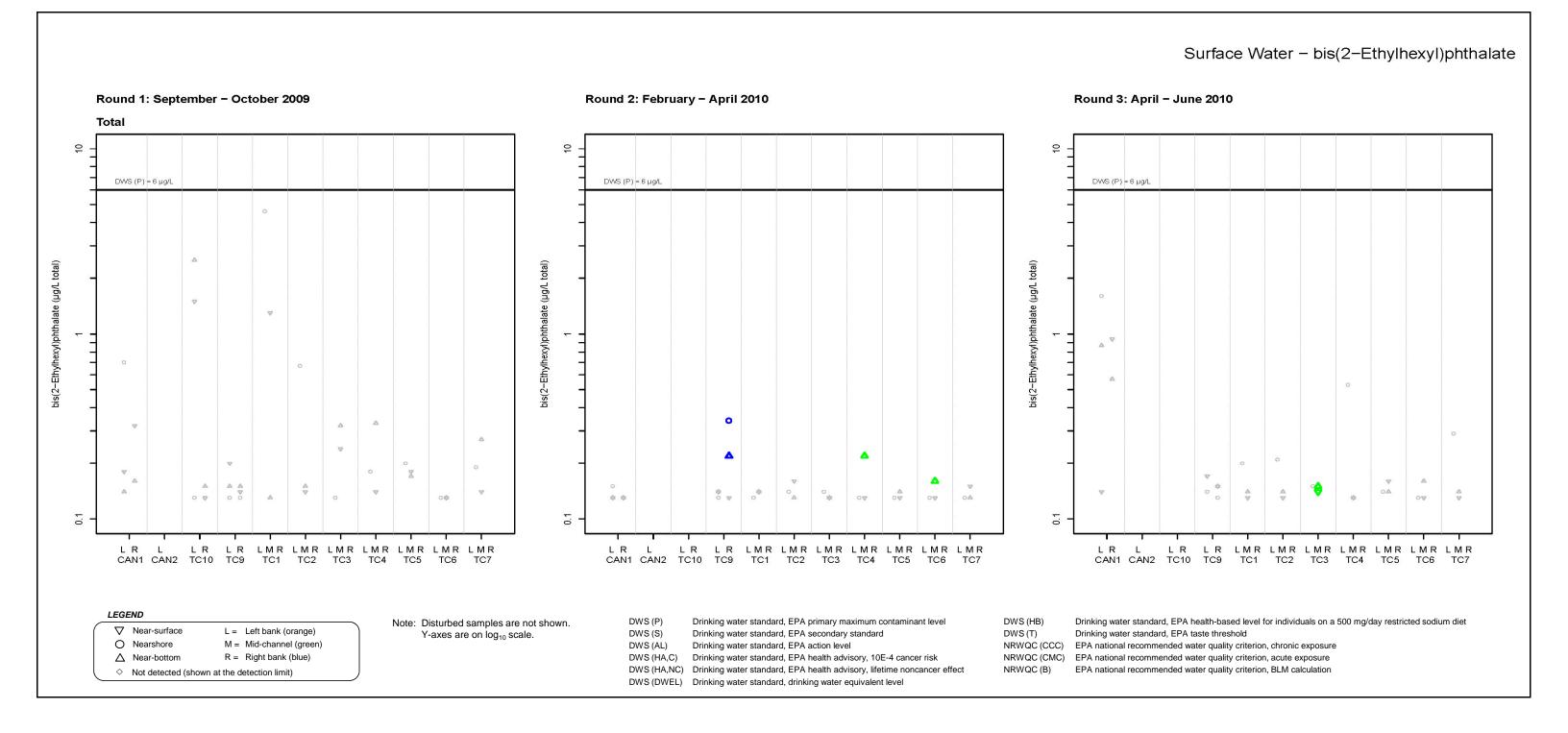


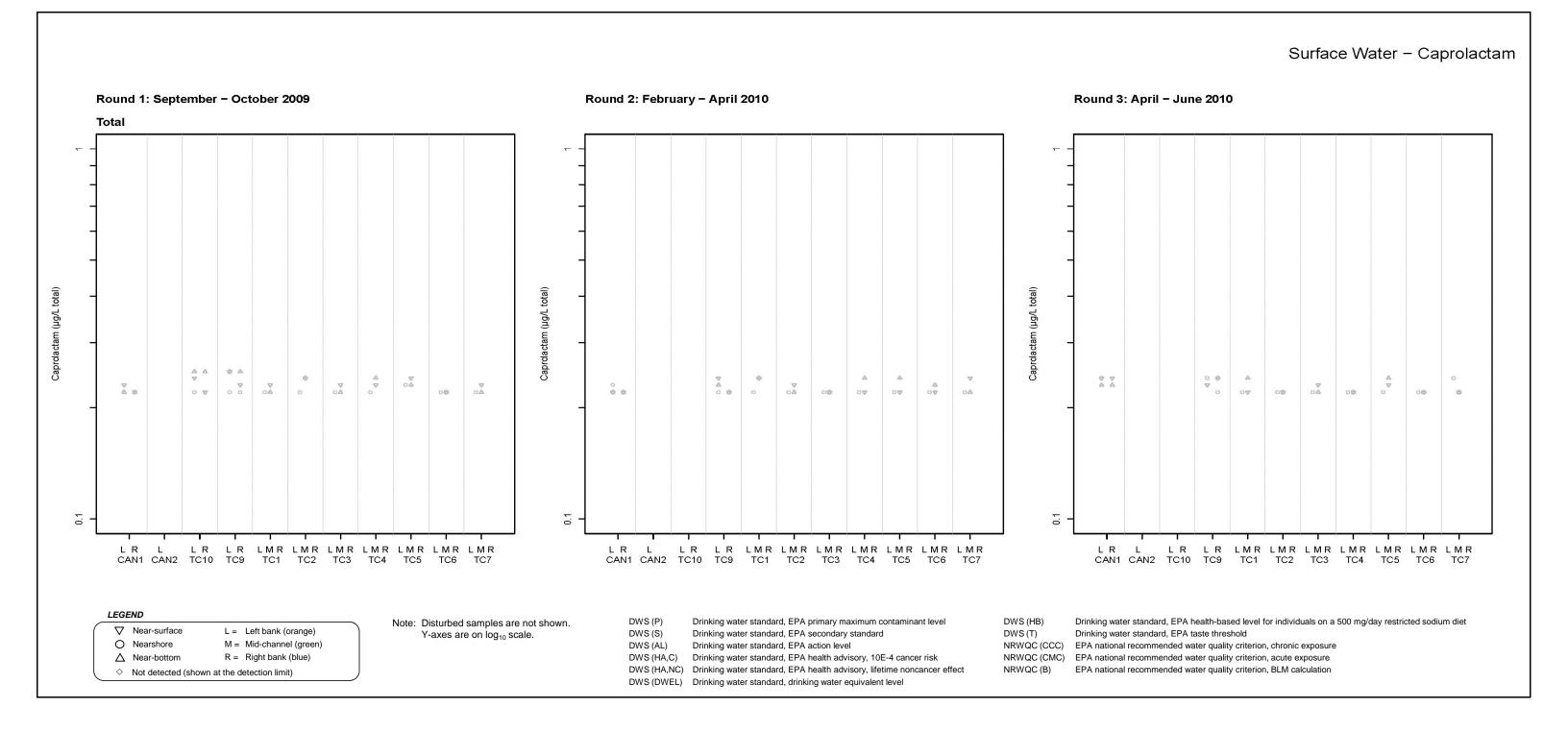


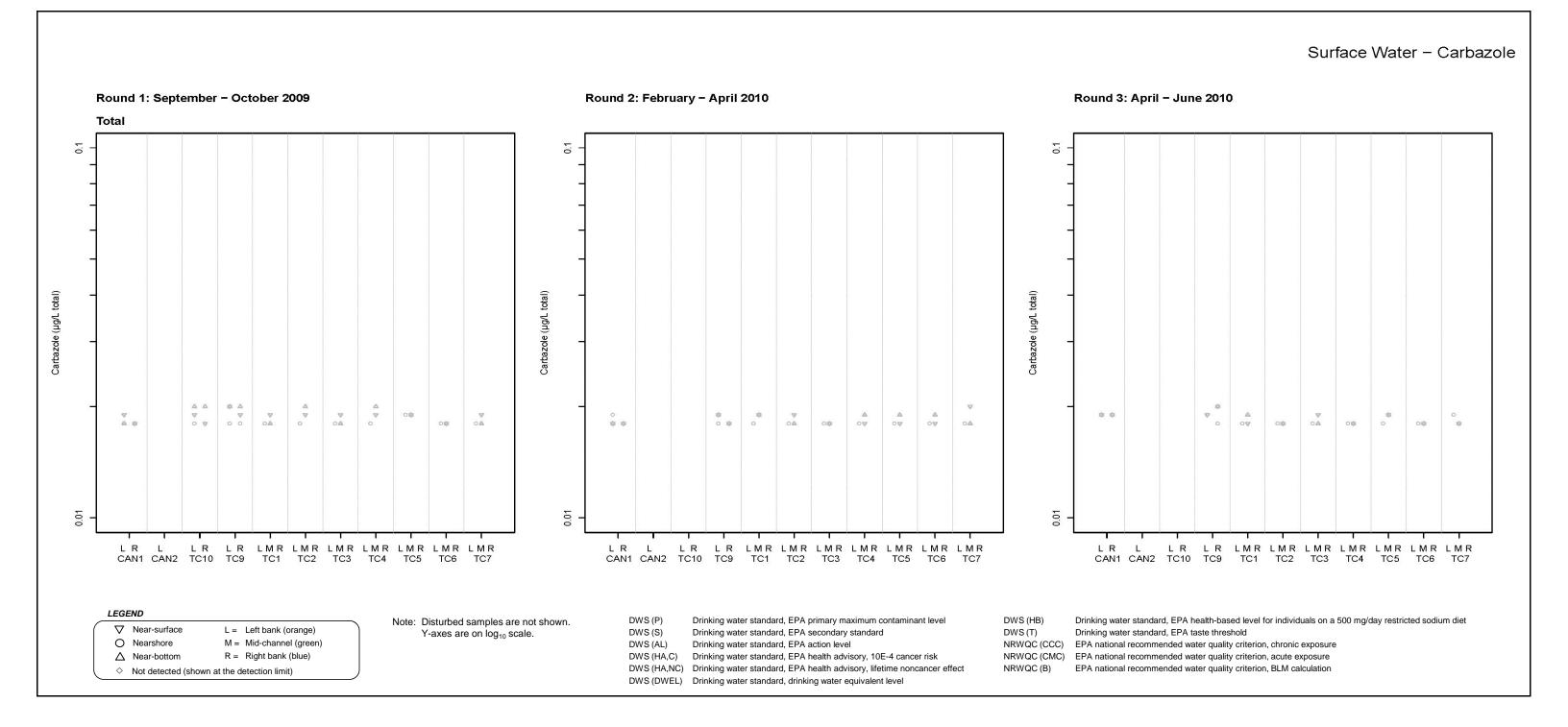


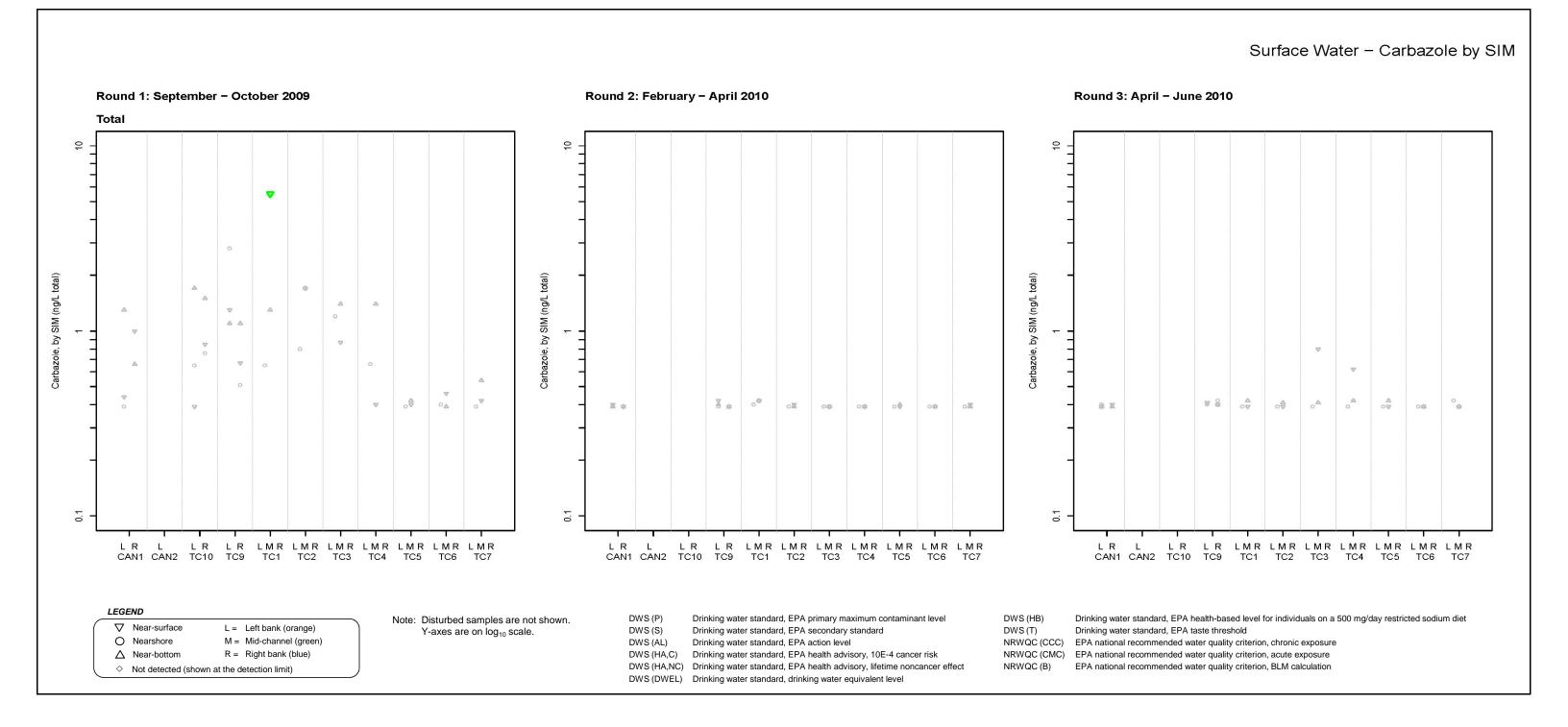


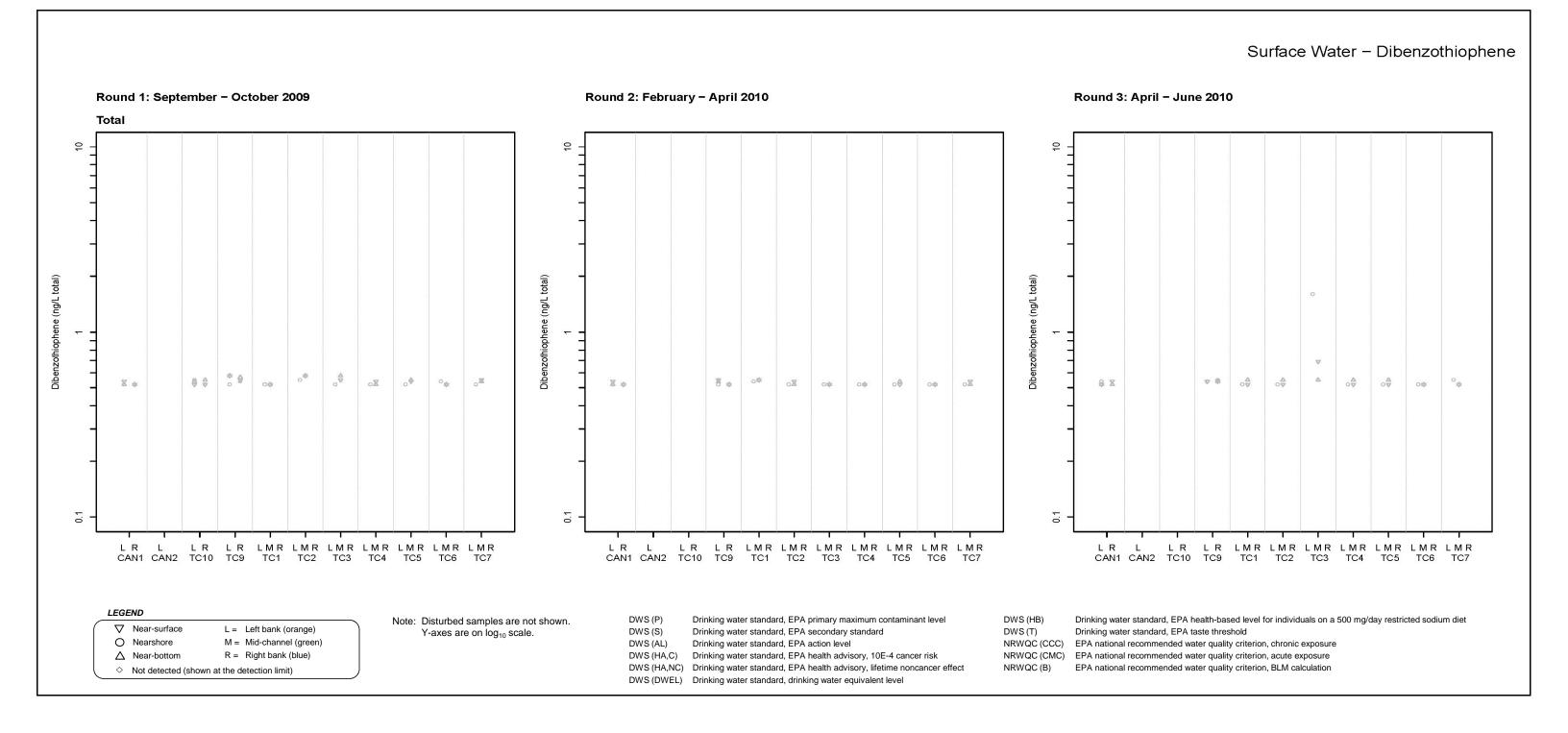


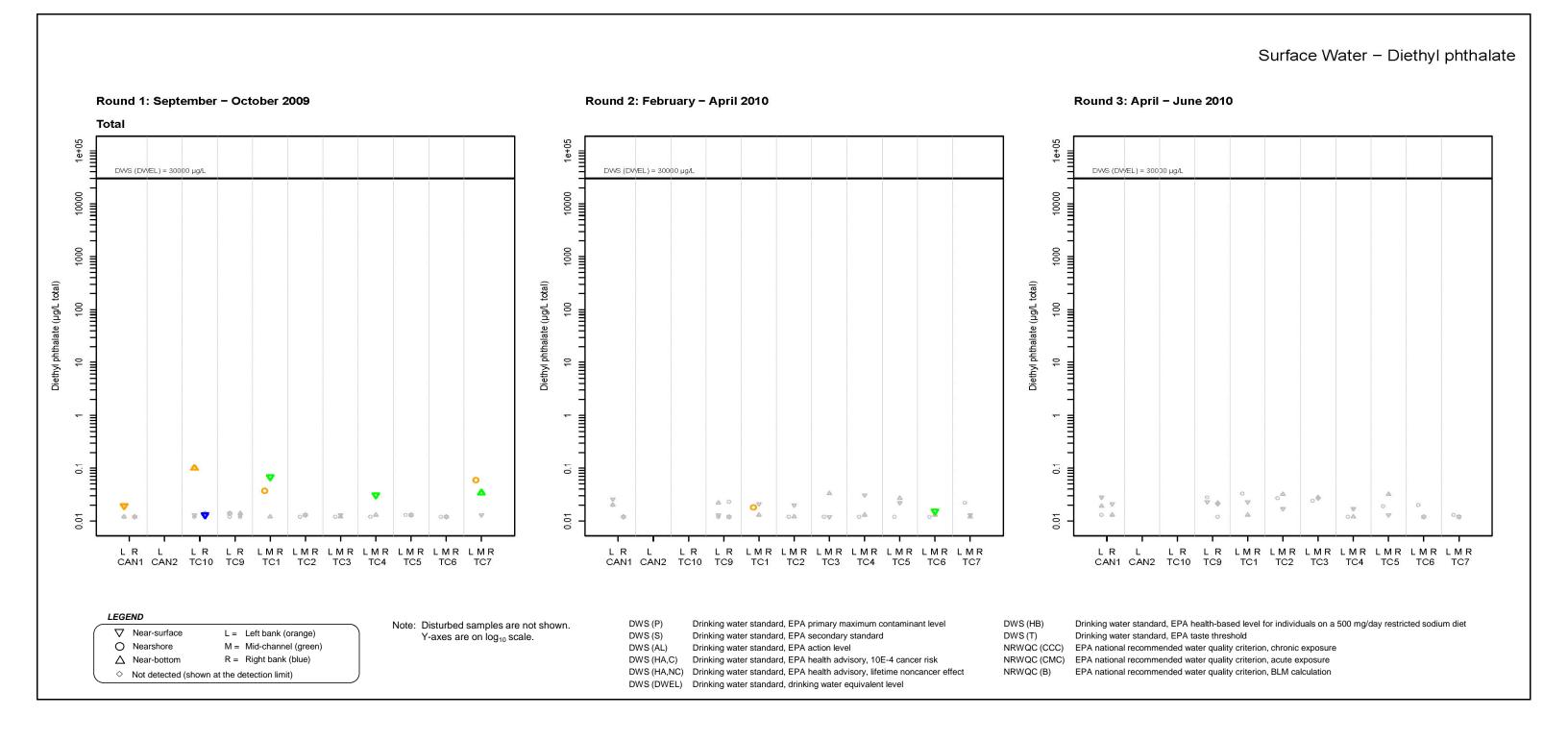


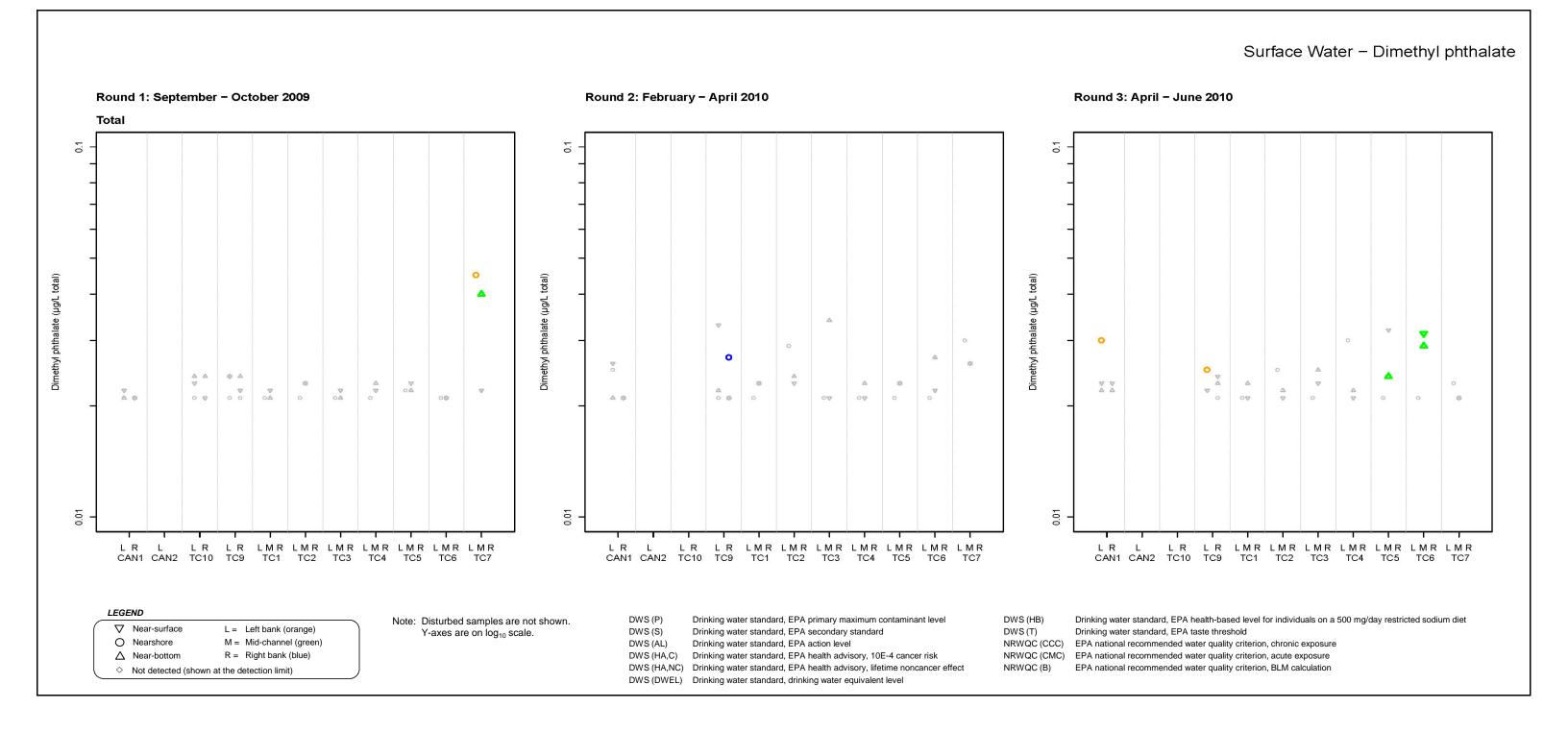


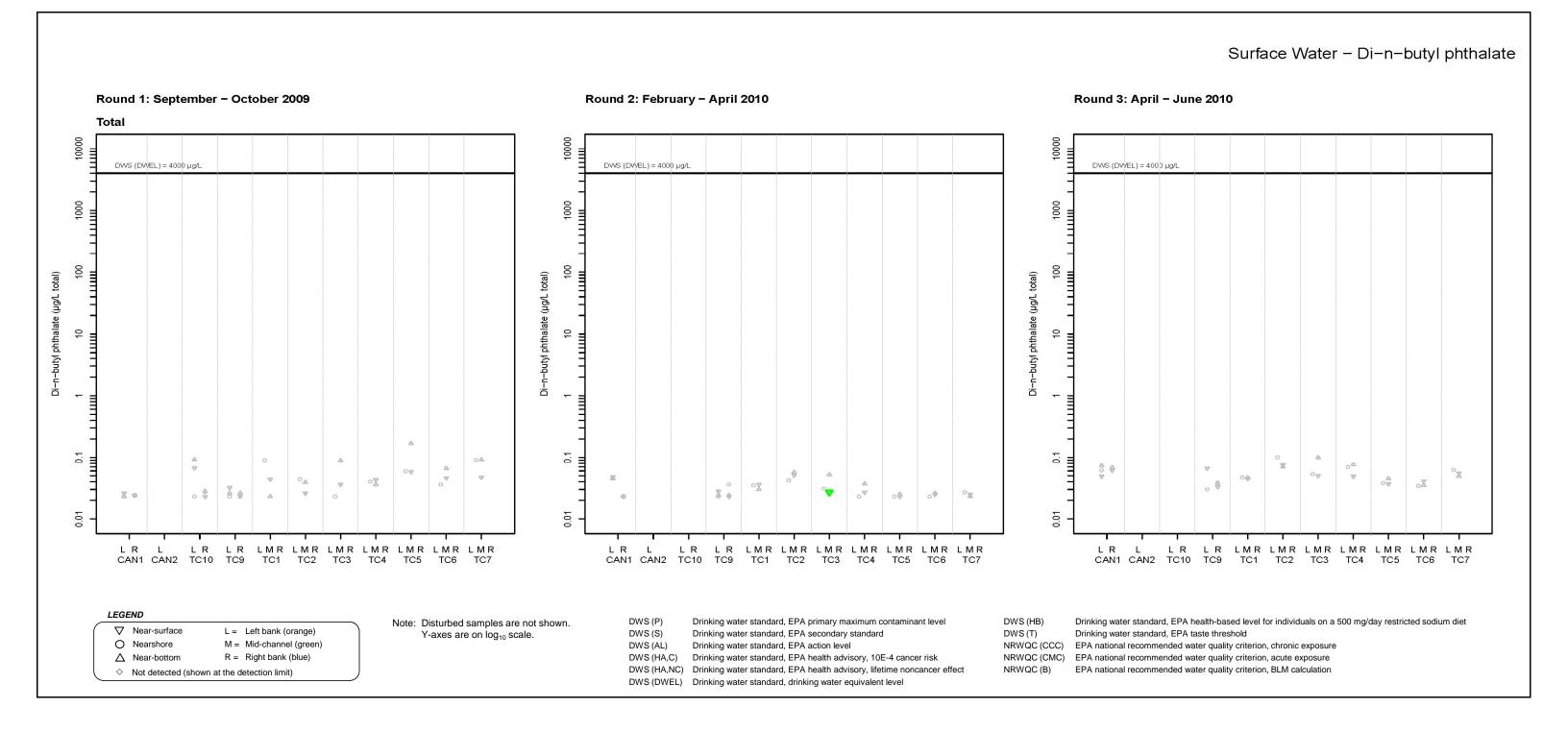


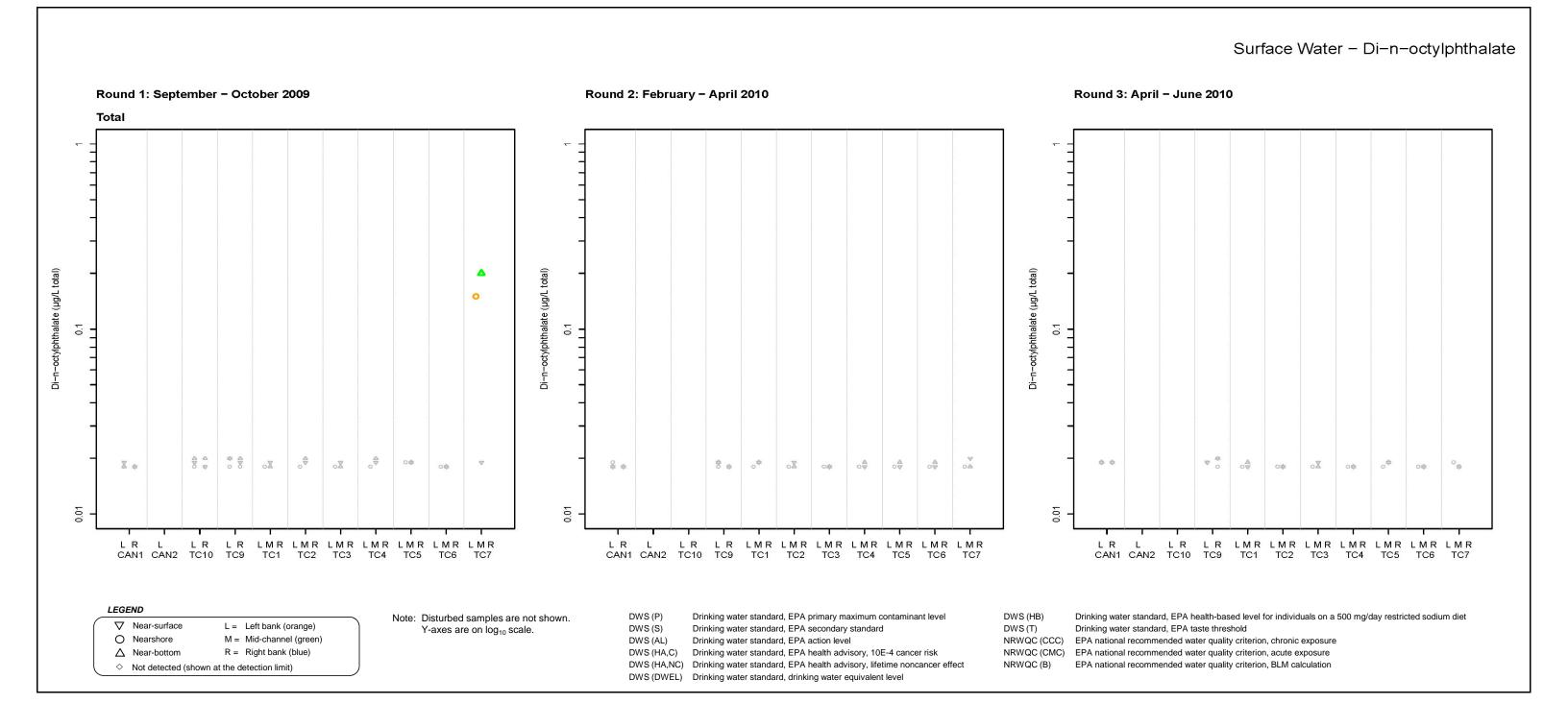


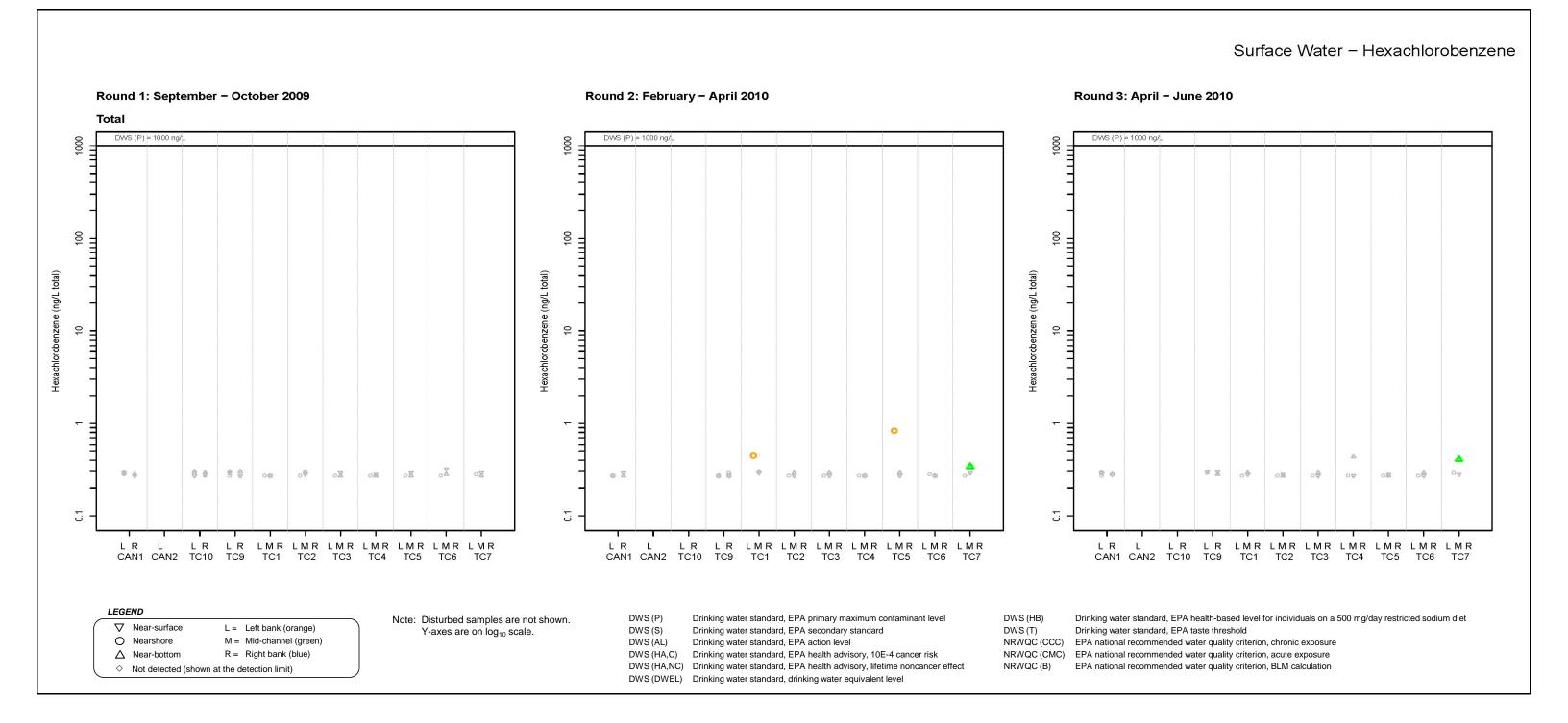


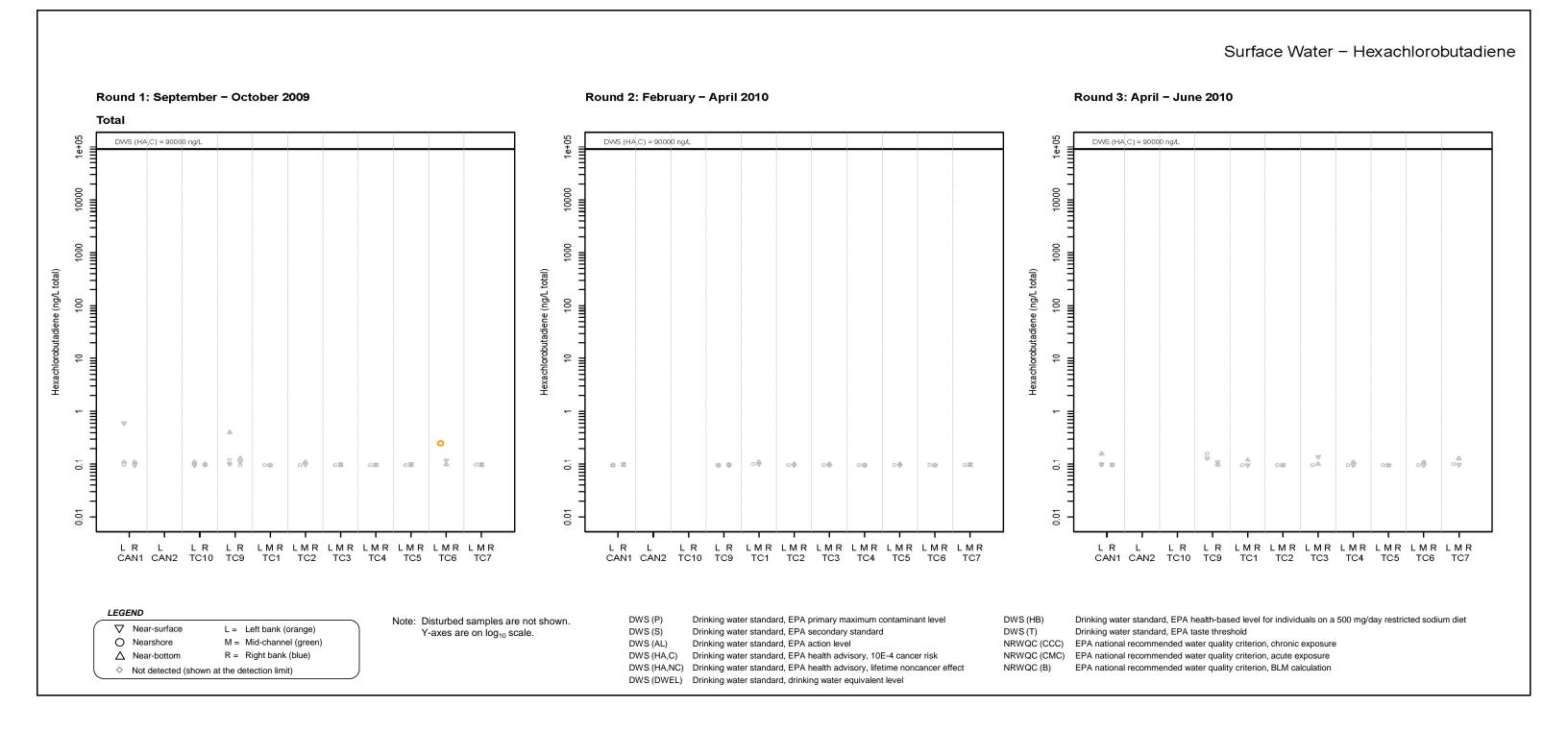


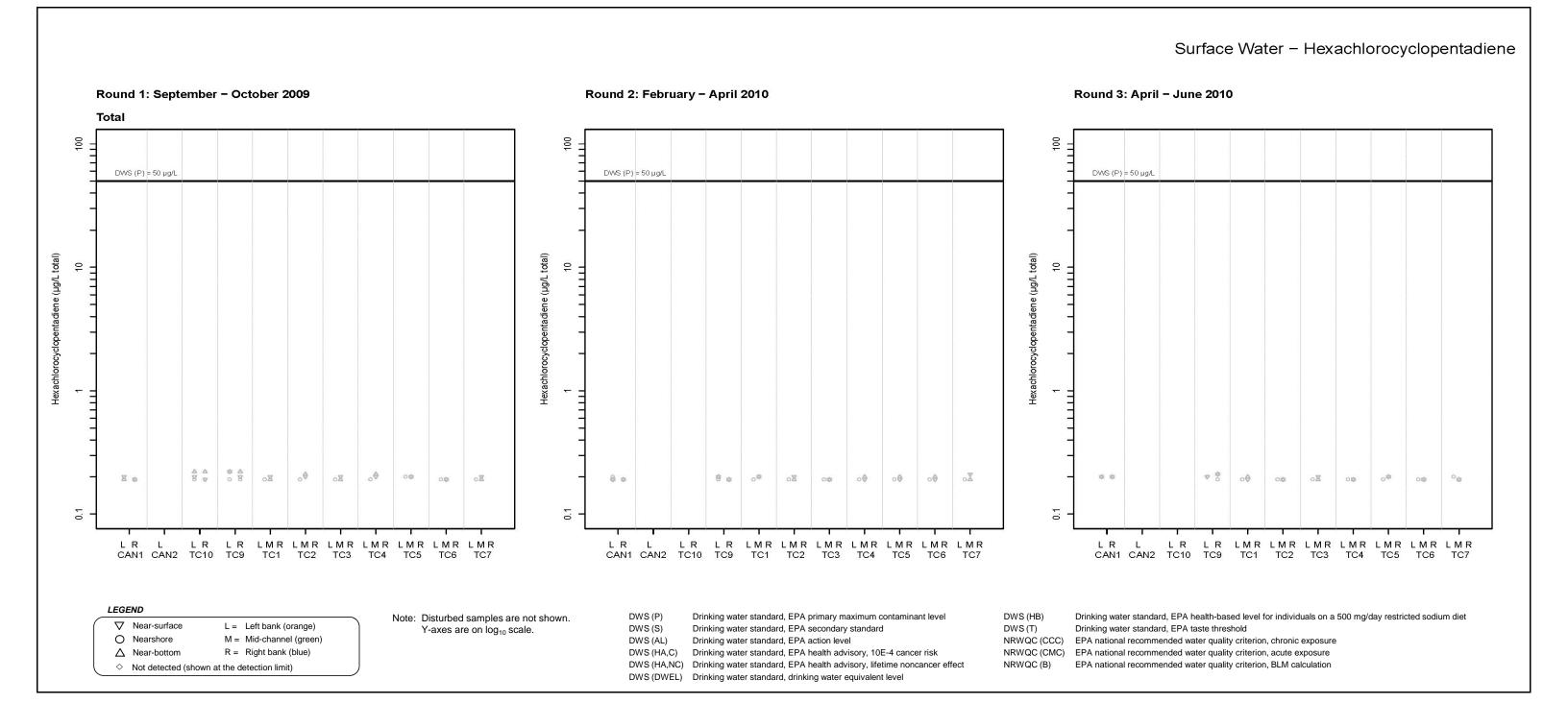


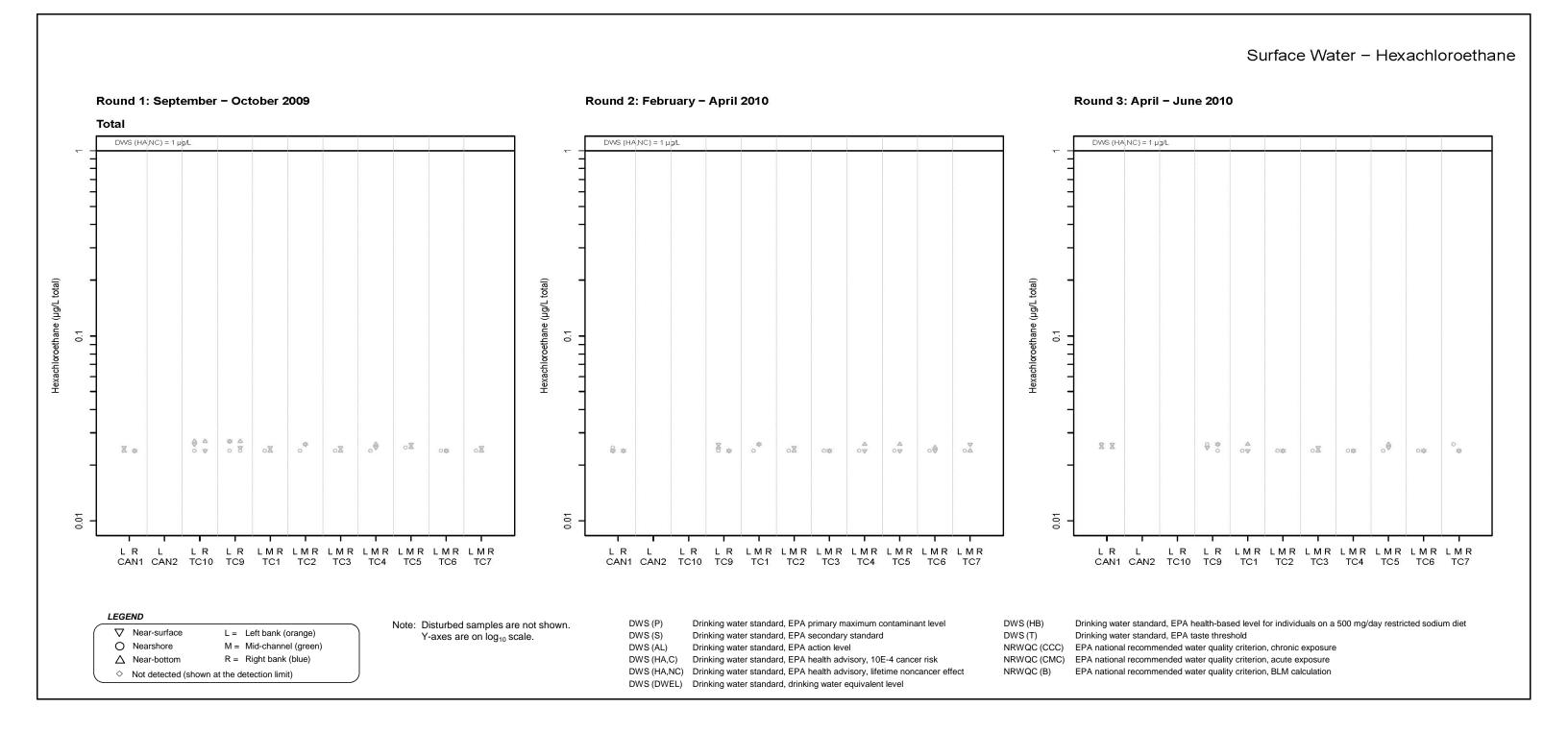


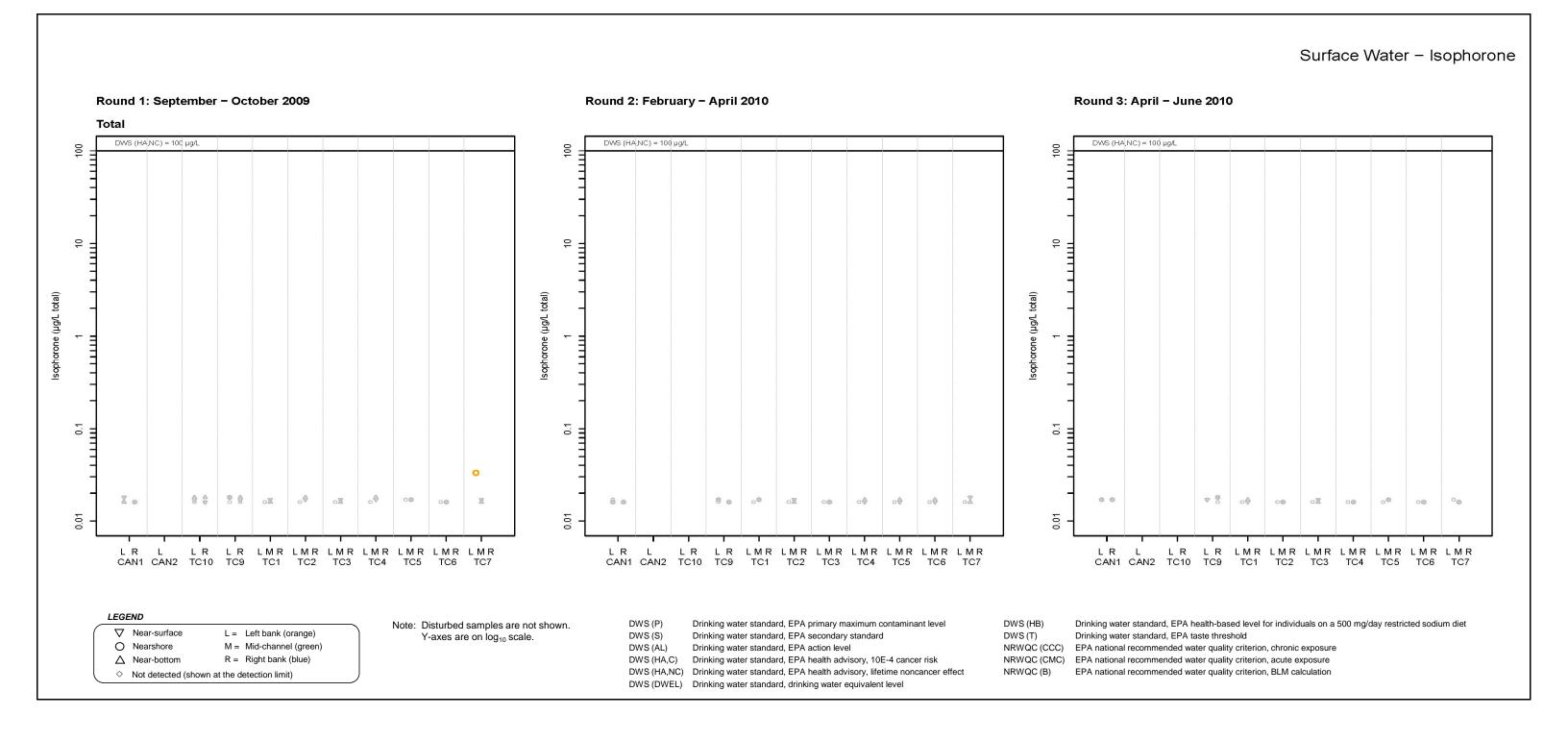


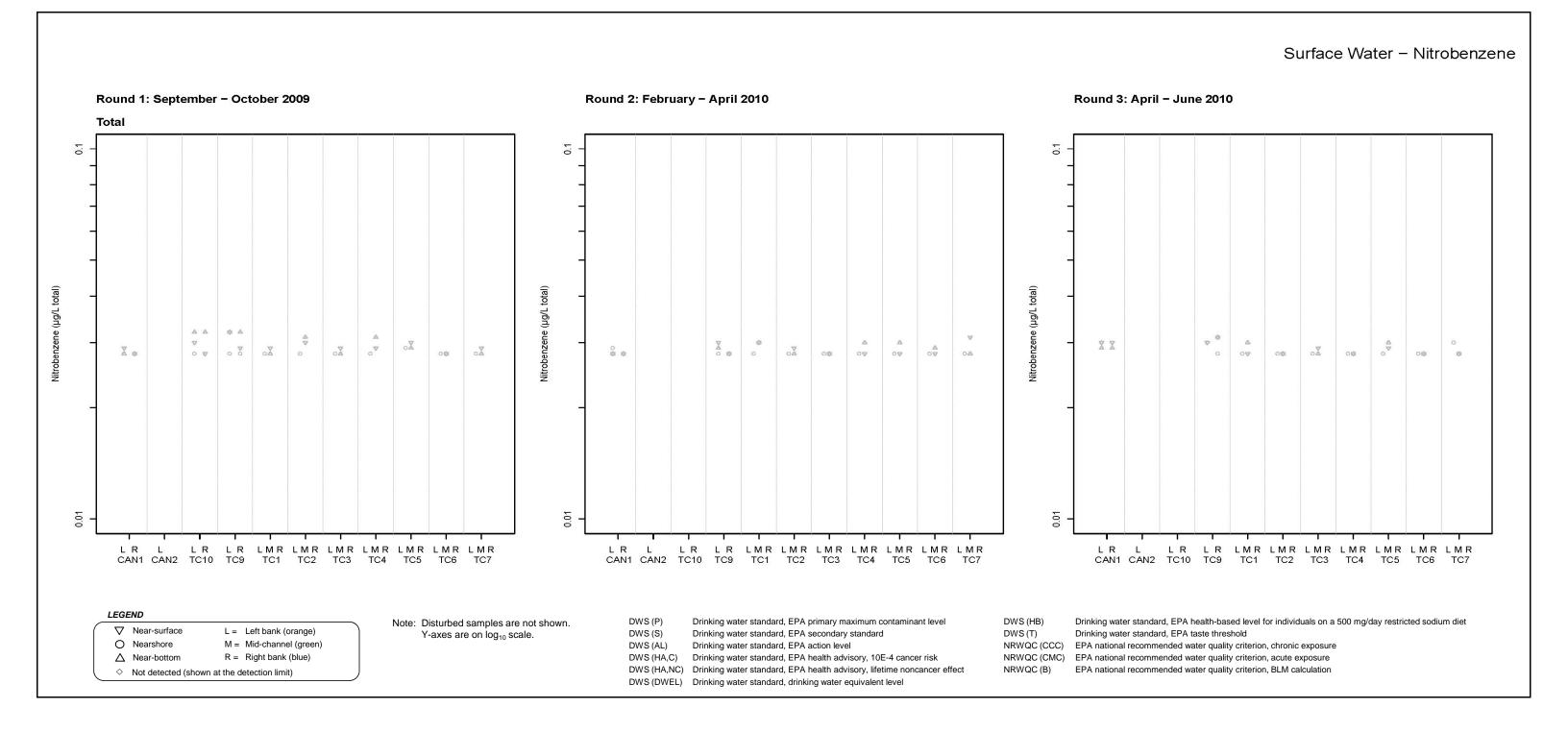


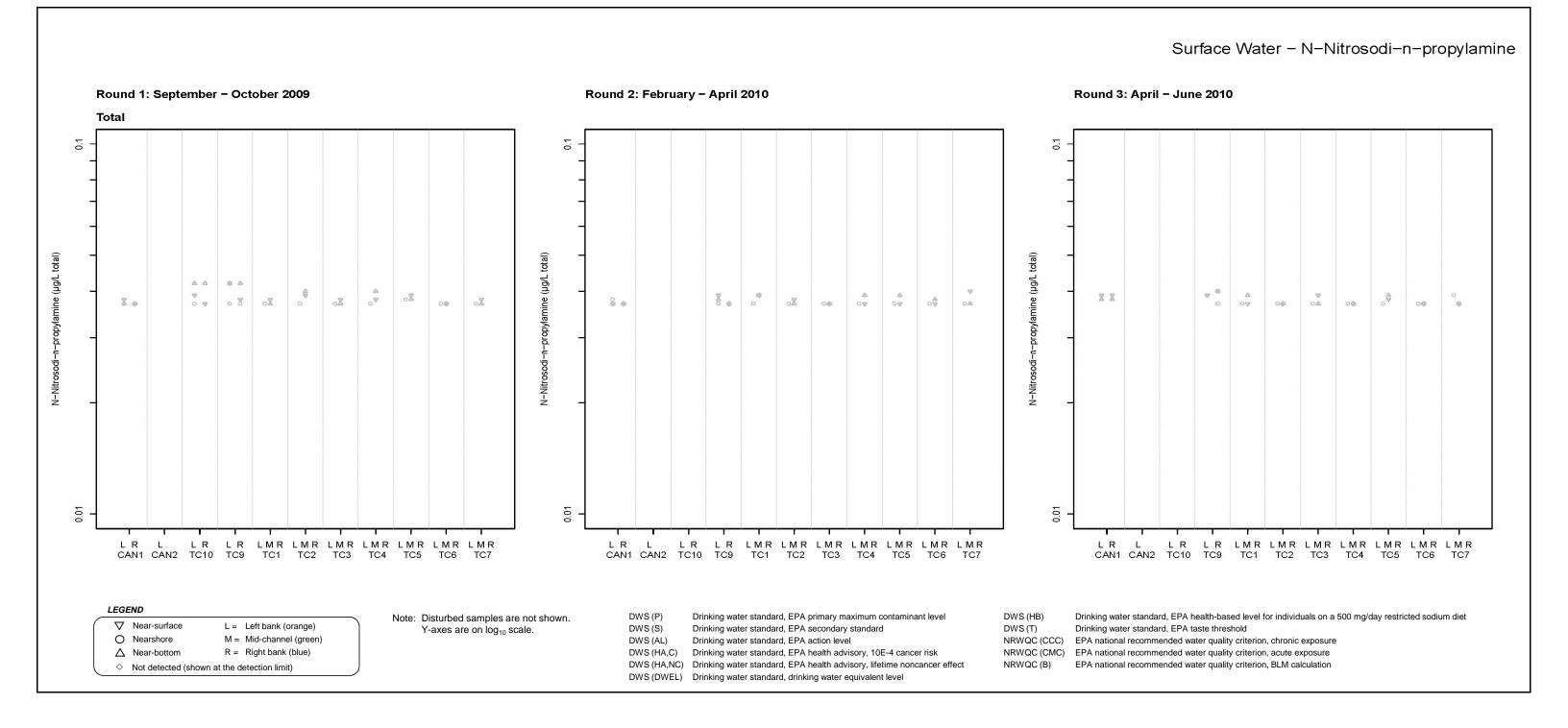


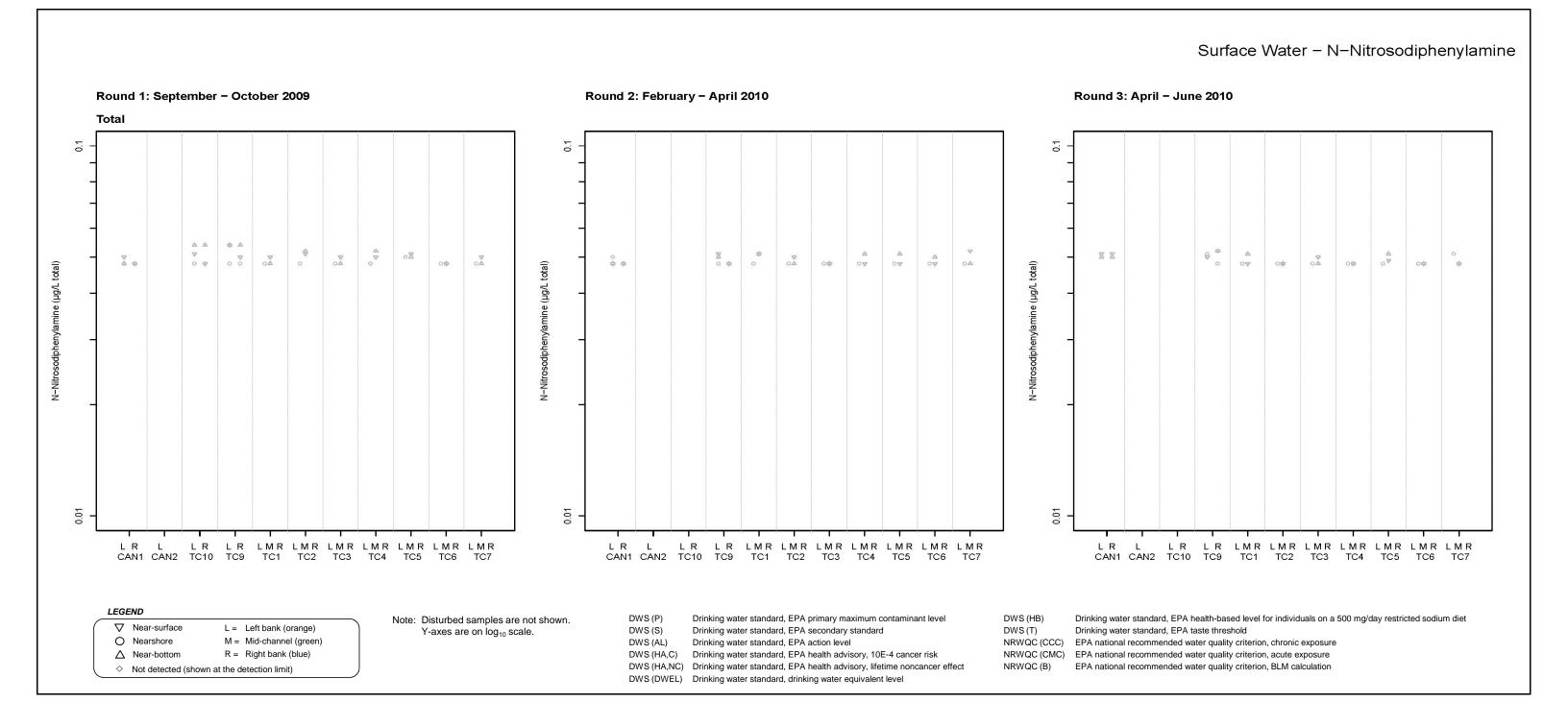


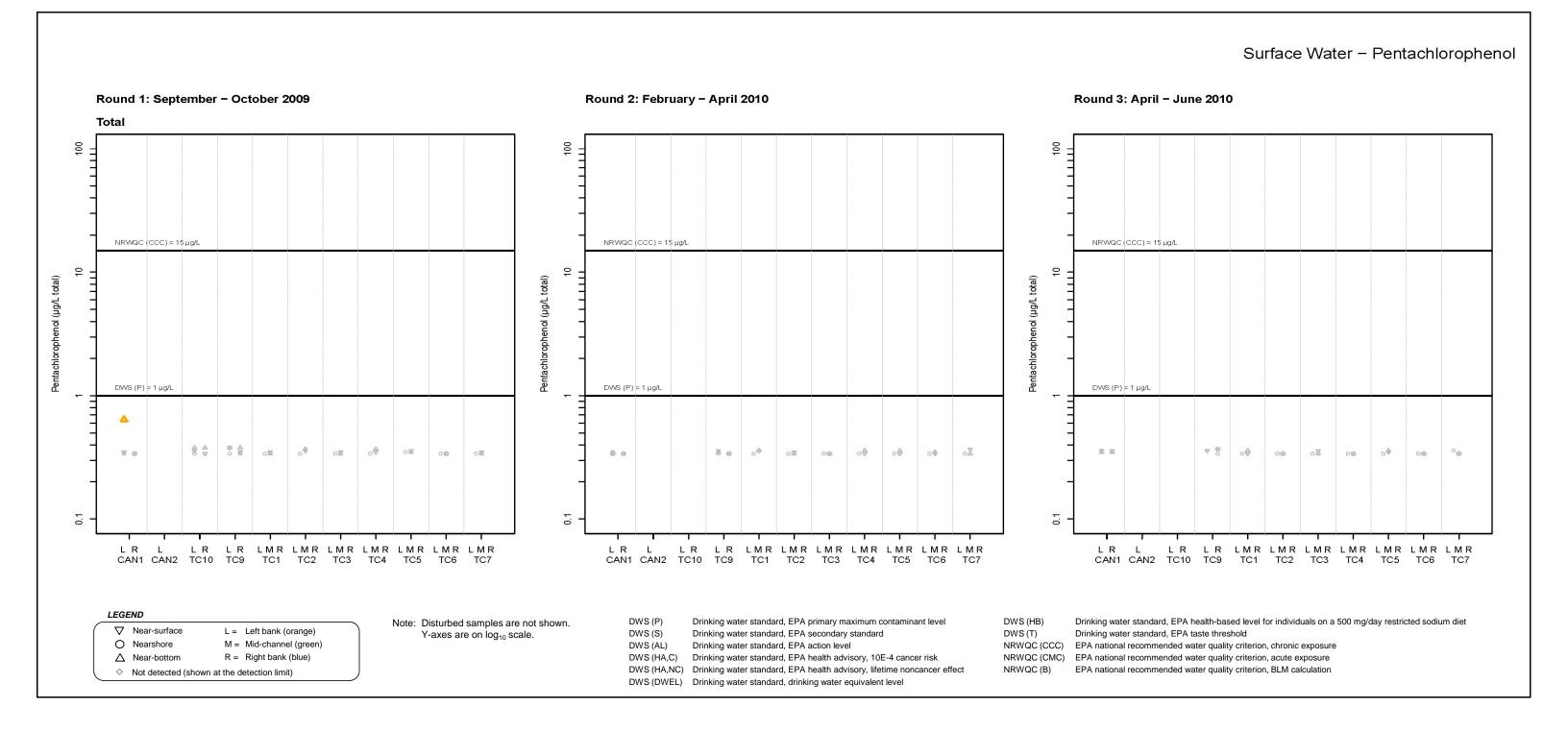


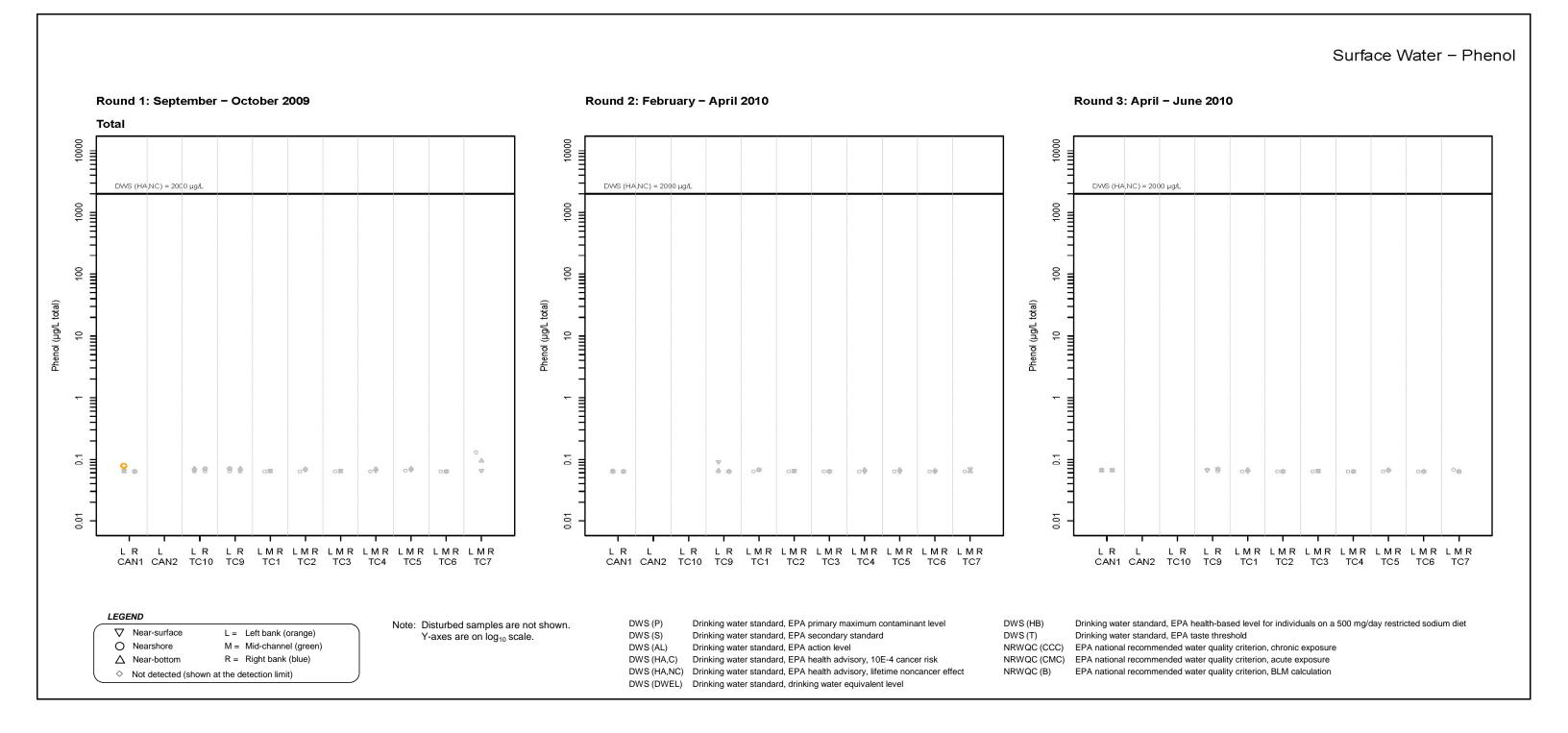


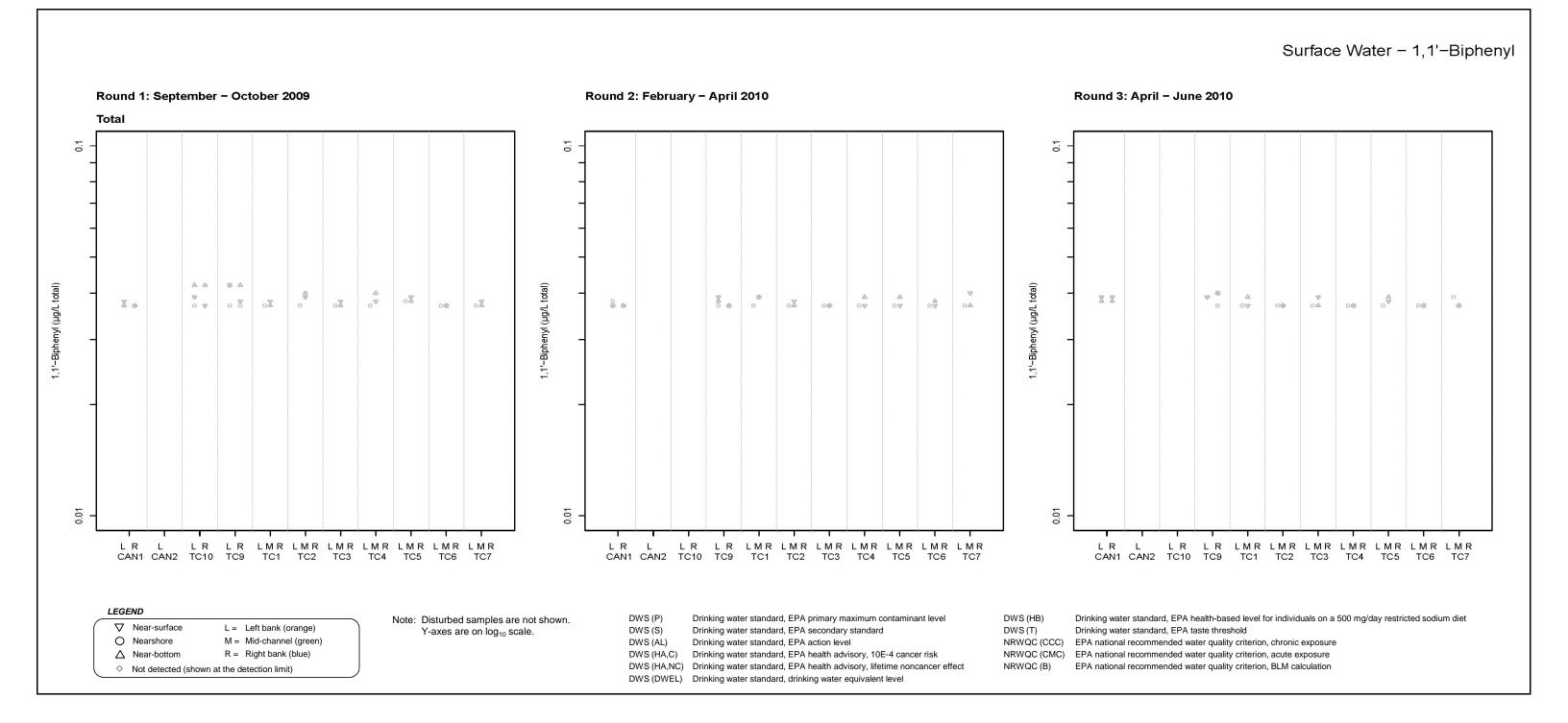


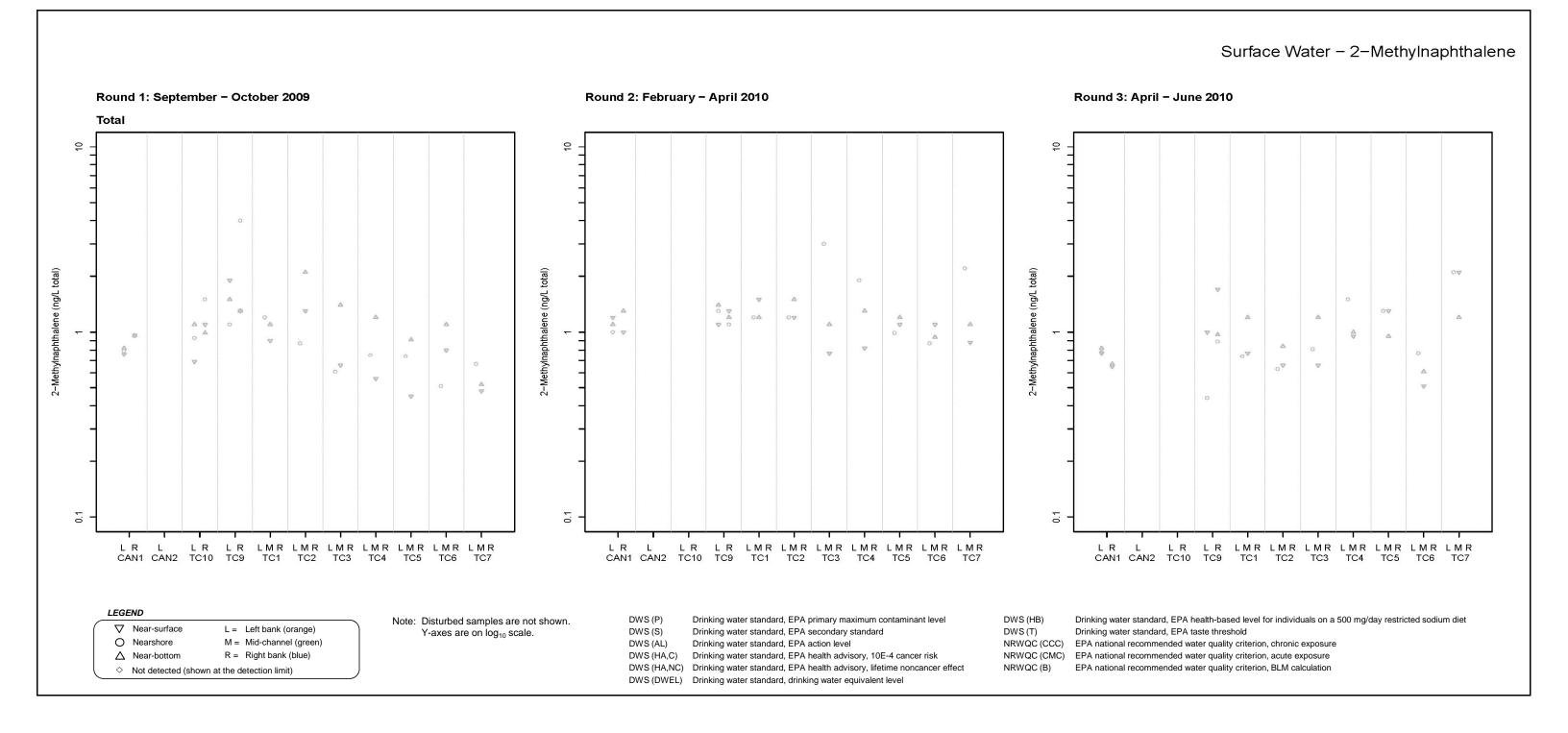


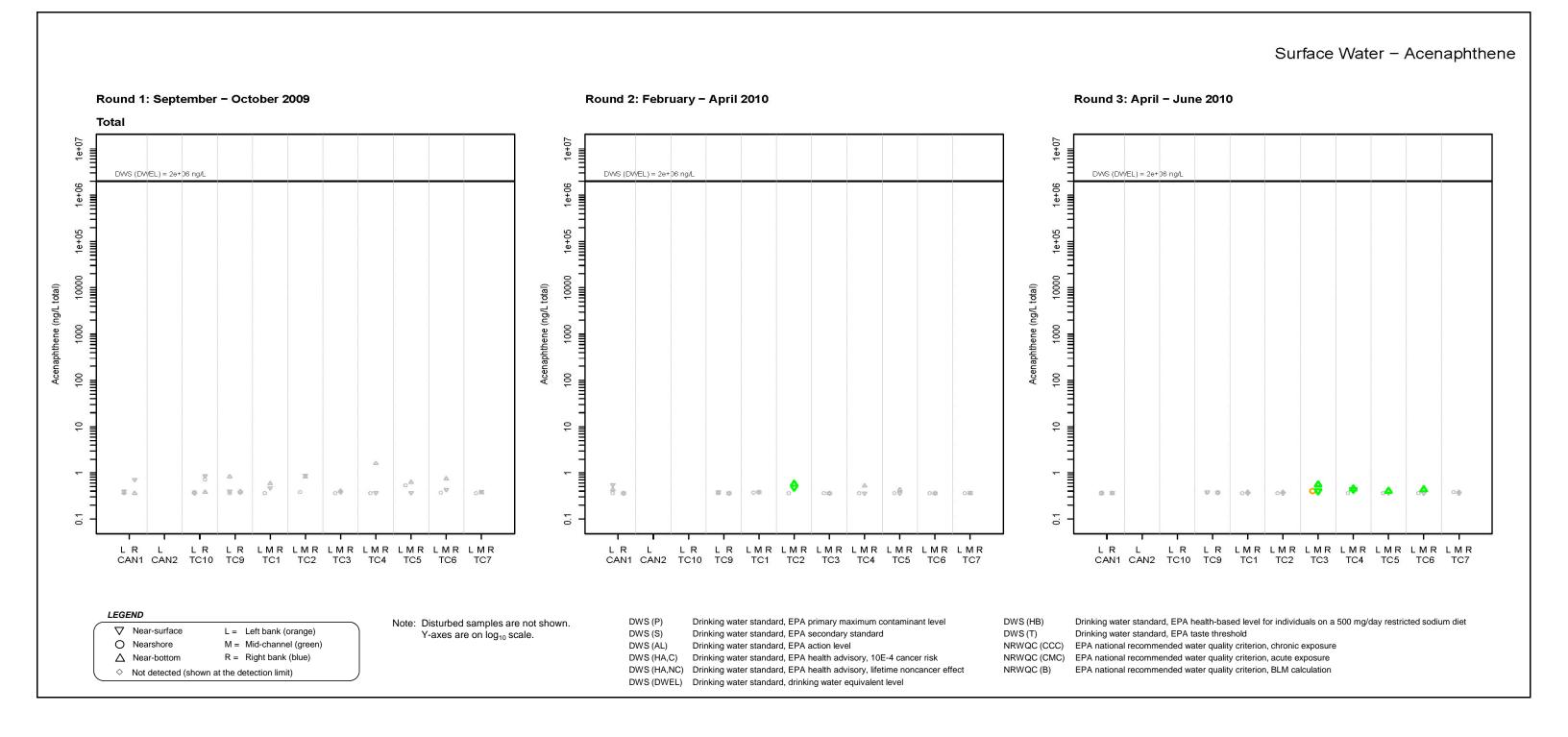


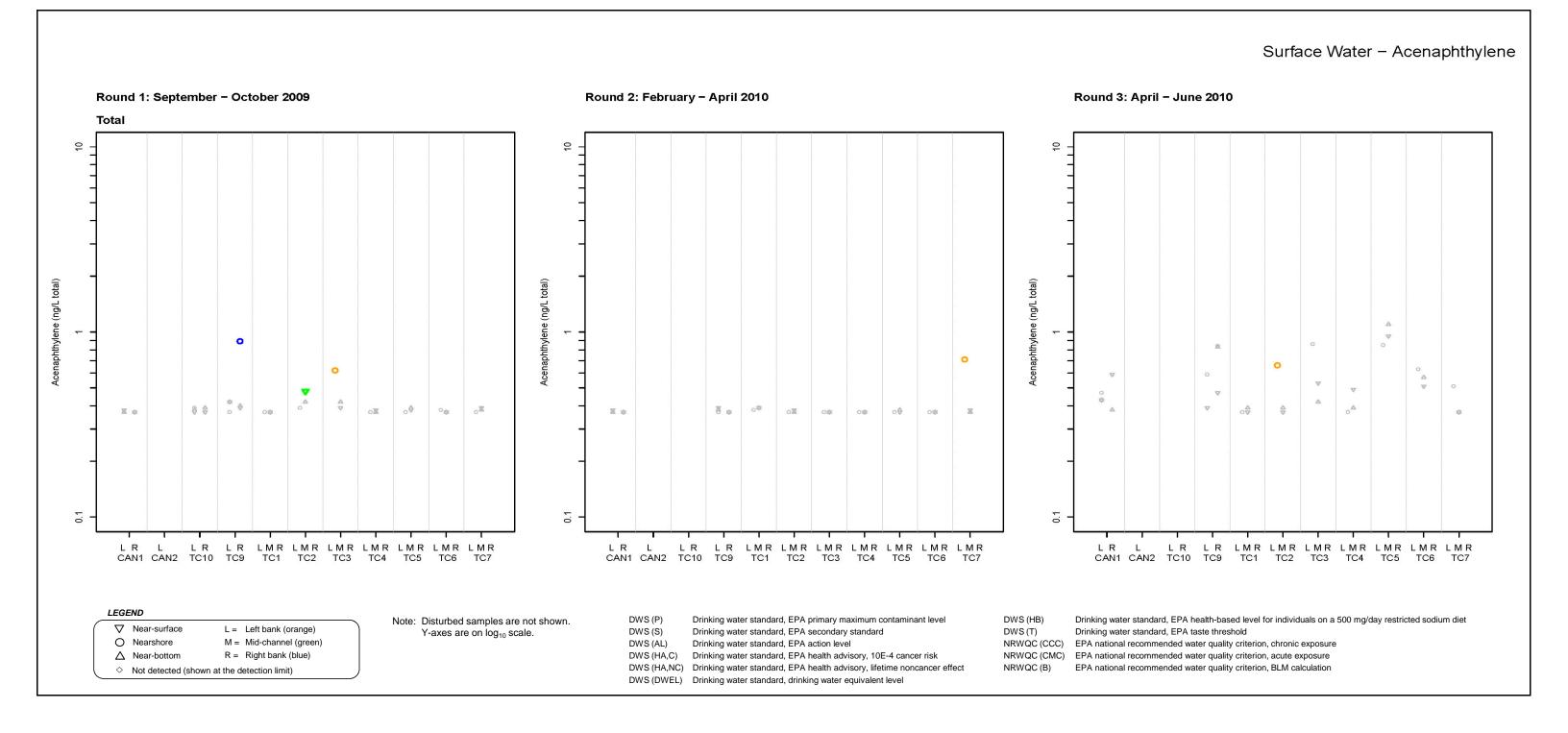


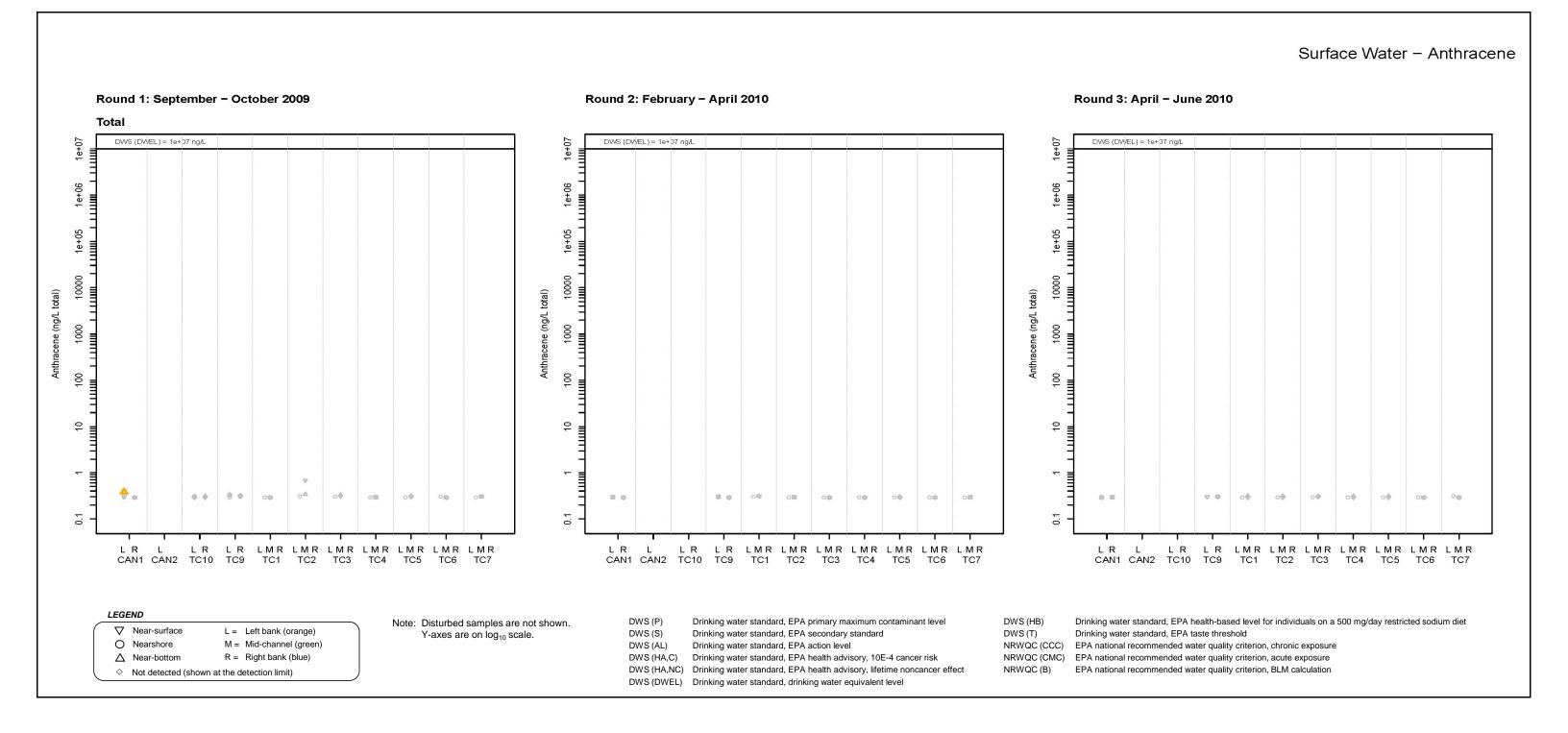


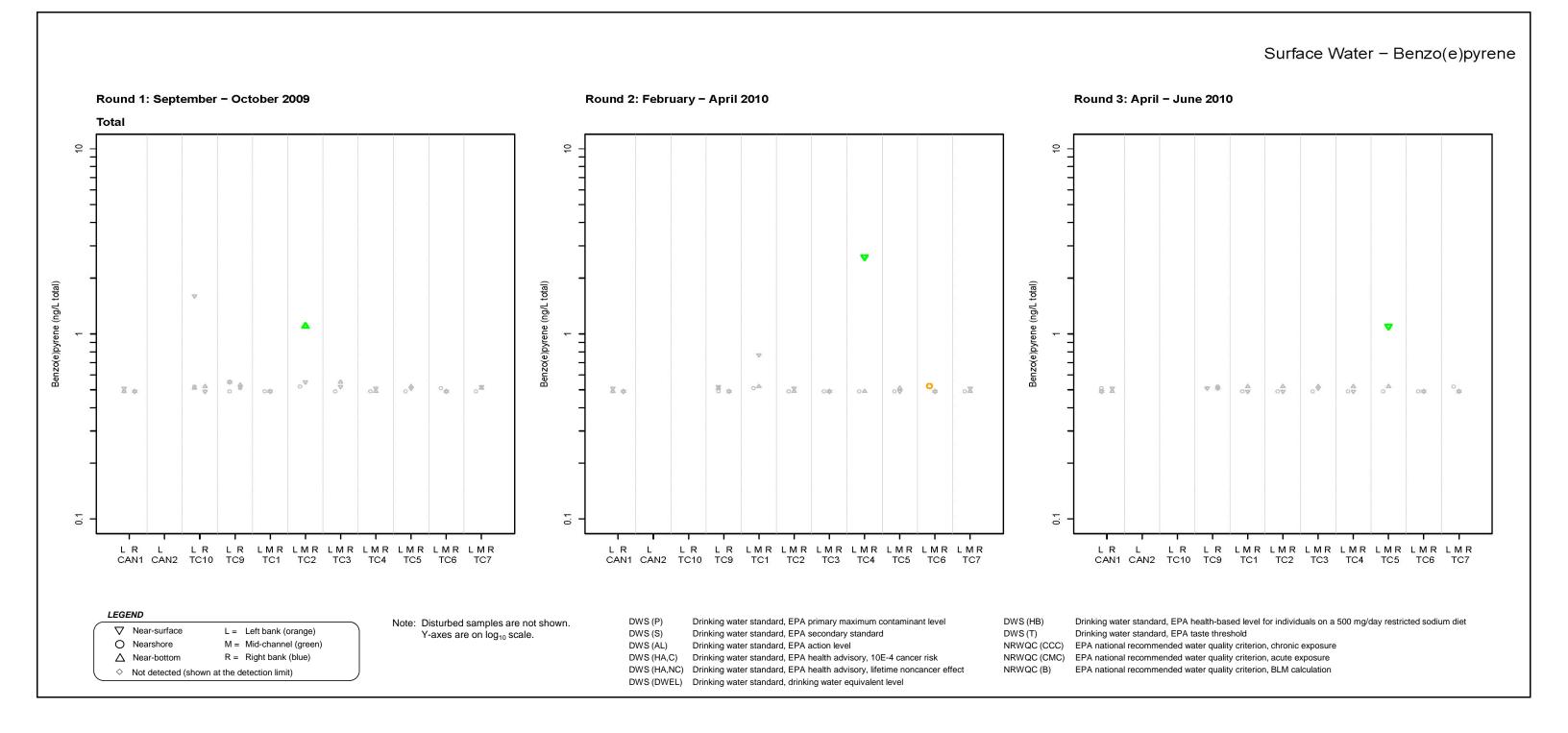


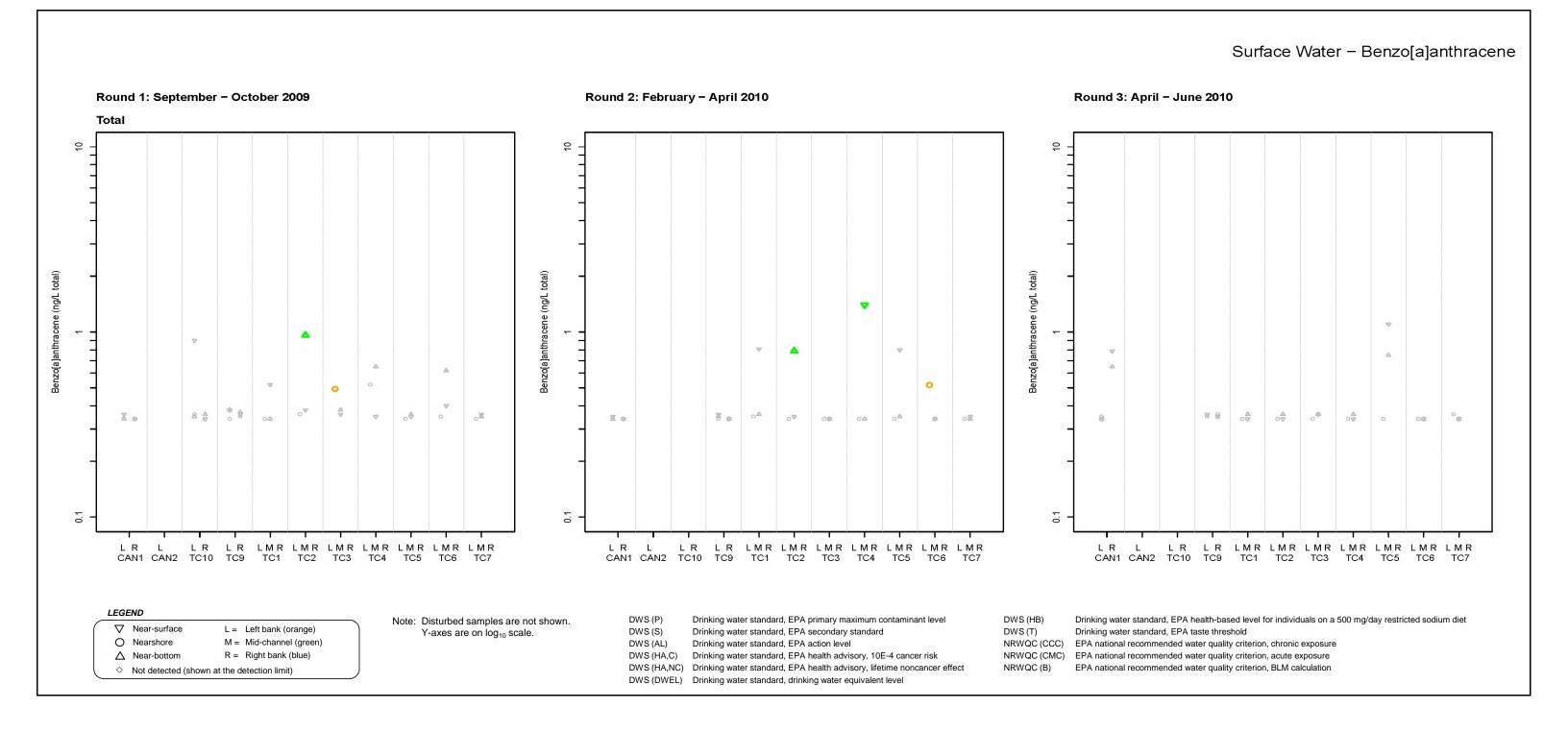


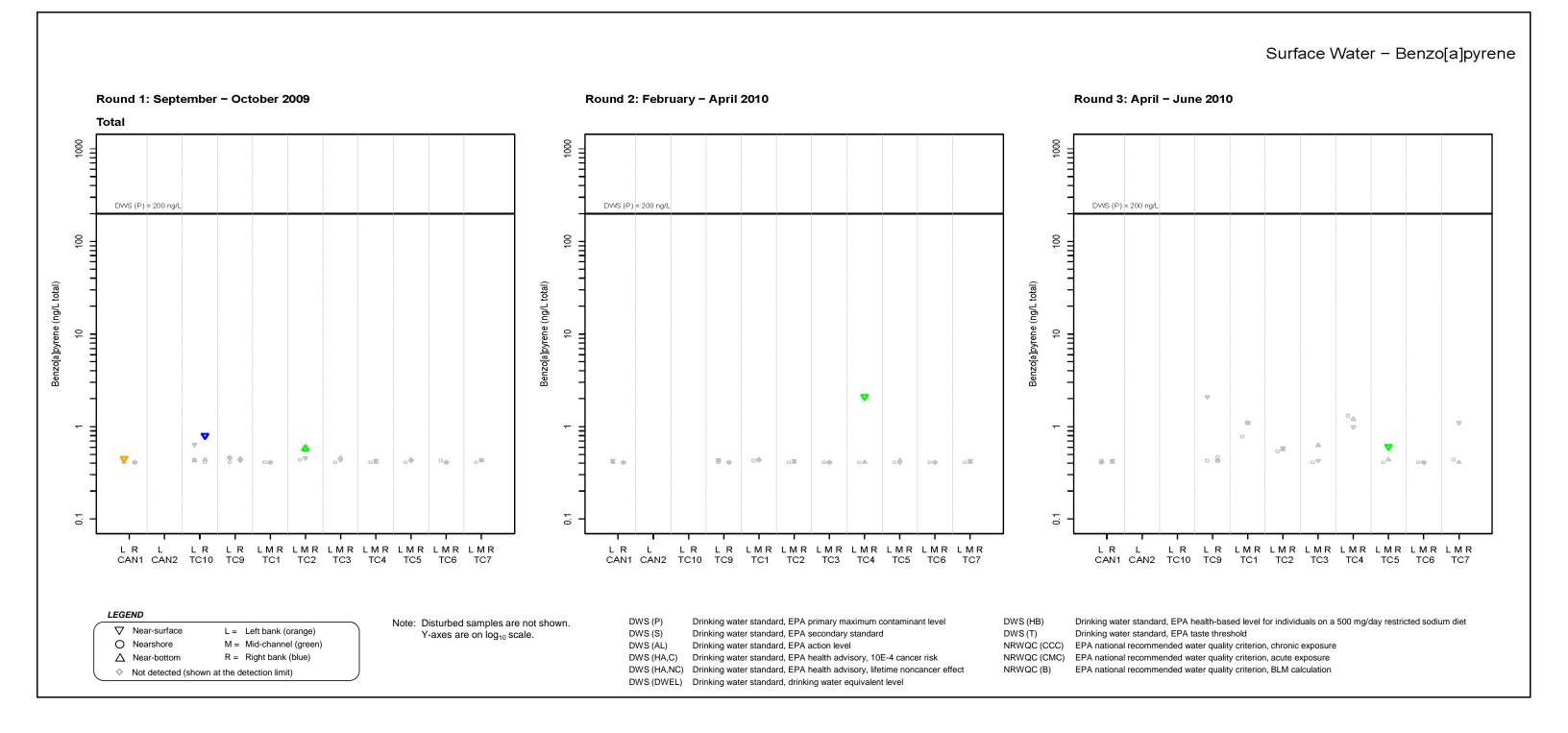


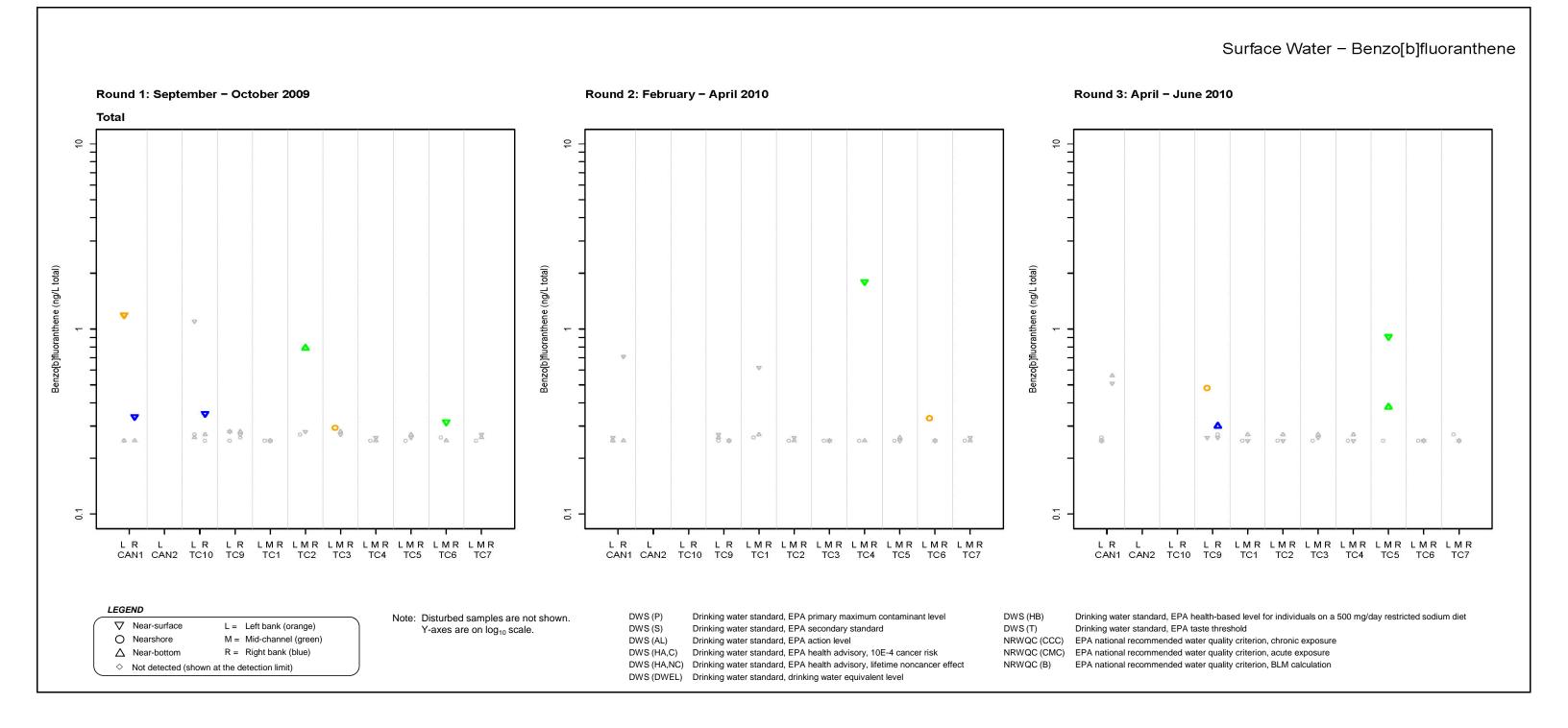


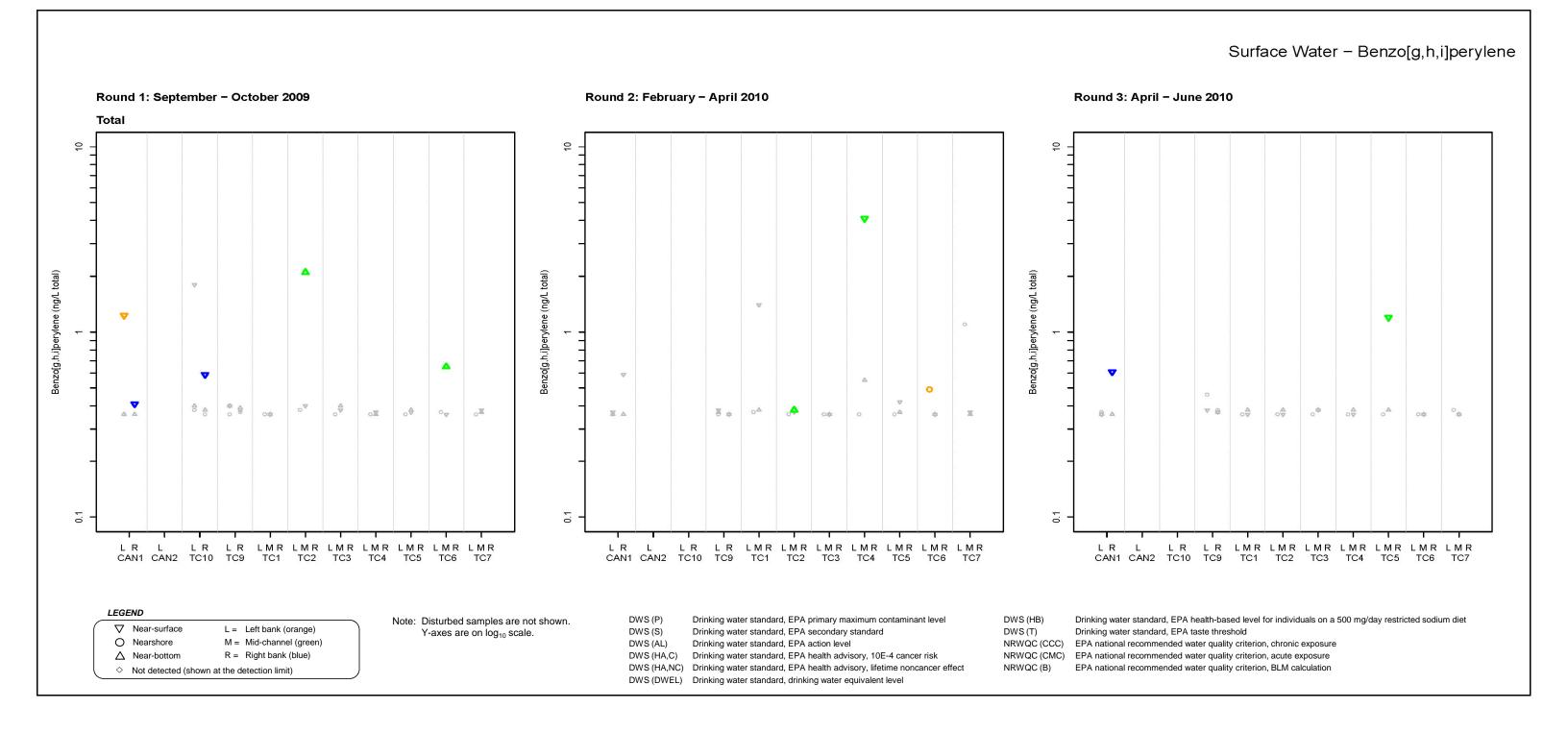


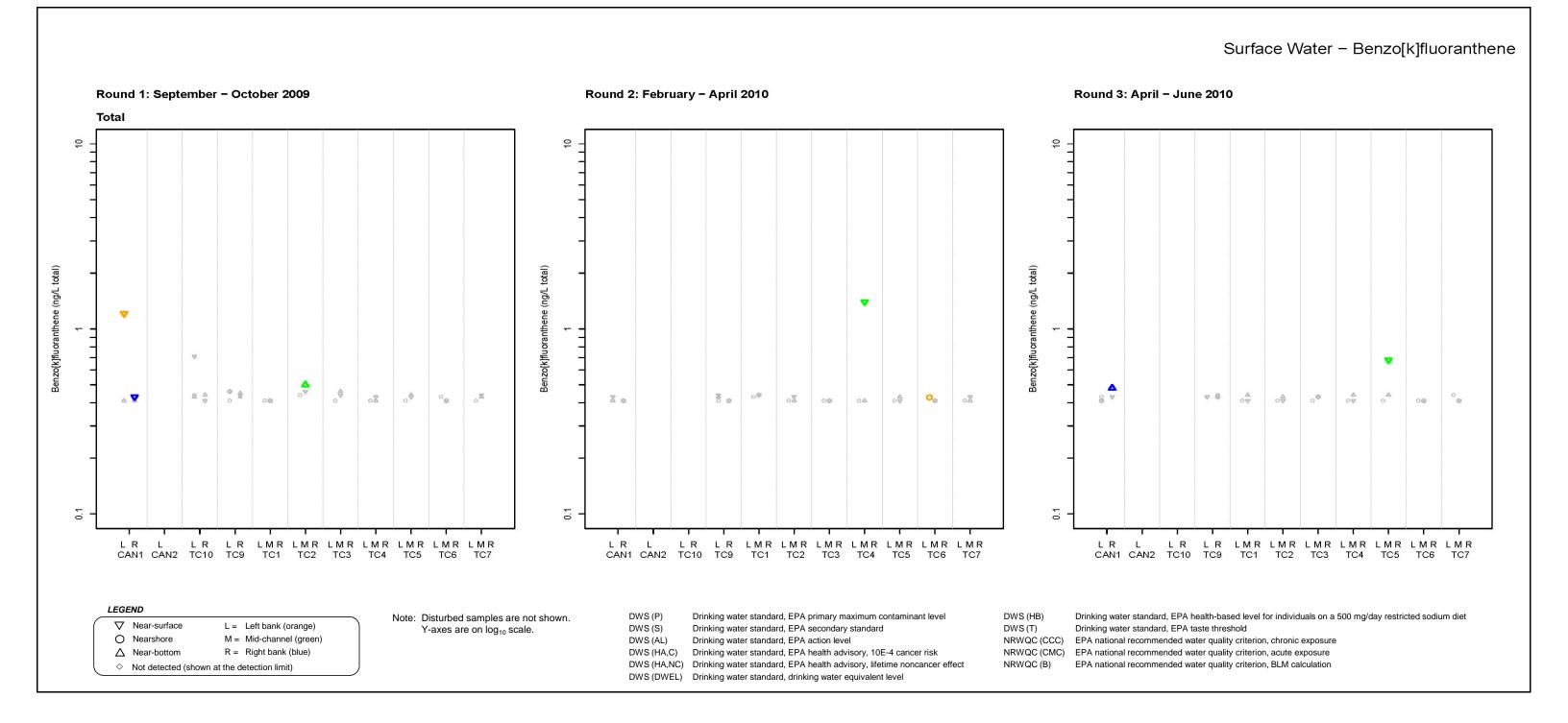


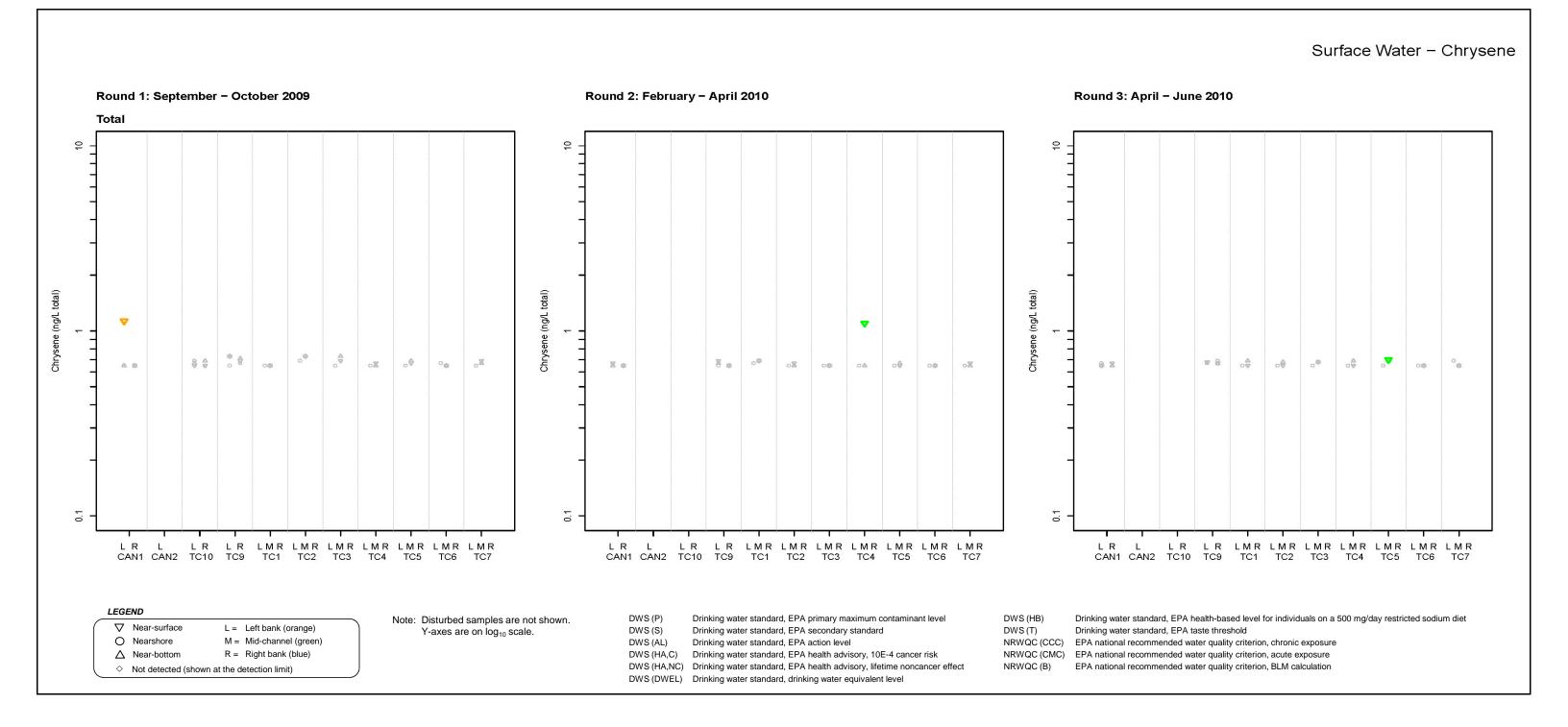


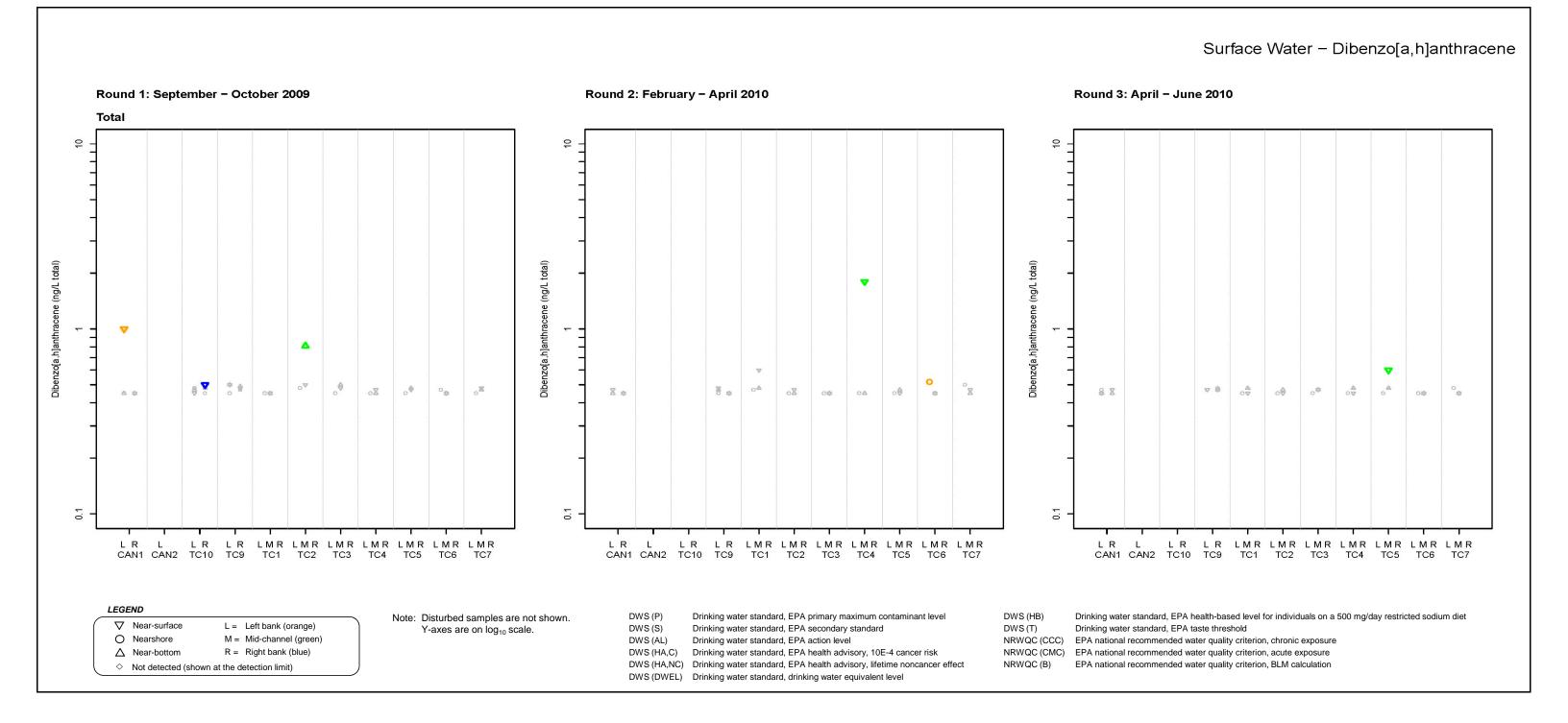


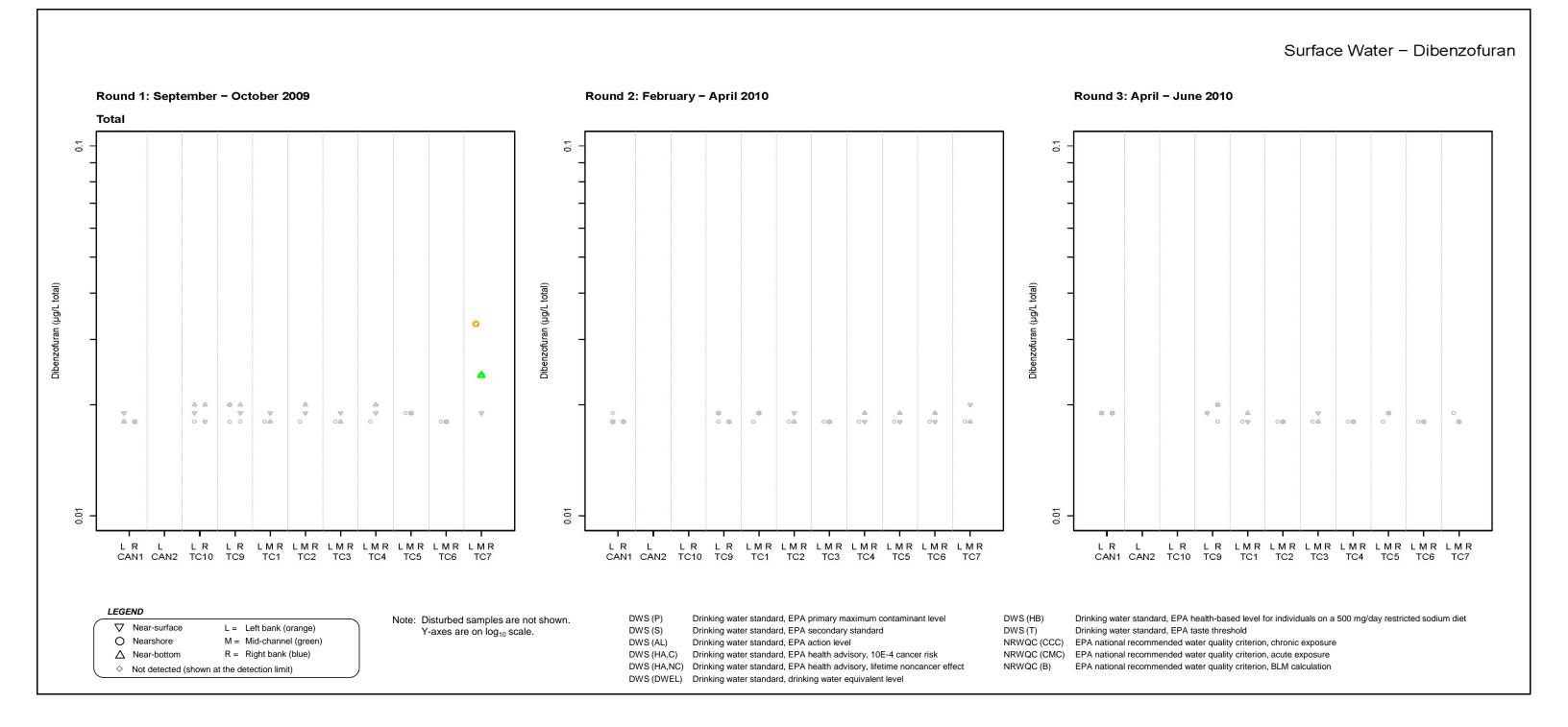


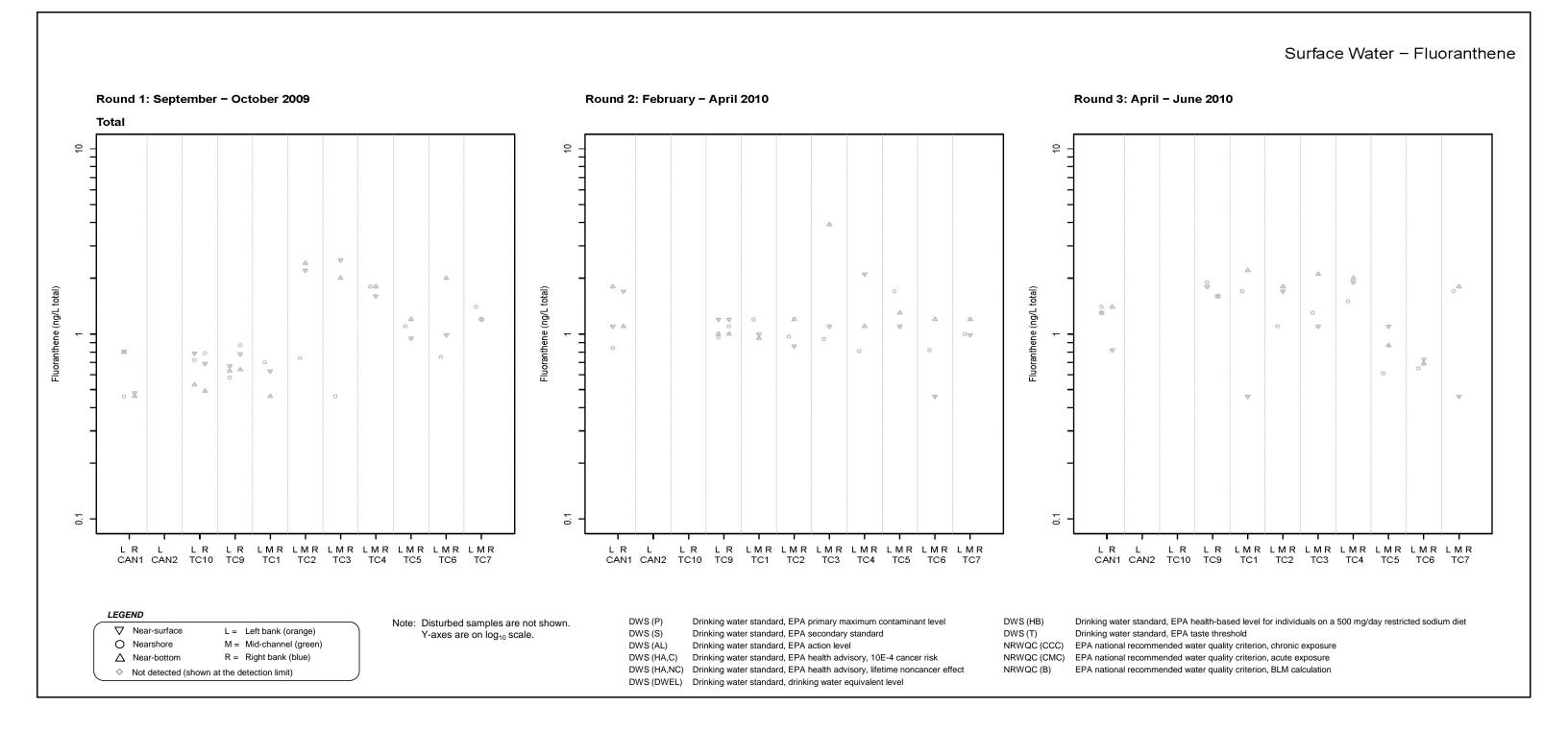


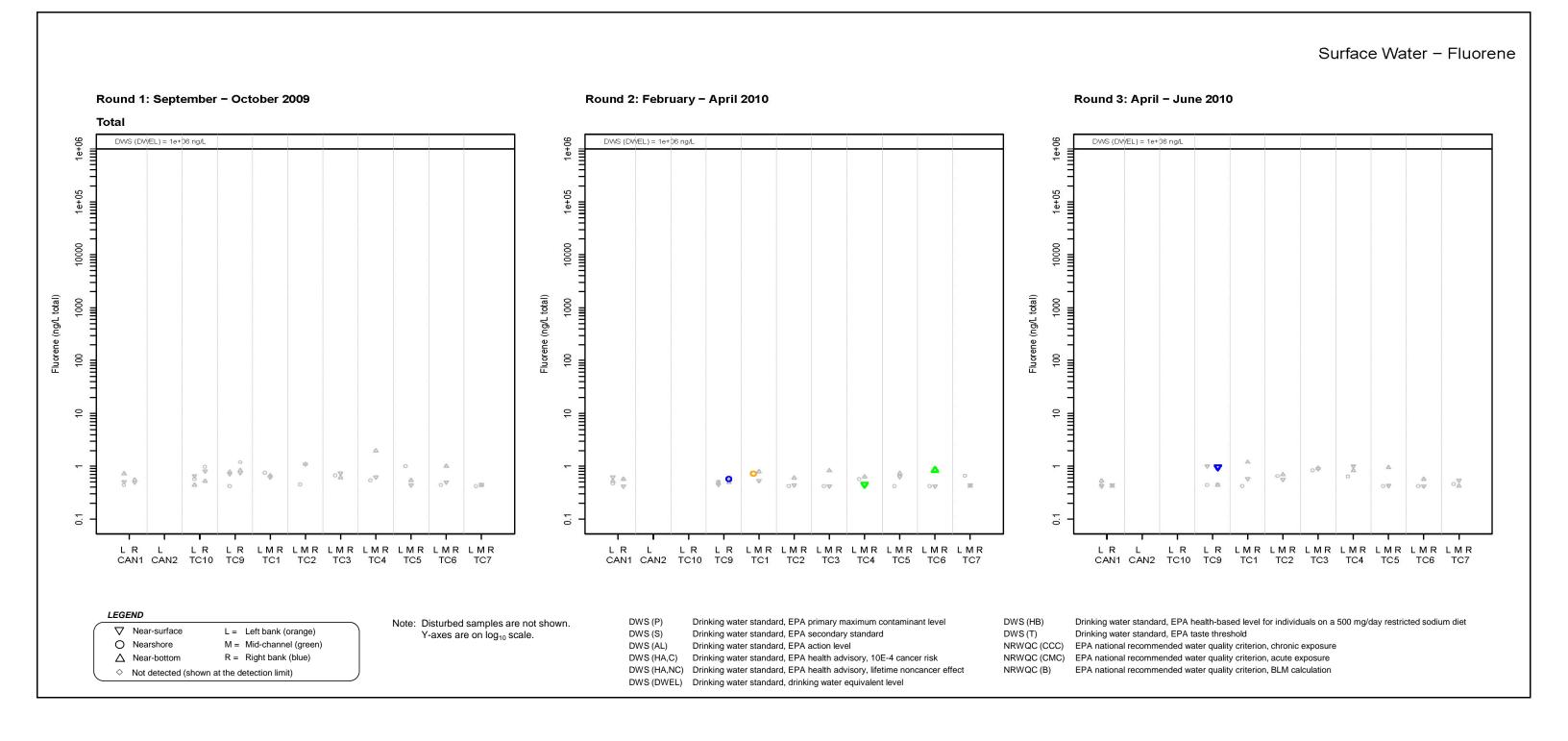


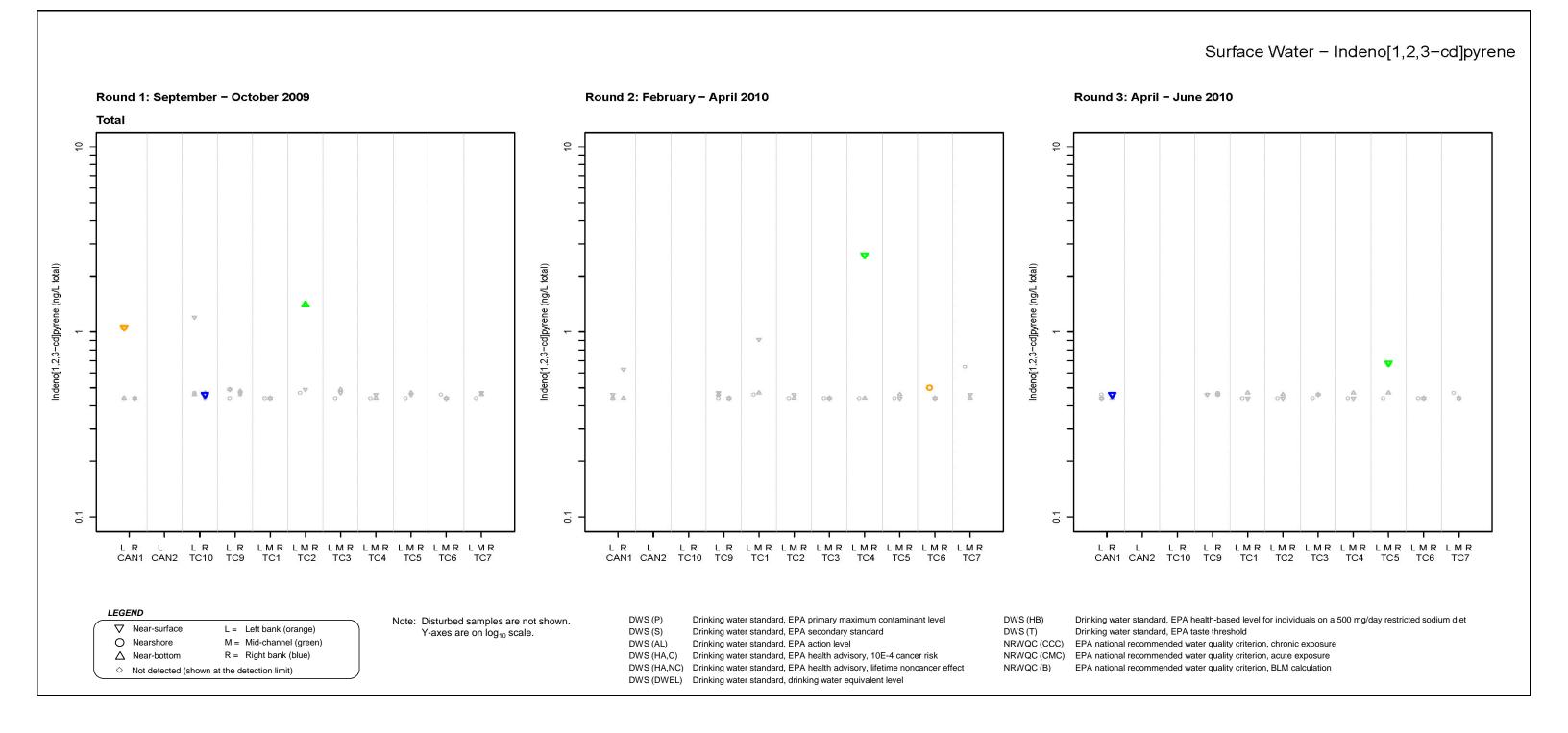


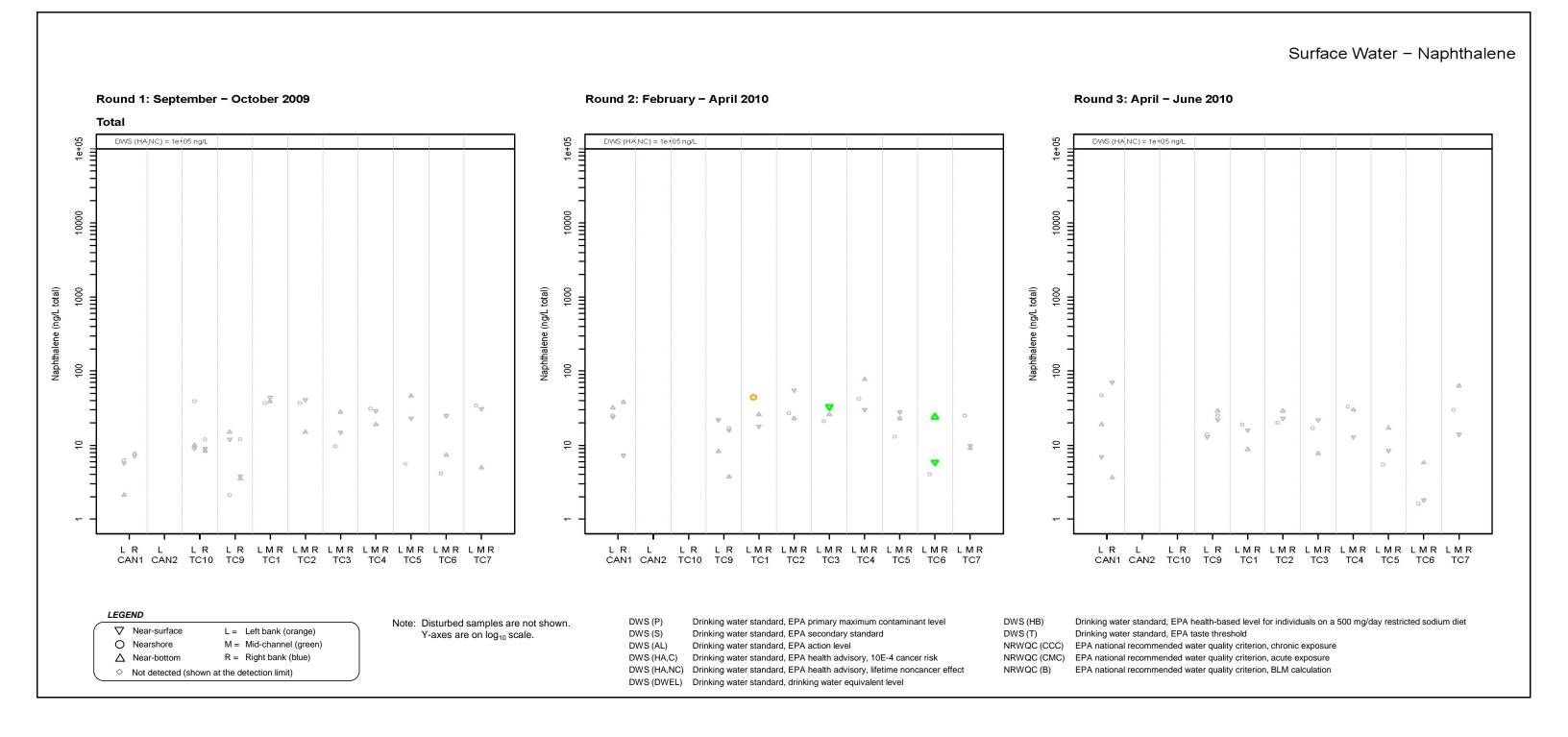


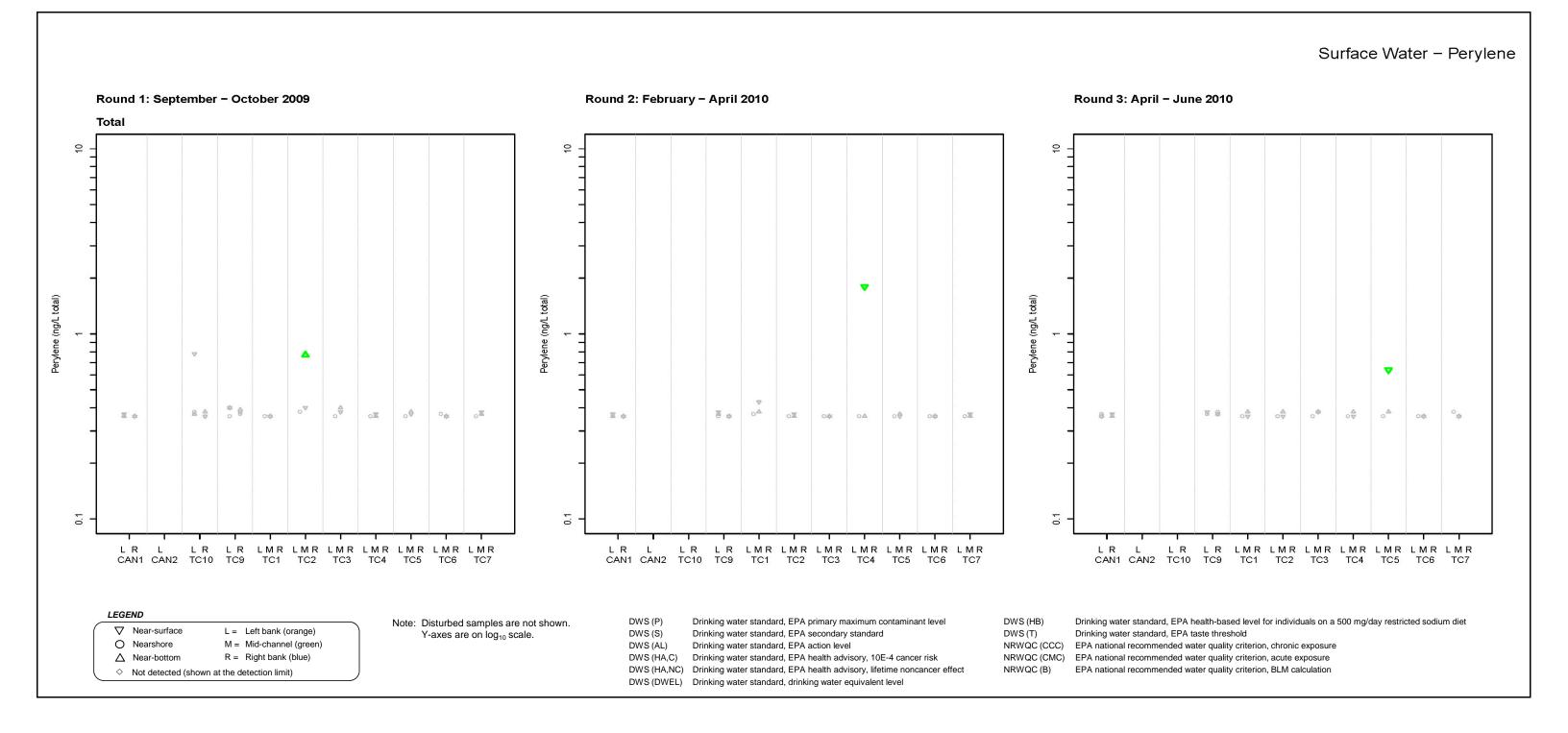


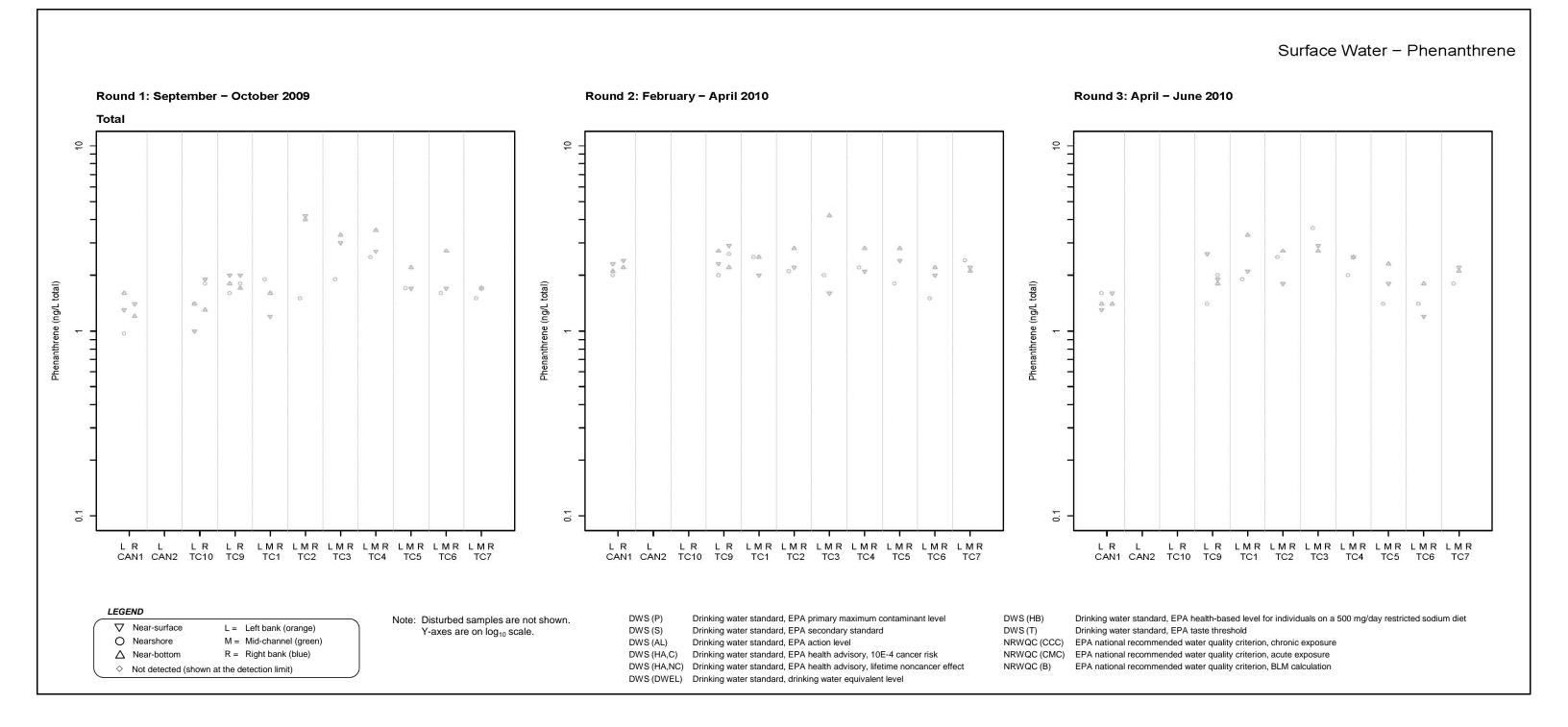


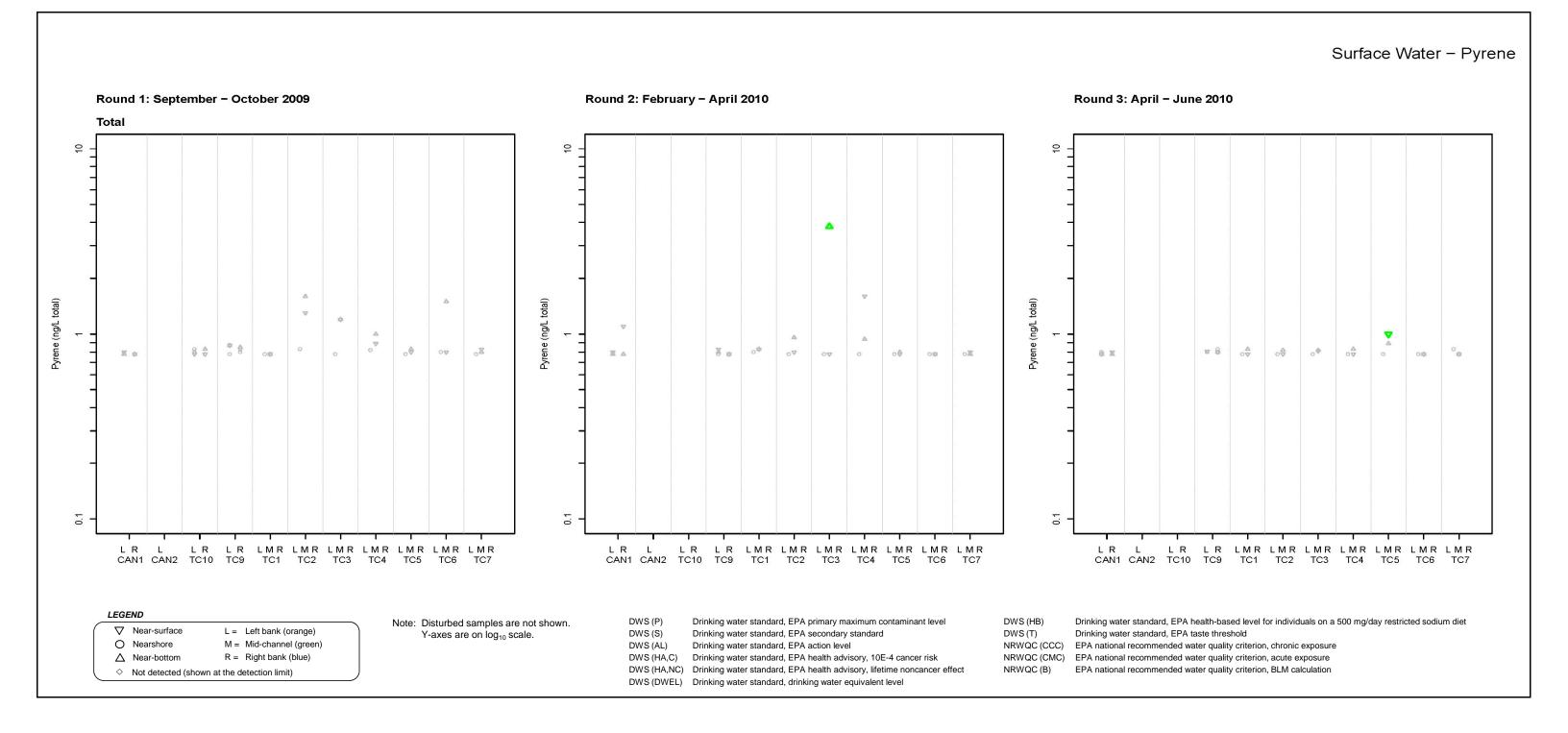


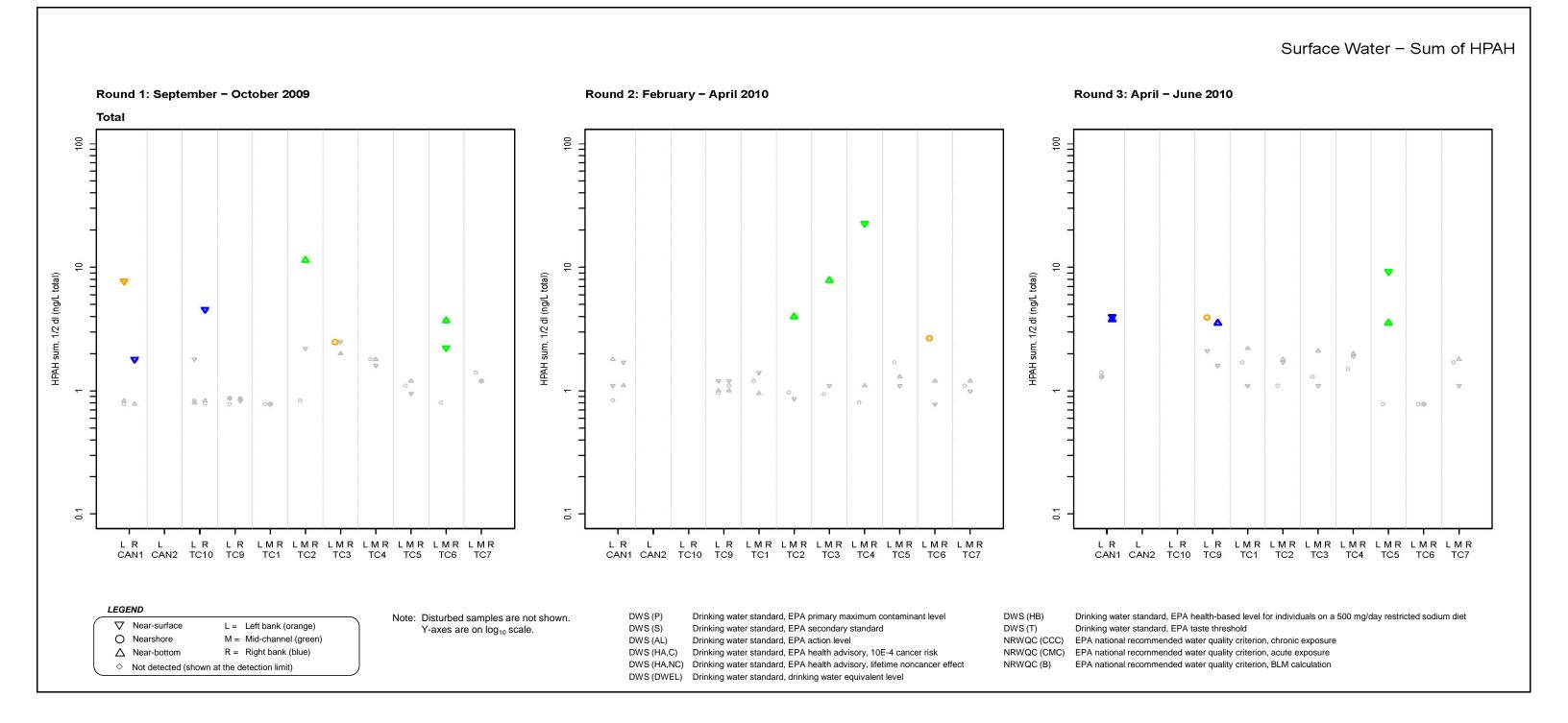


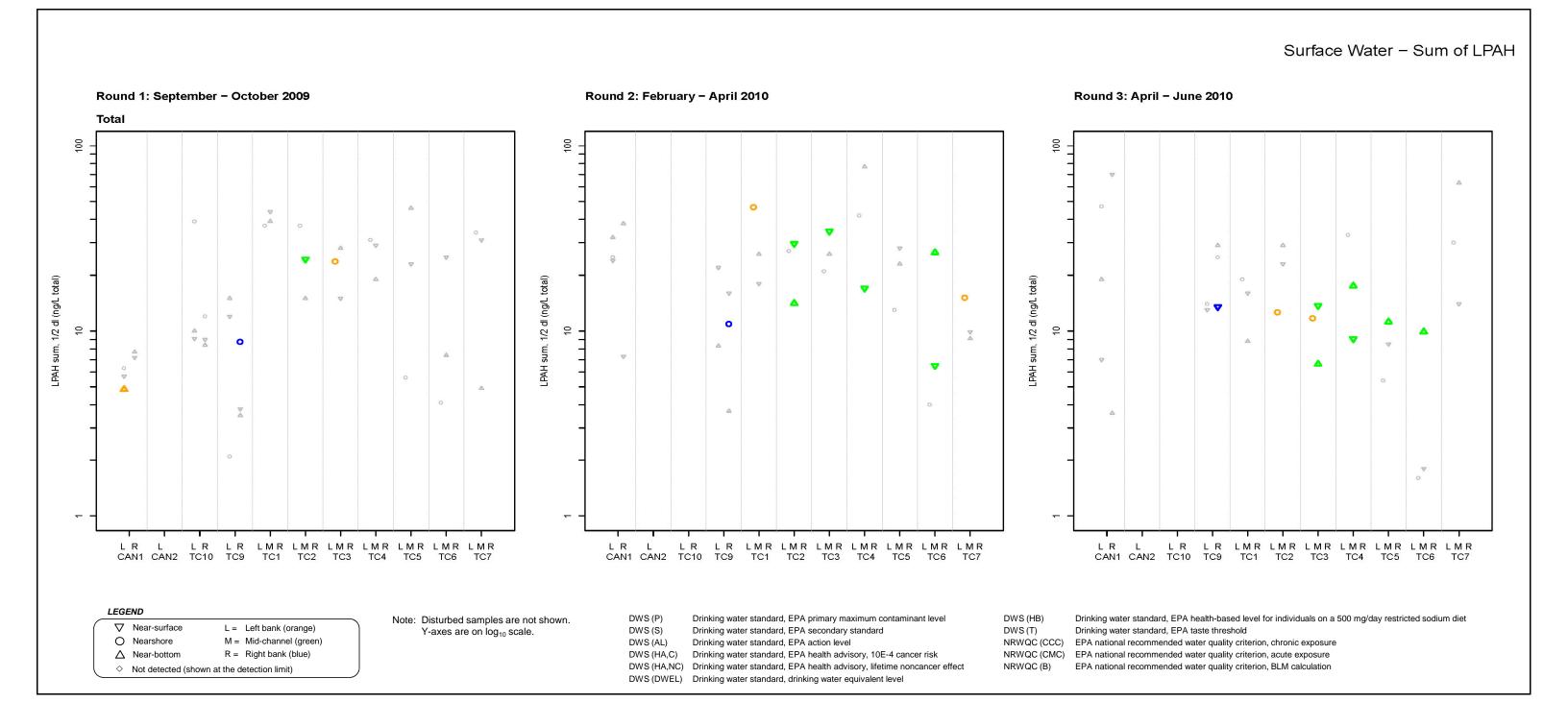


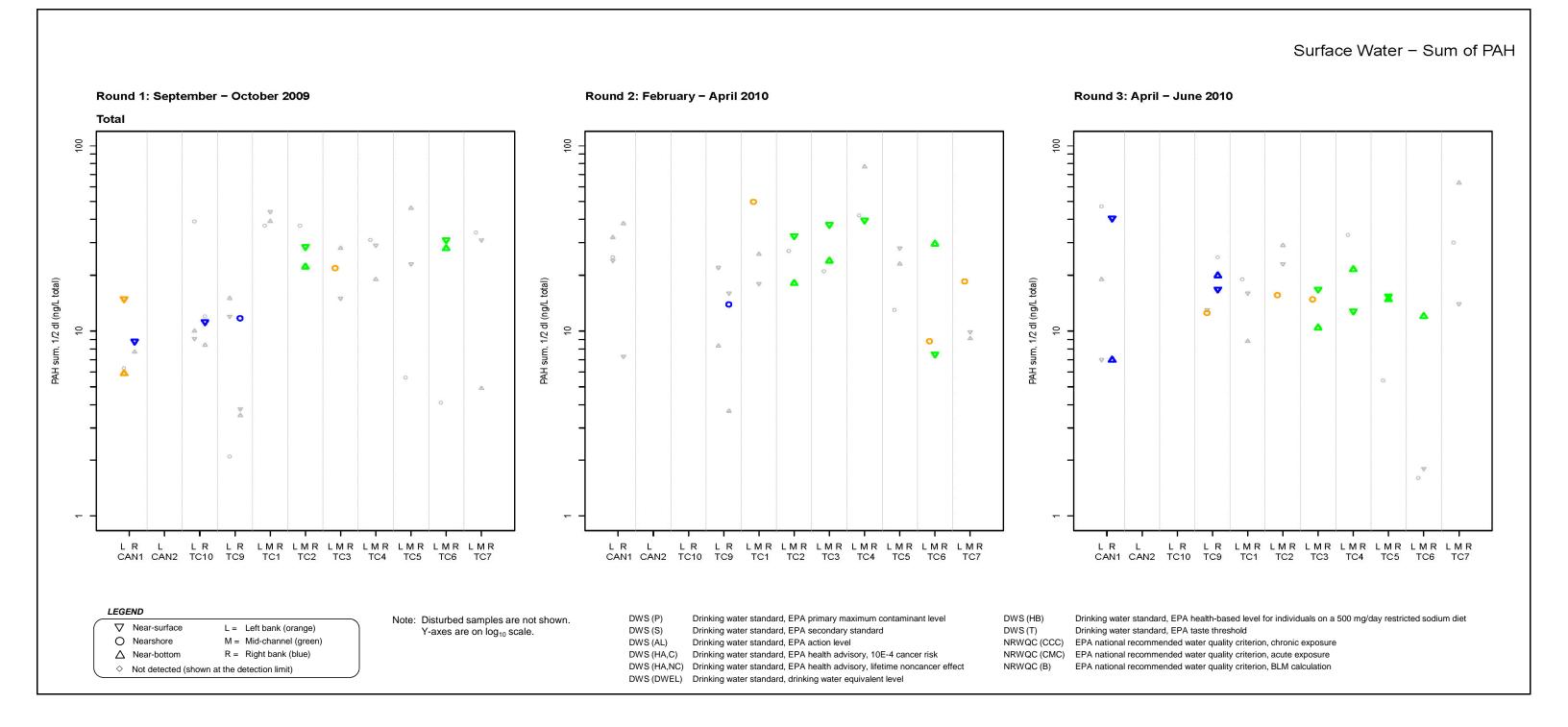


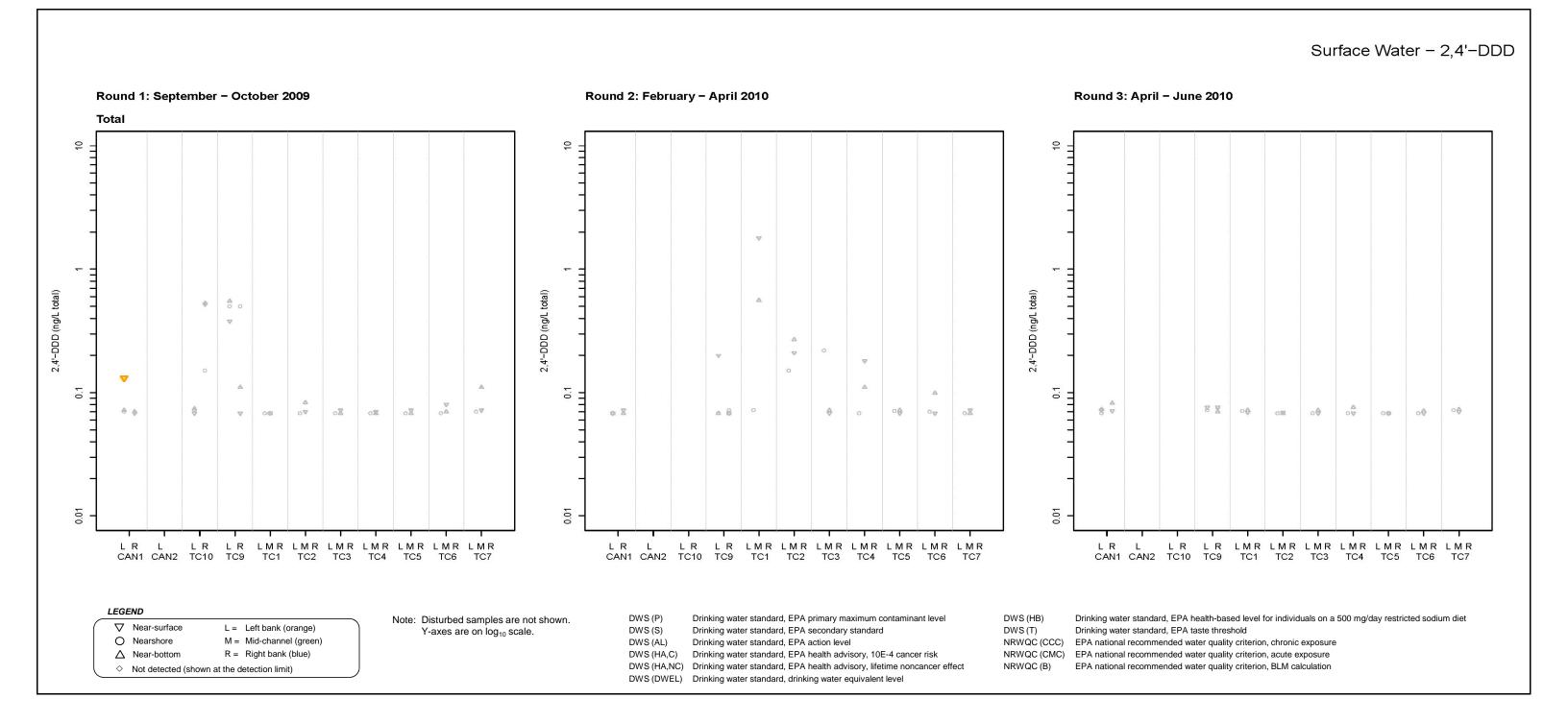


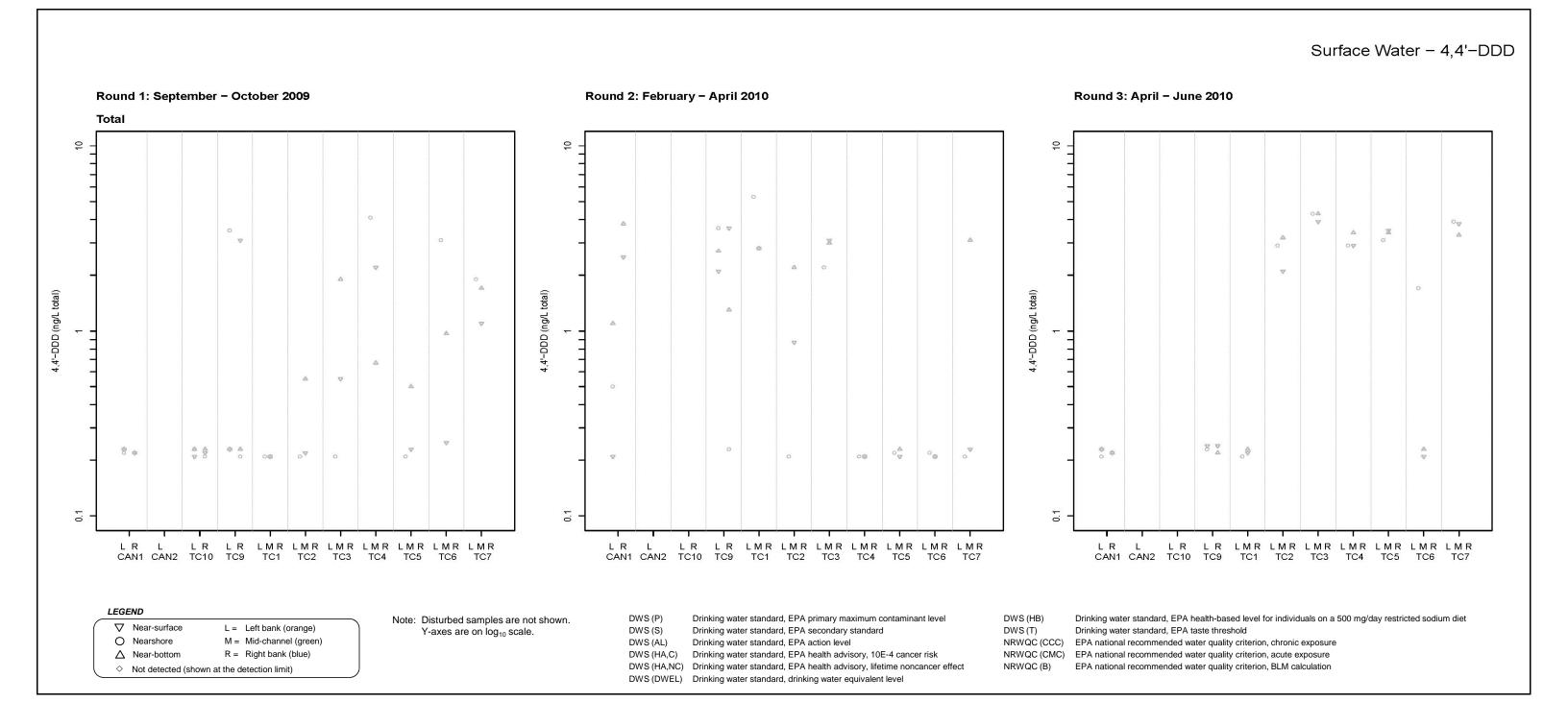


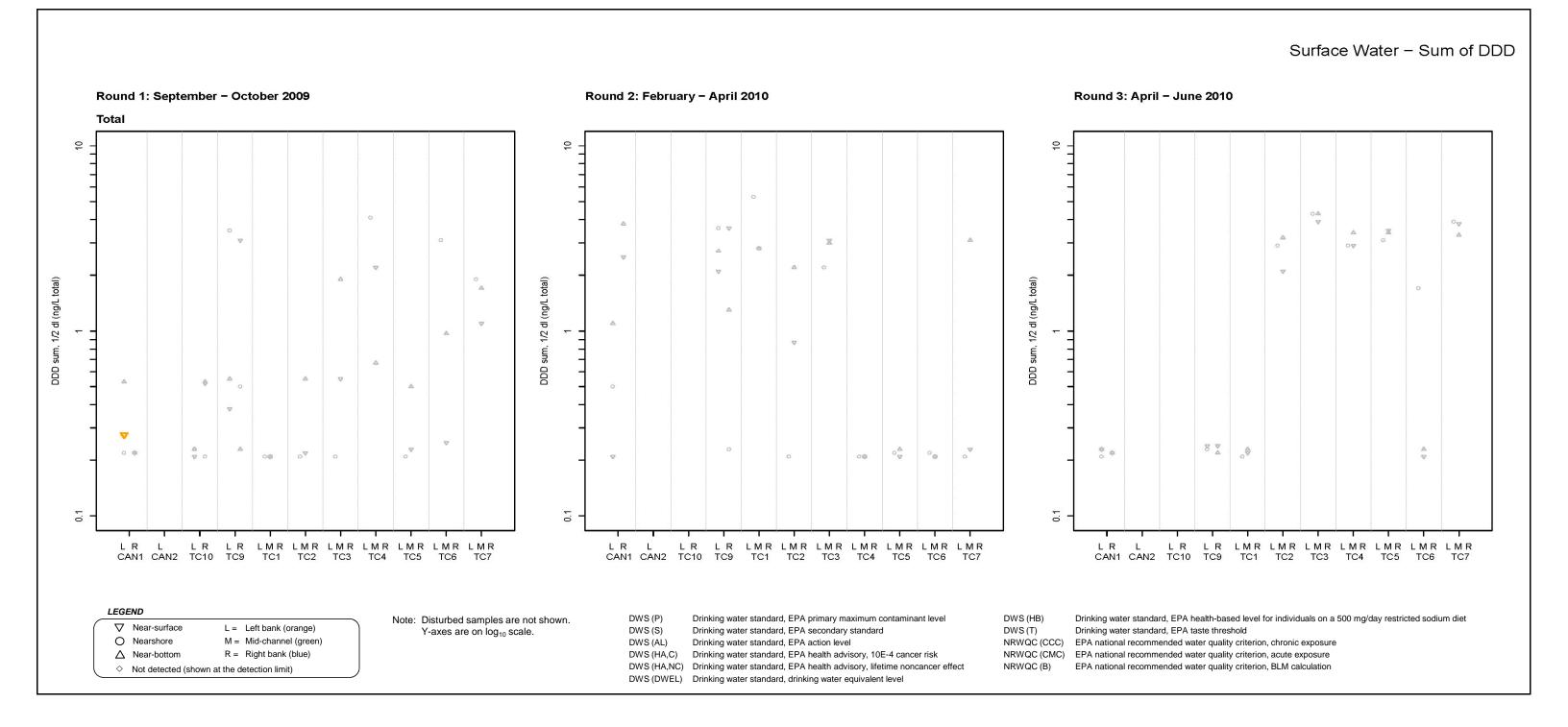


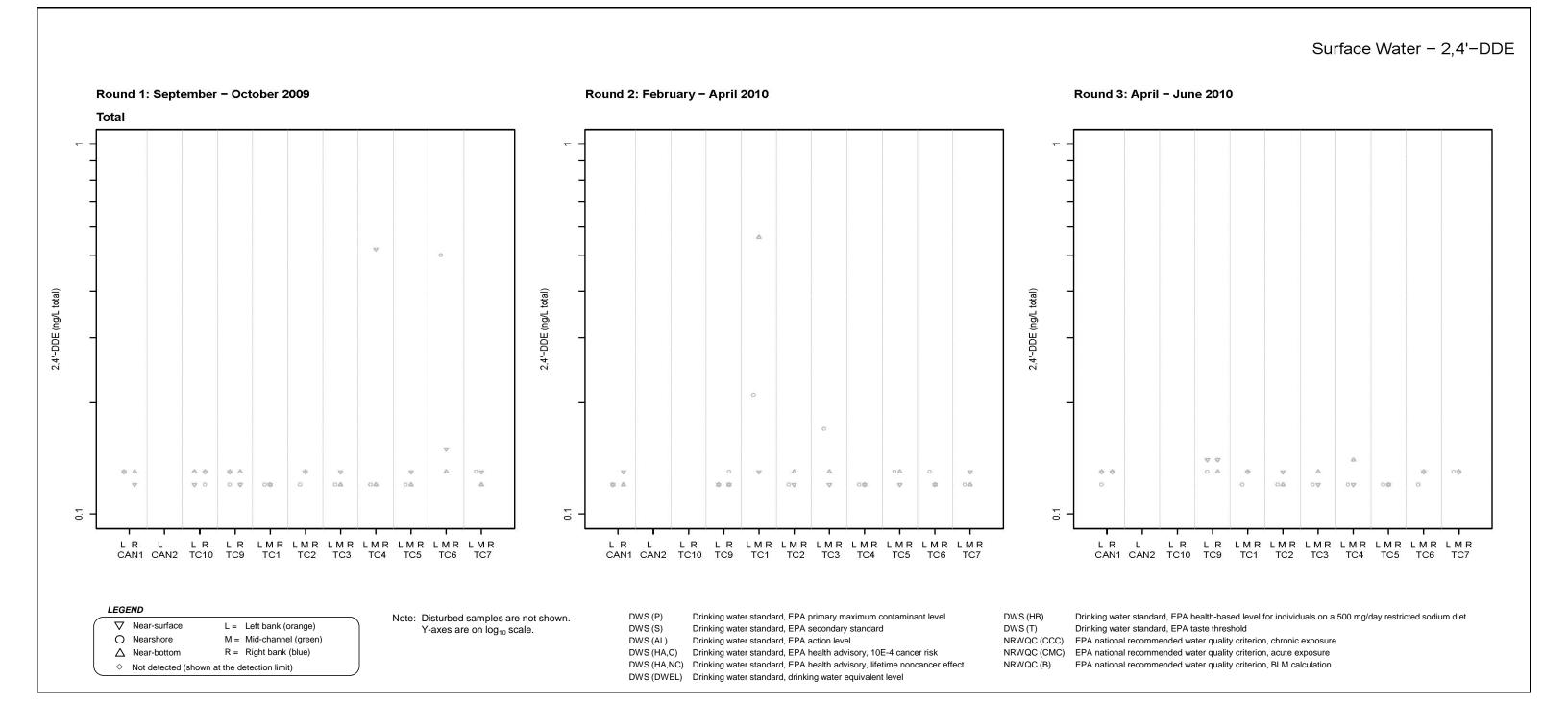


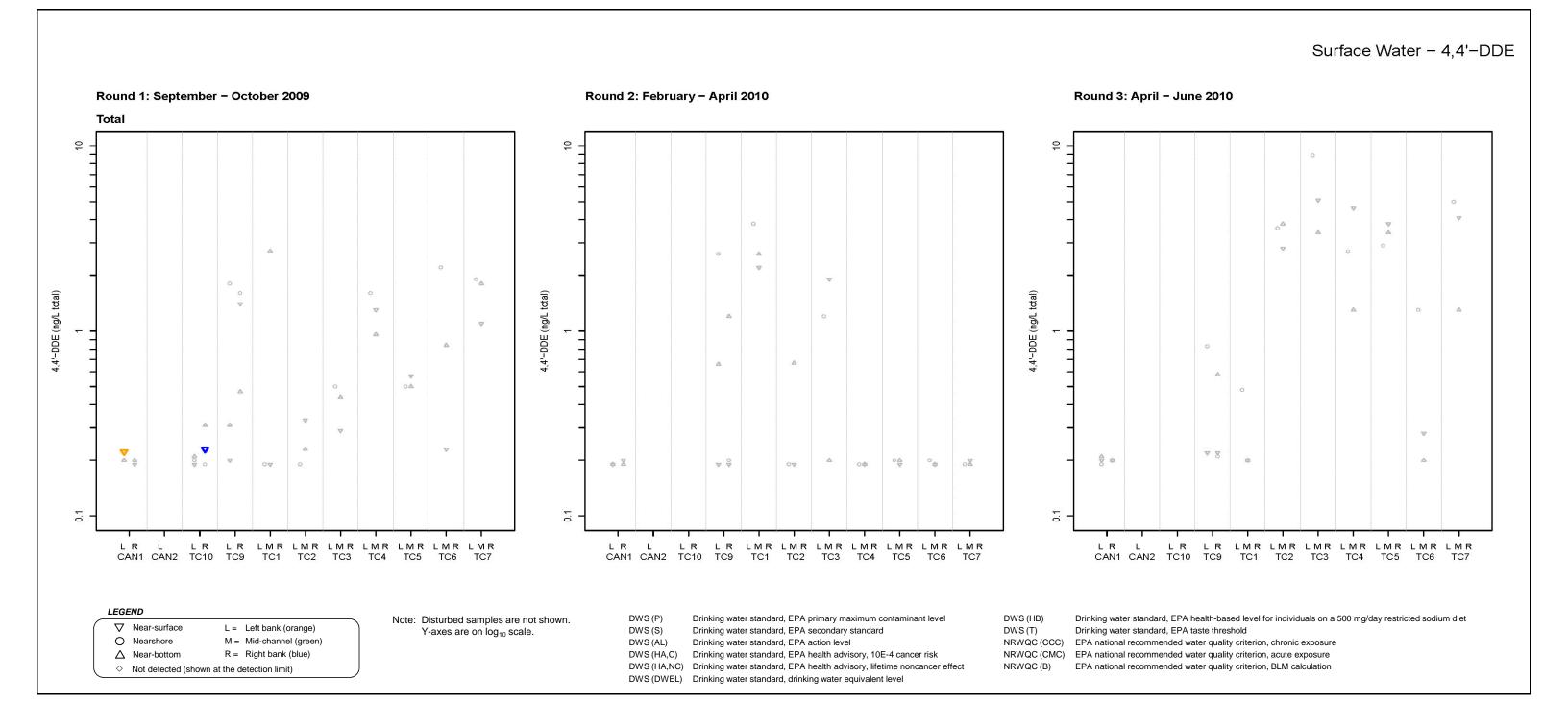


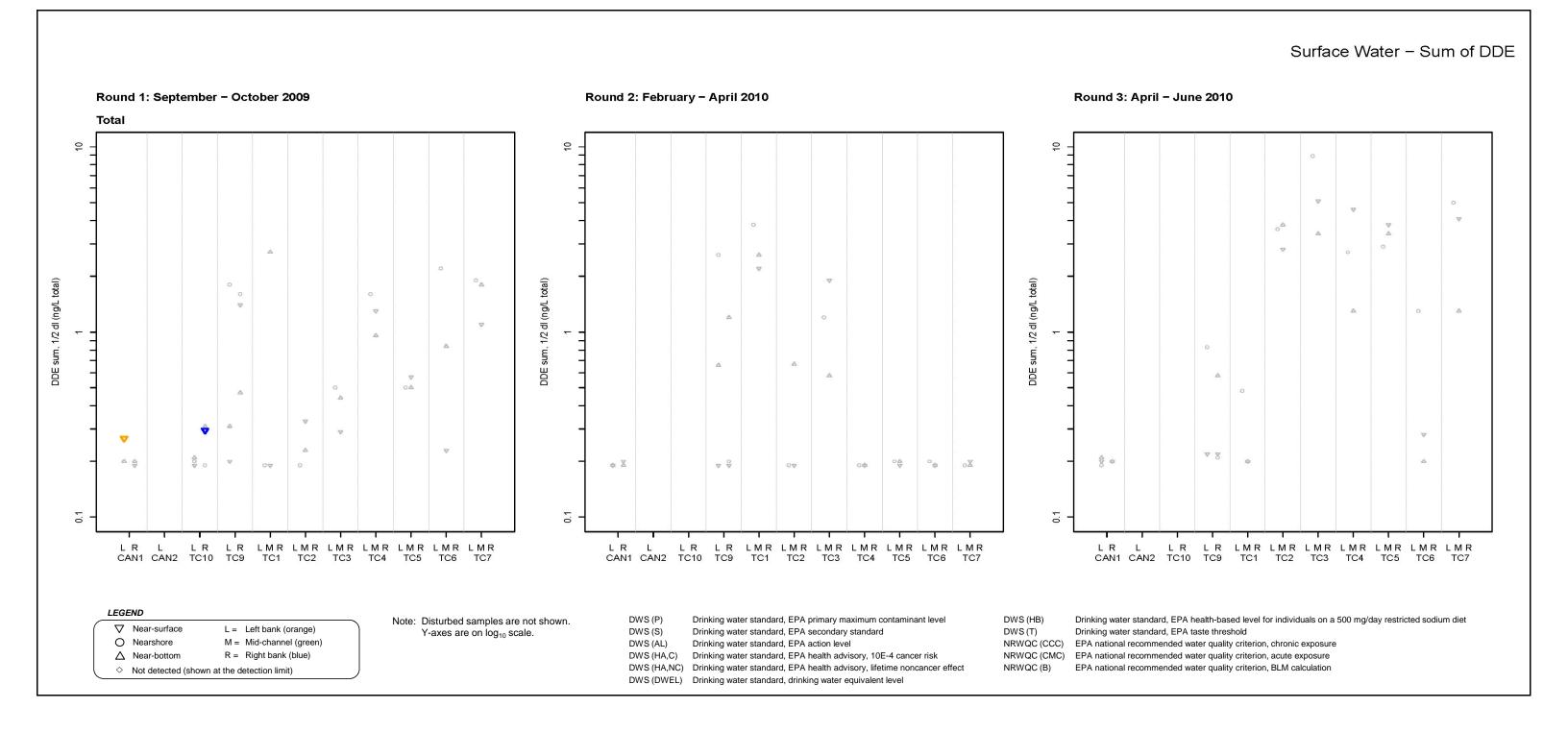


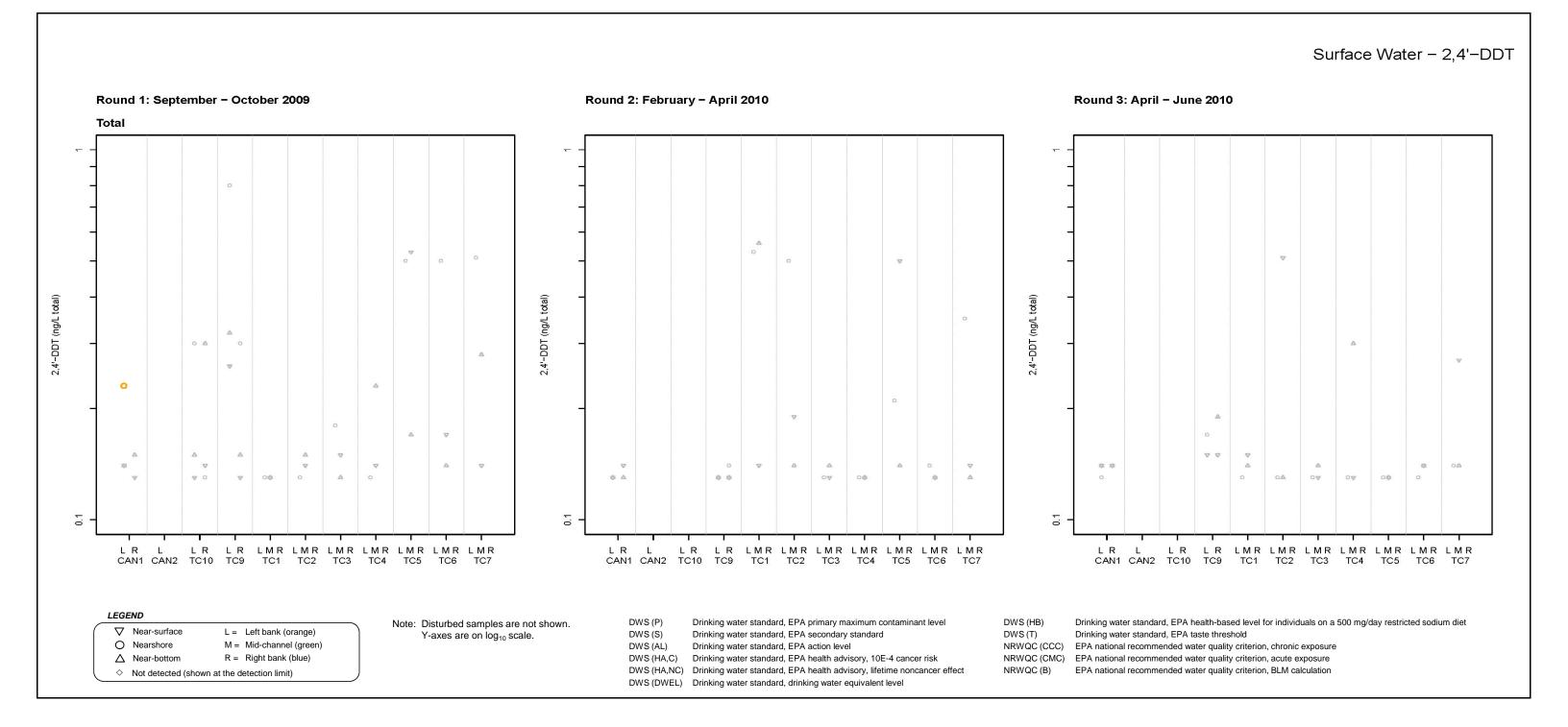


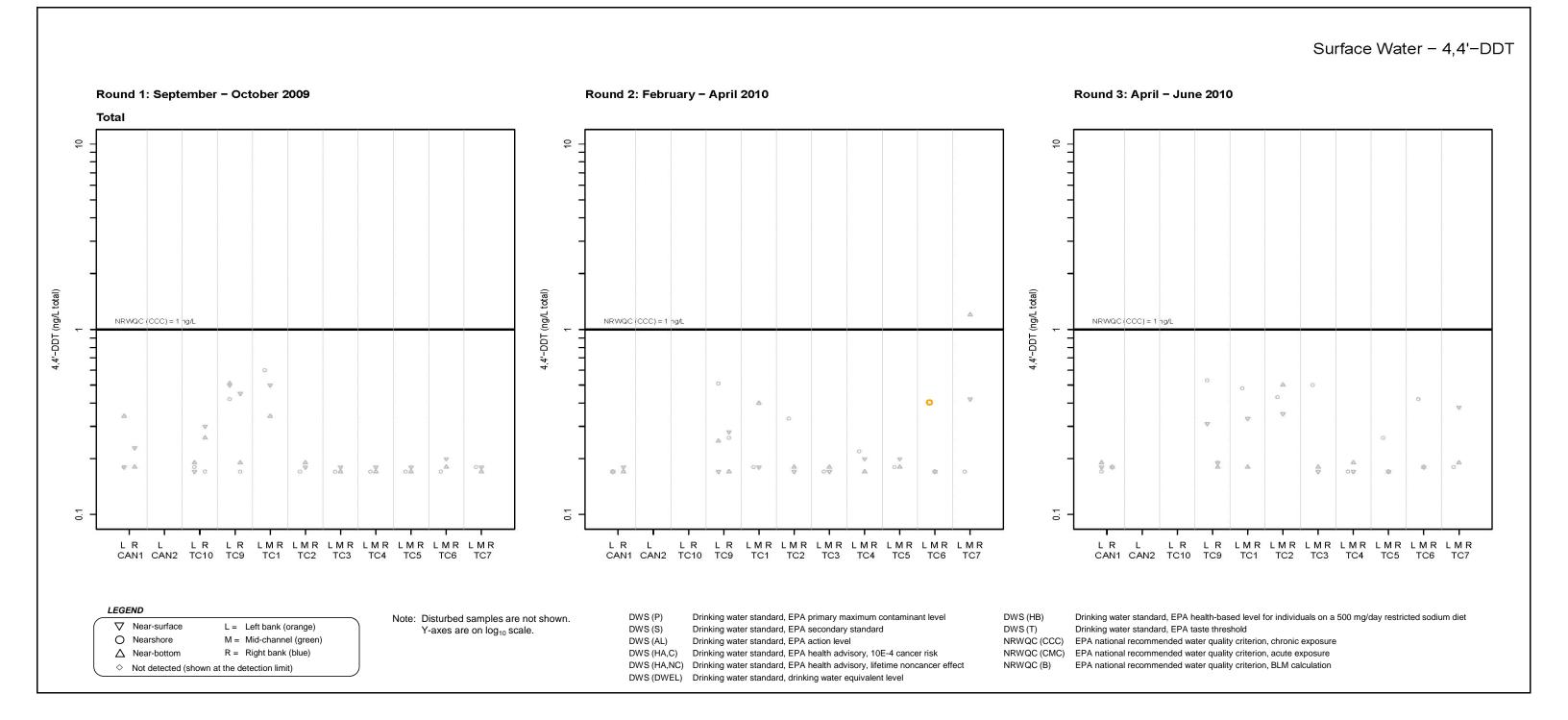


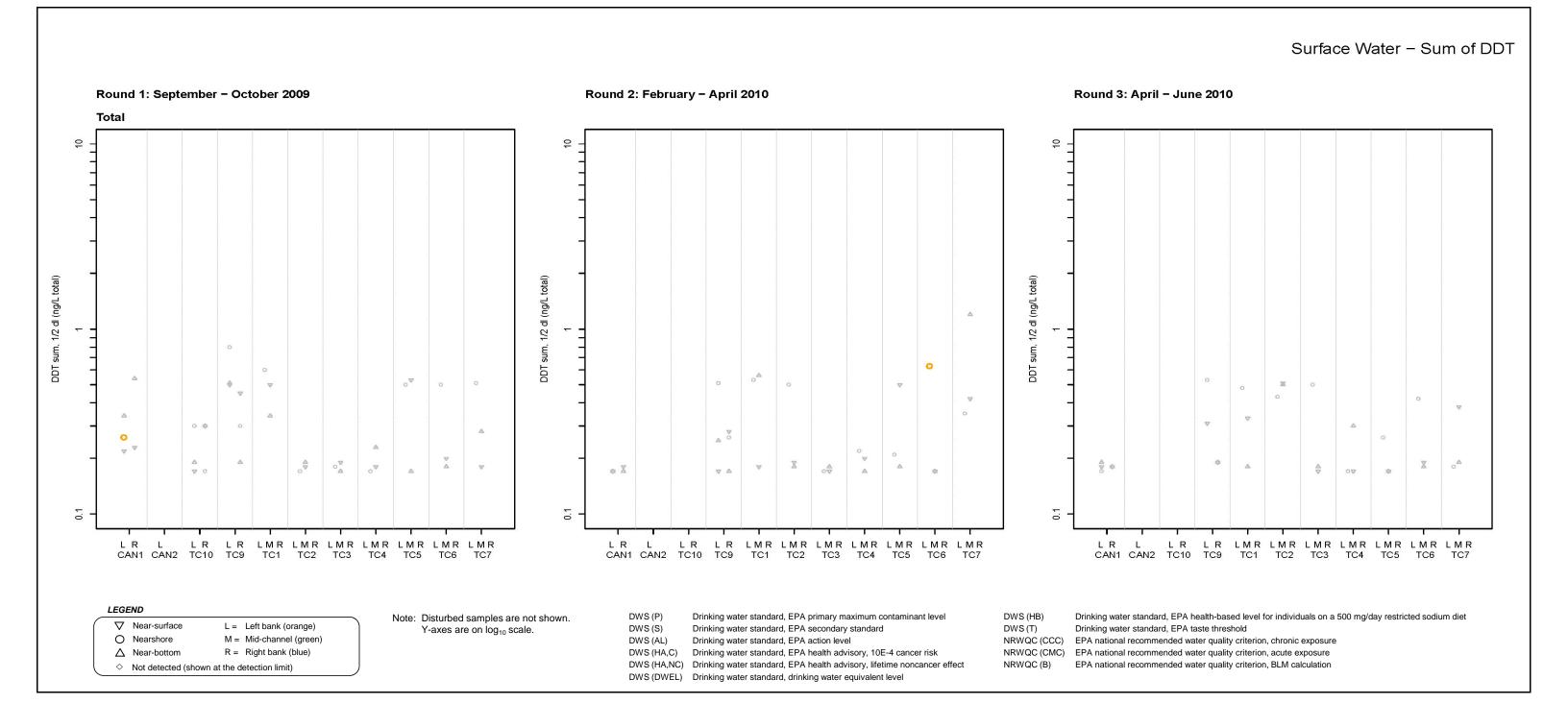


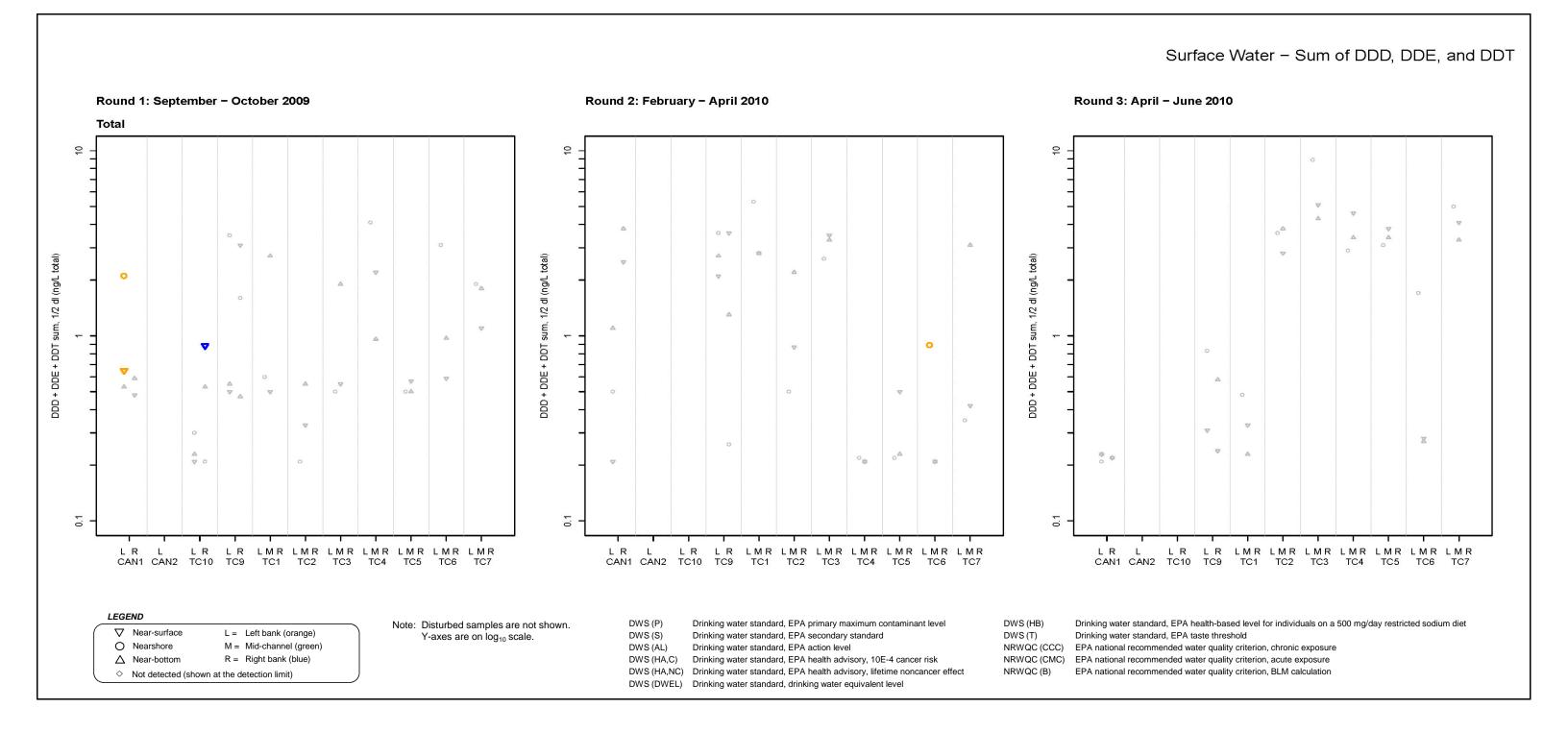


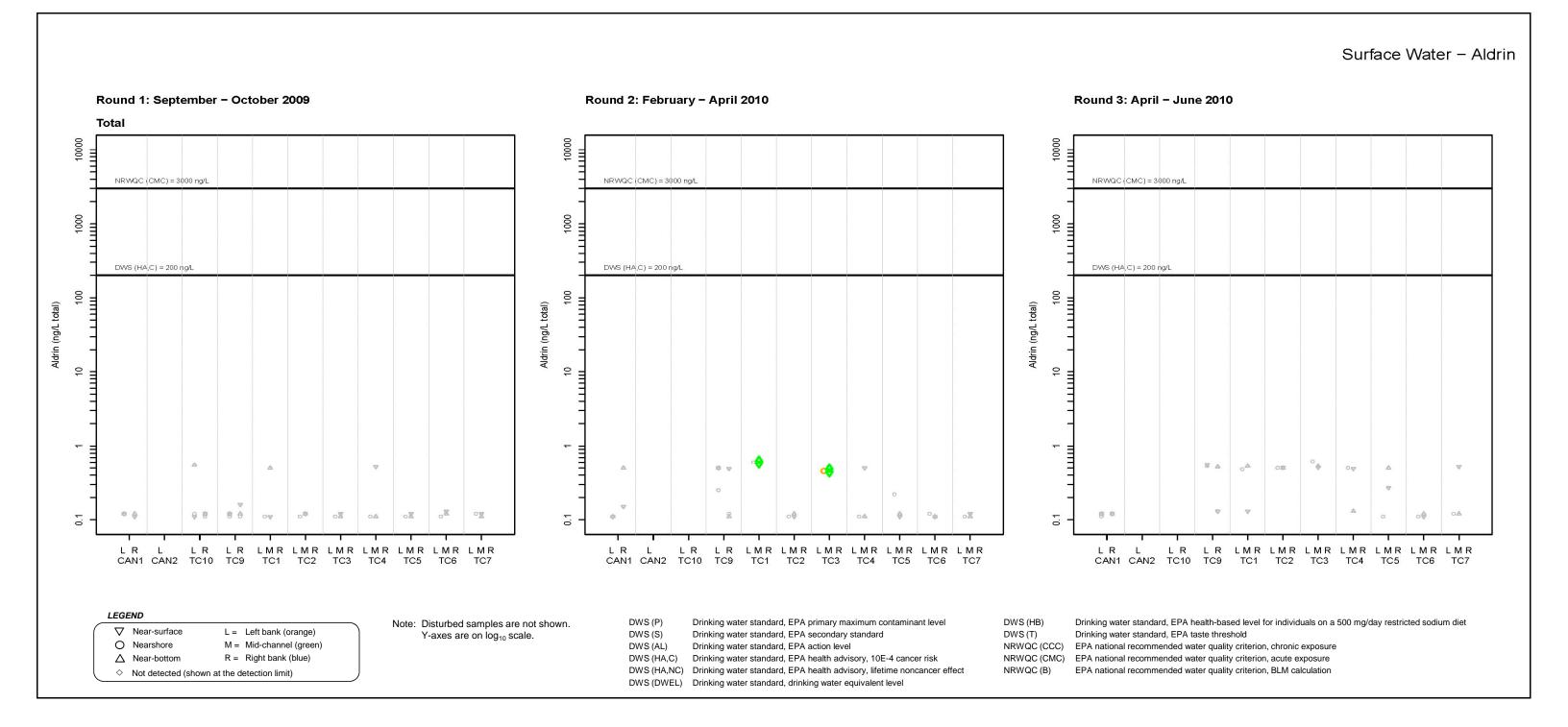


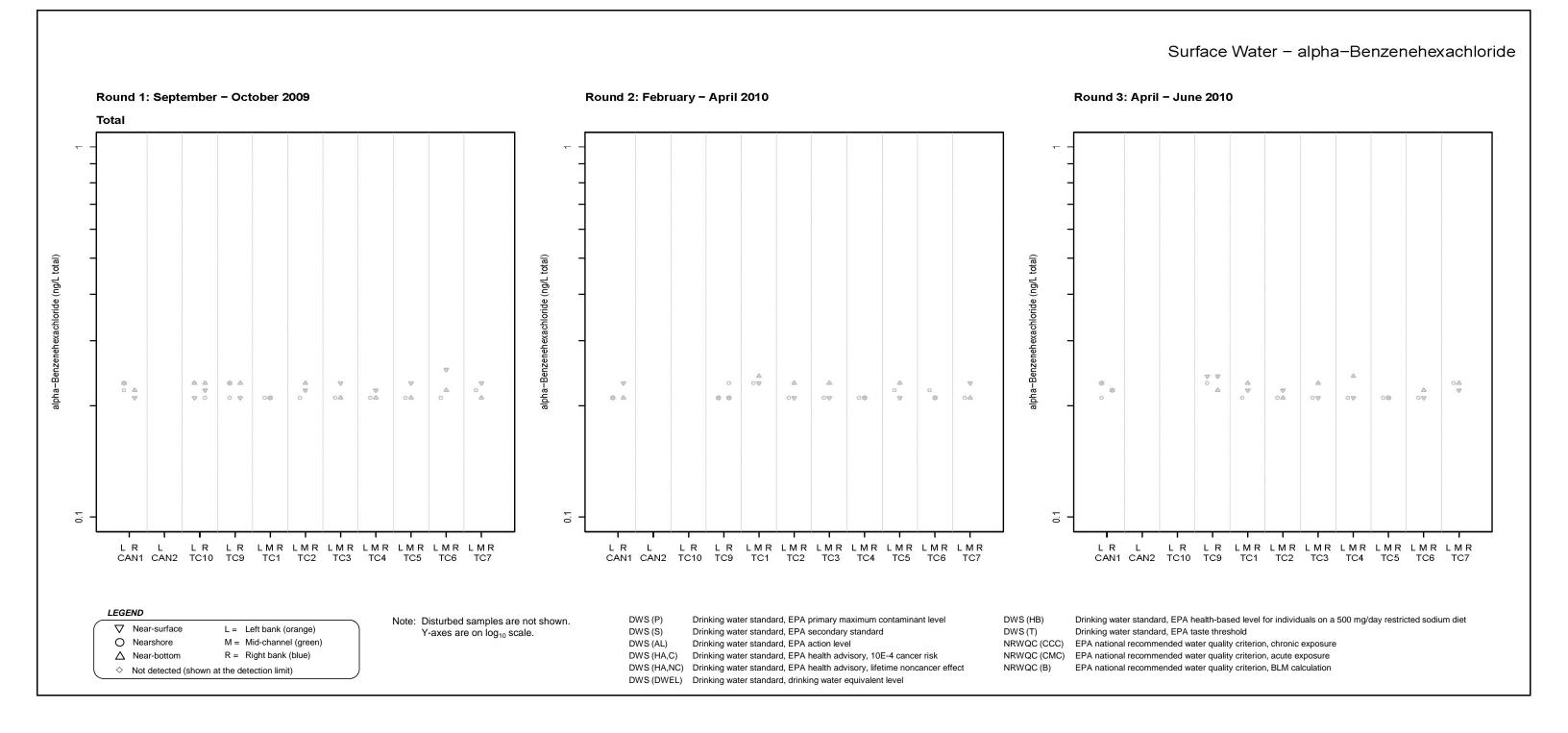


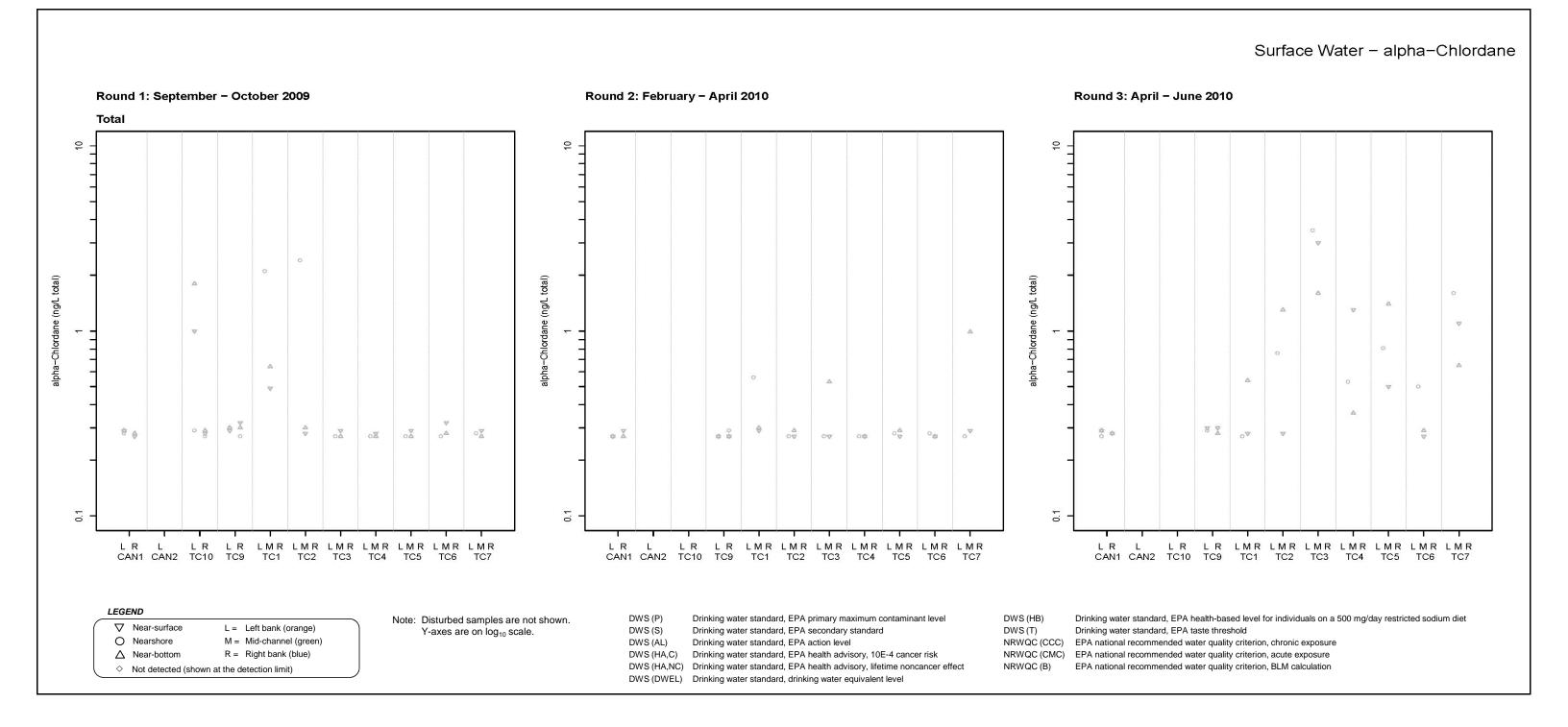


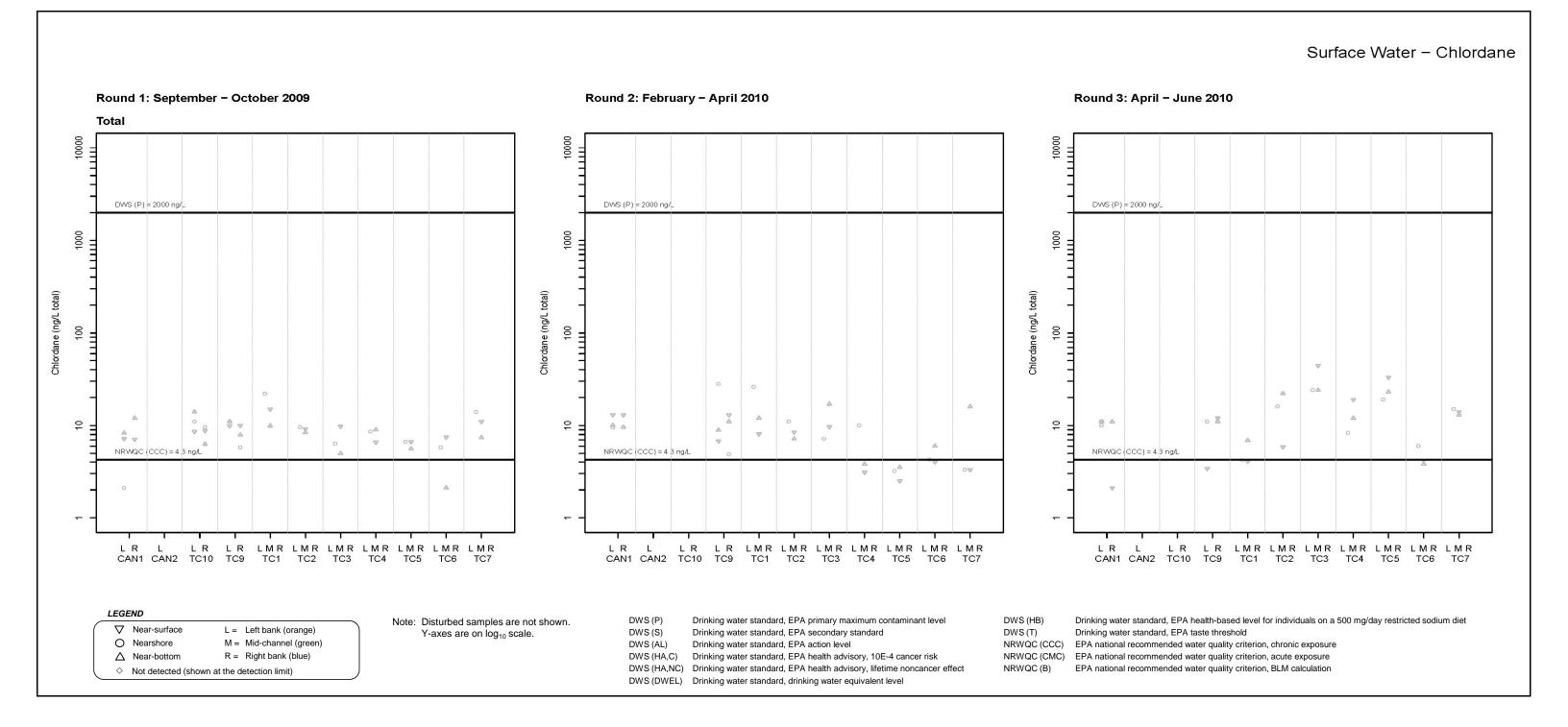


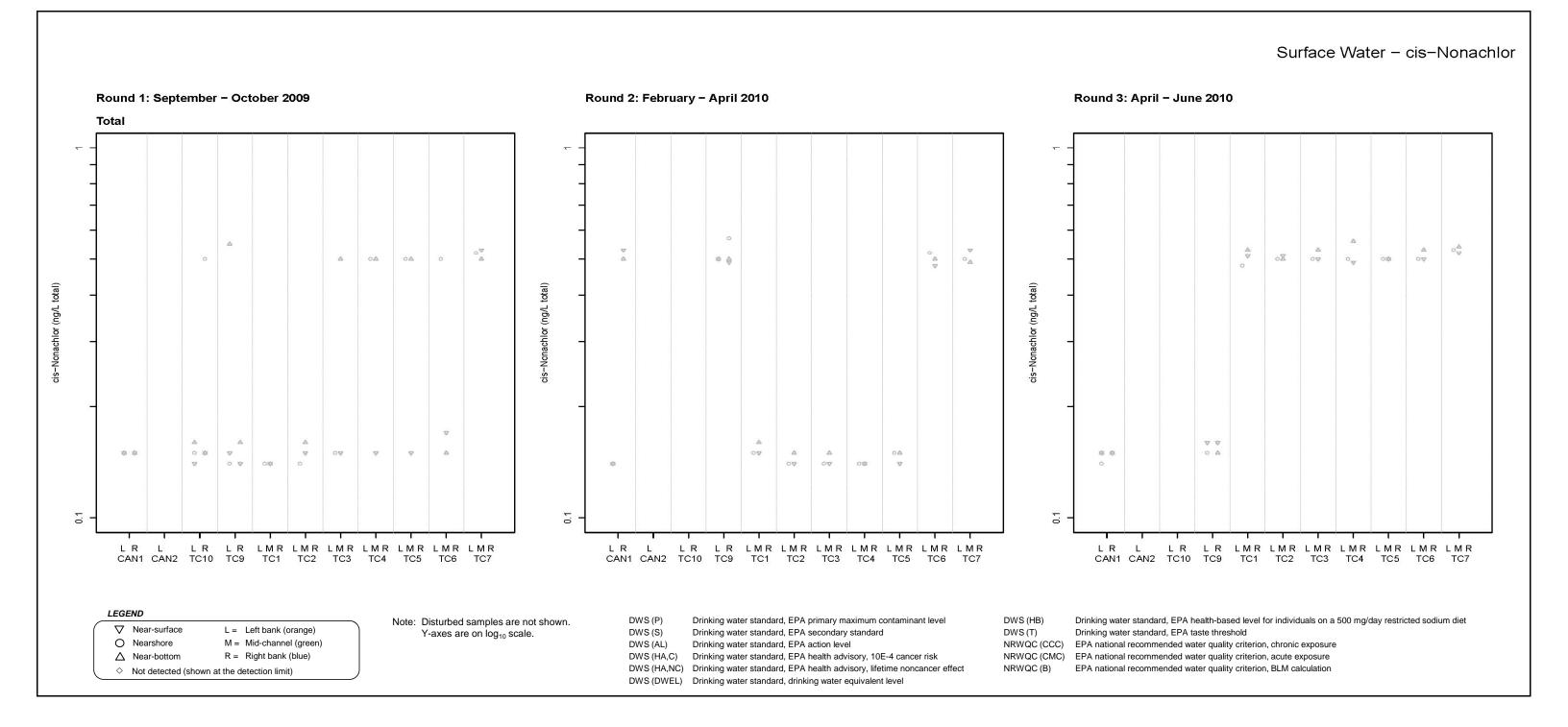


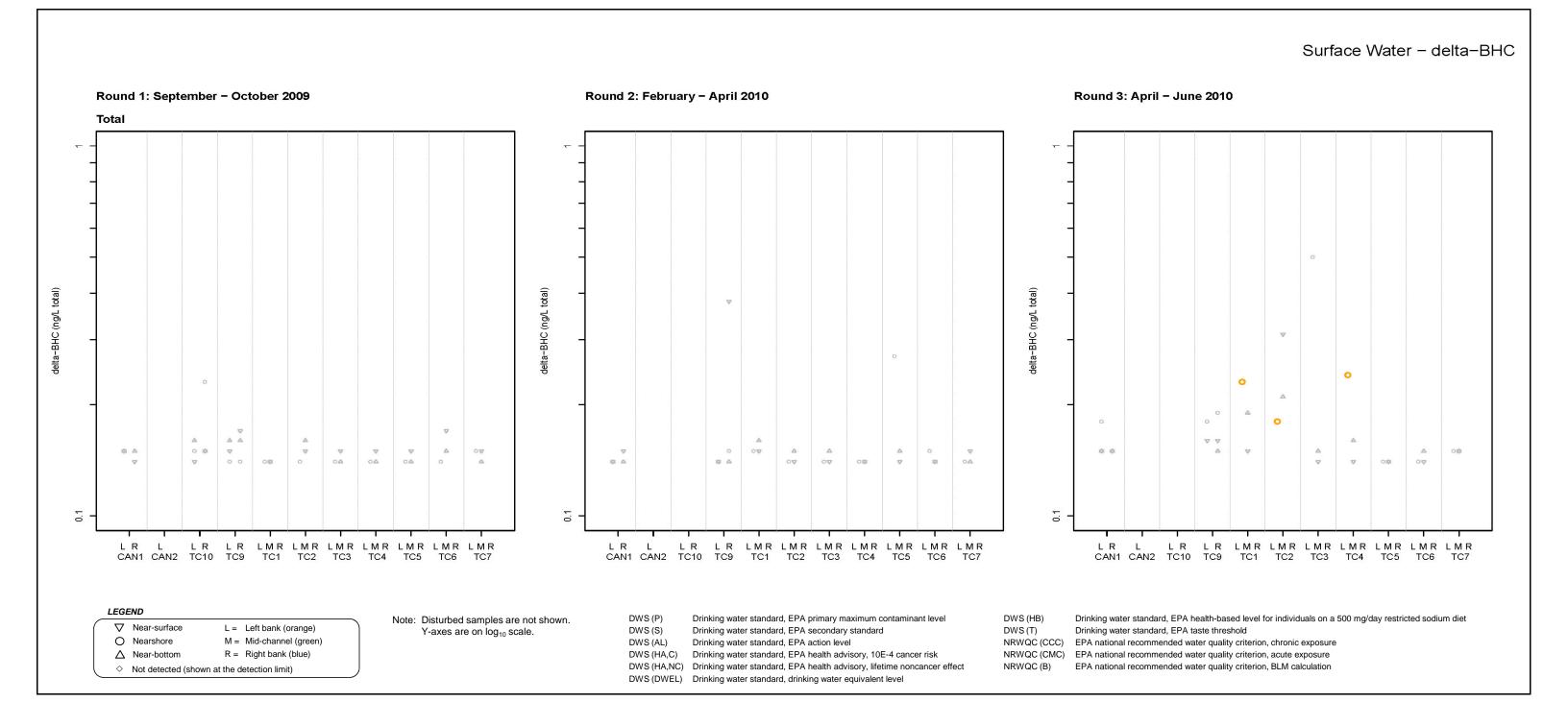


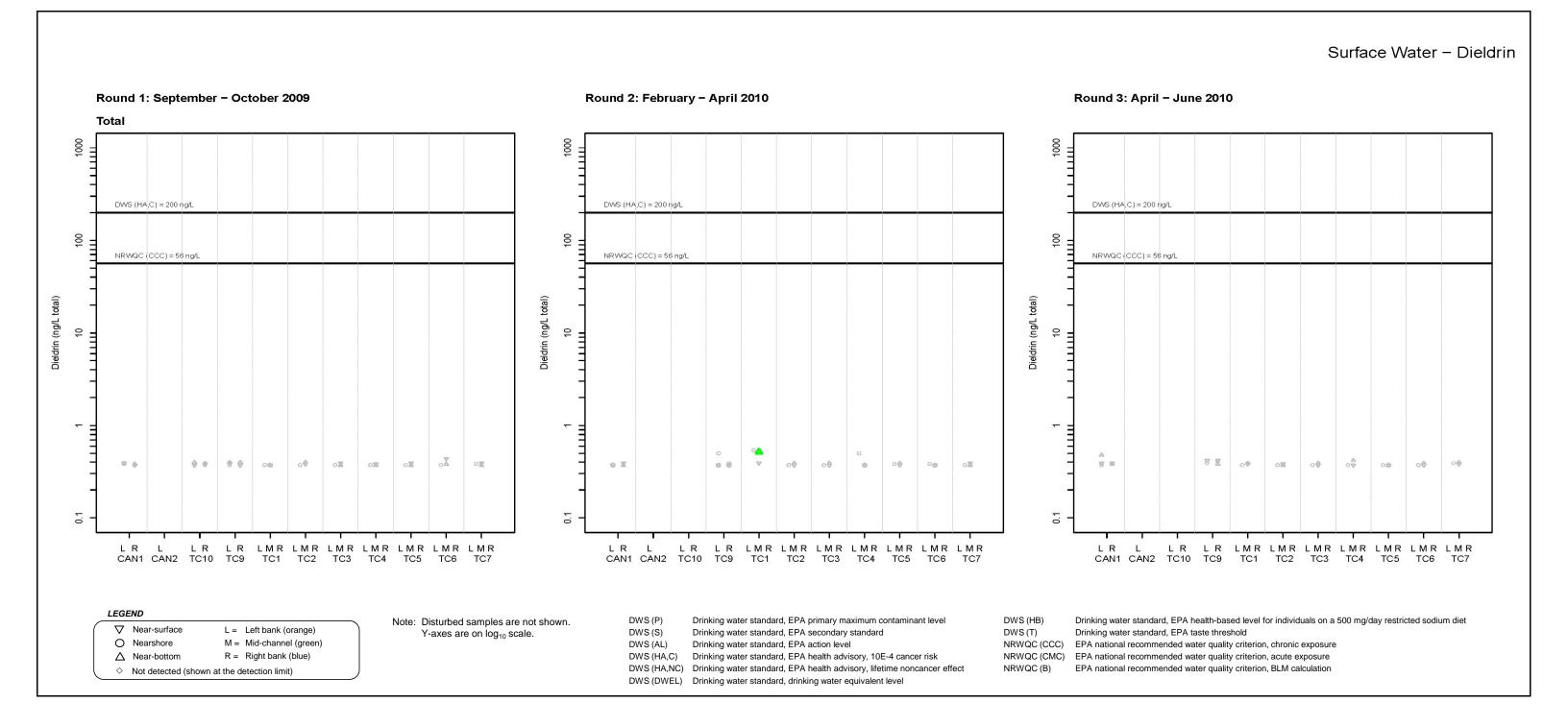


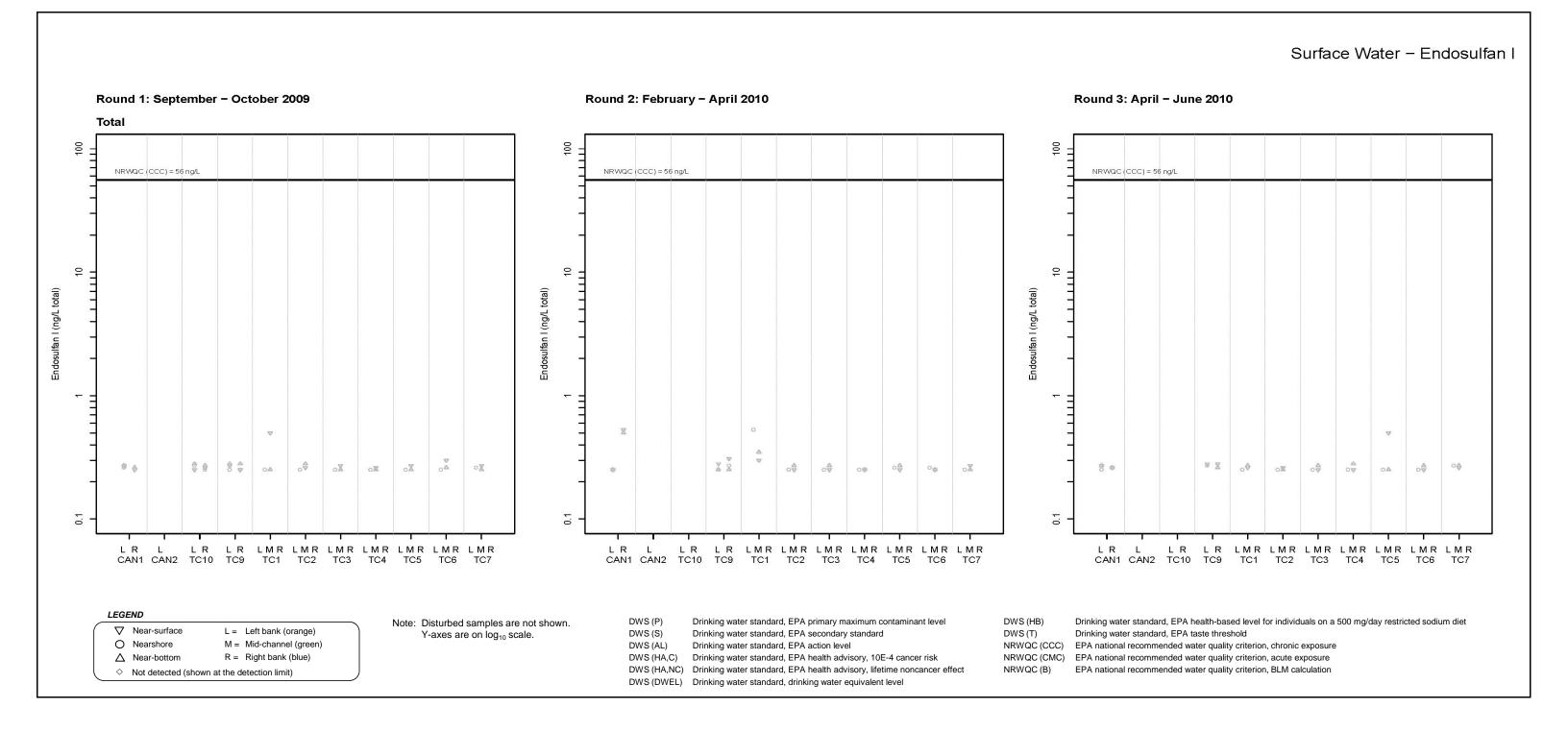


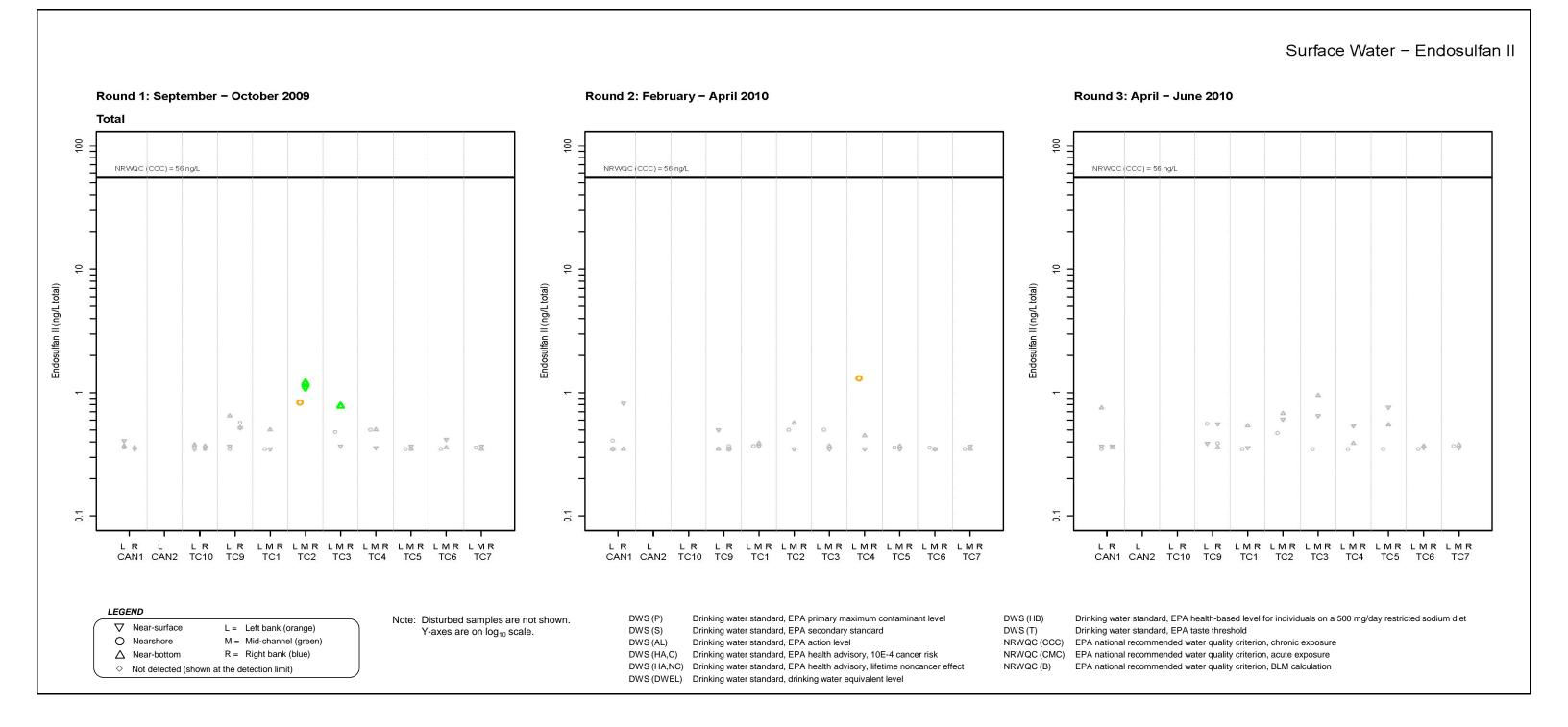




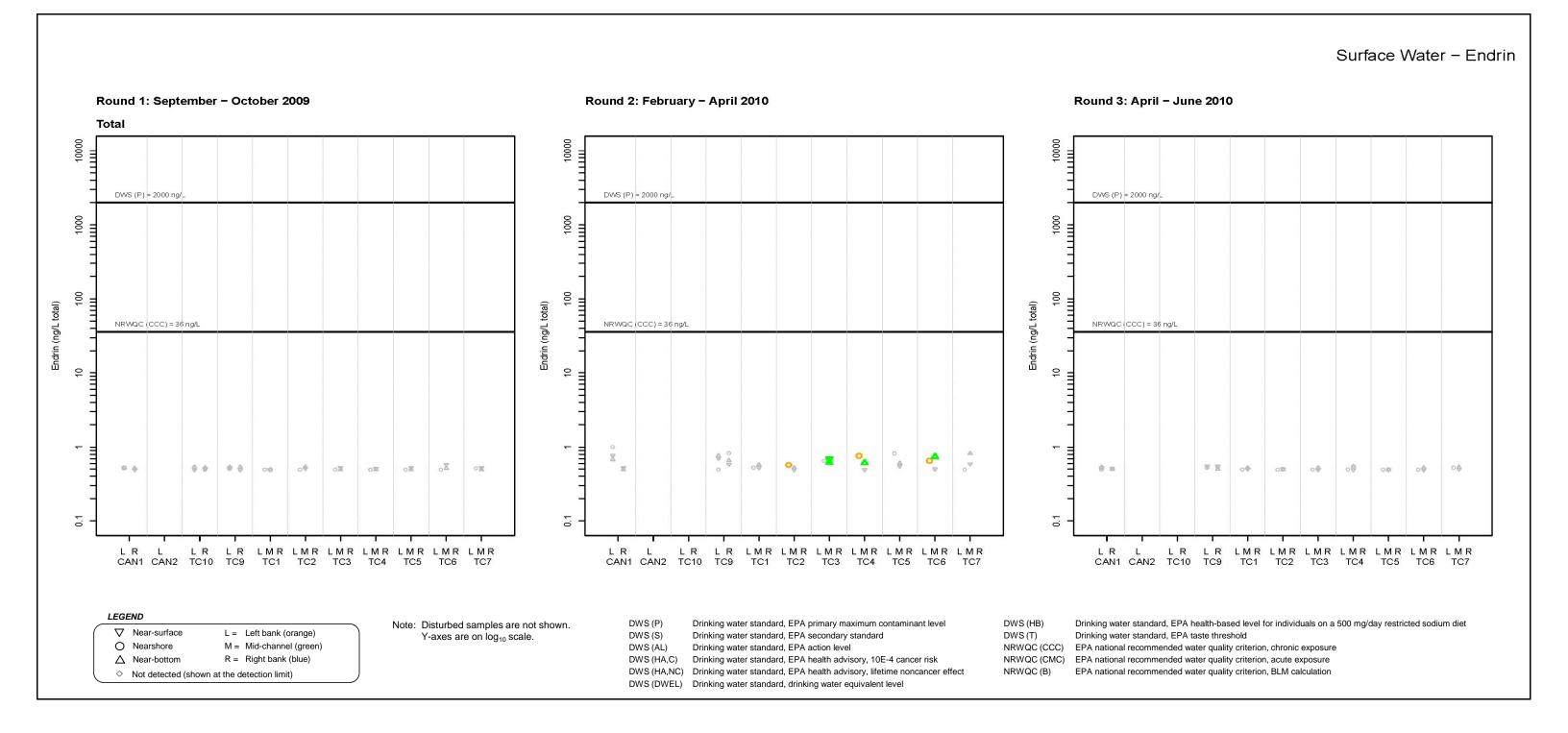


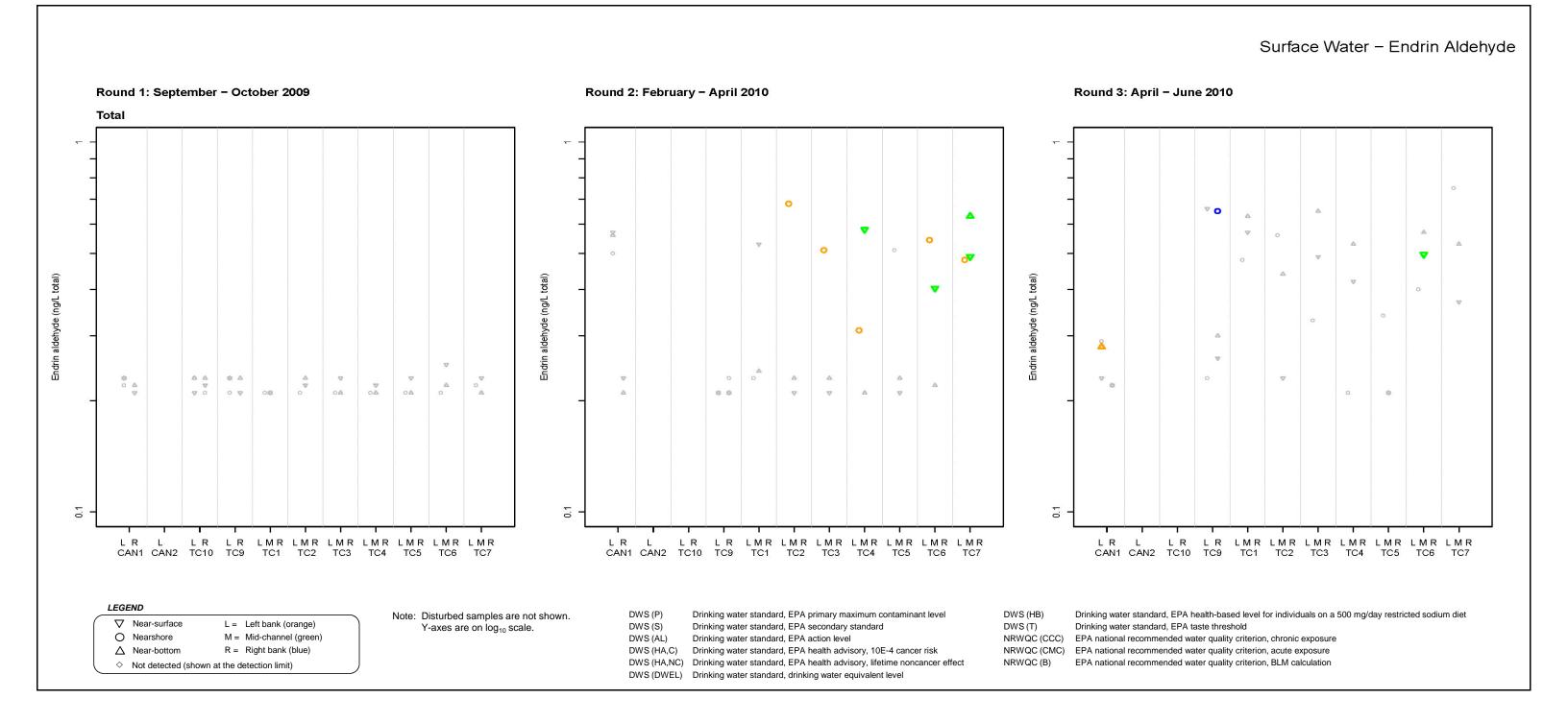


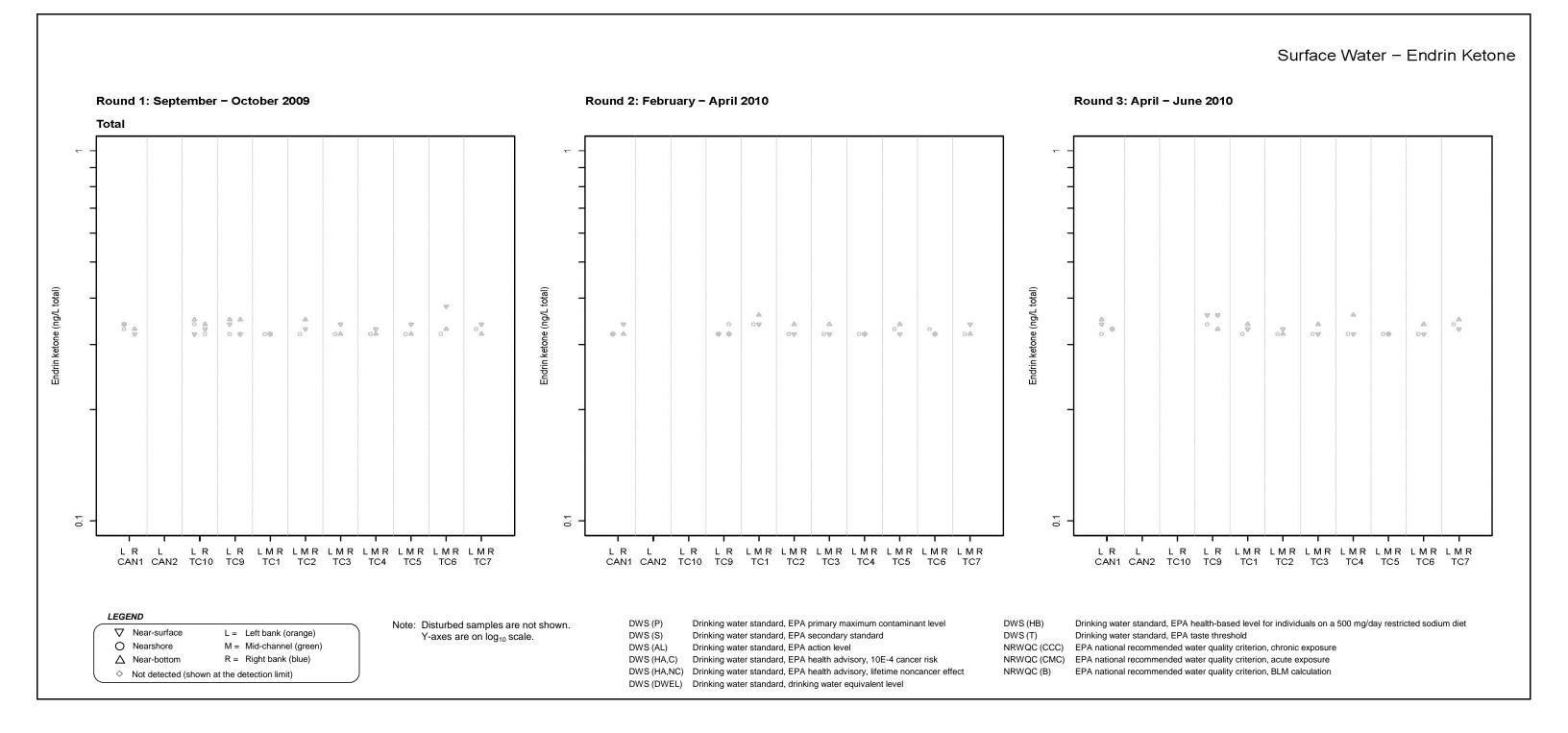


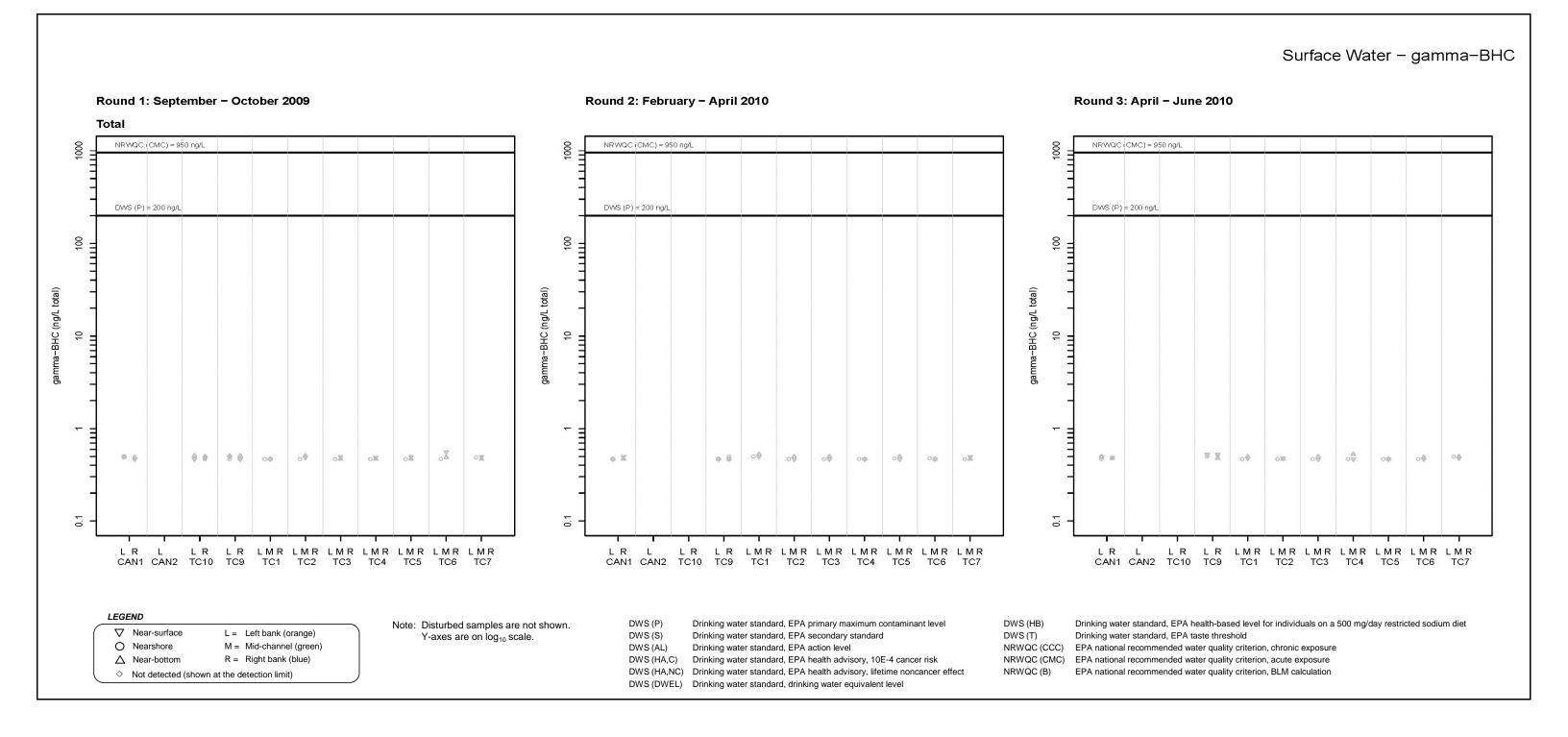


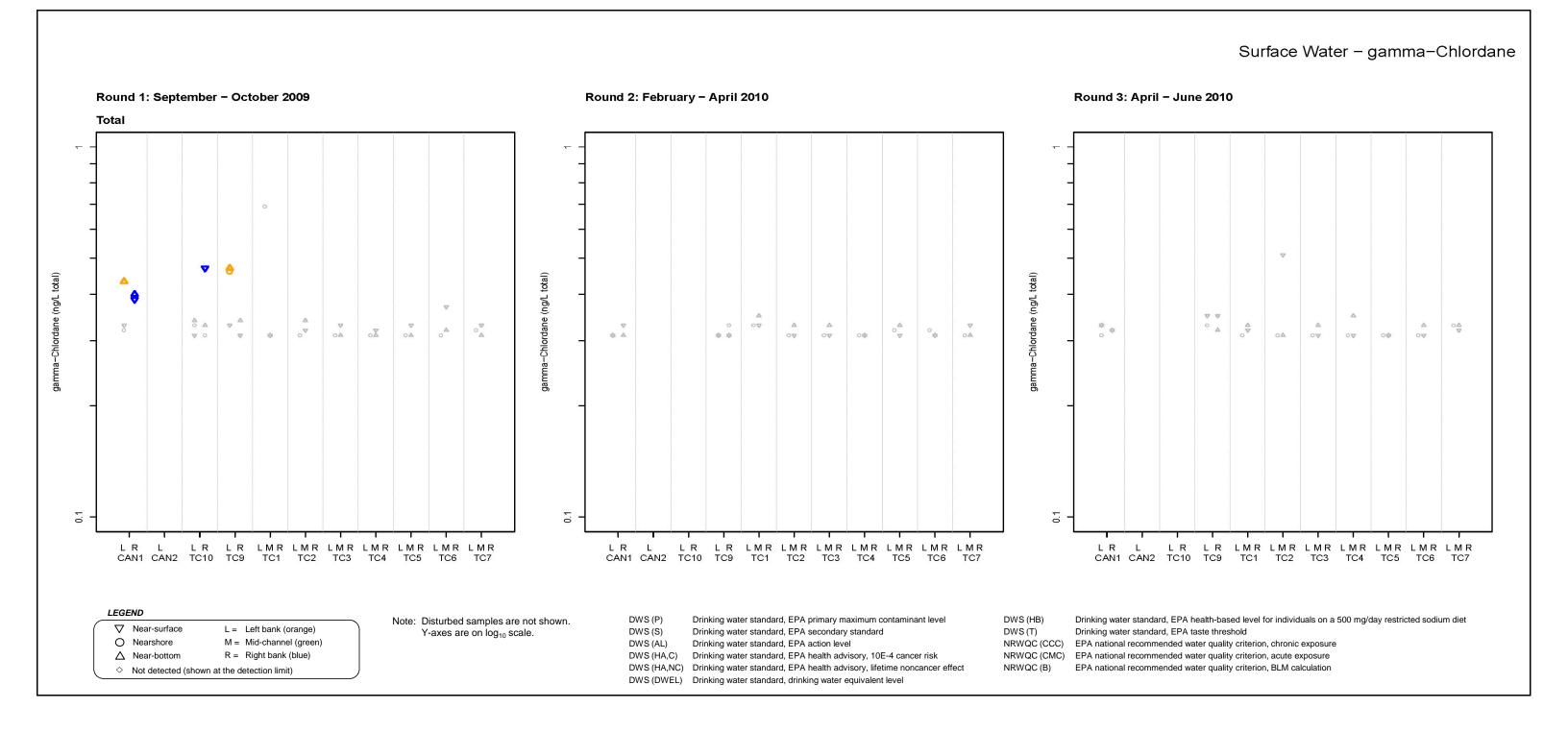


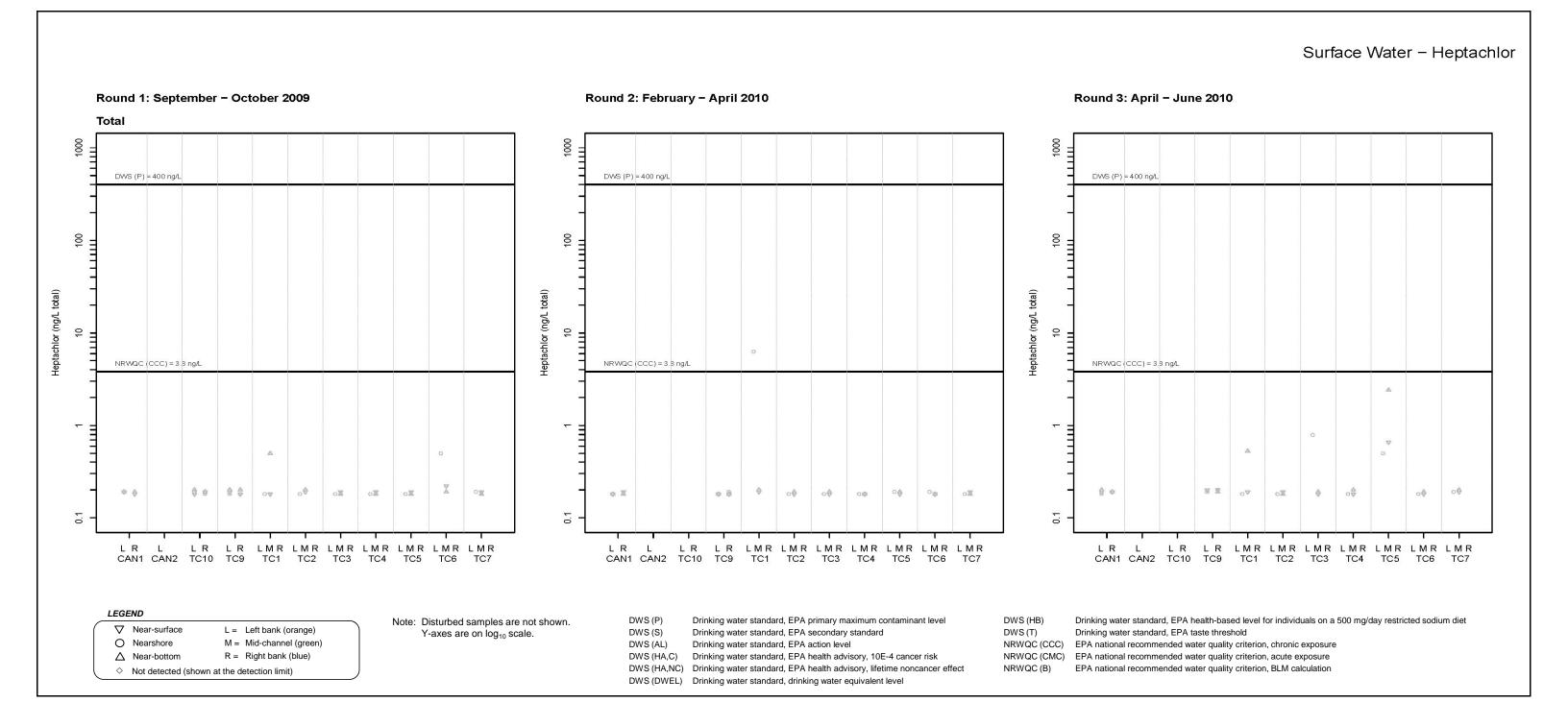


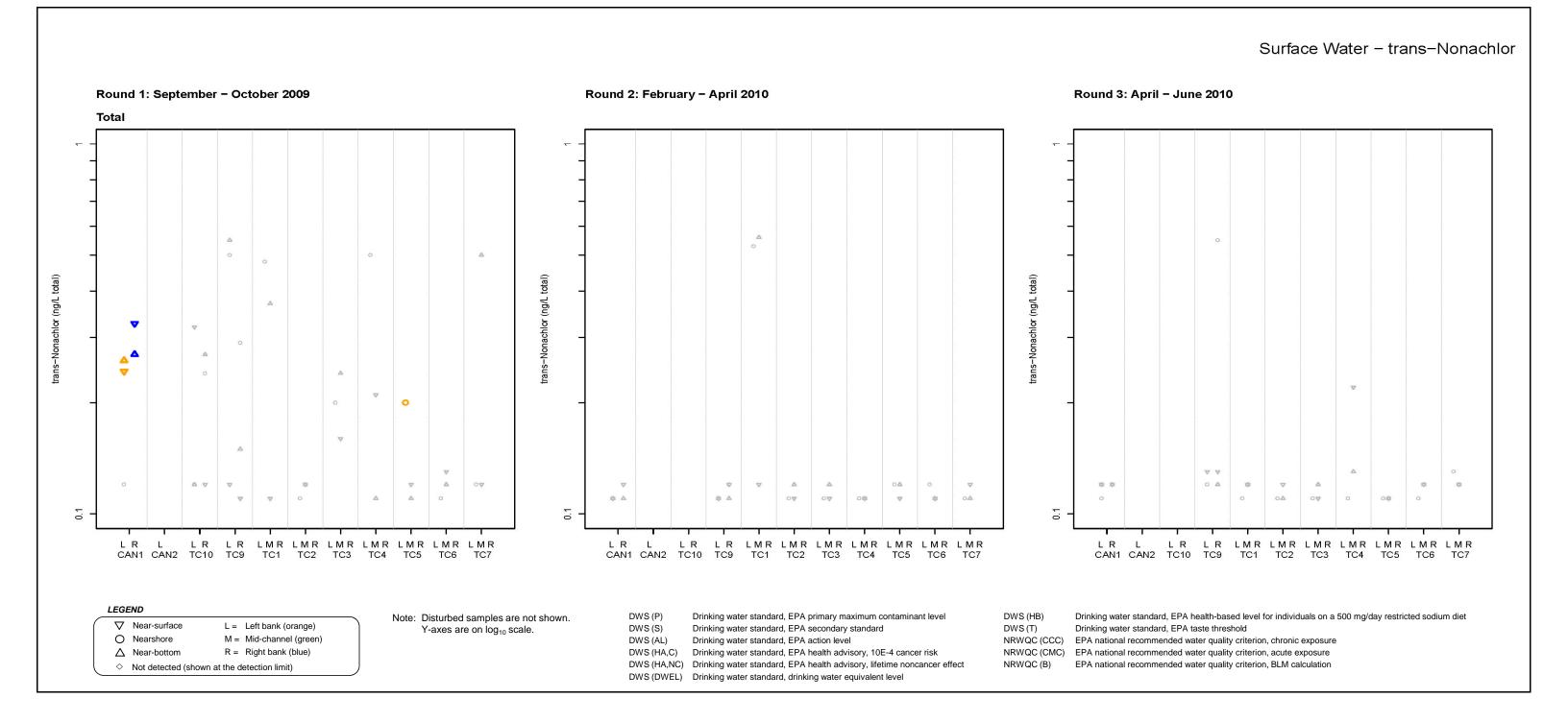


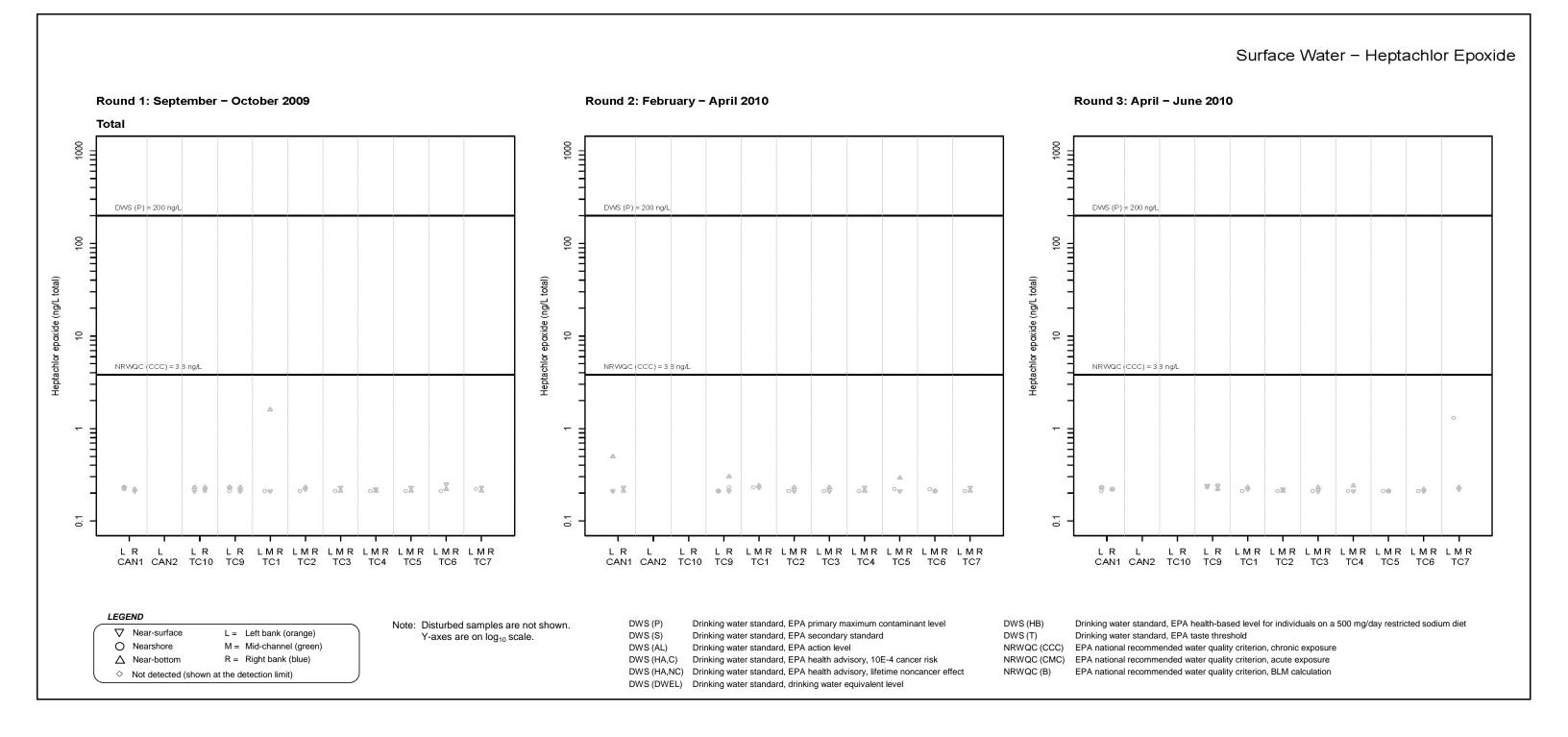


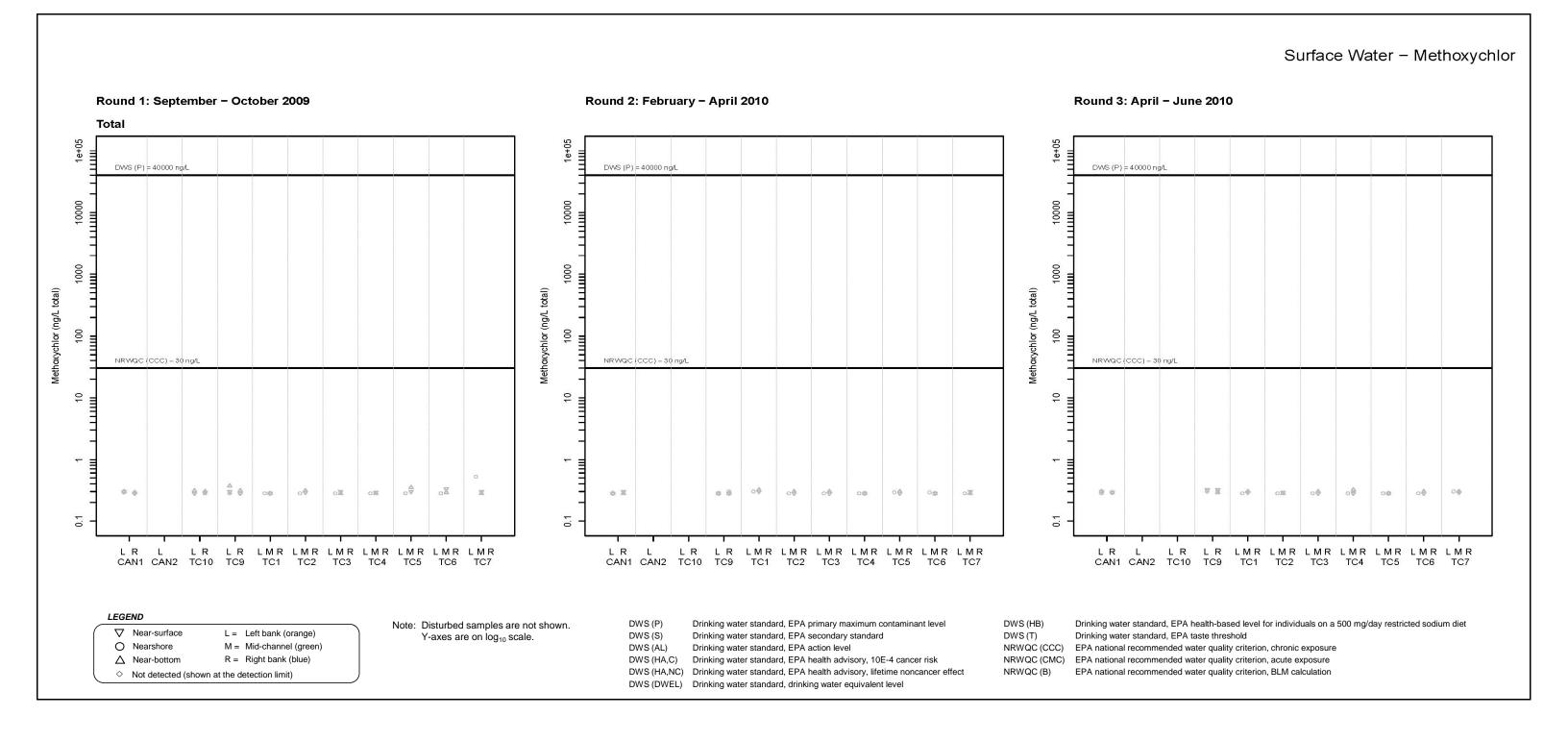


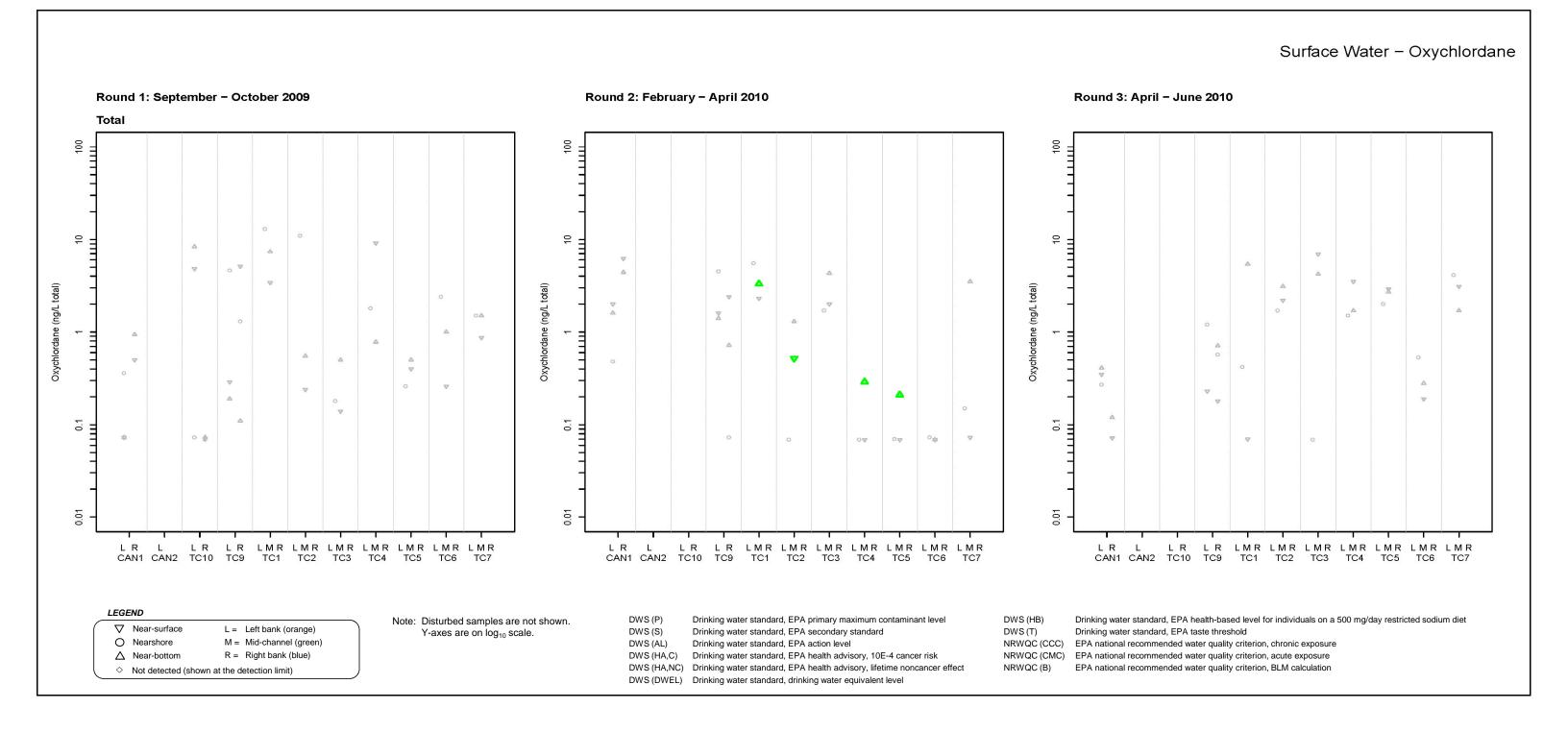


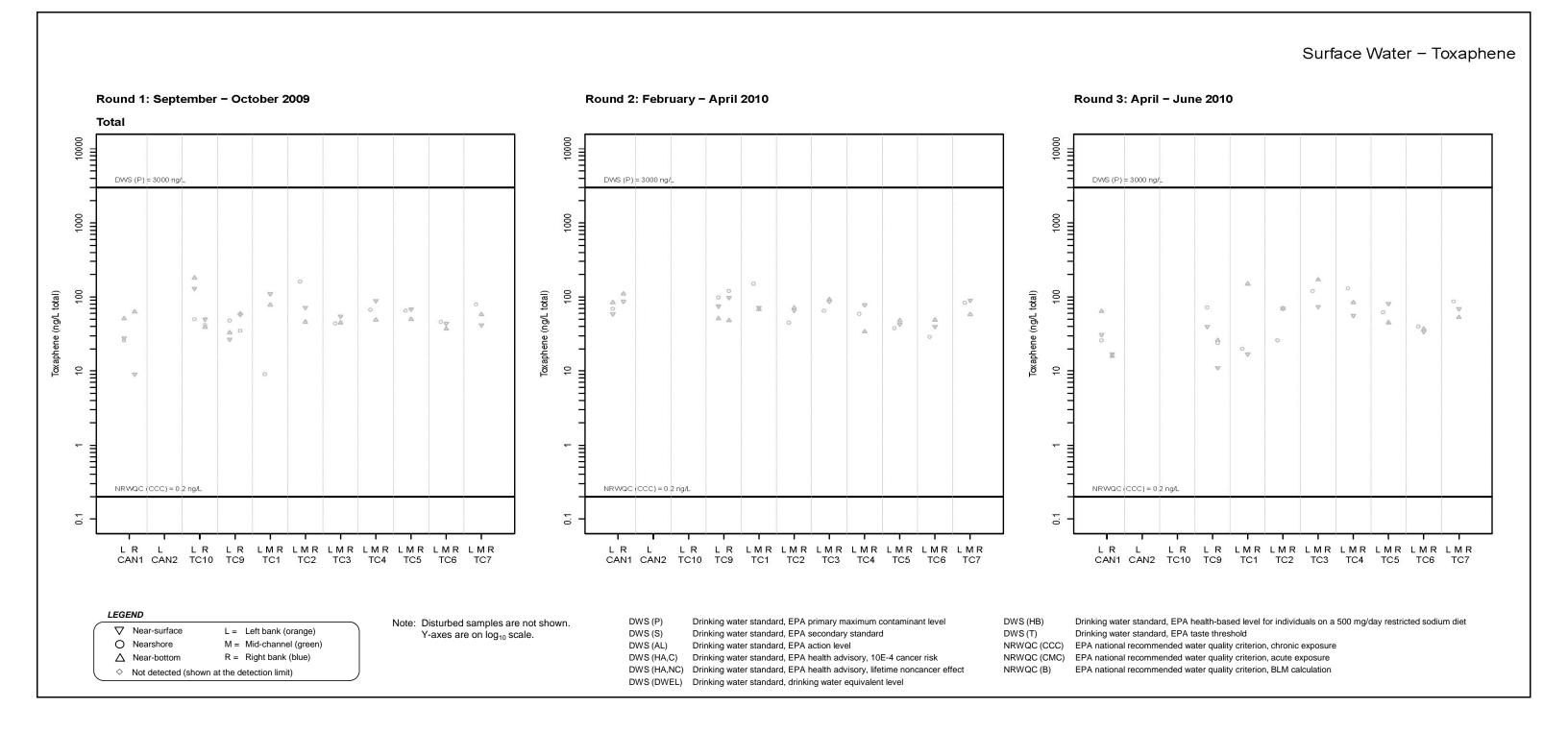


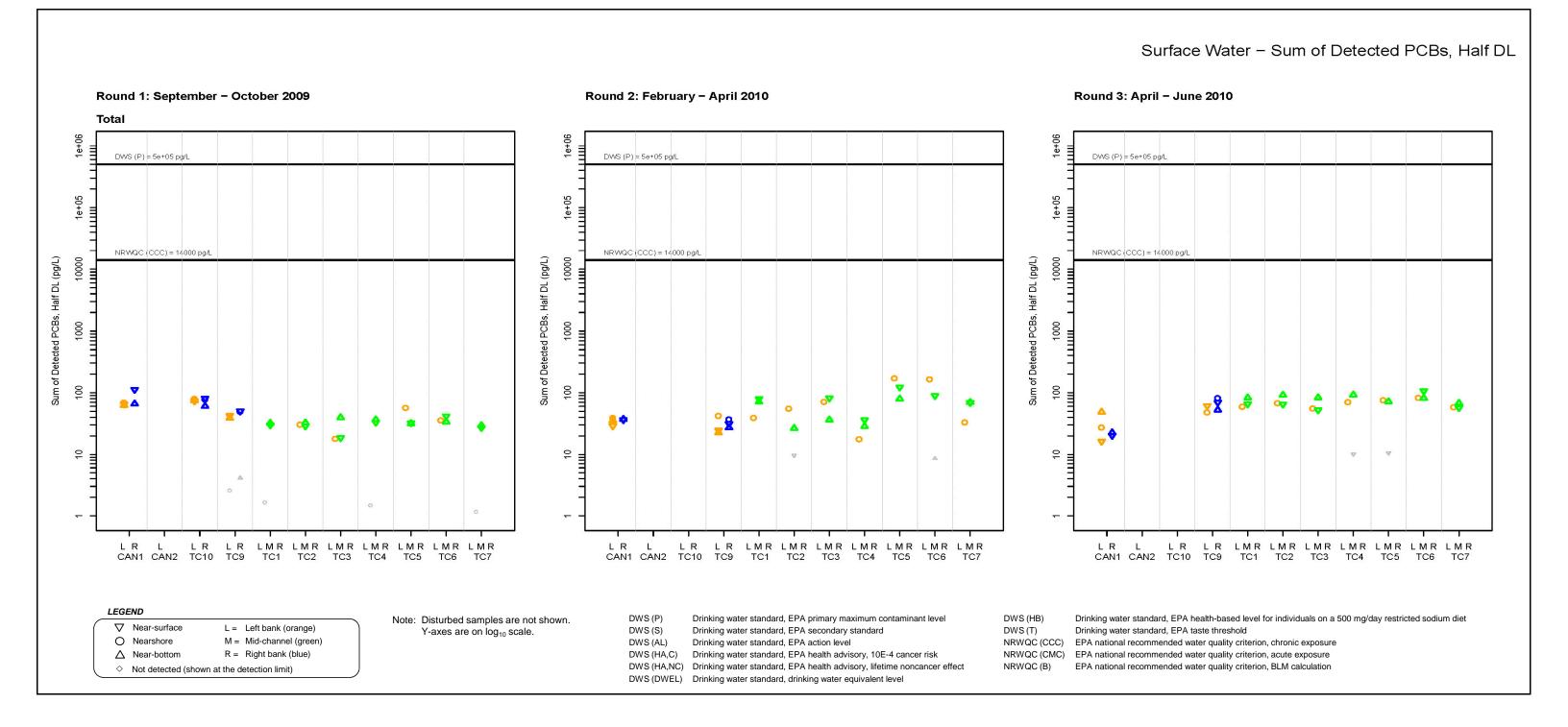


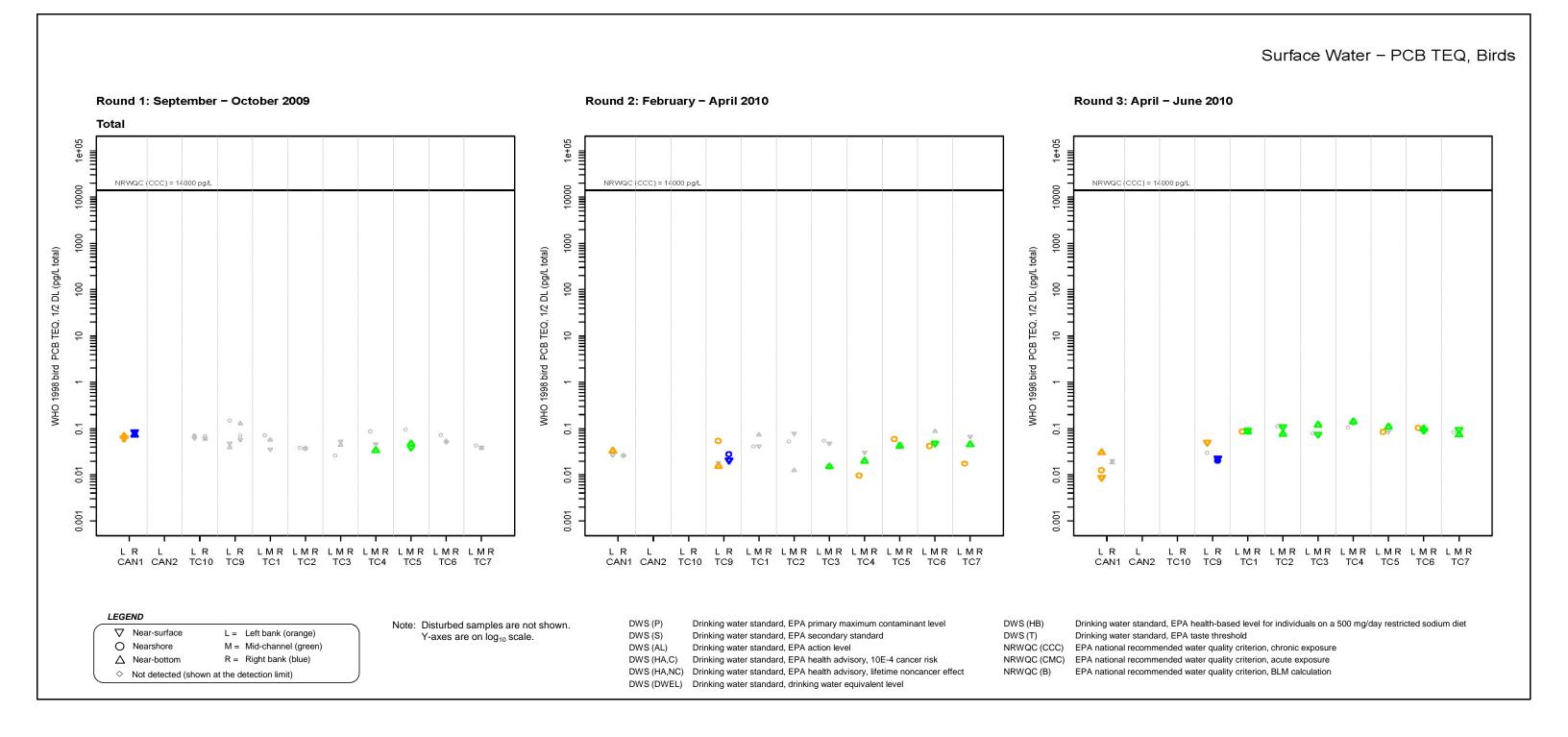


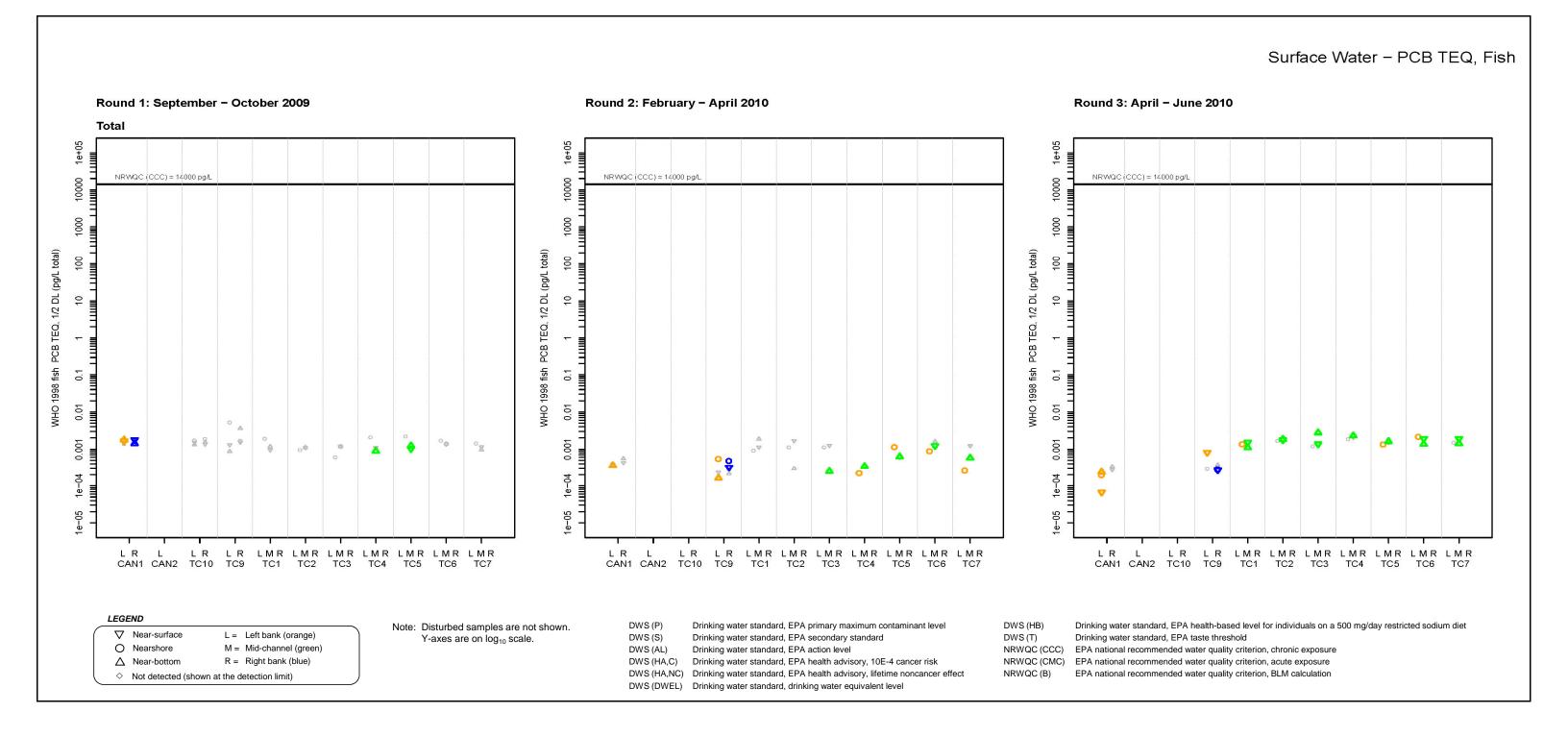


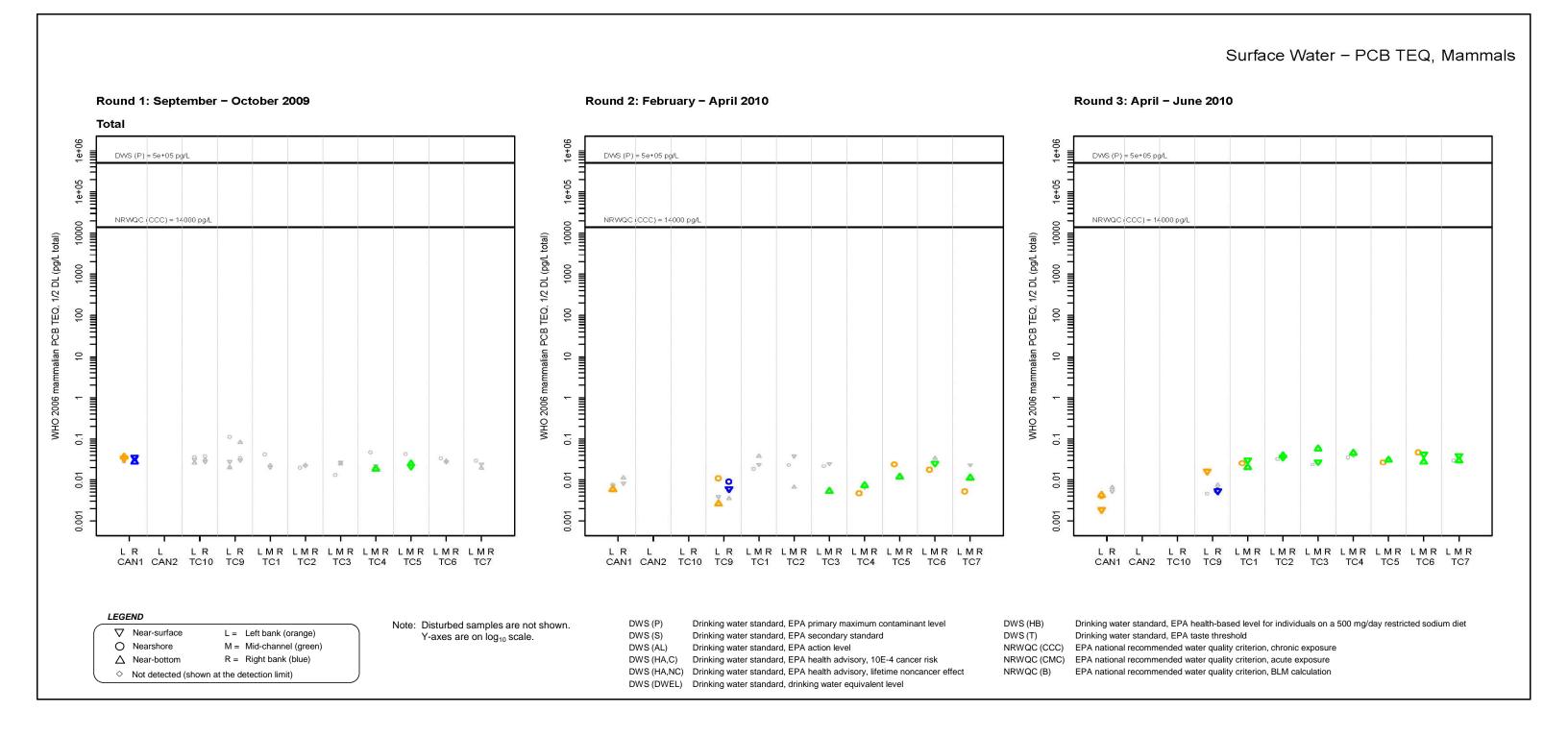


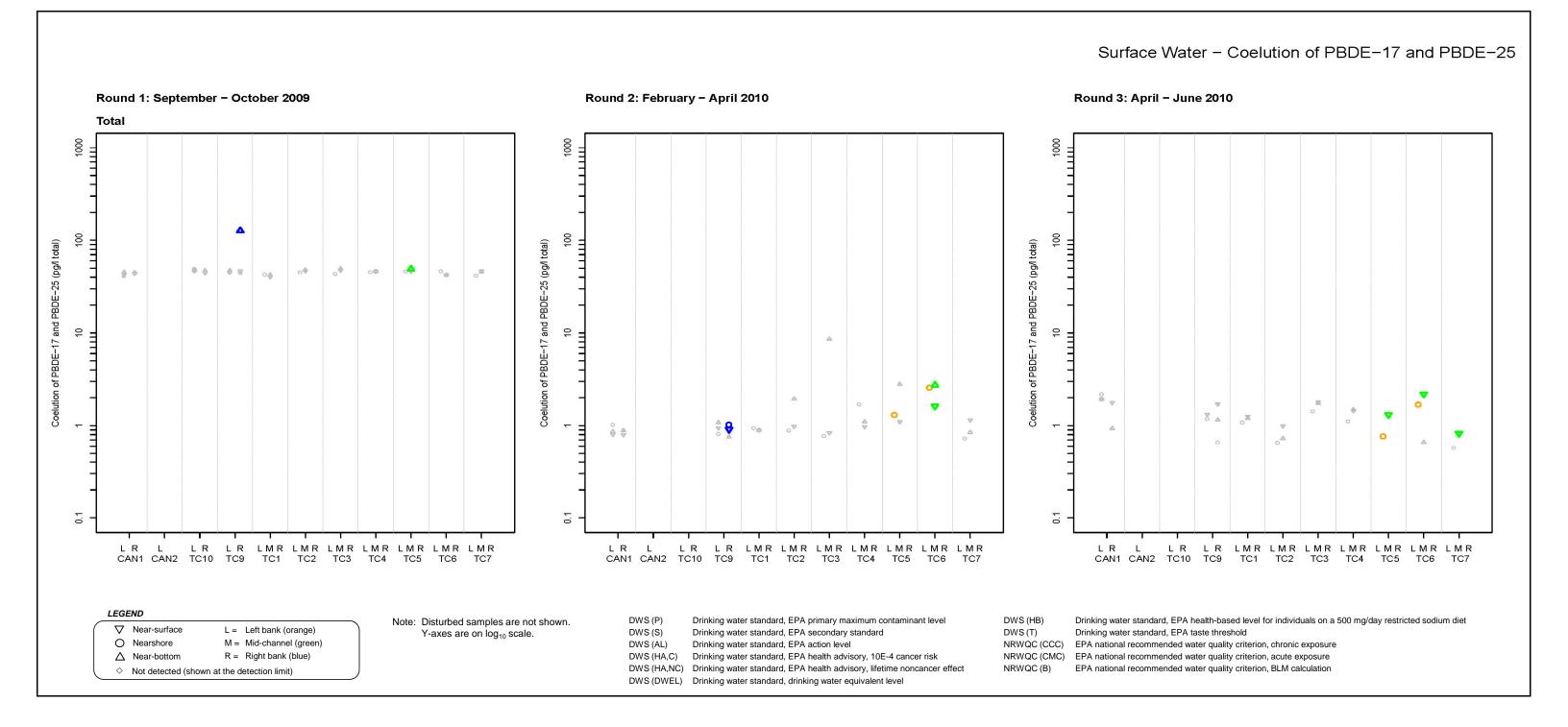


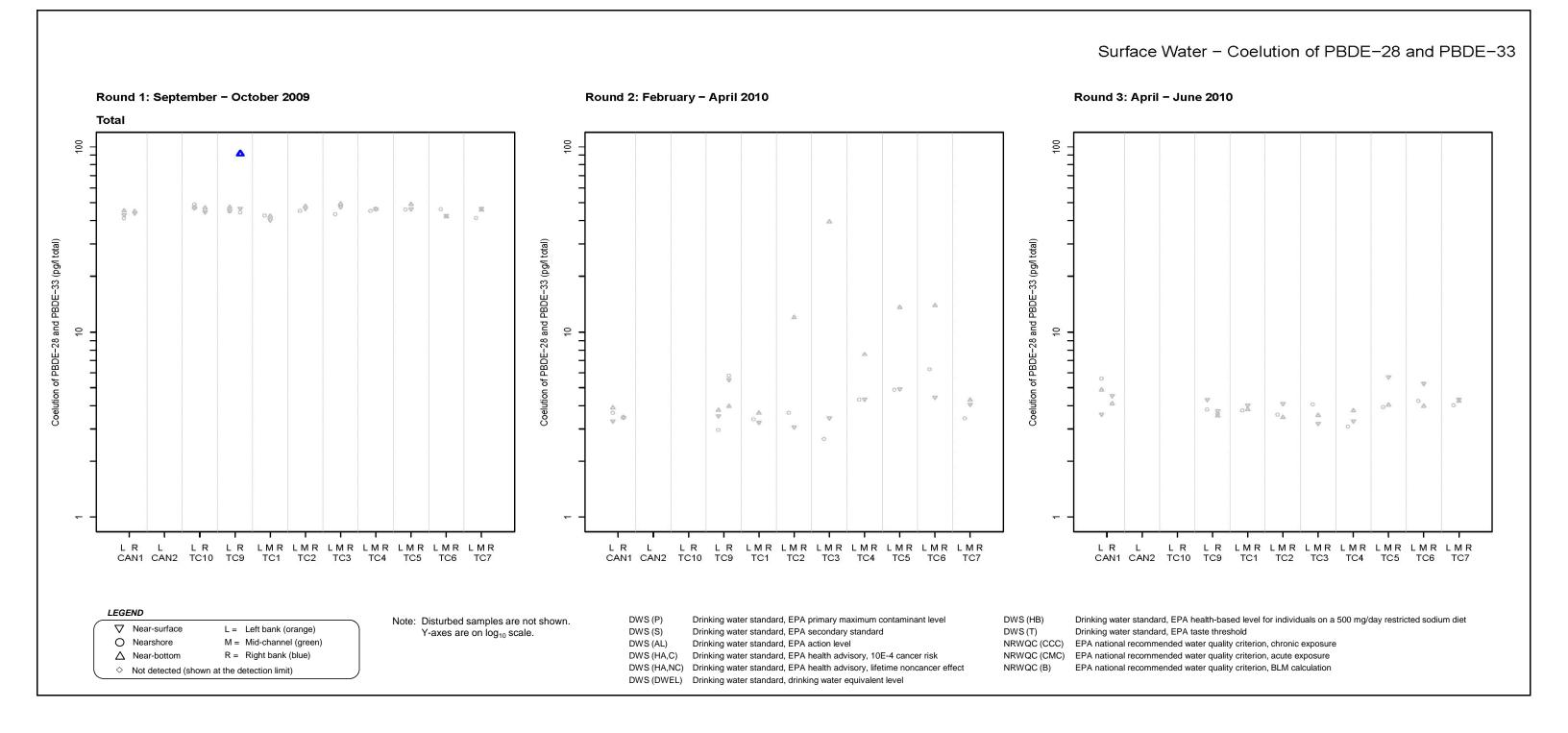


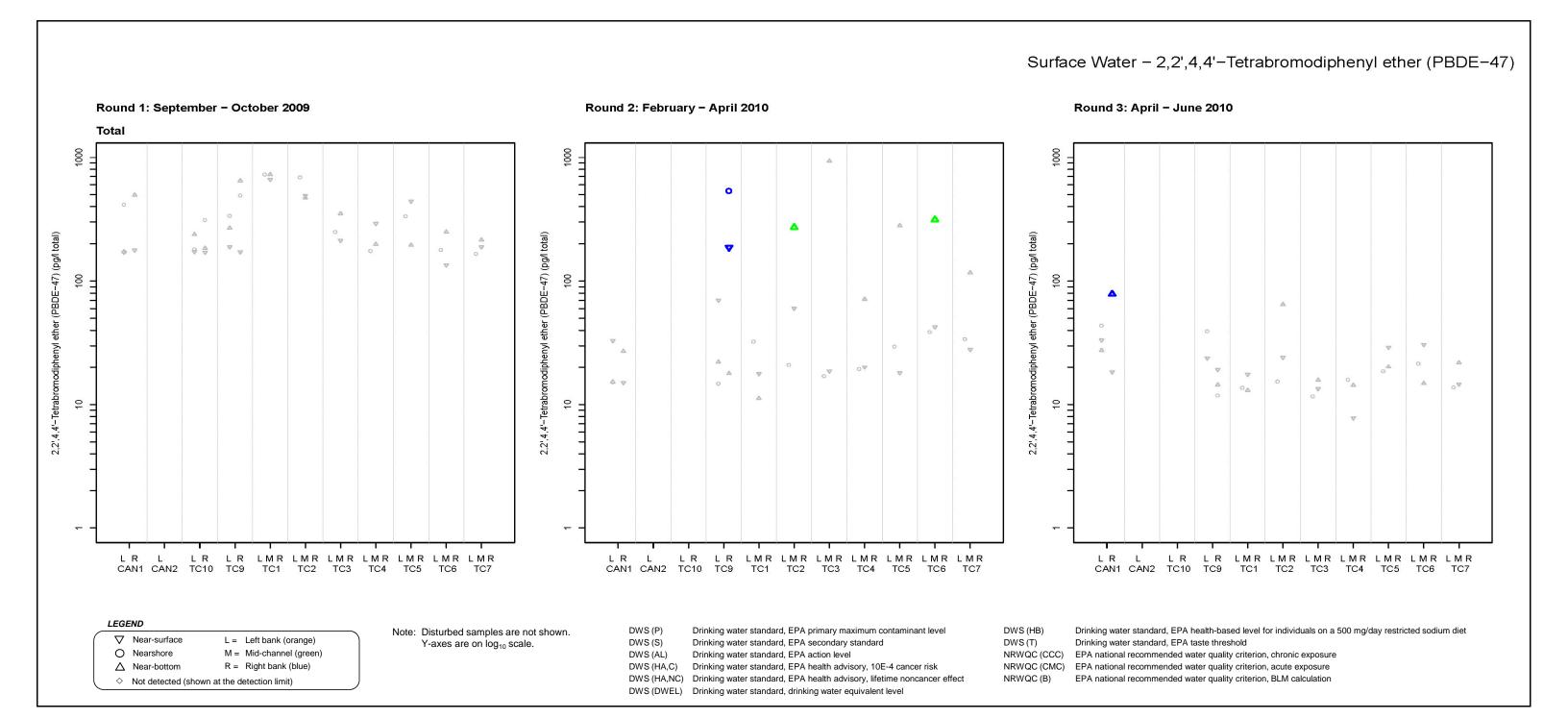


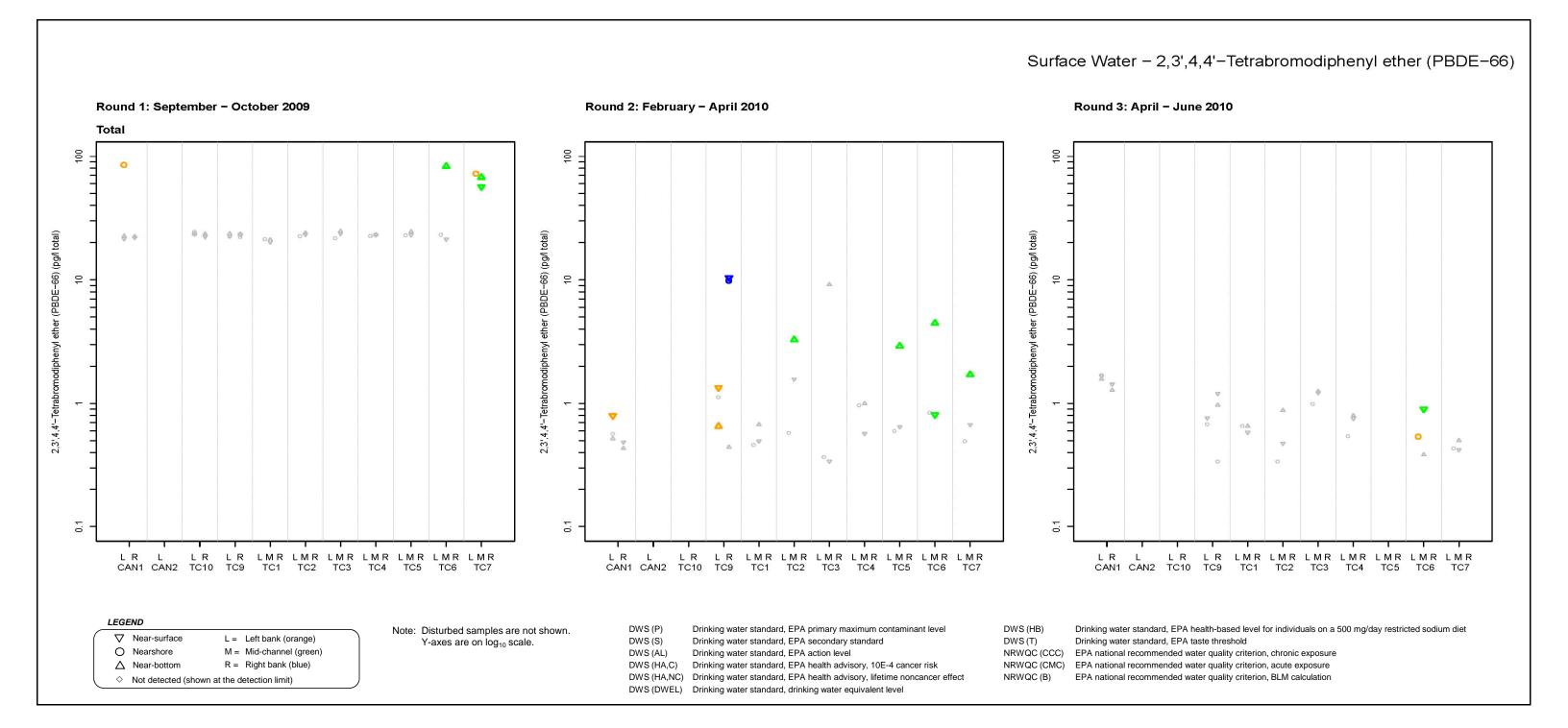












DWS (DWEL) Drinking water standard, drinking water equivalent level

Not detected (shown at the detection limit)

DWS (HA,NC) Drinking water standard, EPA health advisory, lifetime noncancer effect

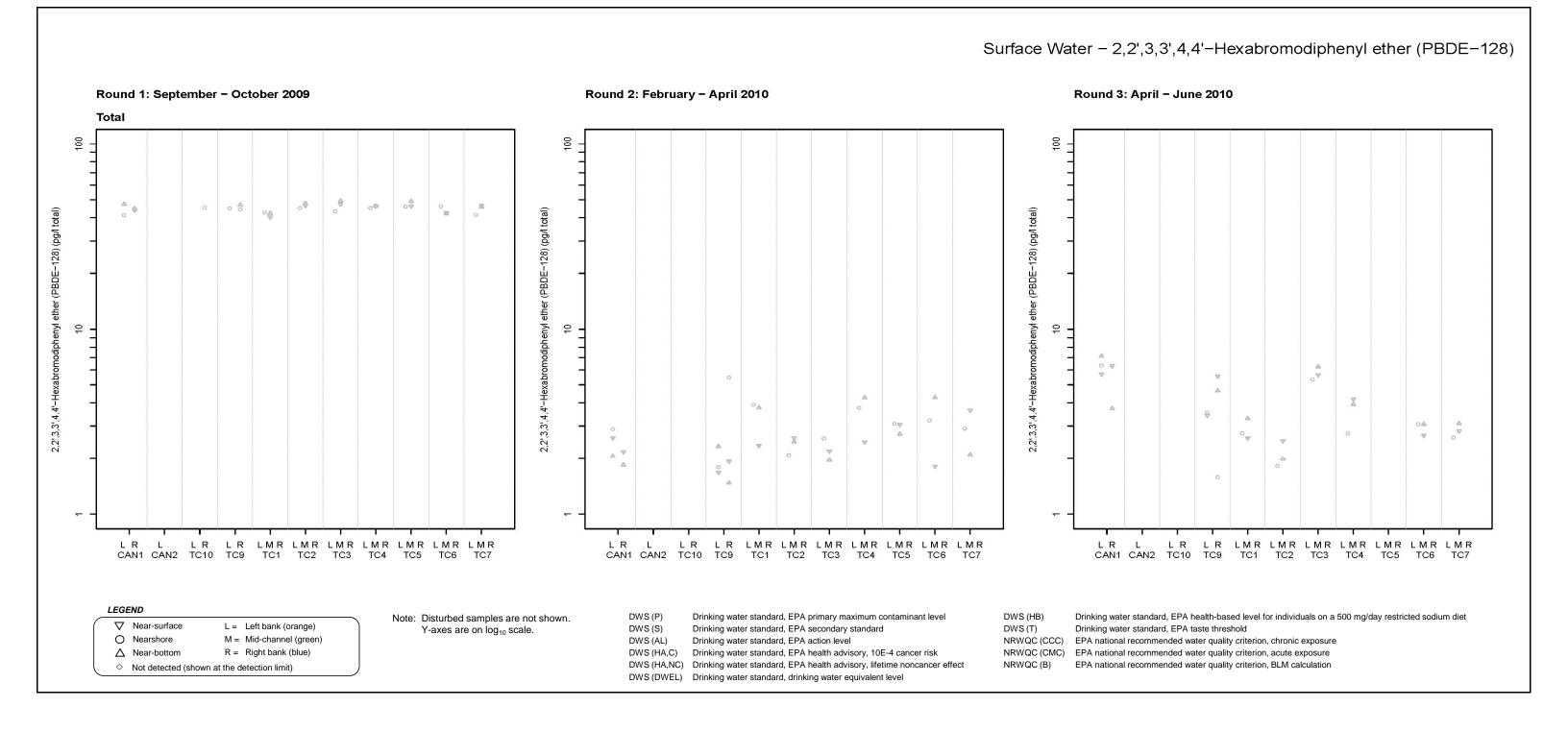
DWS (DWEL) Drinking water standard, drinking water equivalent level

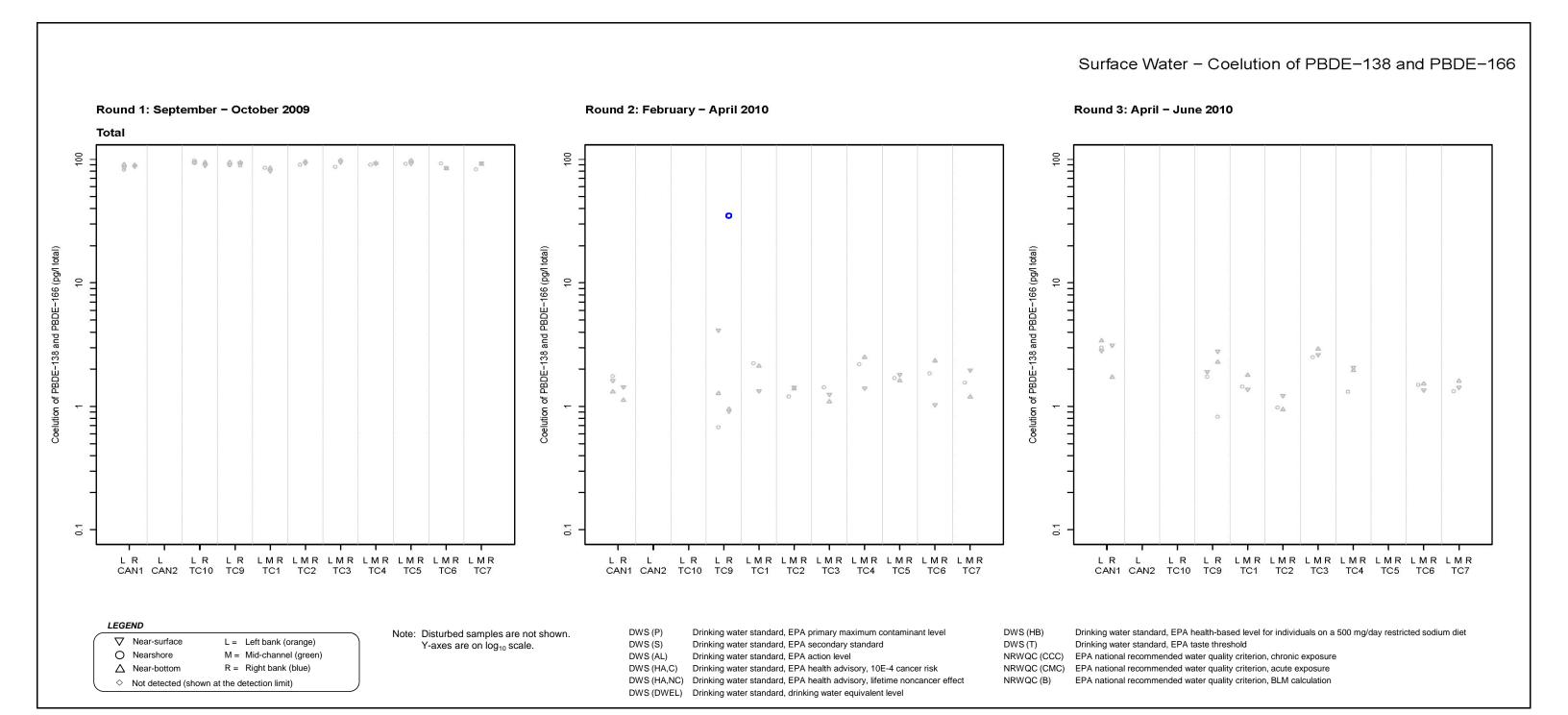
Not detected (shown at the detection limit)

NRWQC (B)

EPA national recommended water quality criterion, BLM calculation

DWS (HA,NC) Drinking water standard, EPA health advisory, lifetime noncancer effect


DWS (DWEL) Drinking water standard, drinking water equivalent level


Not detected (shown at the detection limit)

NRWQC (B)

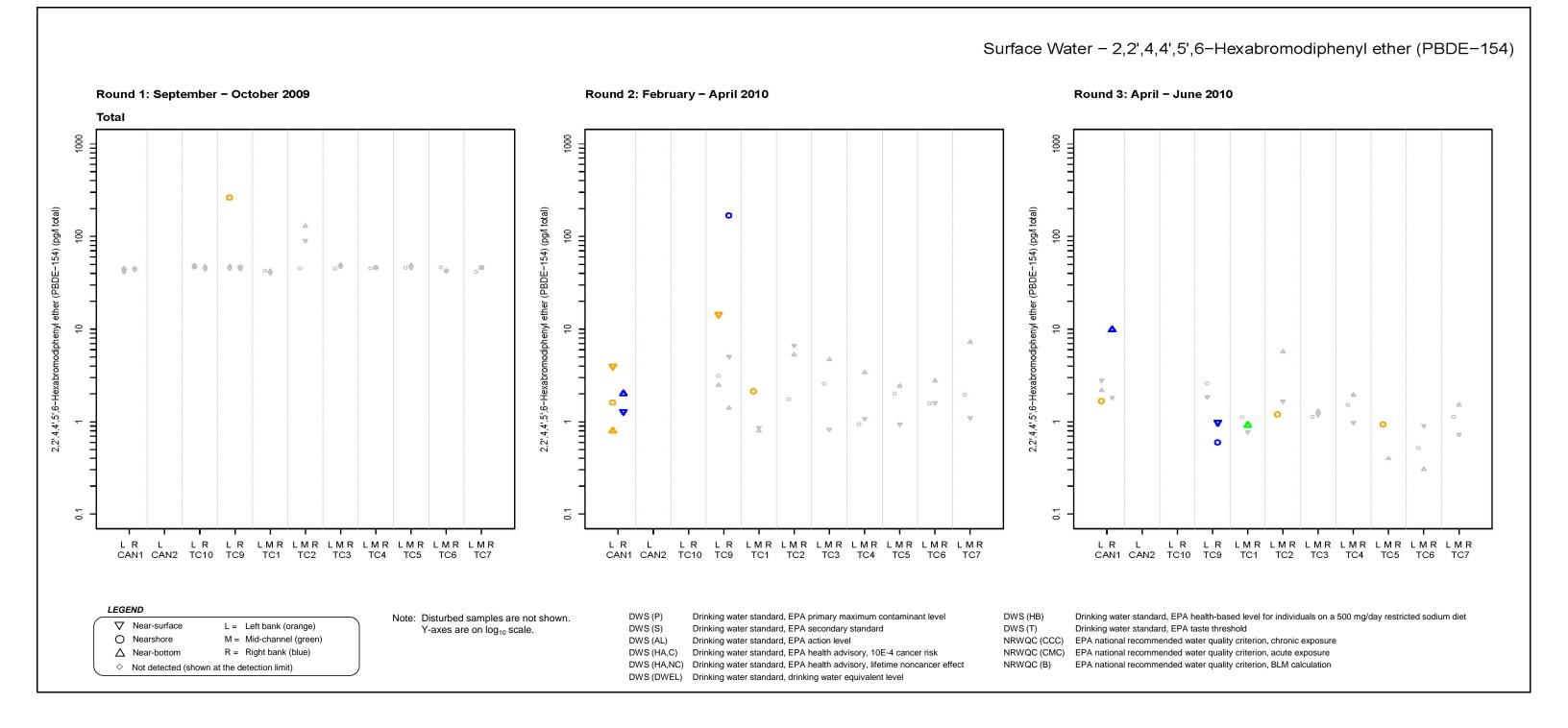
EPA national recommended water quality criterion, BLM calculation

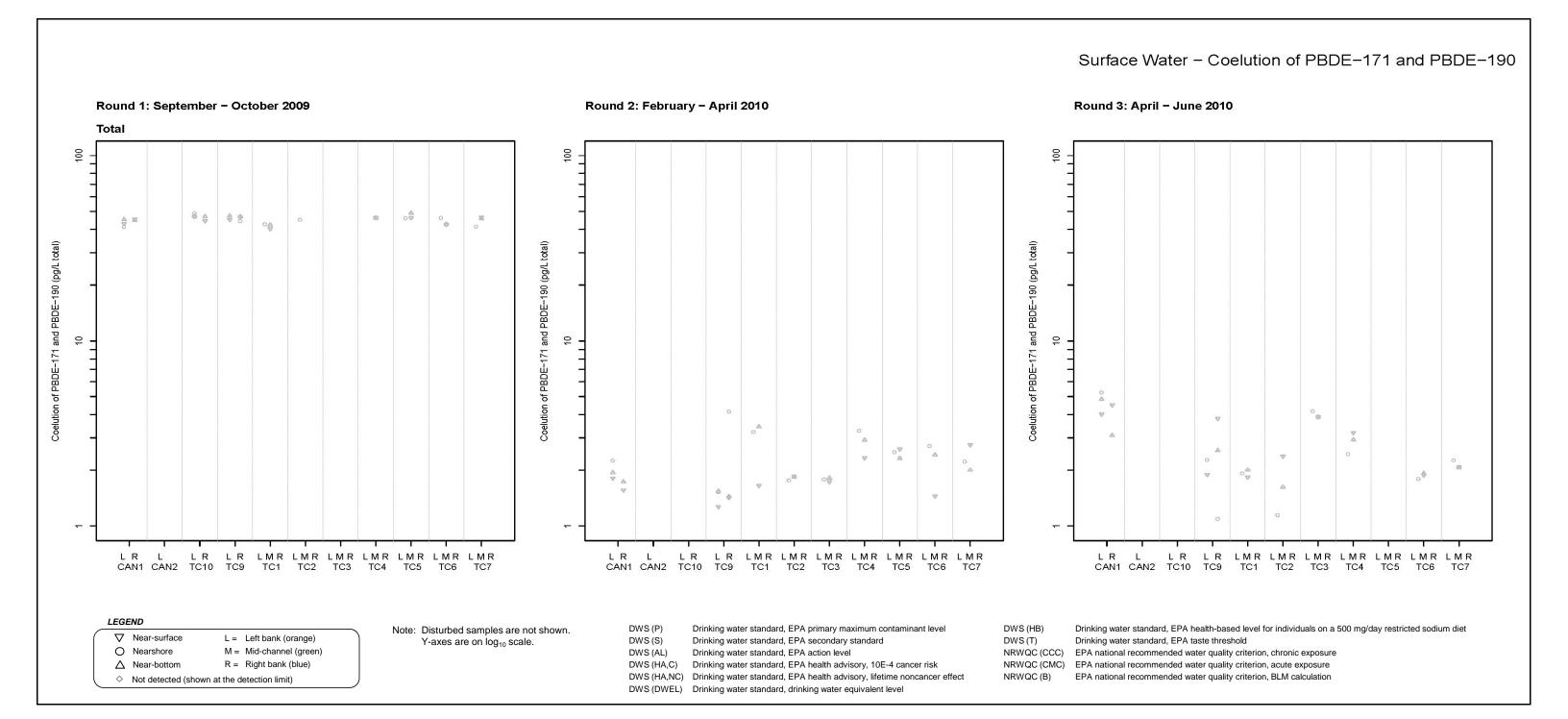
O Nearshore M = Mid-channel (green) DWS (AL) Drinking water standard, EPA action level NRWQC (CCC) EPA national recommended water quality criterion, chronic exposure R = Right bank (blue) Drinking water standard, EPA health advisory, 10E-4 cancer risk NRWQC (CMC) EPA national recommended water quality criterion, acute exposure DWS (HA,NC) Drinking water standard, EPA health advisory, lifetime noncancer effect NRWQC (B) EPA national recommended water quality criterion, BLM calculation Not detected (shown at the detection limit) DWS (DWEL) Drinking water standard, drinking water equivalent level

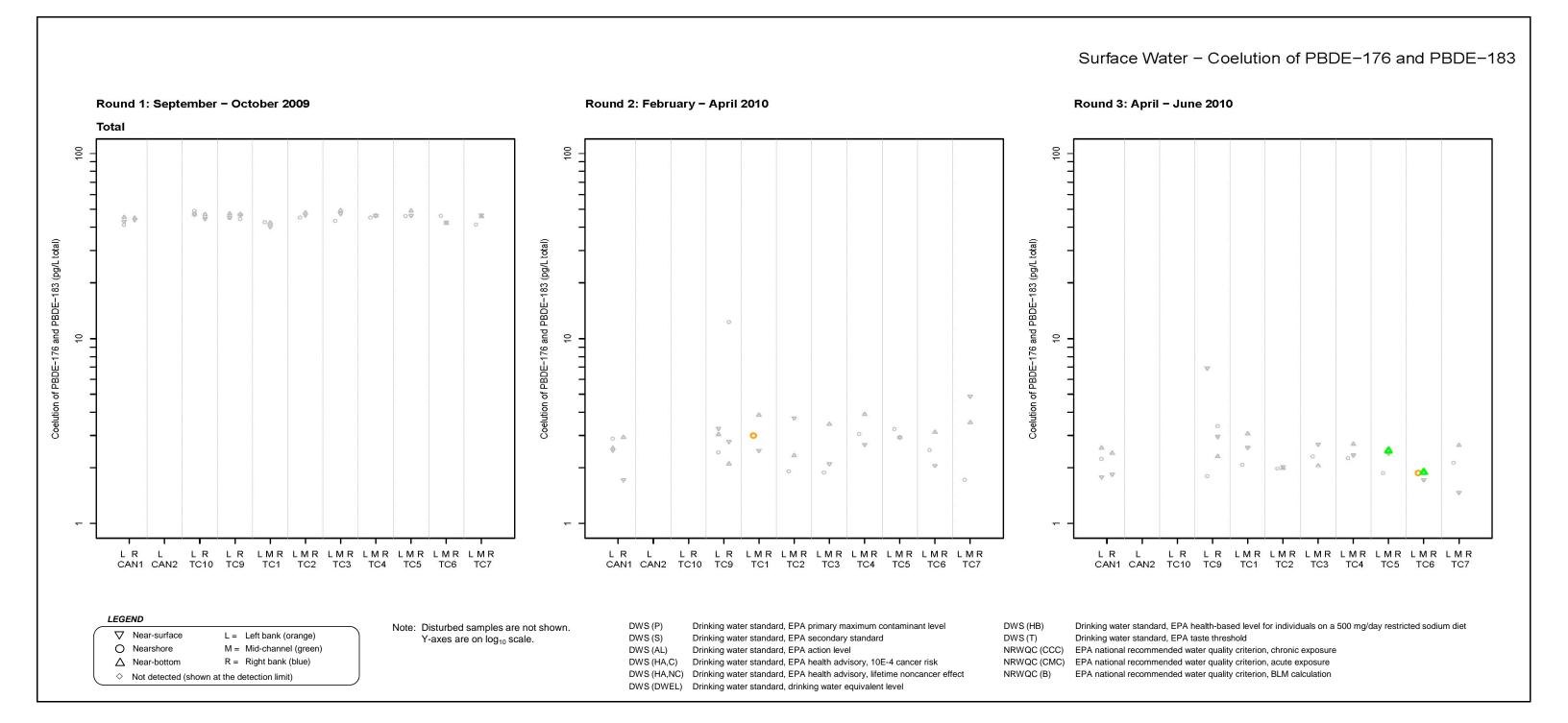
Drinking water standard, EPA health advisory, 10E-4 cancer risk

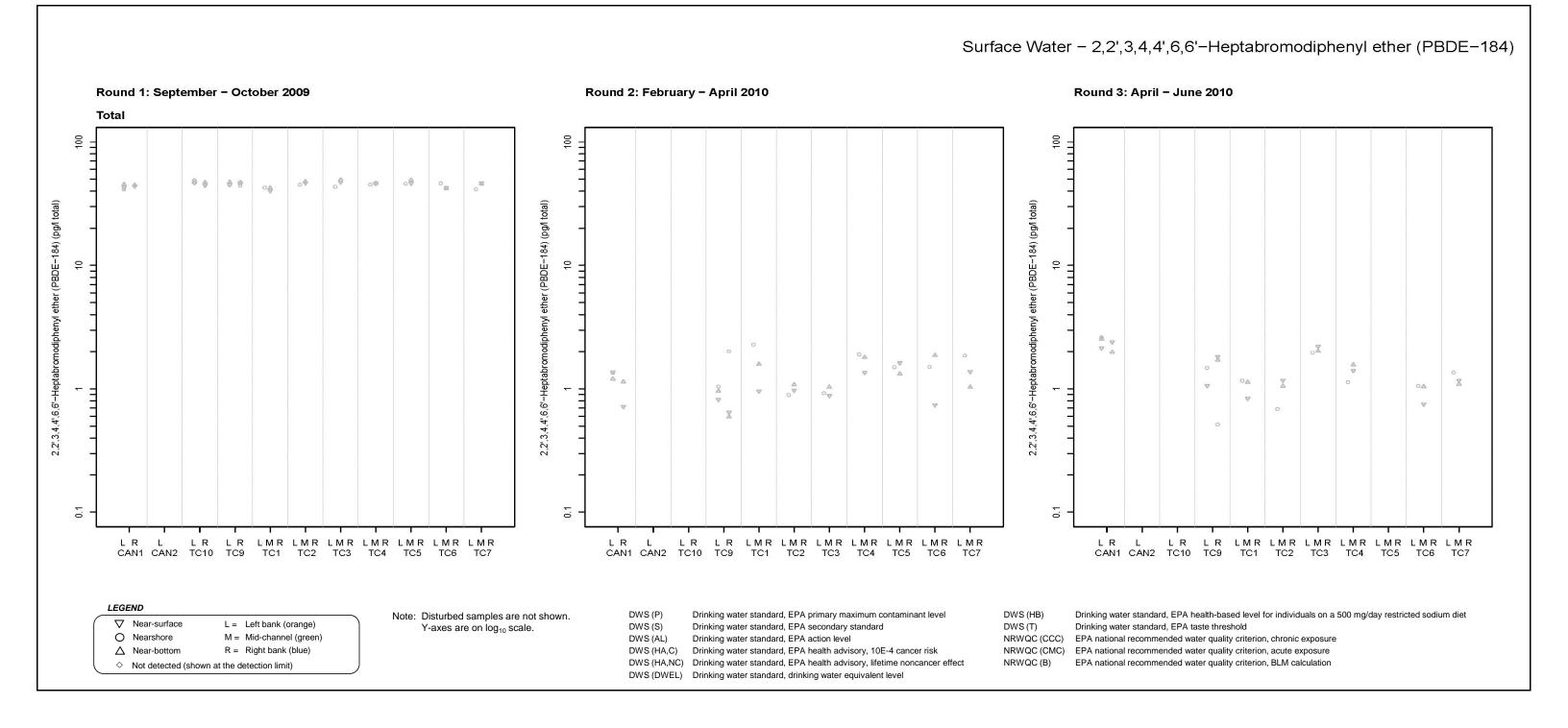
DWS (HA,NC) Drinking water standard, EPA health advisory, lifetime noncancer effect

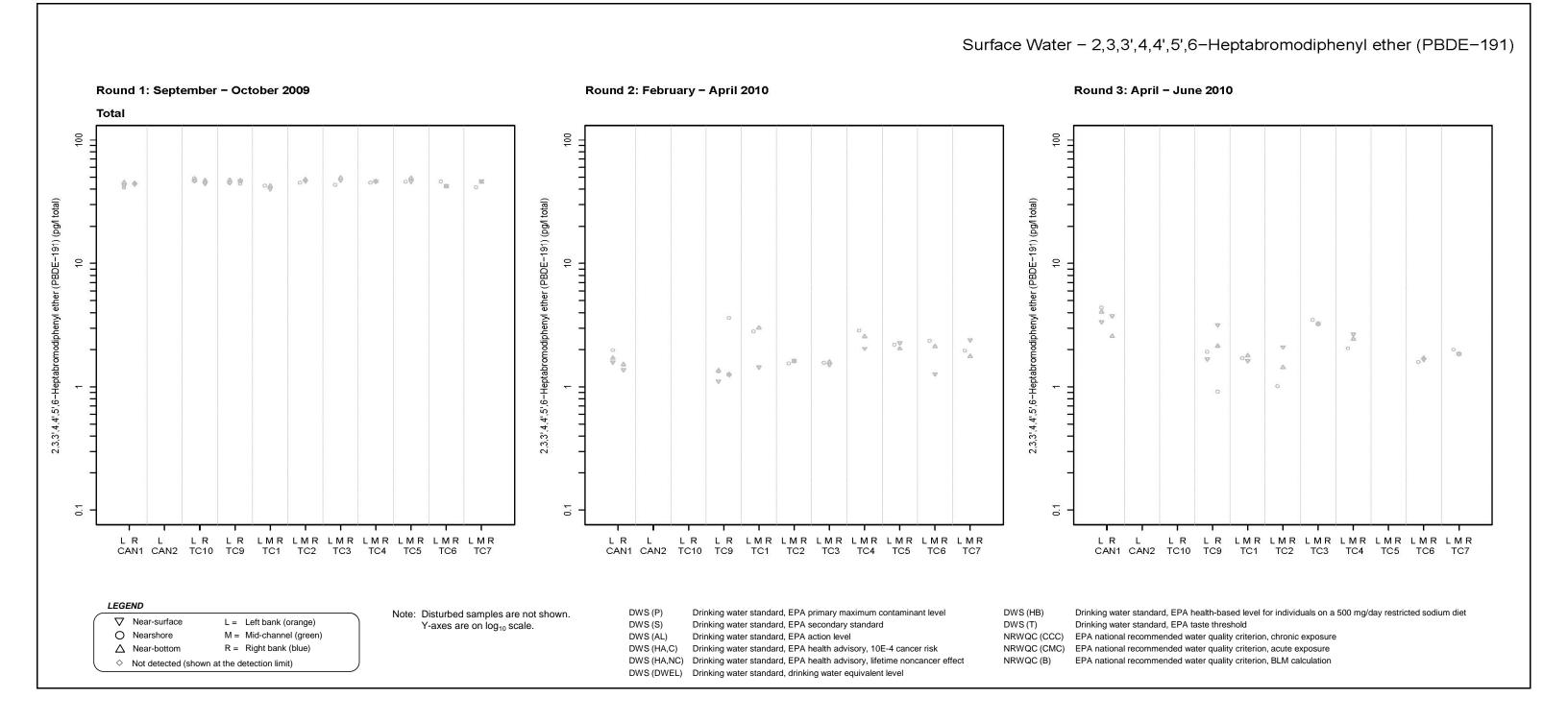
DWS (DWEL) Drinking water standard, drinking water equivalent level

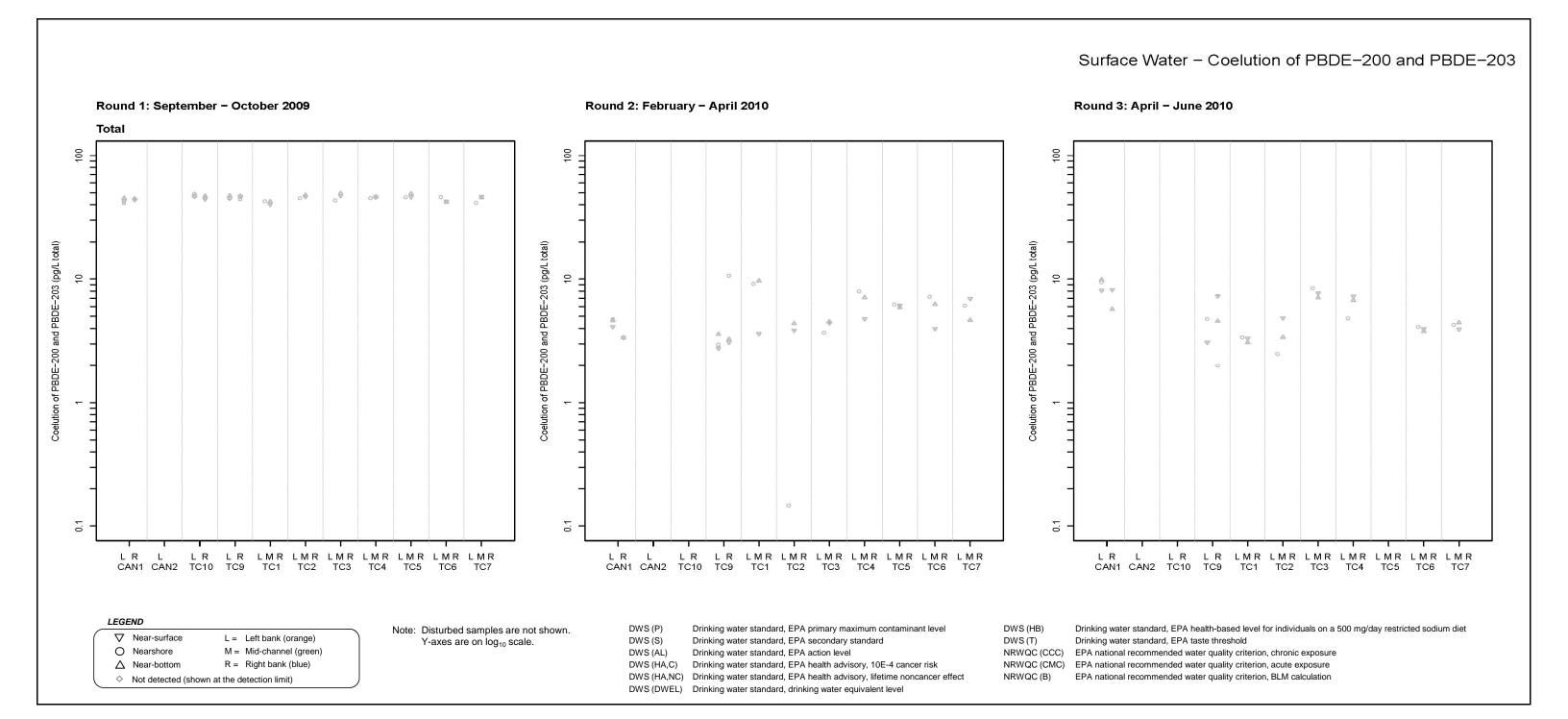

NRWQC (CMC) EPA national recommended water quality criterion, acute exposure

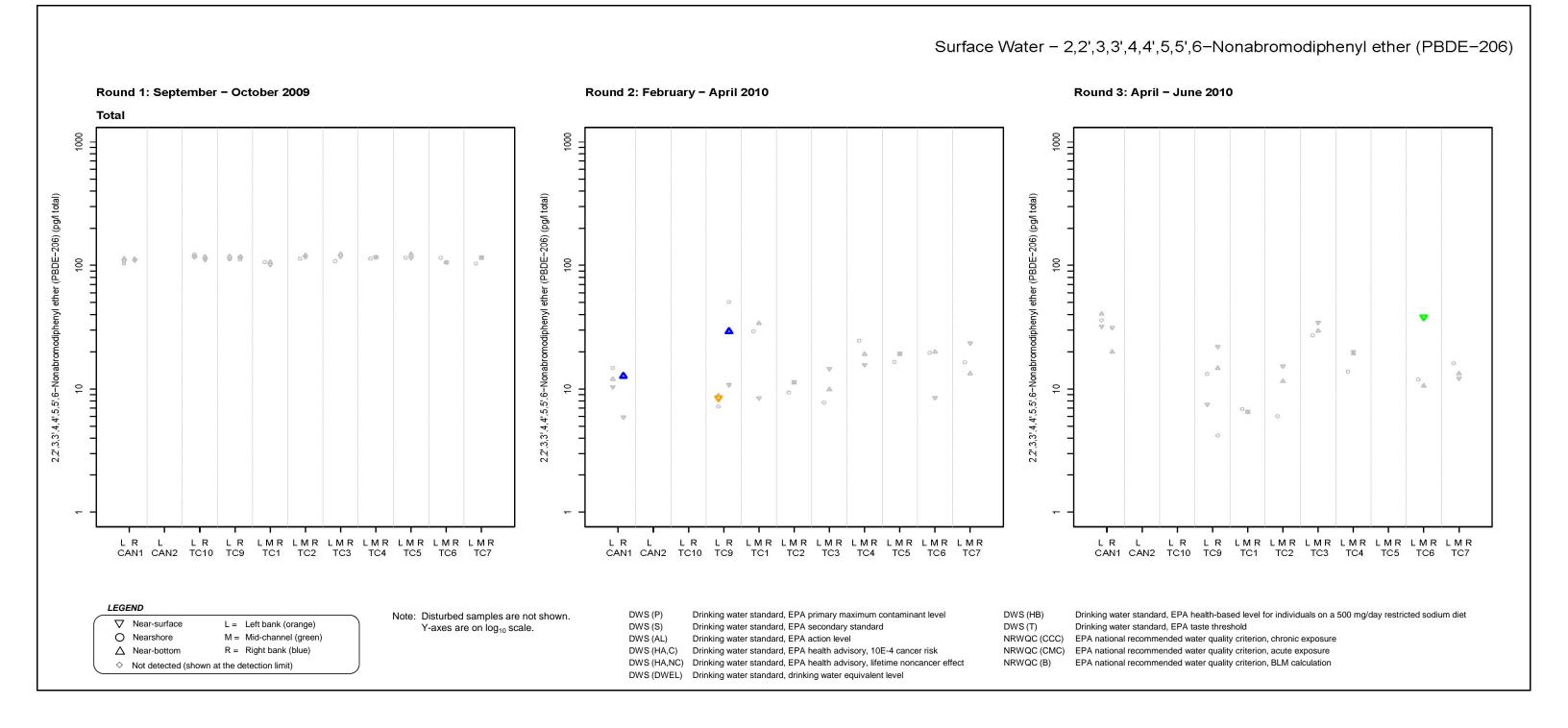

EPA national recommended water quality criterion, BLM calculation


NRWQC (B)

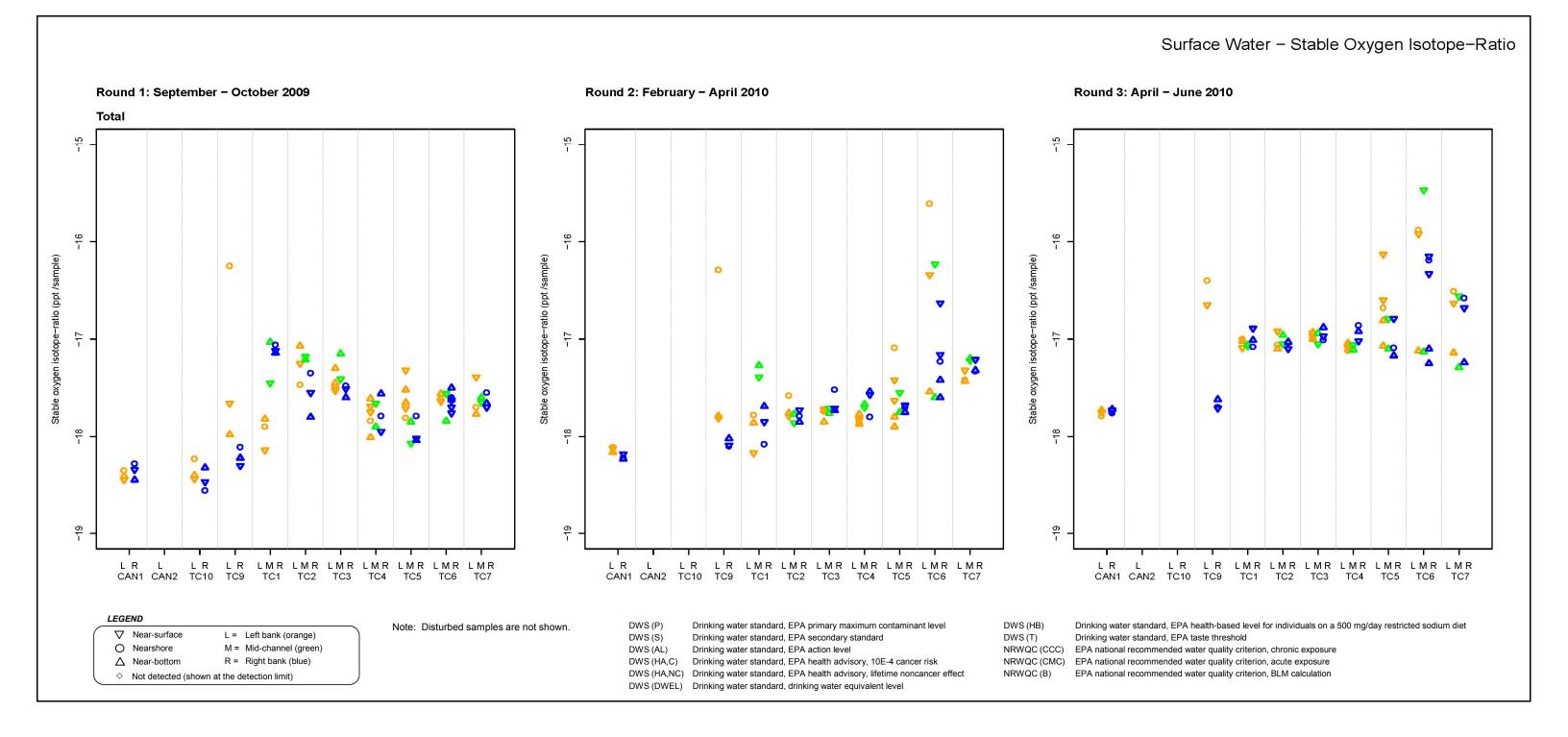

Not detected (shown at the detection limit)

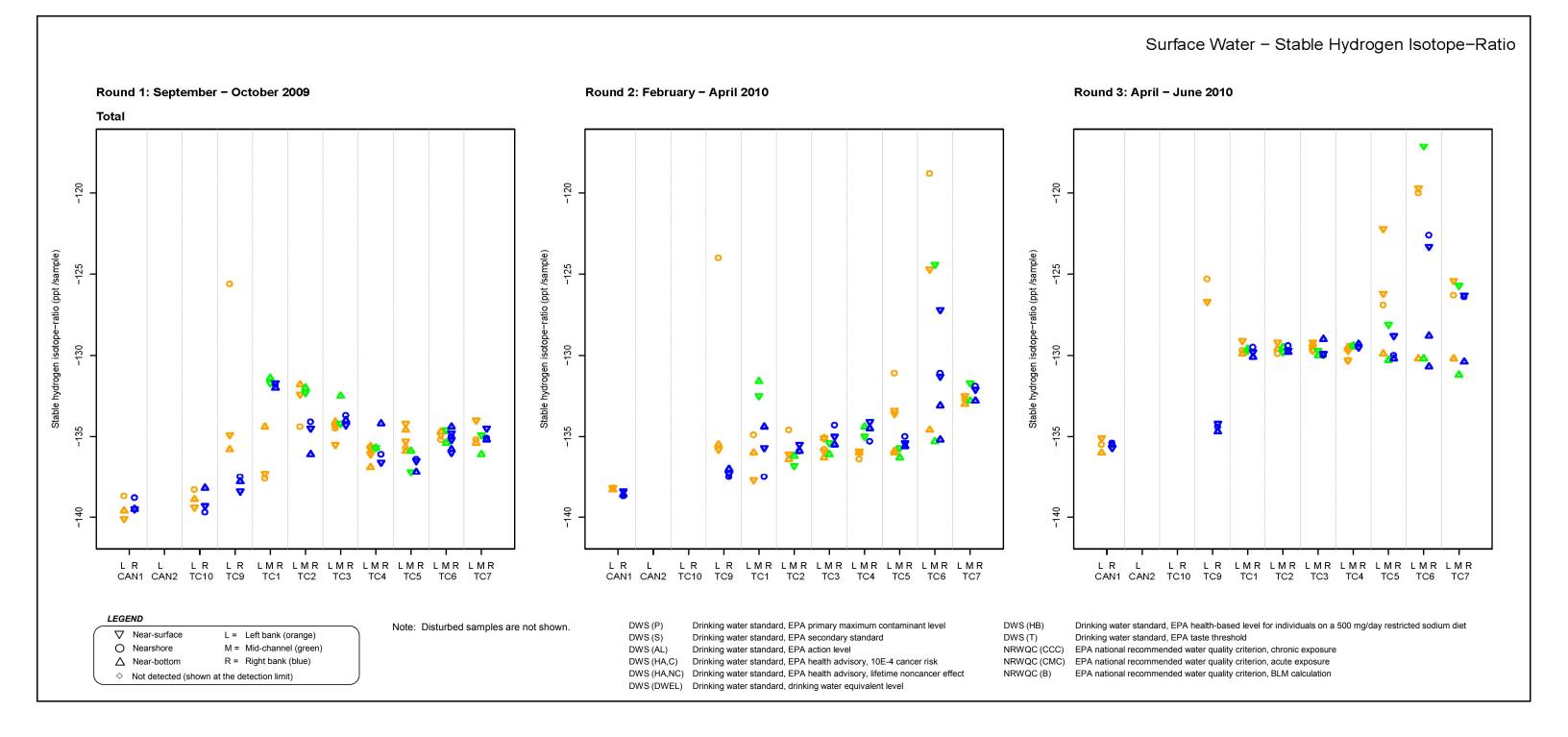

R = Right bank (blue)



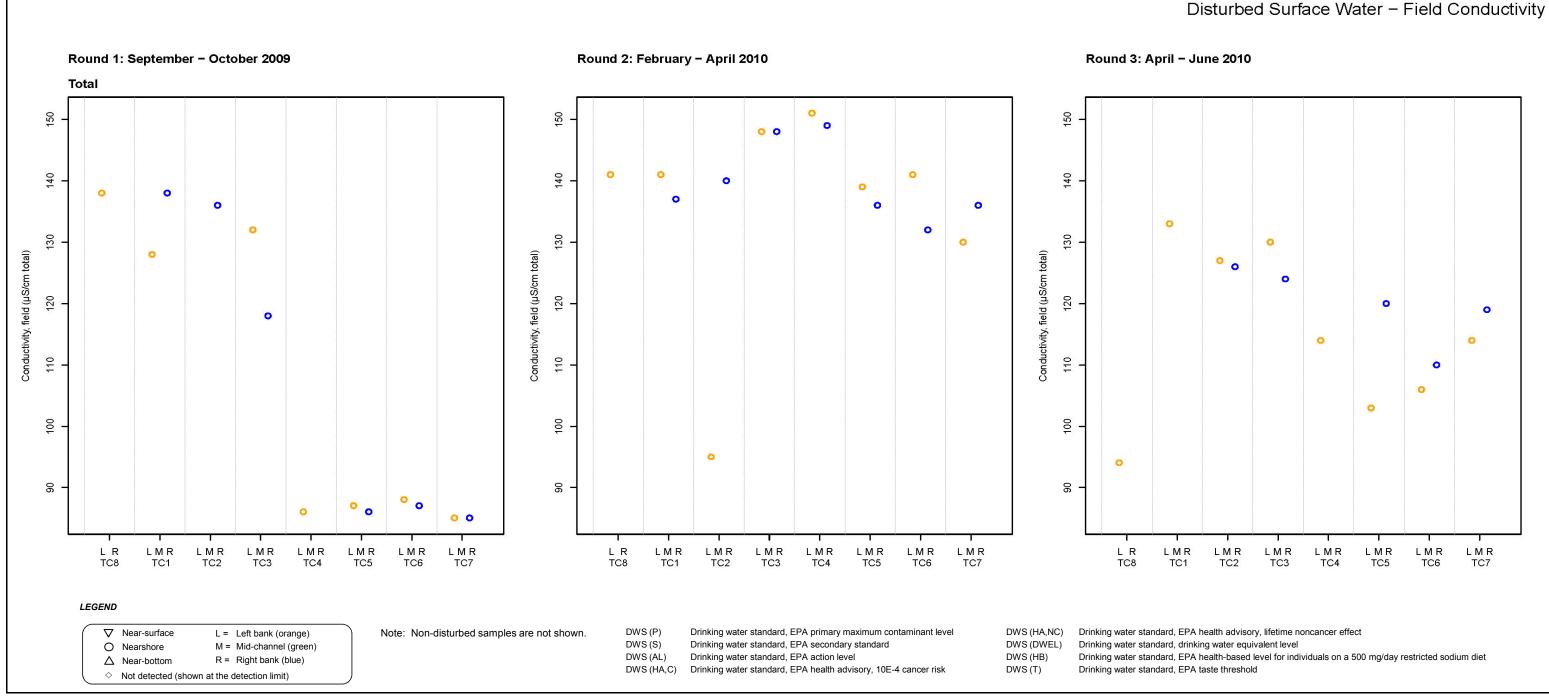


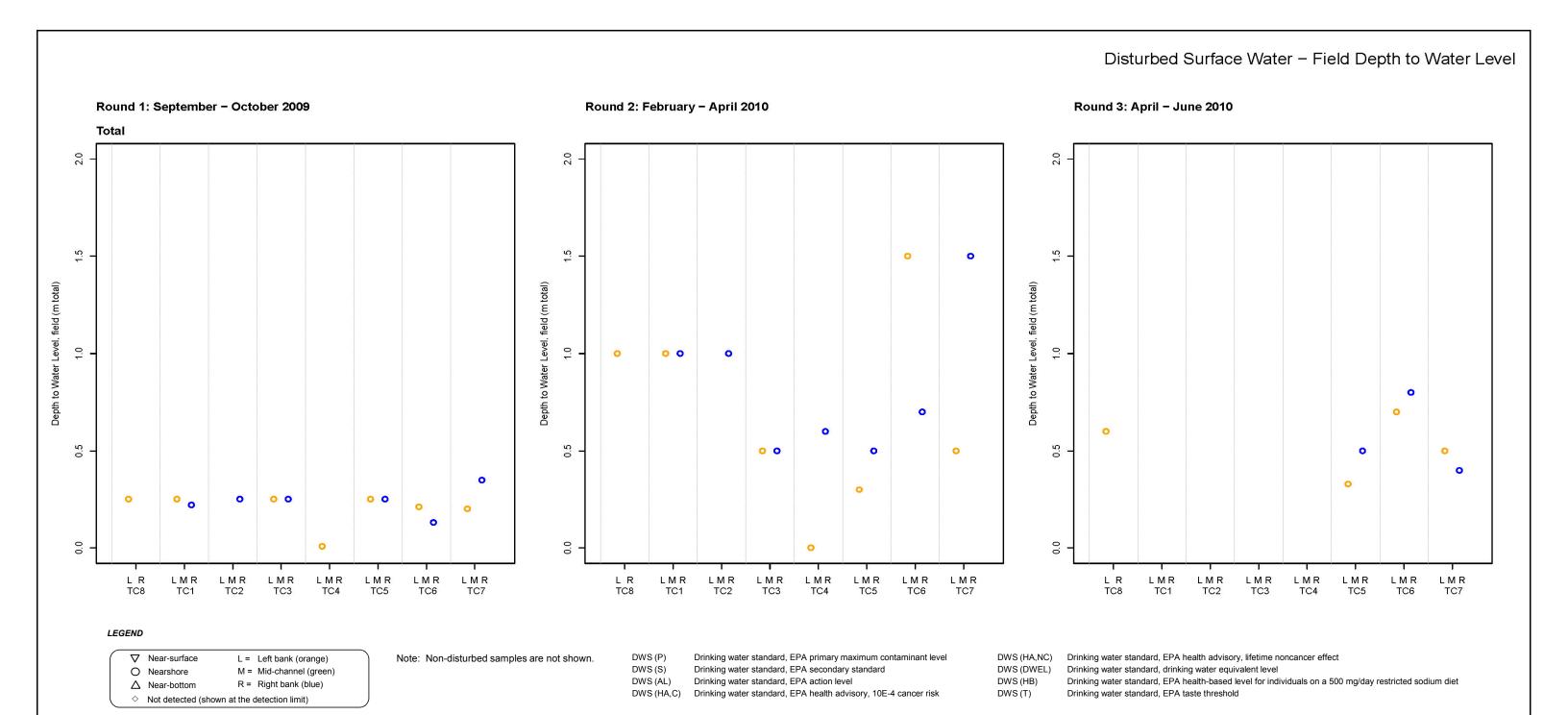
Surface Water - Decabromodiphenyl ether (PBDE-209) Round 1: September - October 2009 Round 2: February - April 2010 Round 3: April - June 2010 Total Decabromodiphenyl ether (PBDE-209) (pg/l total) ê **-**9 9 LR L LR LR LMR LMR LMR LMR LMR LMR LMR CAN1 CAN2 TC10 TC9 TC1 TC2 TC3 TC4 TC5 TC6 TC7 LR LR LMR LMR LMR LMR LMR LMR LR LR LMR LMR LMR LMR LMR LMR CAN1 CAN2 TC10 TC9 TC1 TC2 TC3 TC4 TC5 TC6 TC7 CAN1 CAN2 TC10 TC9 TC1 TC2 TC3 TC4 TC5 TC6 TC7 LEGEND DWS (P) Drinking water standard, EPA primary maximum contaminant level DWS (HB) Drinking water standard, EPA health-based level for individuals on a 500 mg/day restricted sodium diet Note: Disturbed samples are not shown. L = Left bank (orange) Y-axes are on log₁₀ scale. DWS (S) Drinking water standard, EPA secondary standard DWS (T) Drinking water standard, EPA taste threshold O Nearshore M = Mid-channel (green) DWS (AL) Drinking water standard, EPA action level NRWQC (CCC) EPA national recommended water quality criterion, chronic exposure R = Right bank (blue) Drinking water standard, EPA health advisory, 10E-4 cancer risk NRWQC (CMC) EPA national recommended water quality criterion, acute exposure


DWS (HA,NC) Drinking water standard, EPA health advisory, lifetime noncancer effect


DWS (DWEL) Drinking water standard, drinking water equivalent level

Not detected (shown at the detection limit)


NRWQC (B)


EPA national recommended water quality criterion, BLM calculation

Disturbed Surface Water - Field Conductivity

Disturbed Surface Water - Field Dissolved Oxygen Round 3: April - June 2010 Round 1: September - October 2009 Round 2: February - April 2010 Total 0 16 16 16 0 ° • Dissolved oxygen, field (mg/L total) oxygen, field (mg/L total) 0 0 0 12 12 0 0 0 0 0 0 10 9 10 0 0 0 0 0 0 0 0 ω 0 8 L R TC8 L R TC8 L M R TC1 L M R TC7 LMR TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC2 TC4 TC6 TC1 TC2 TC3 TC6 TC4

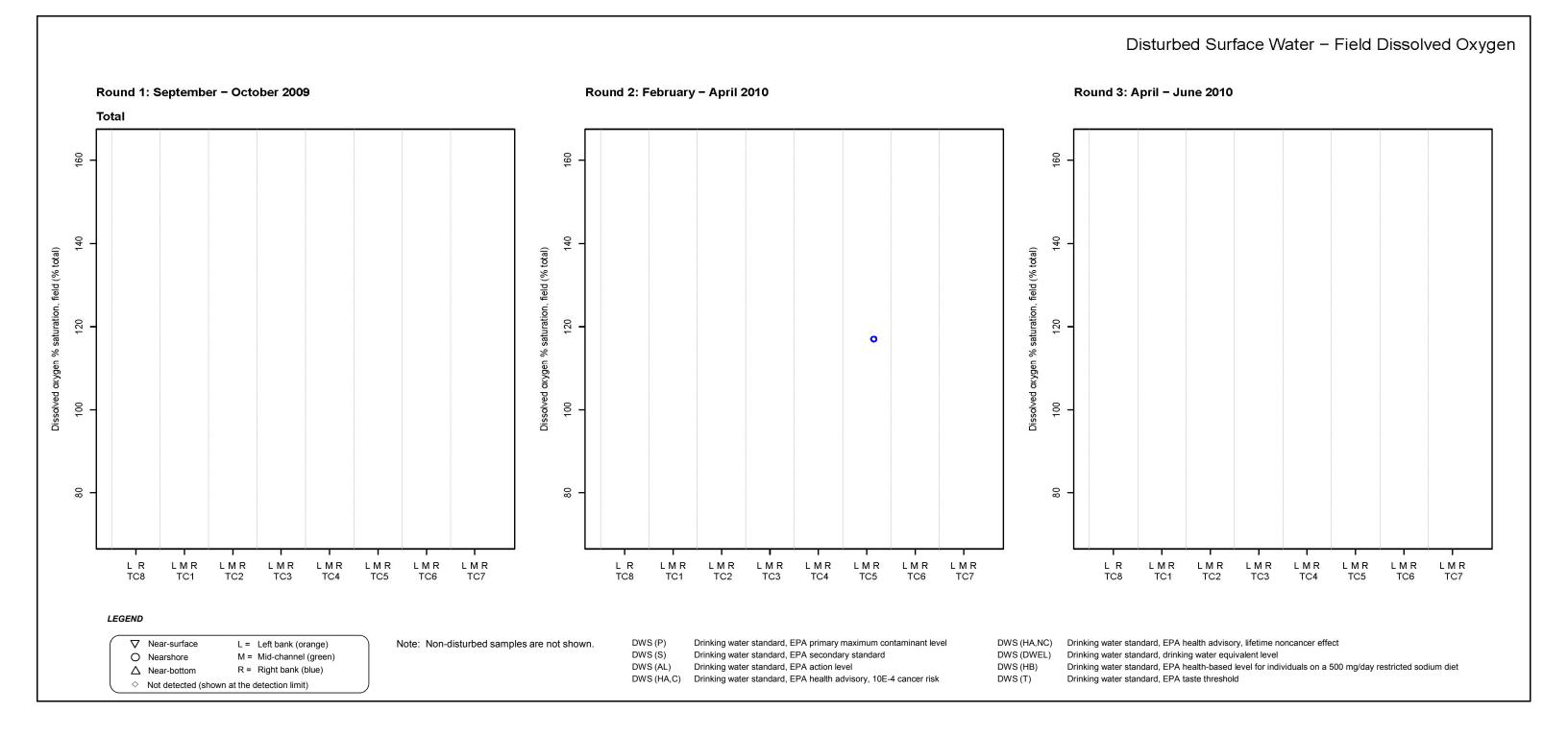
∇ Near-surface L = Left bank (orange) Nearshore M = Mid-channel (green)

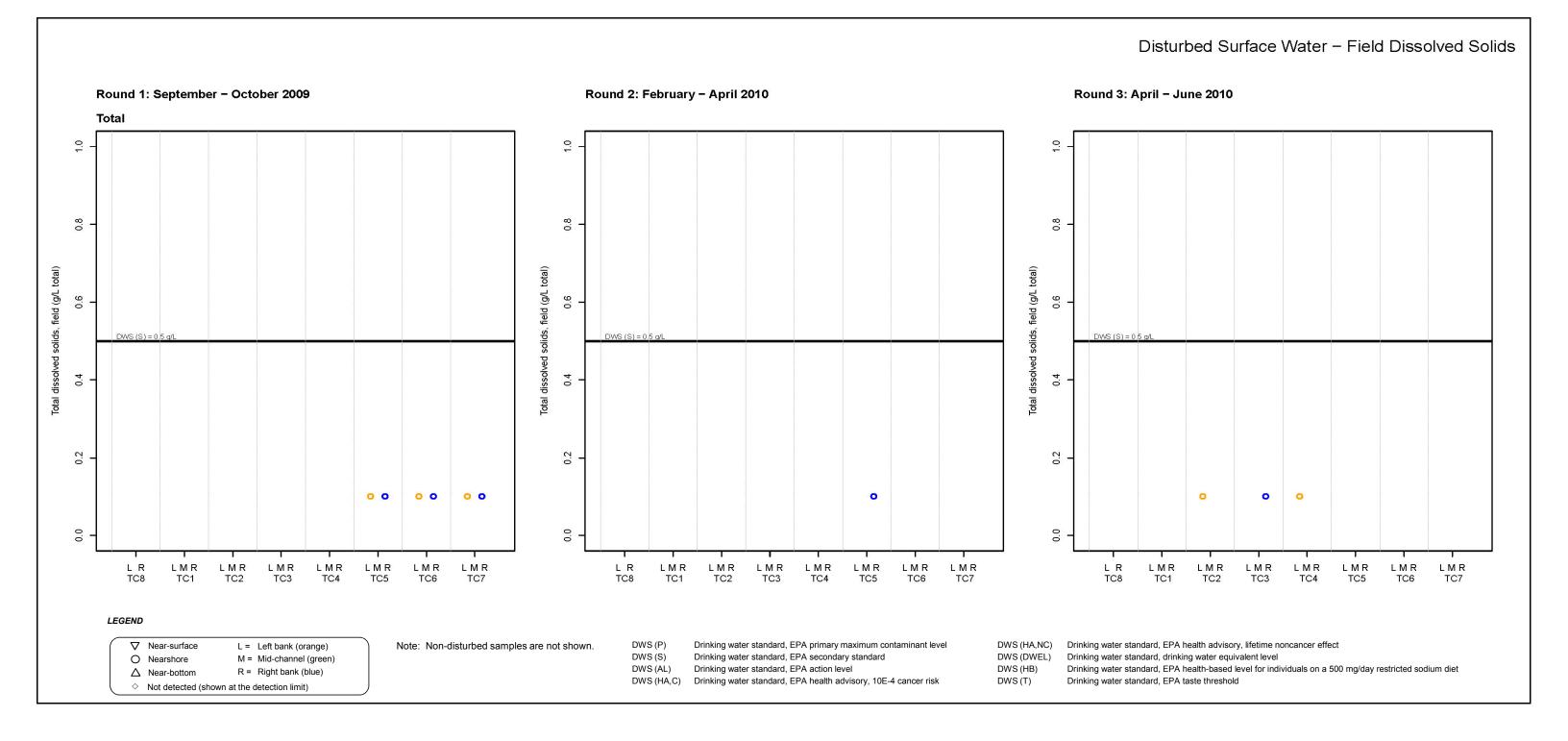
R = Right bank (blue) △ Near-bottom

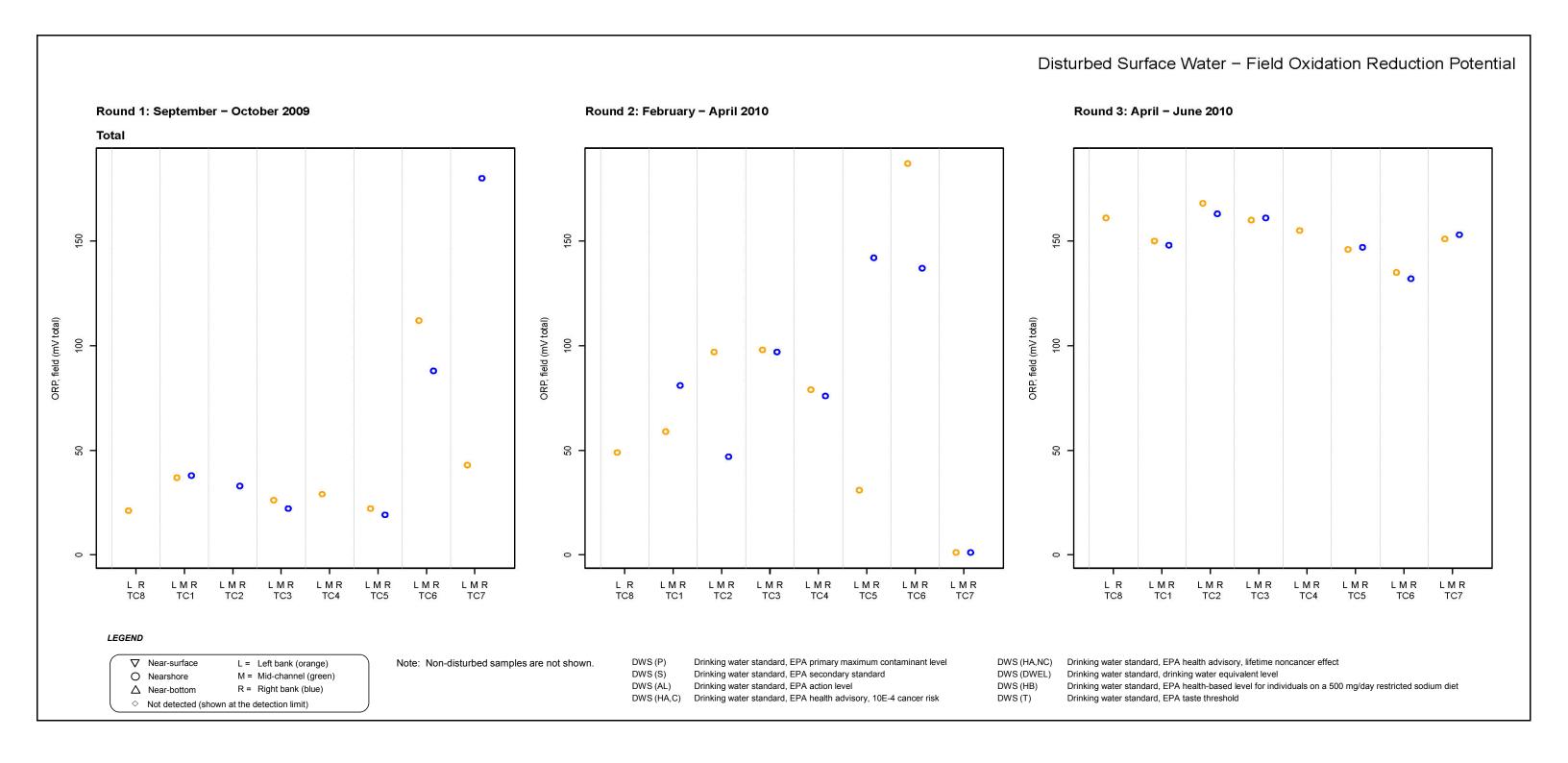
Not detected (shown at the detection limit)

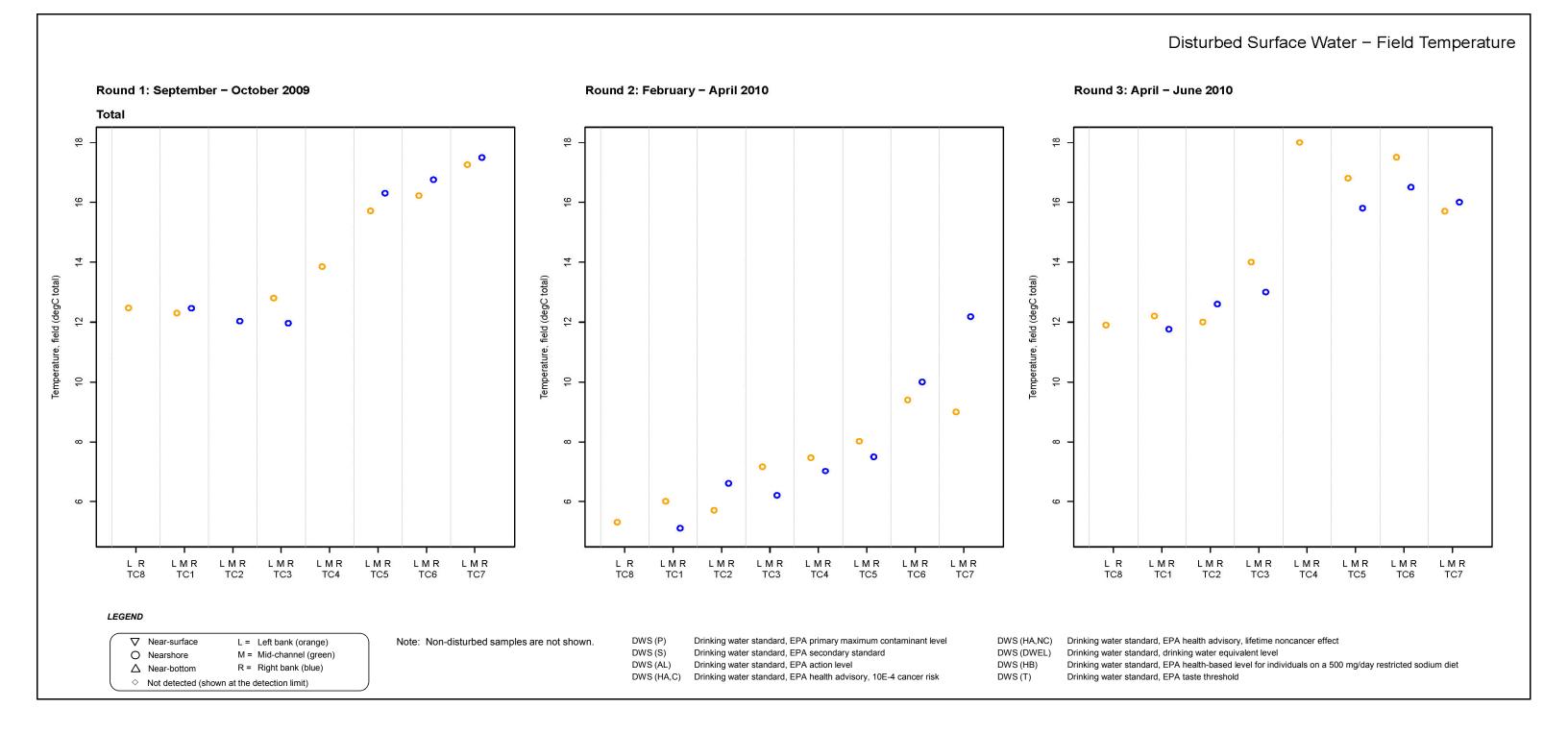
Note: Non-disturbed samples are not shown.

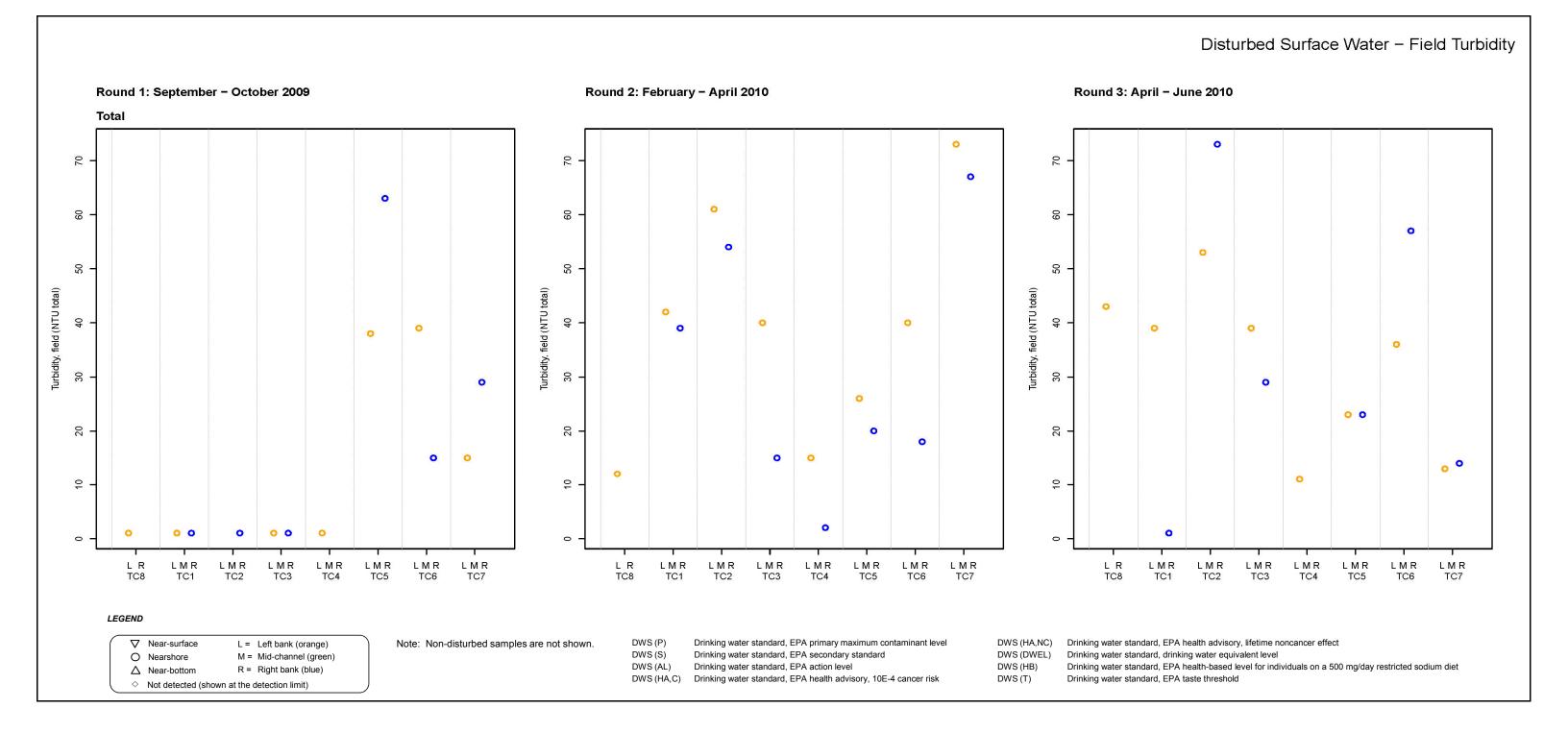
Drinking water standard, EPA primary maximum contaminant level DWS (P) DWS(S) Drinking water standard, EPA secondary standard

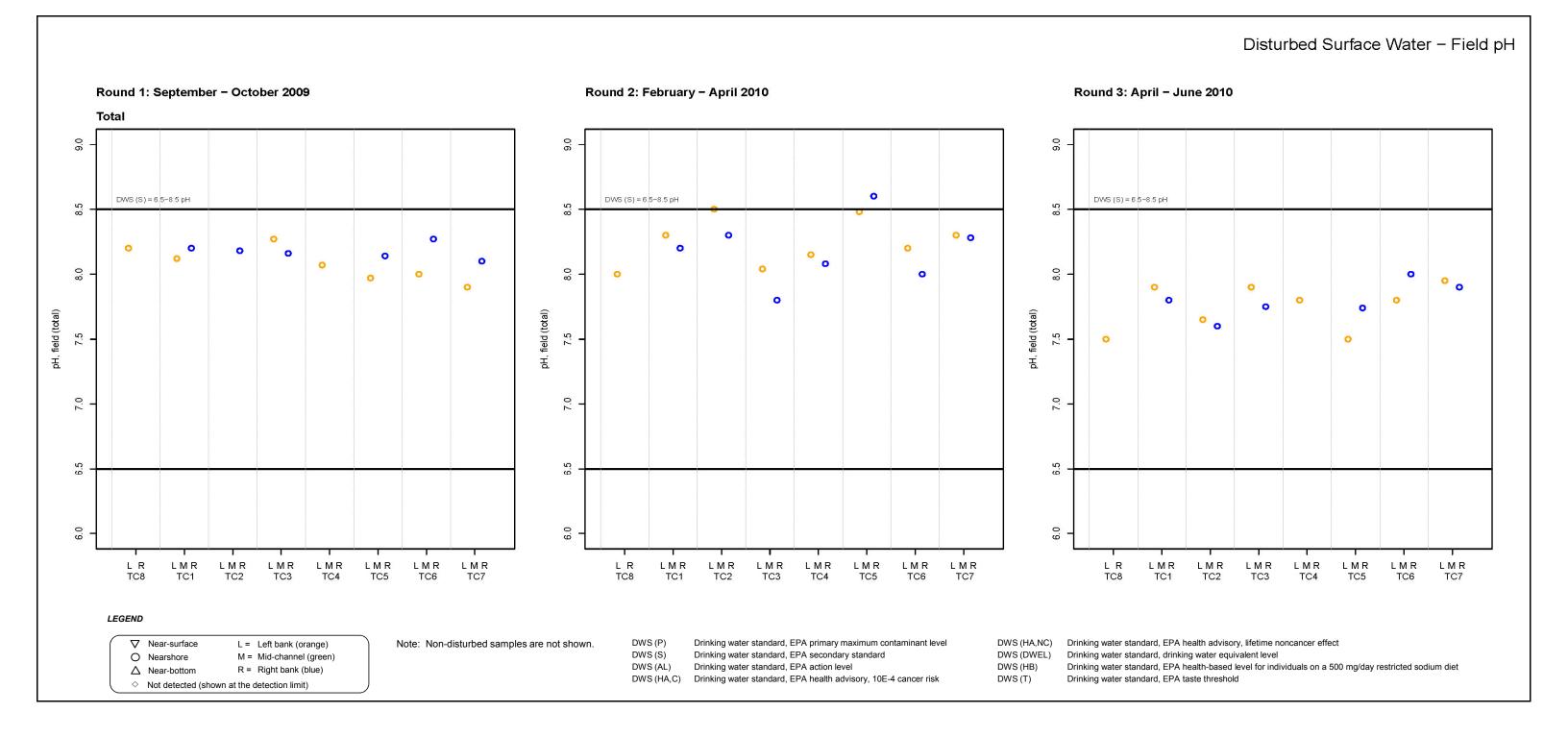

DWS (AL) Drinking water standard, EPA action level

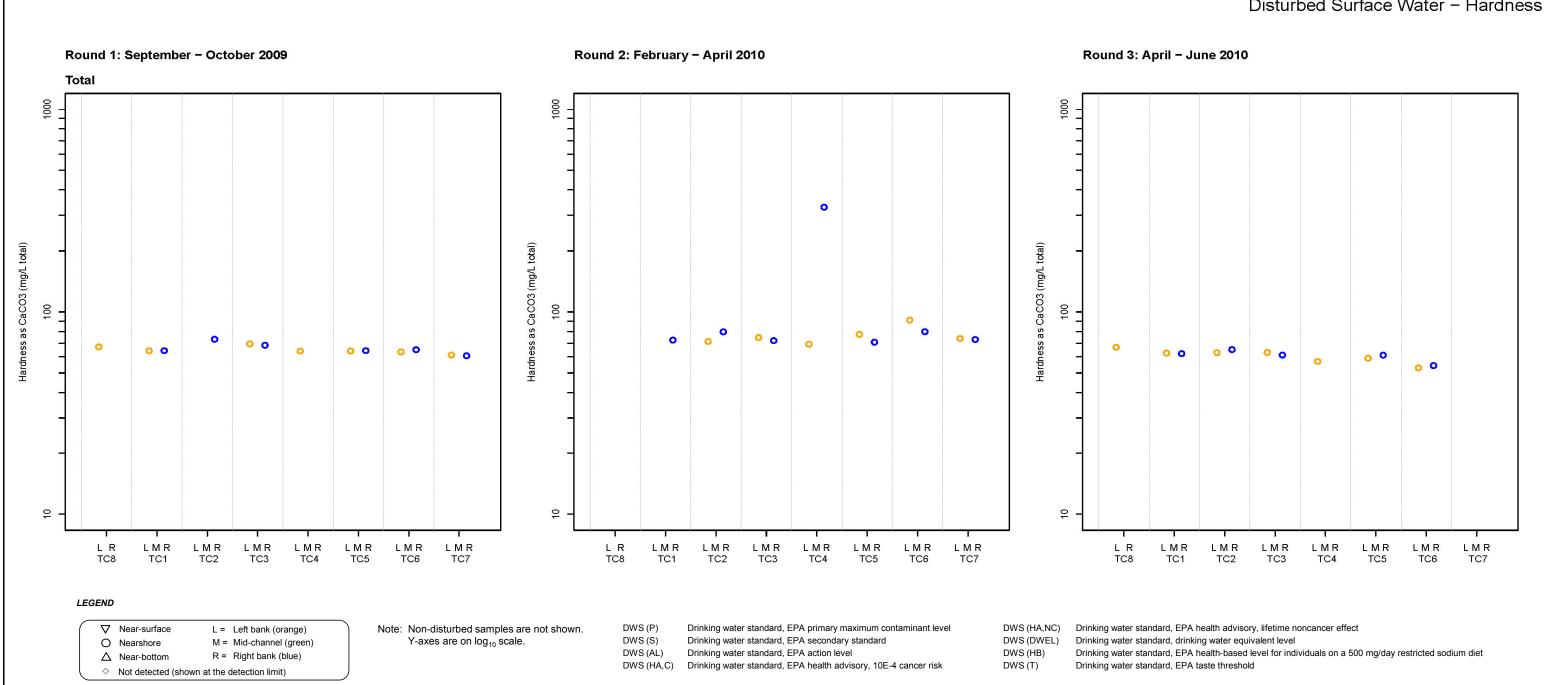

DWS (HA,C) Drinking water standard, EPA health advisory, 10E-4 cancer risk

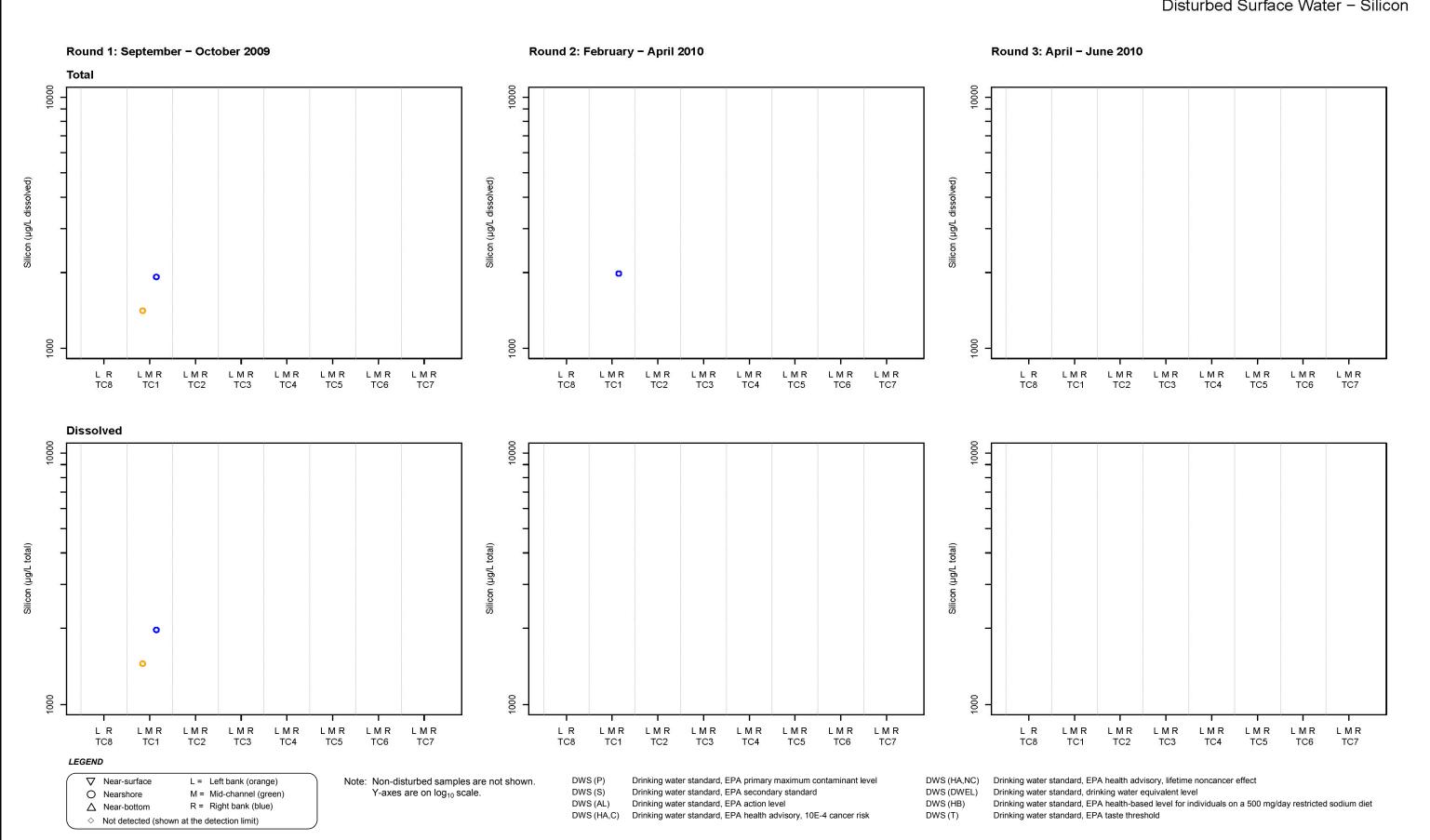

DWS (HA,NC) Drinking water standard, EPA health advisory, lifetime noncancer effect DWS (DWEL) DWS (HB)

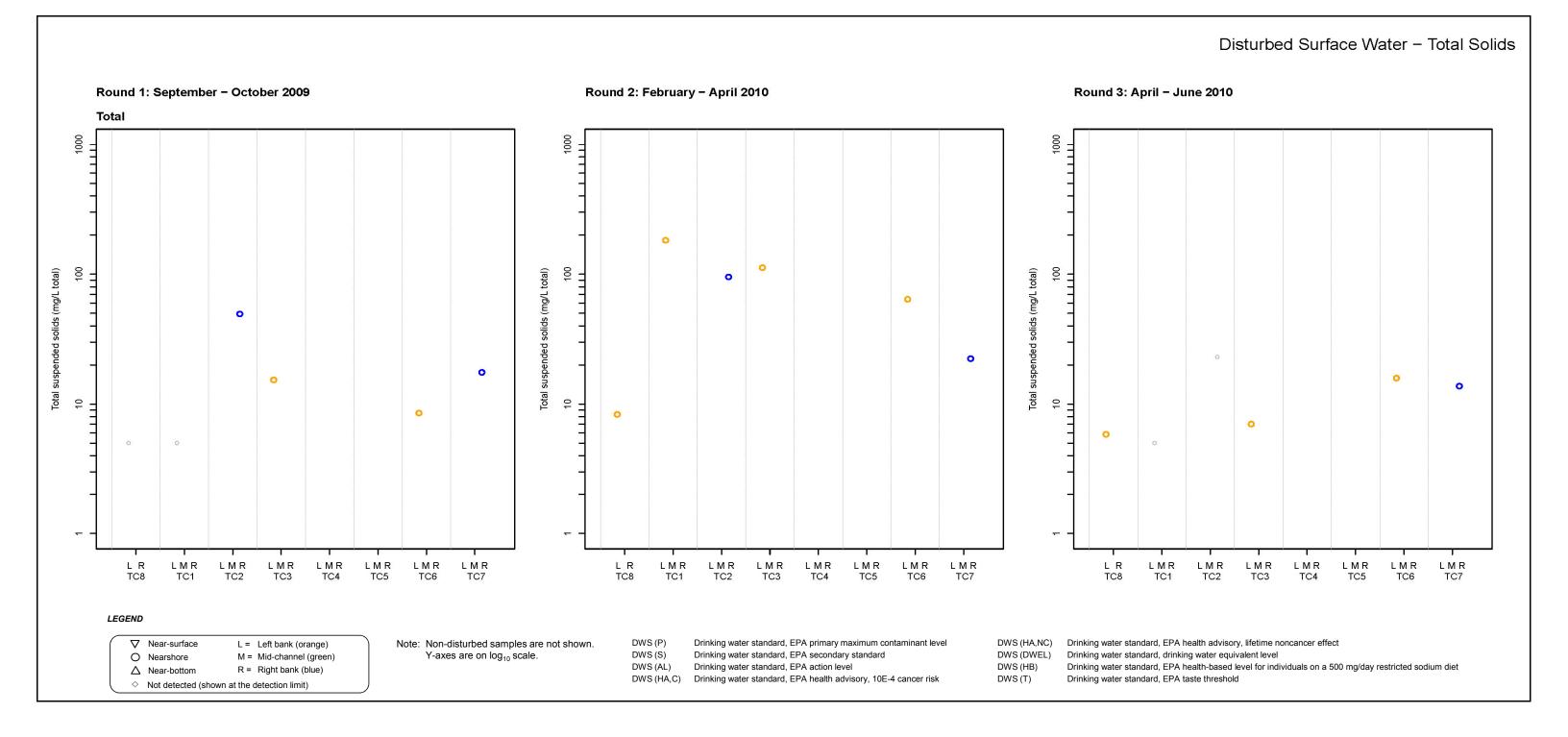

Drinking water standard, drinking water equivalent level Drinking water standard, EPA health-based level for individuals on a 500 mg/day restricted sodium diet

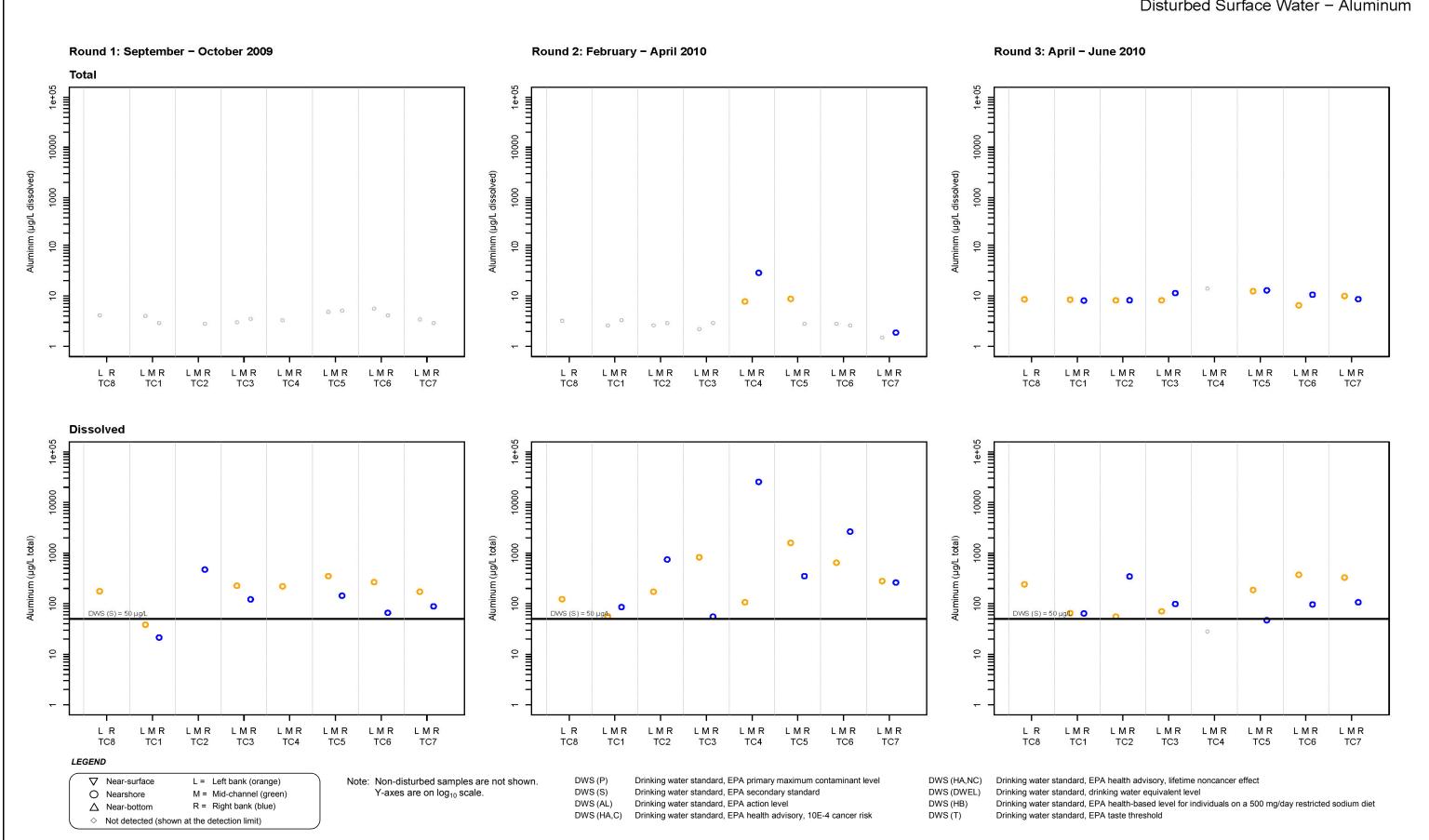

DWS (T) Drinking water standard, EPA taste threshold

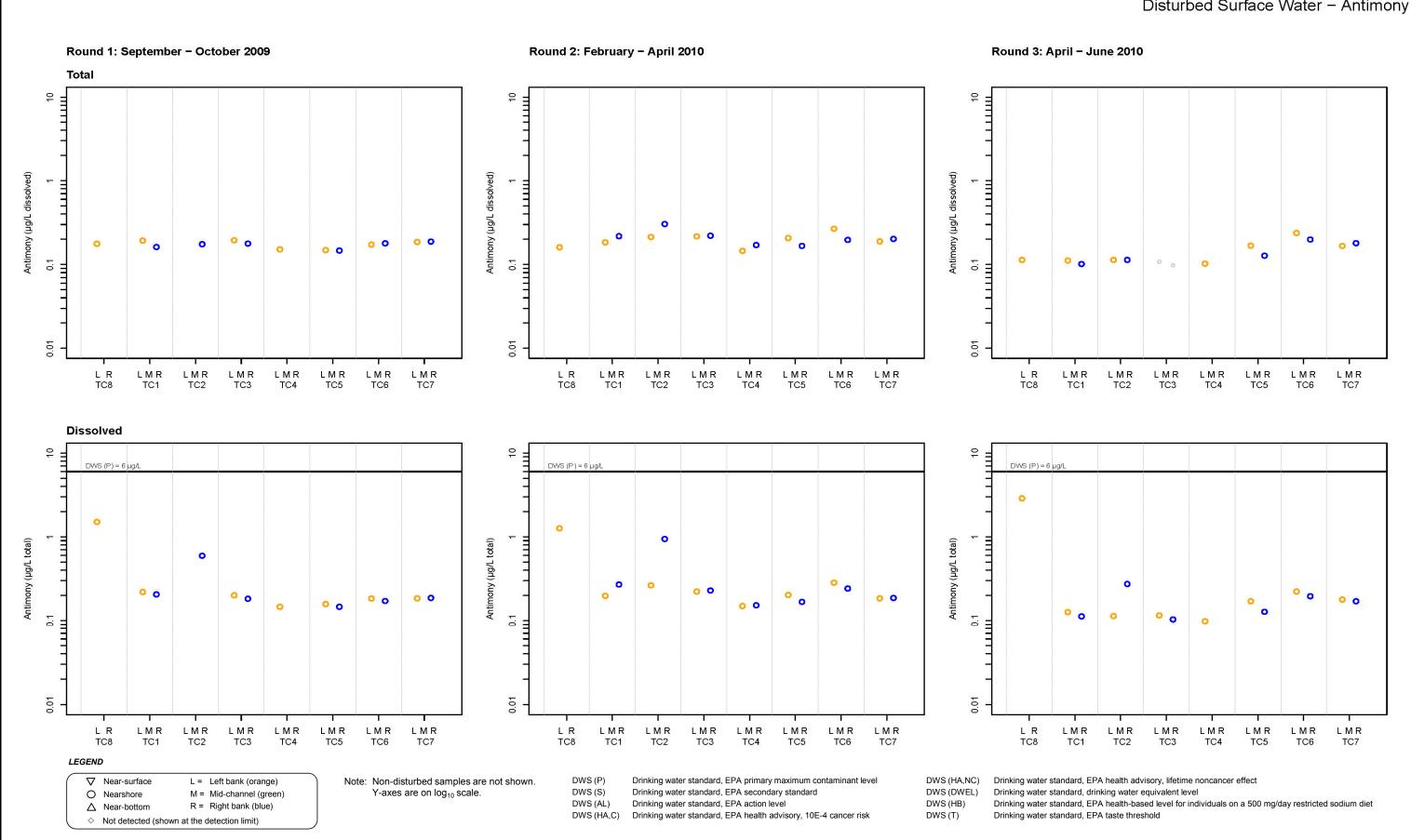


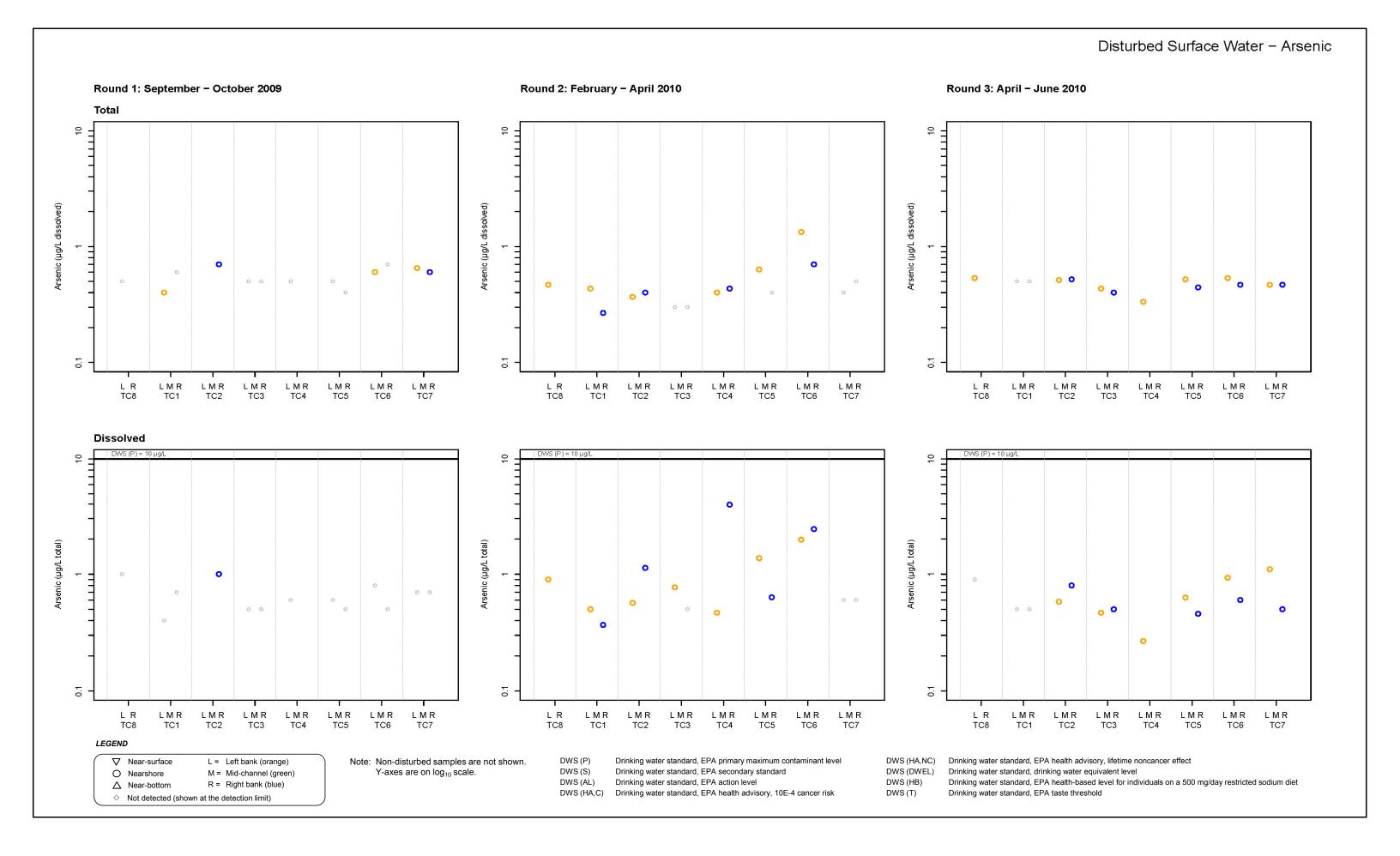


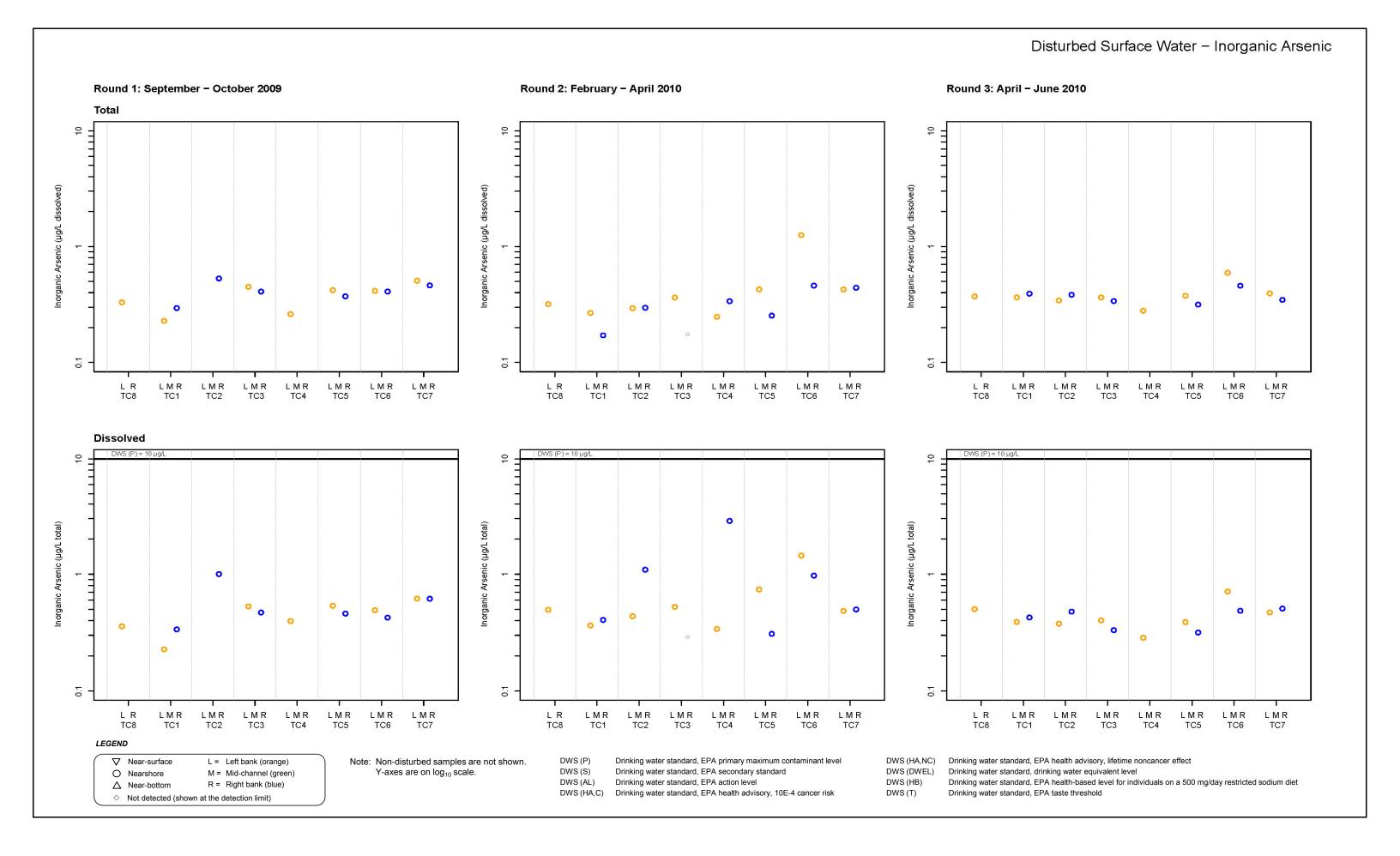


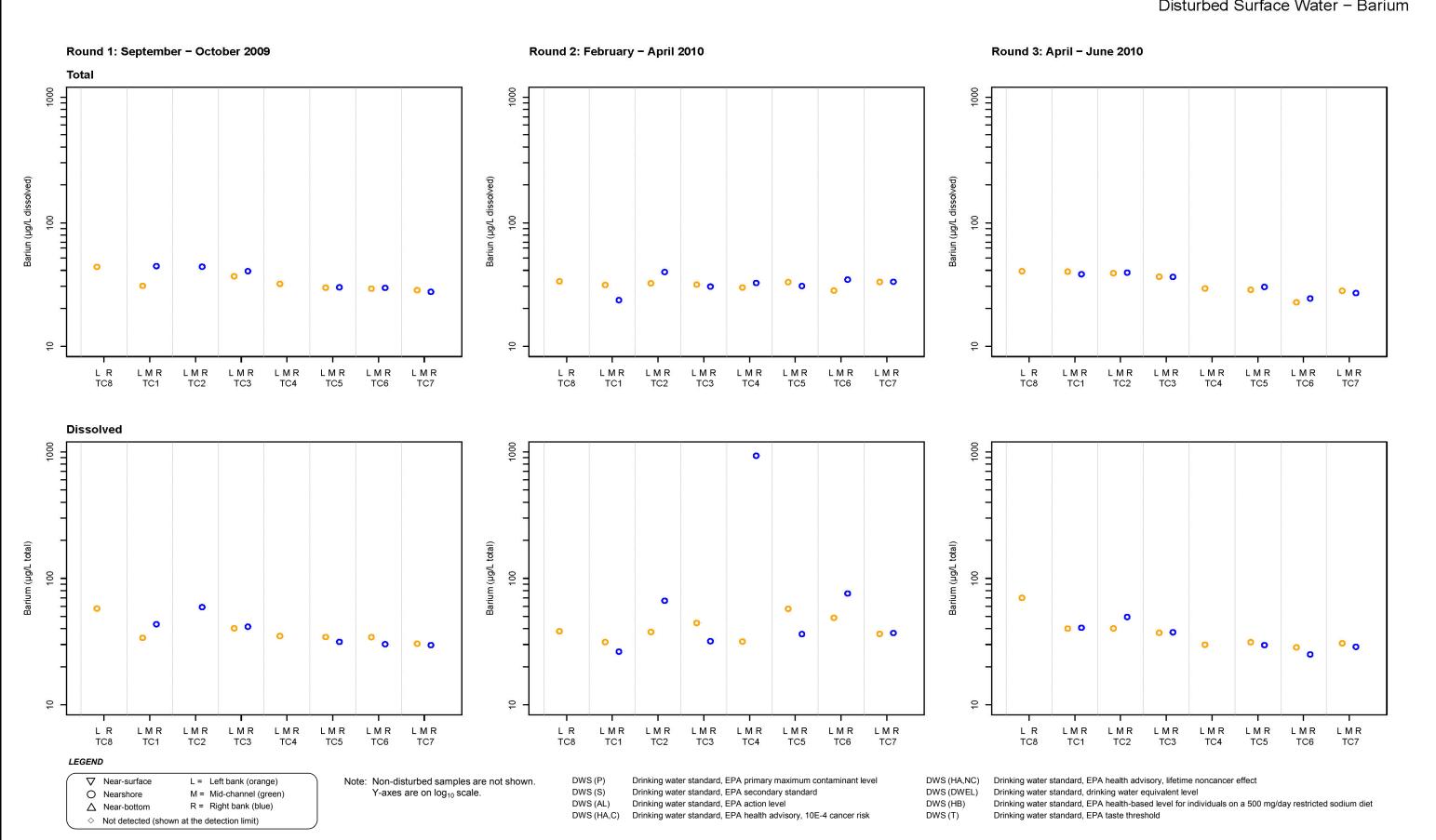


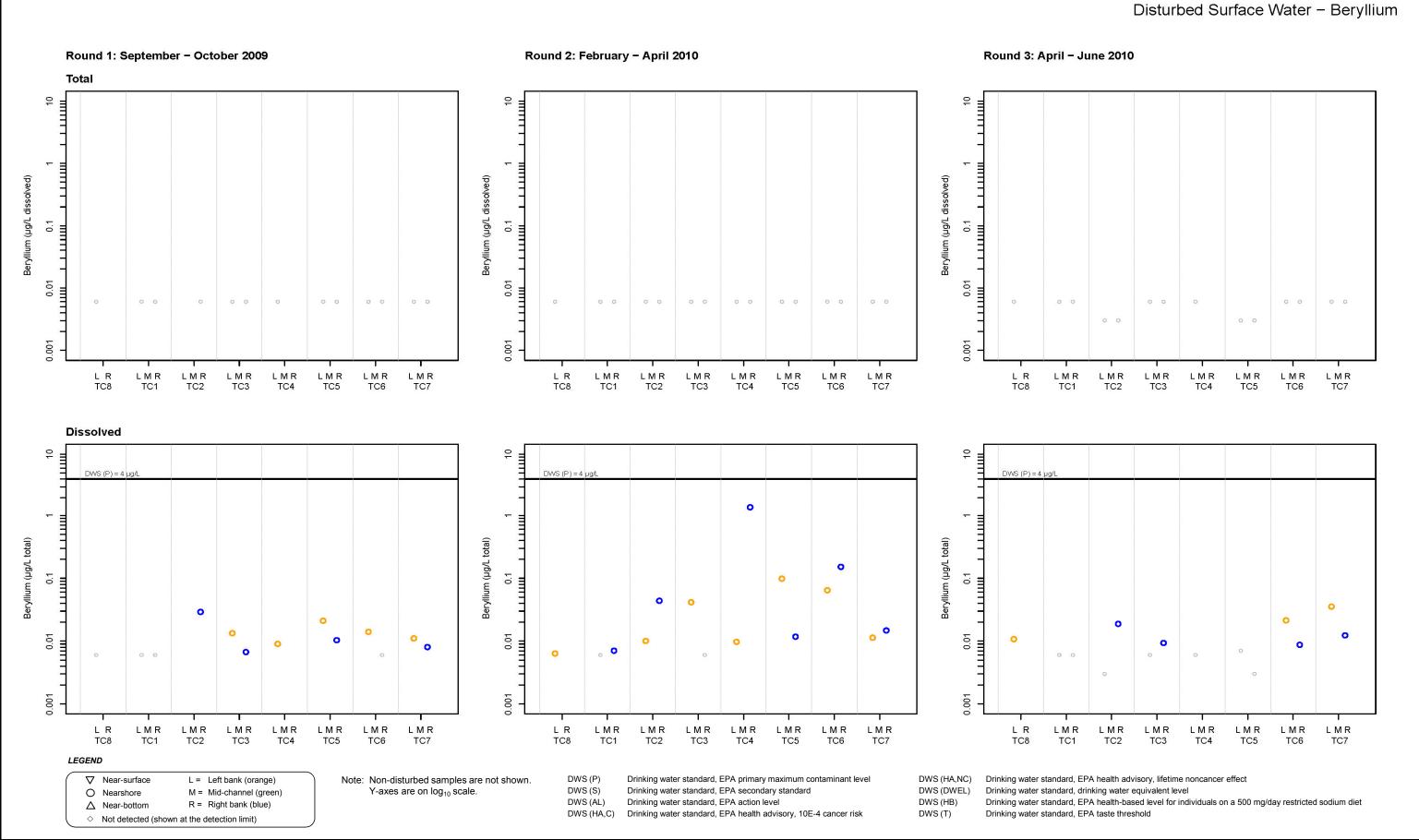


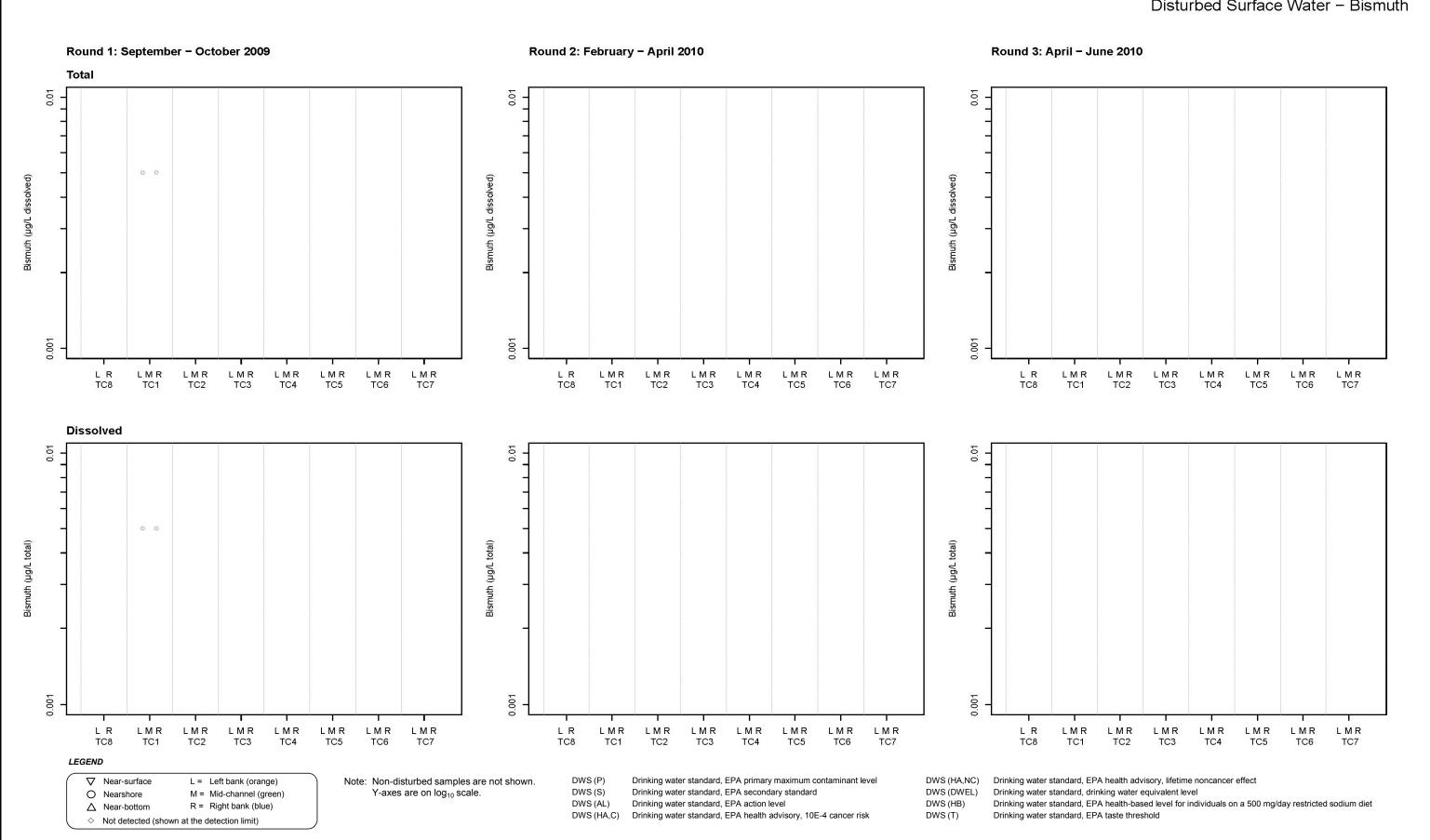

Disturbed Surface Water - Hardness

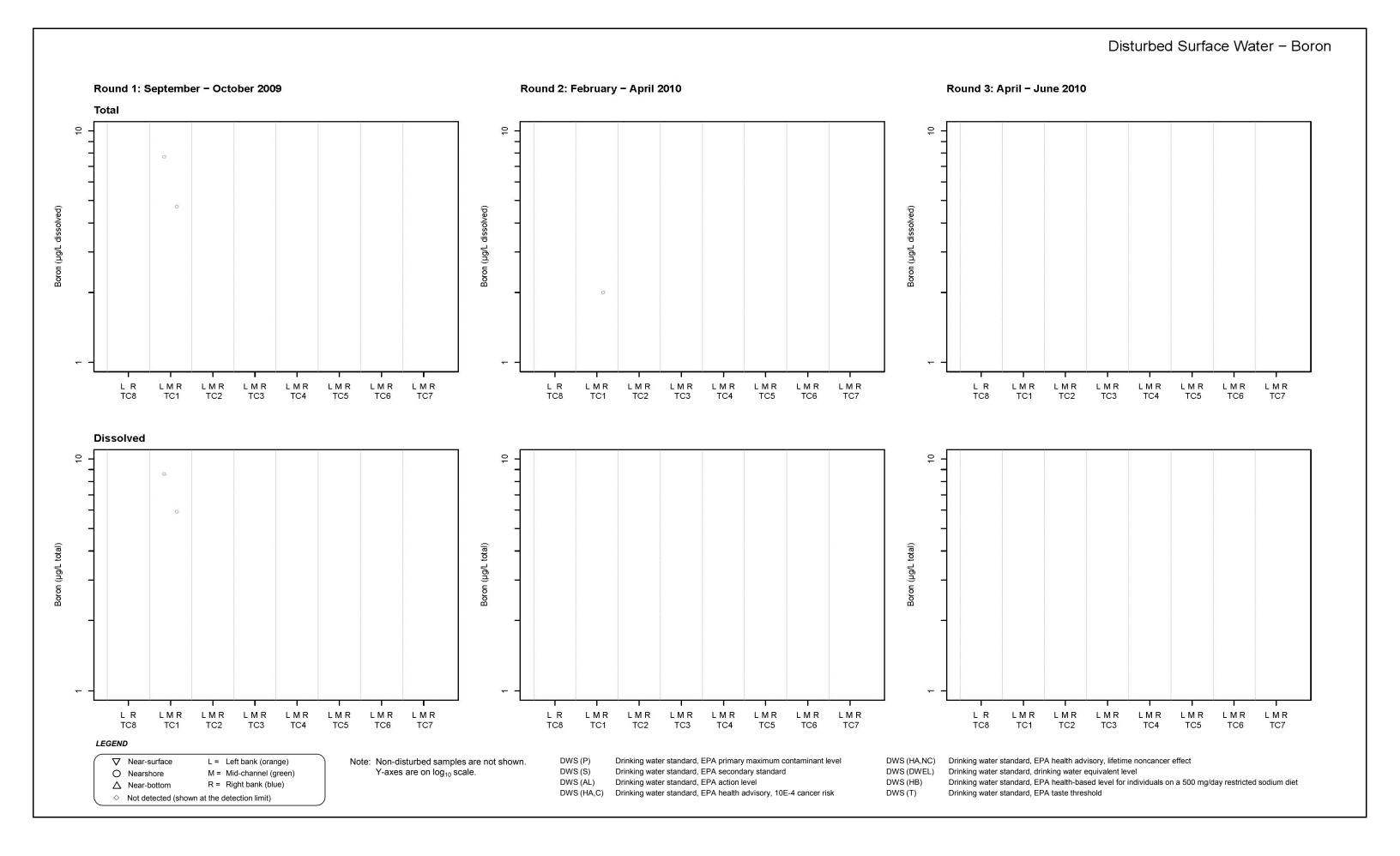


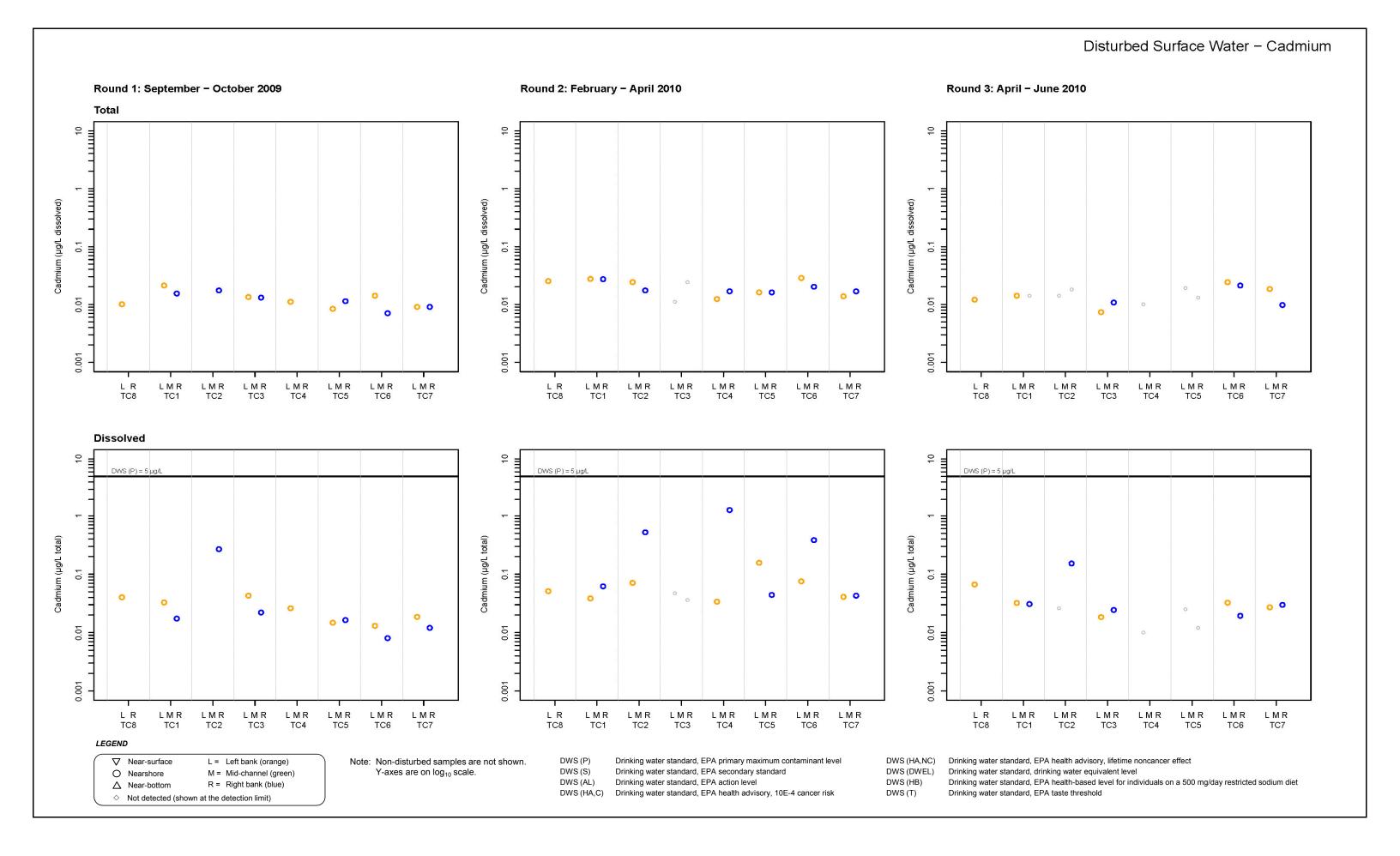


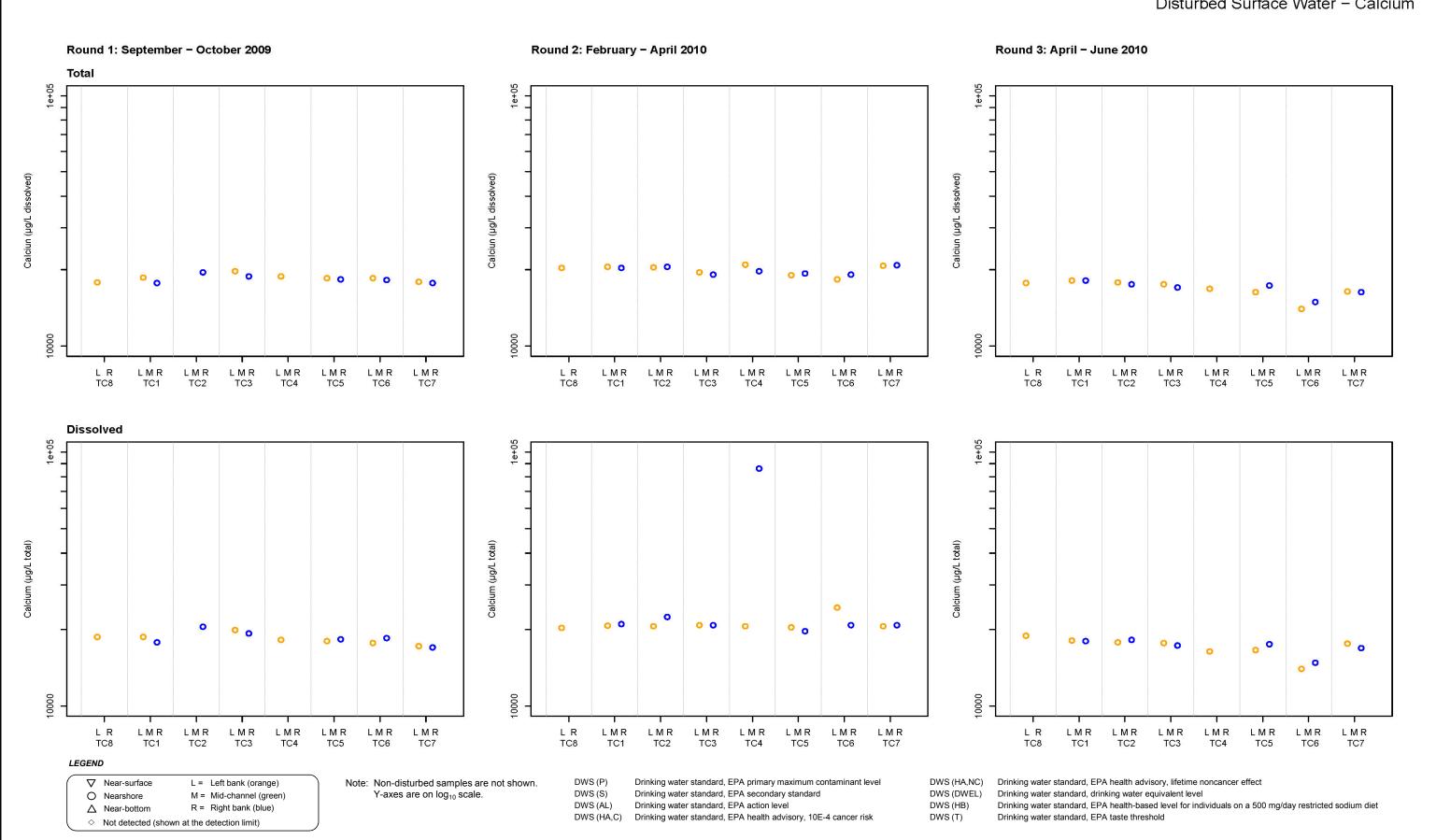


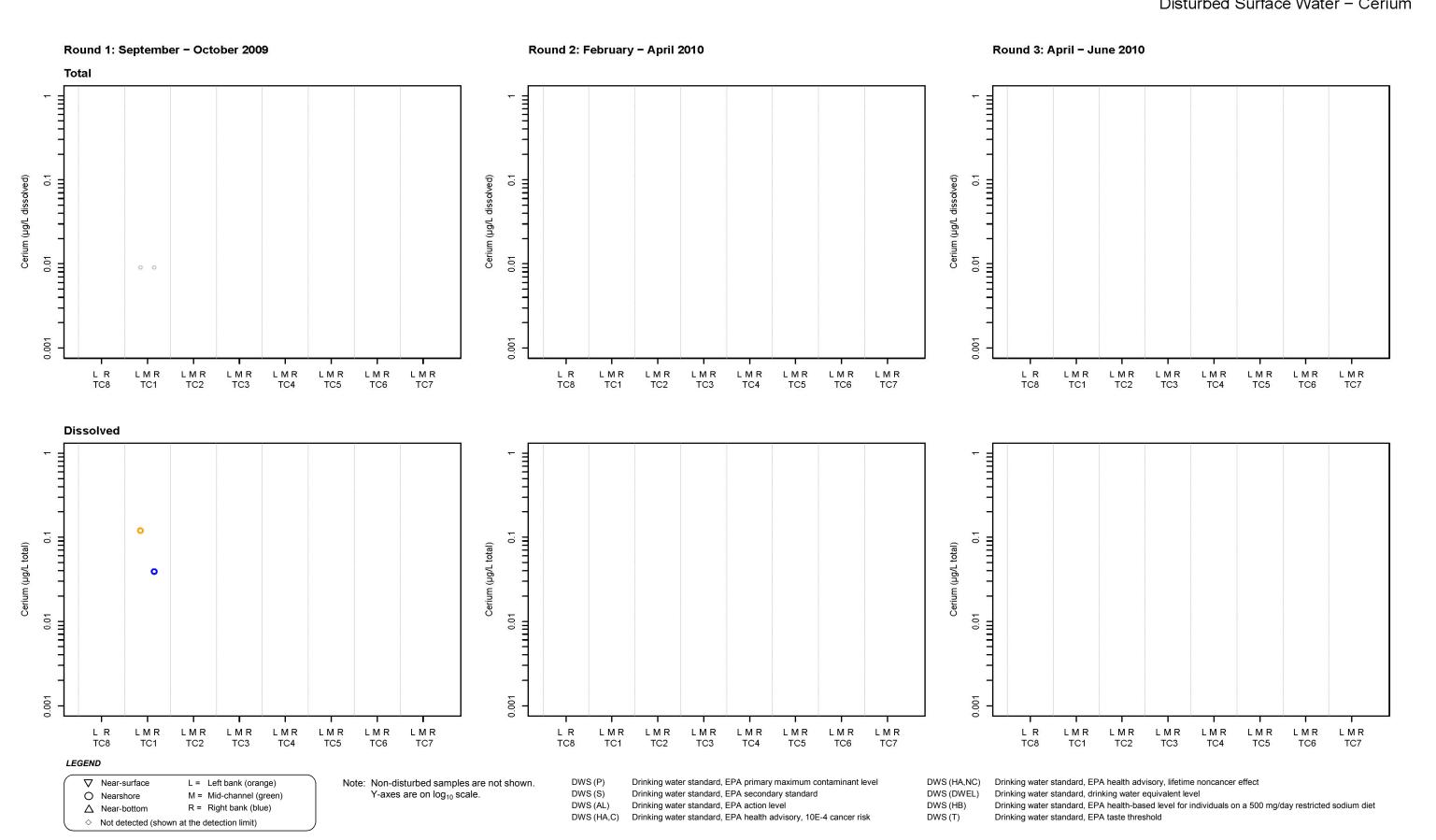


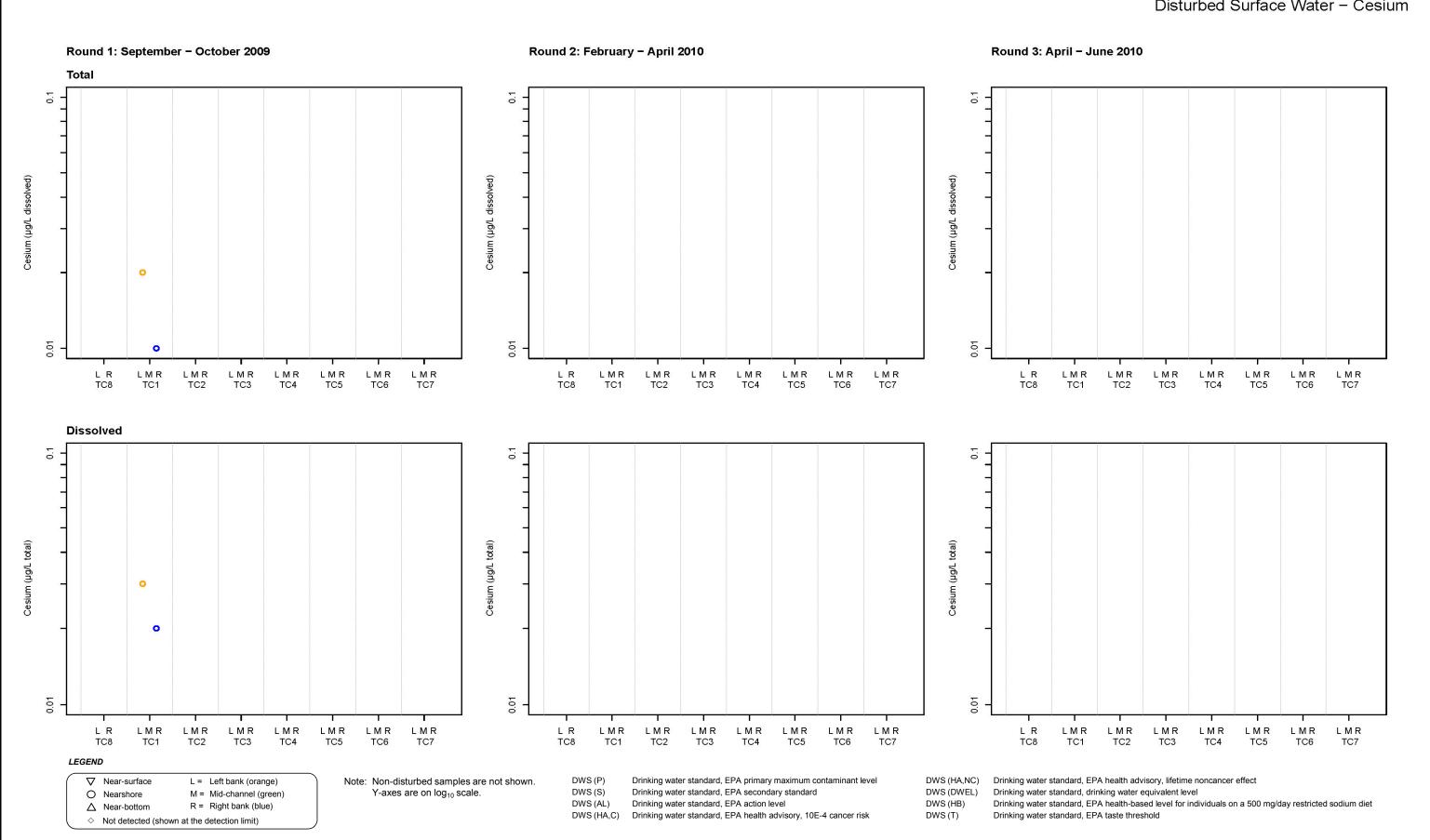


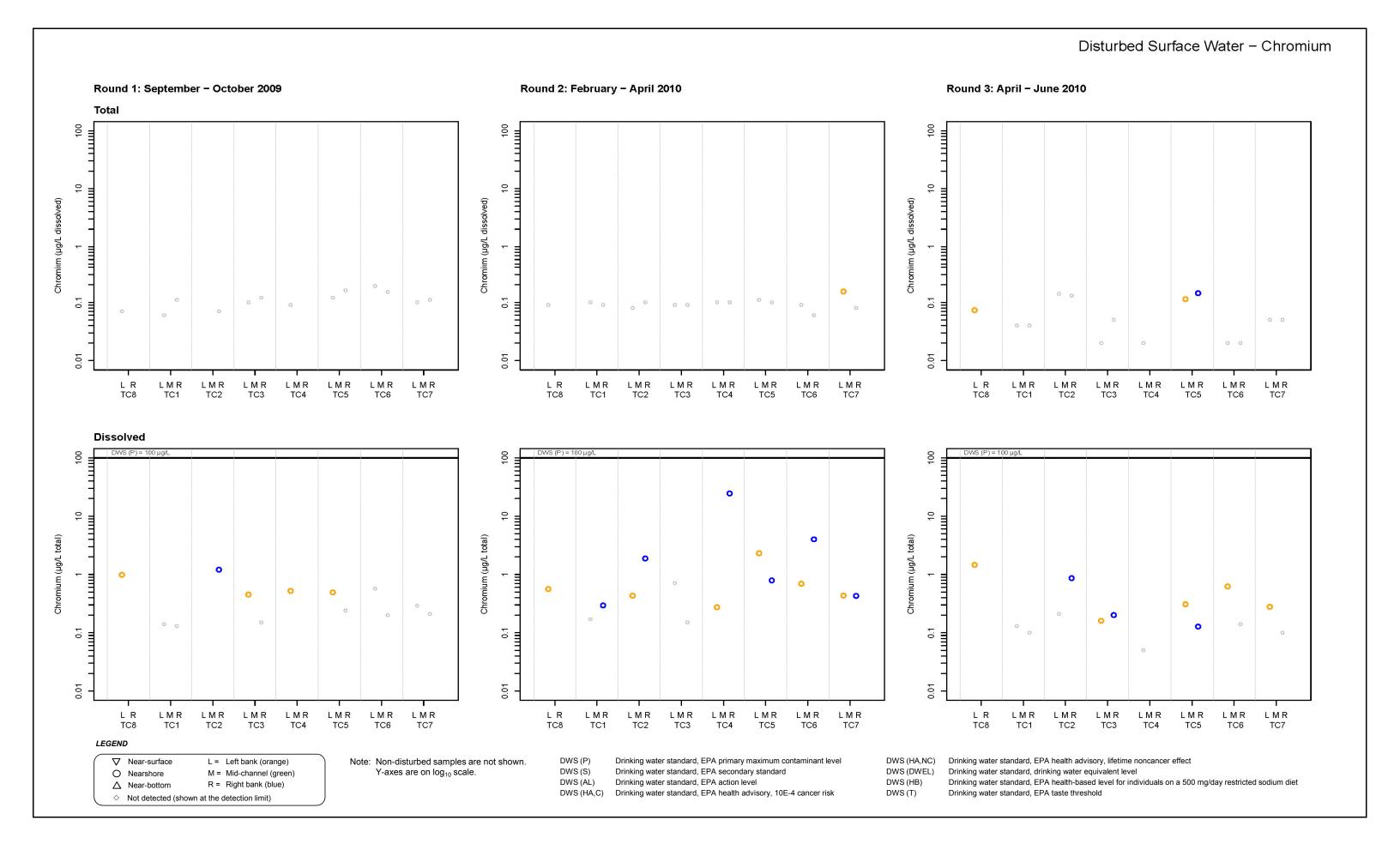


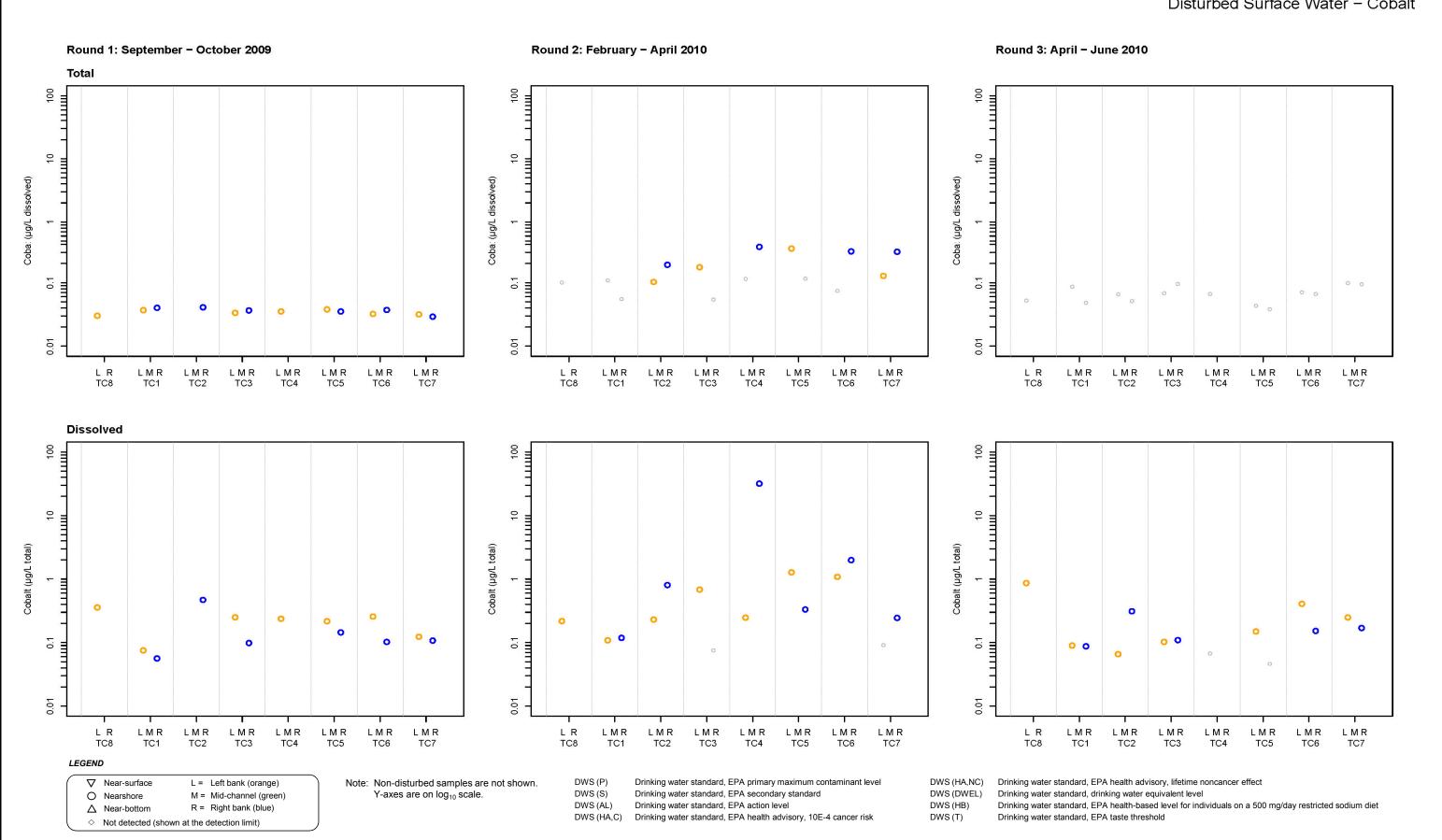


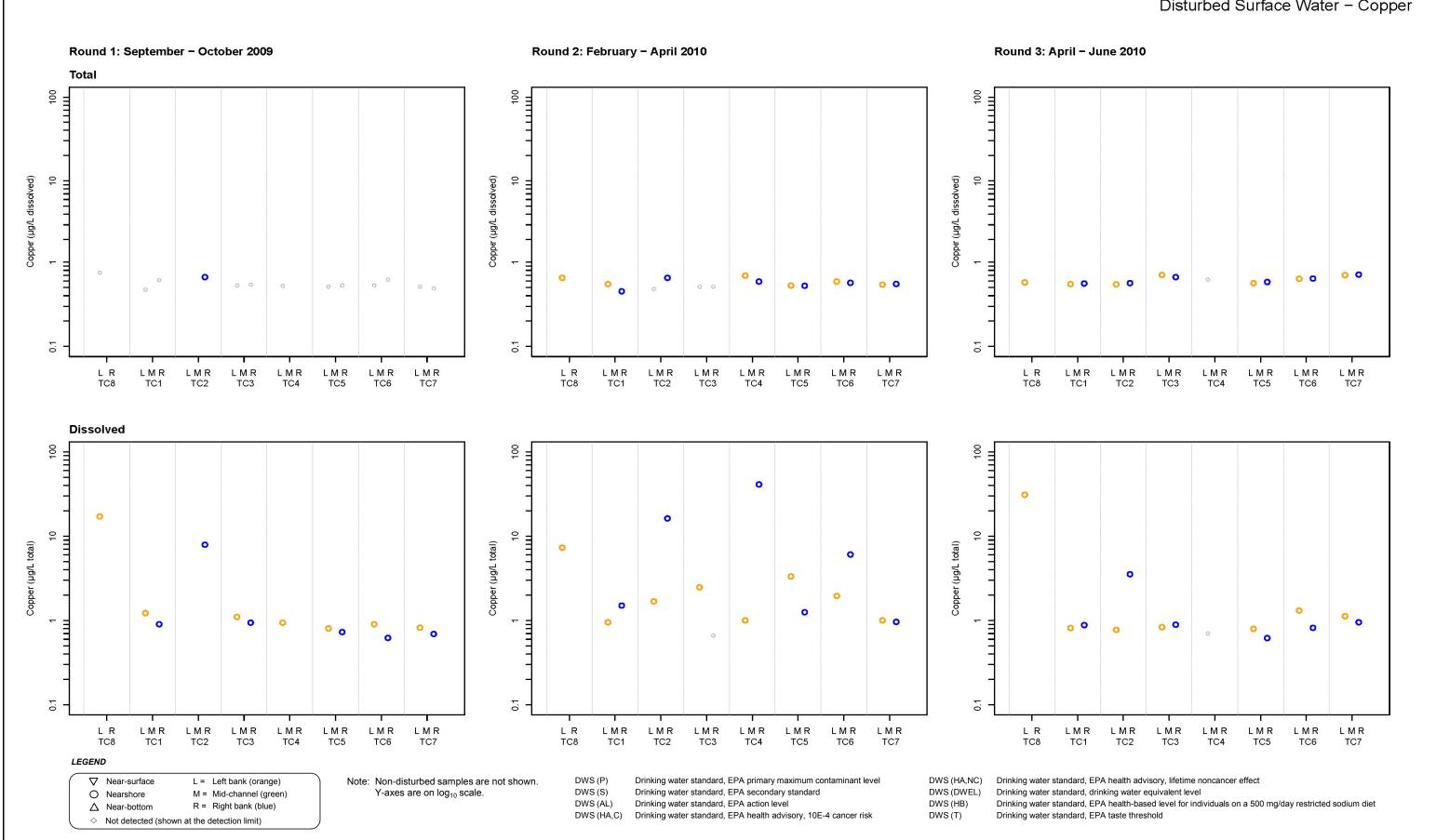


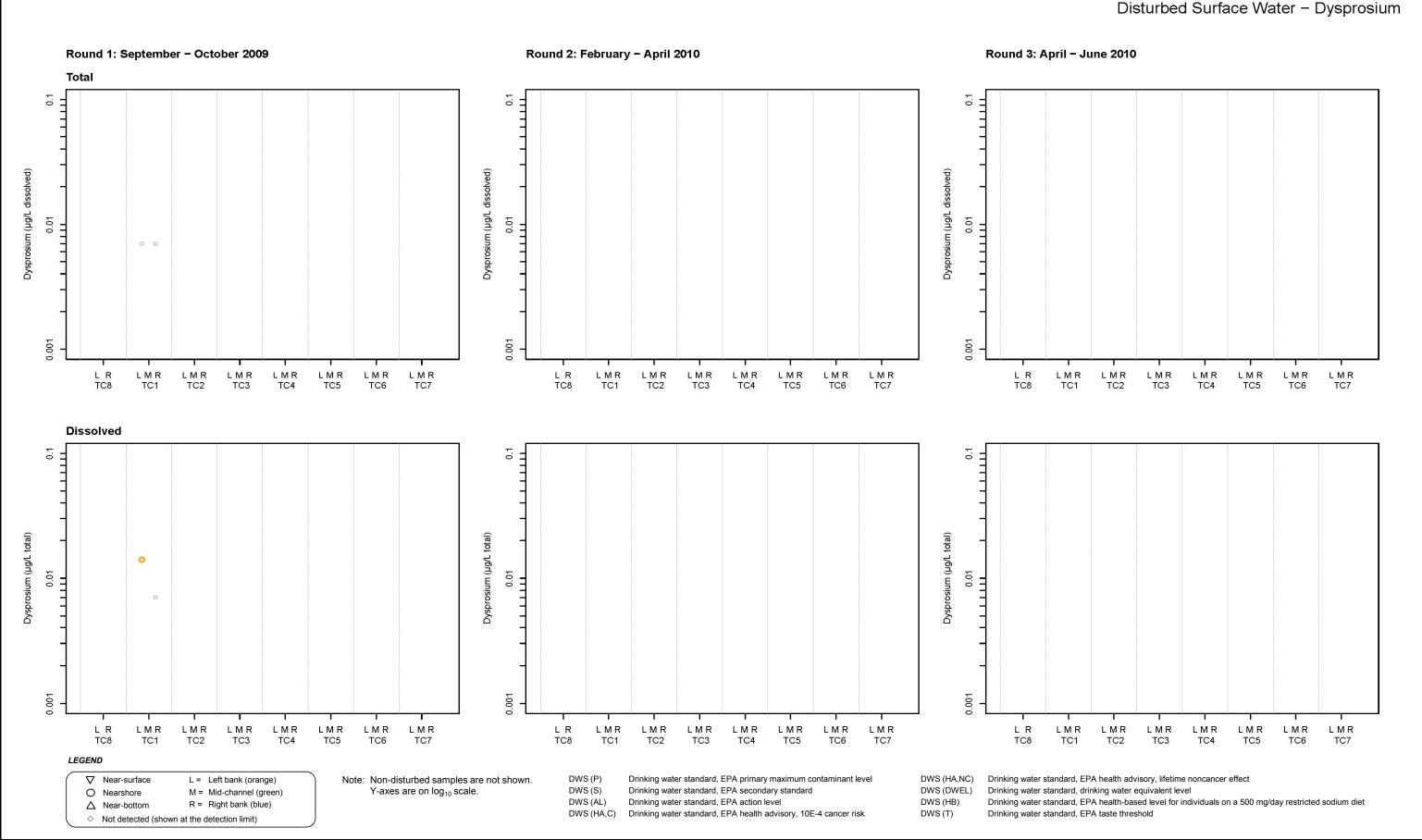


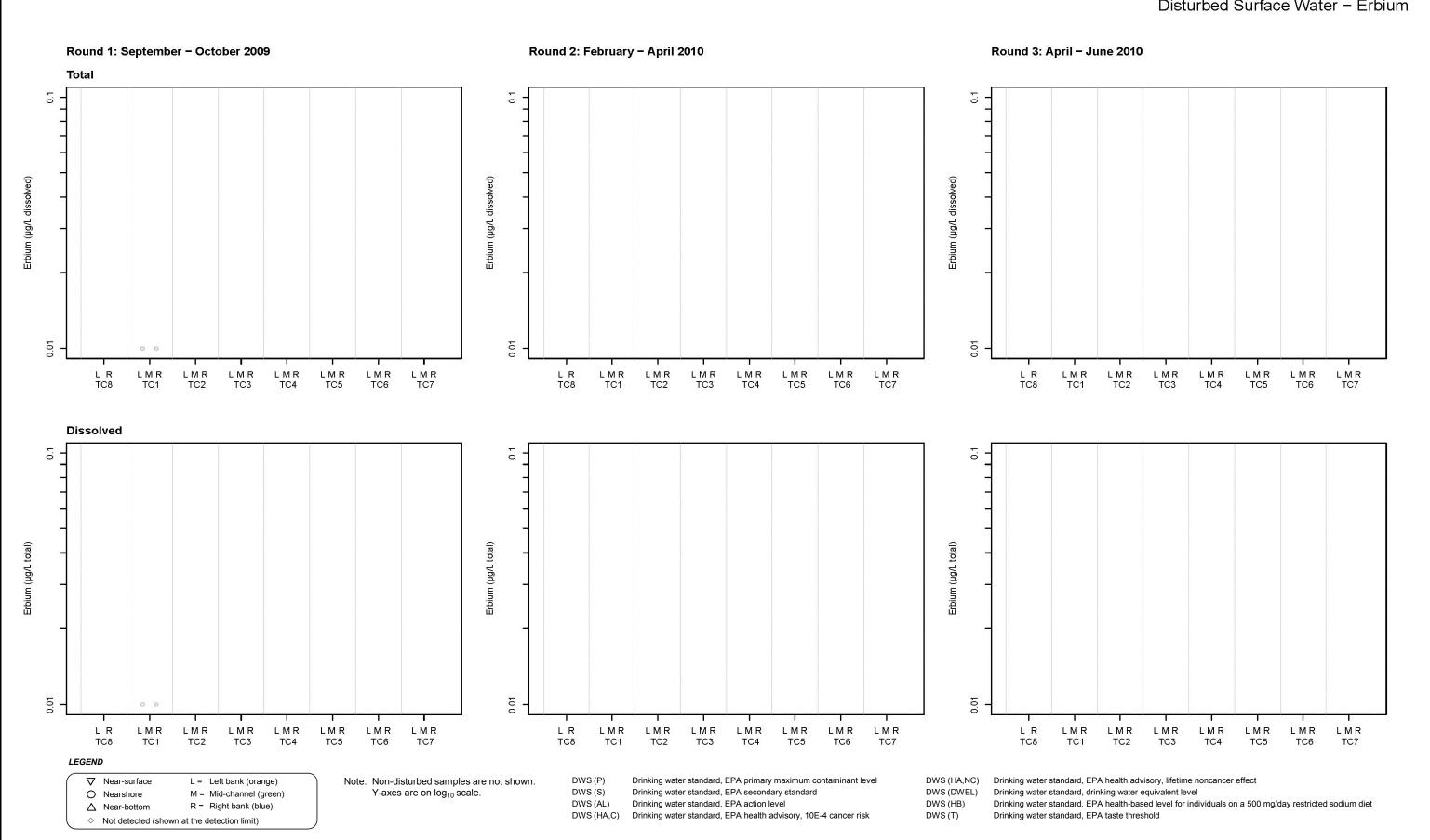


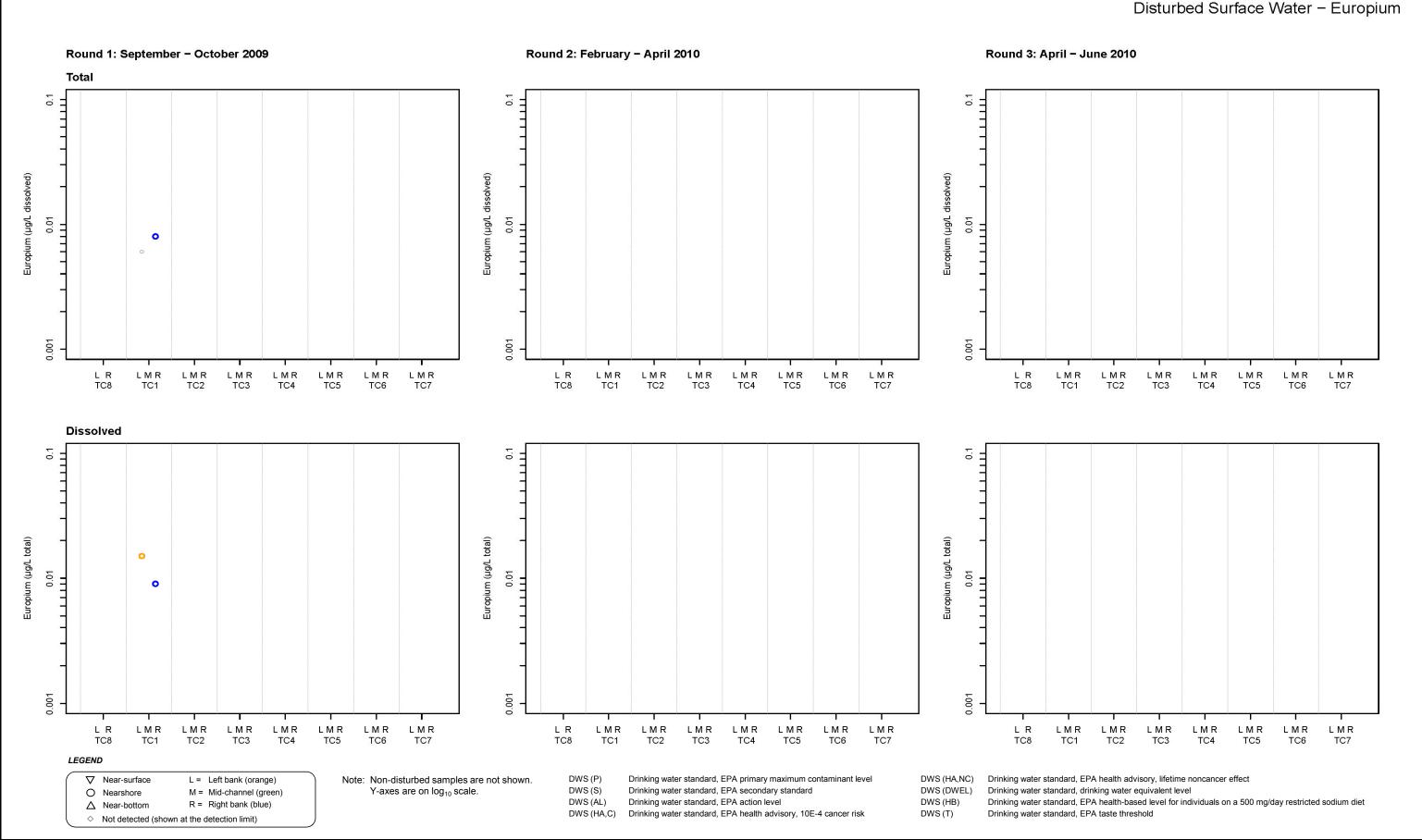


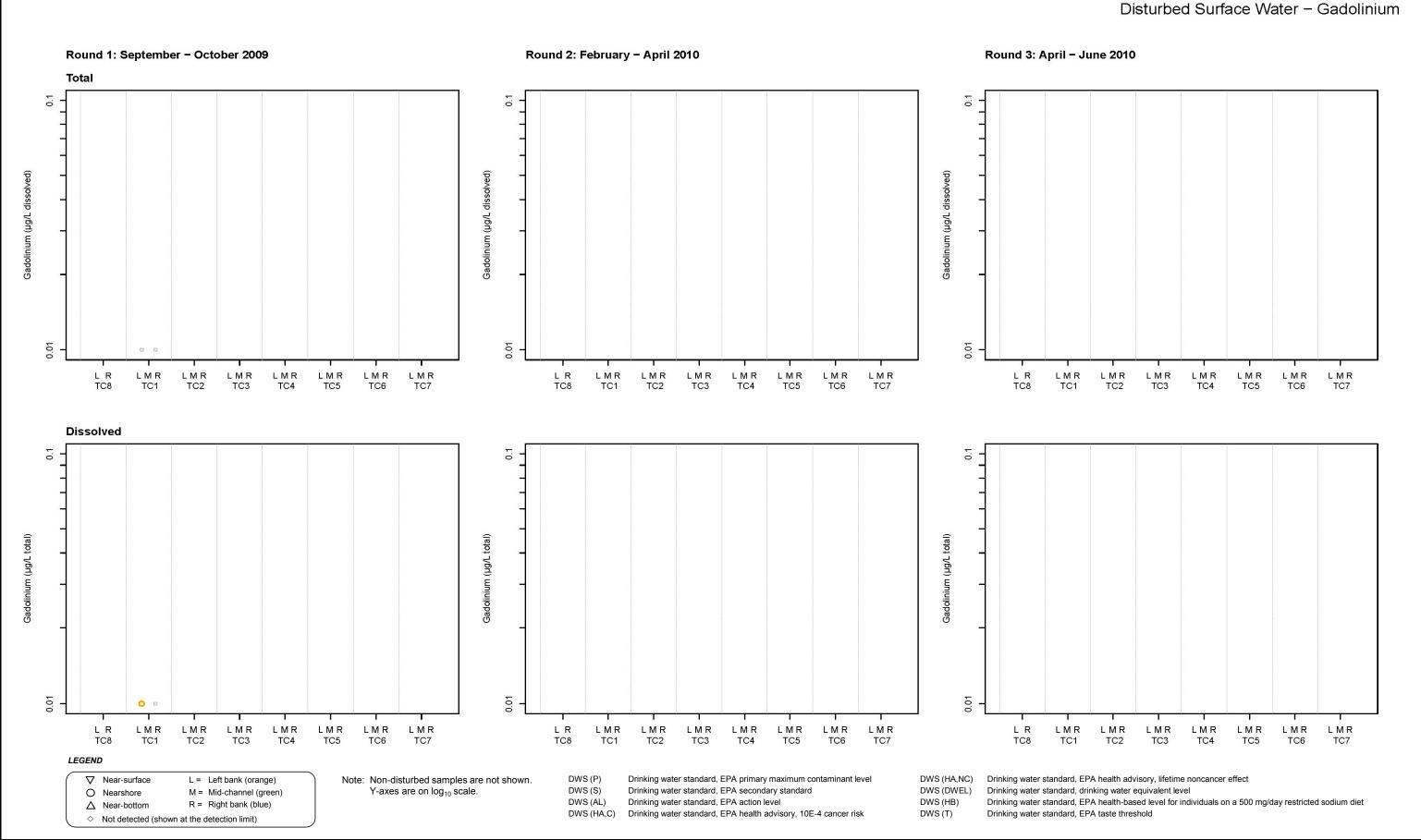


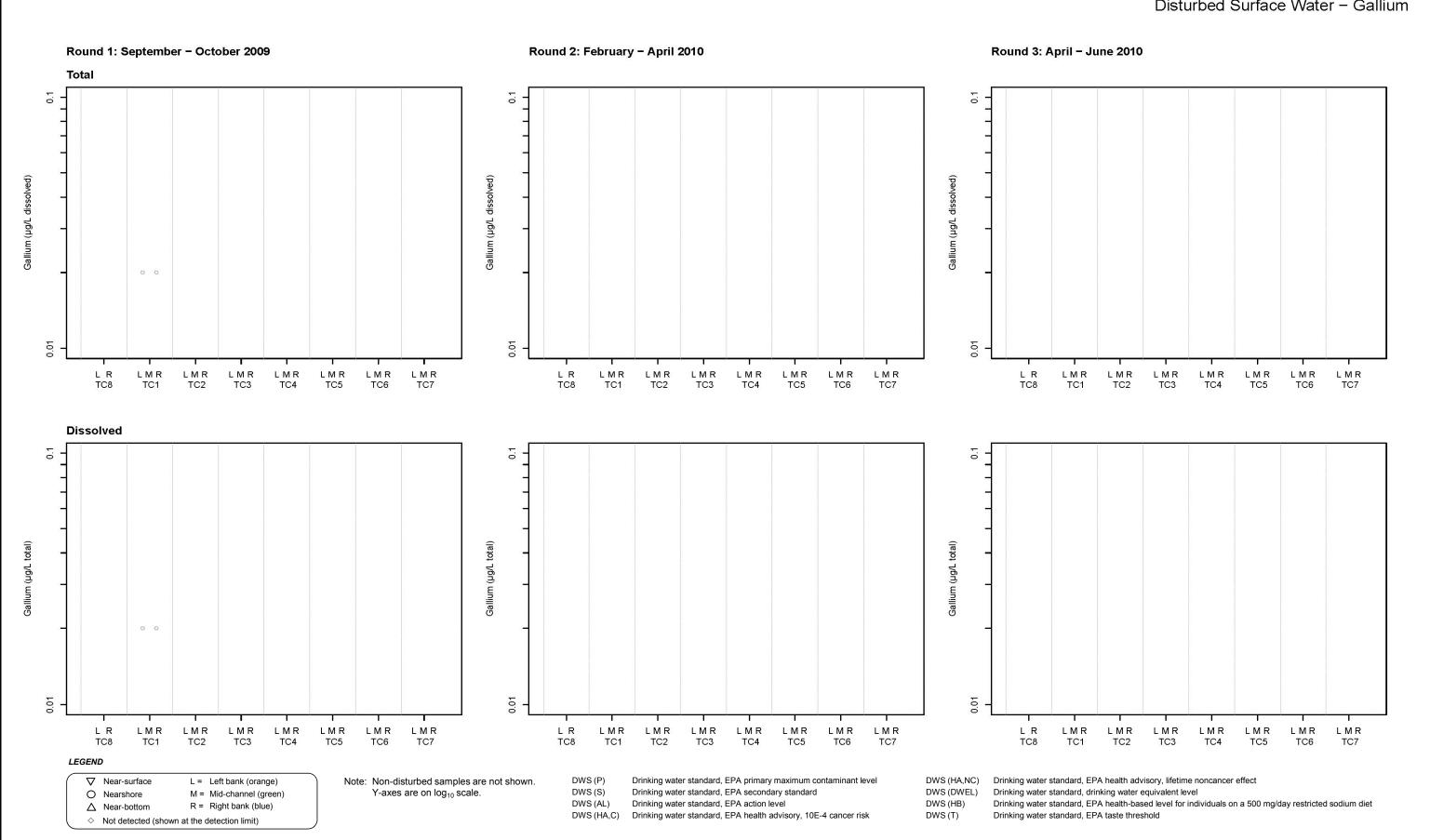


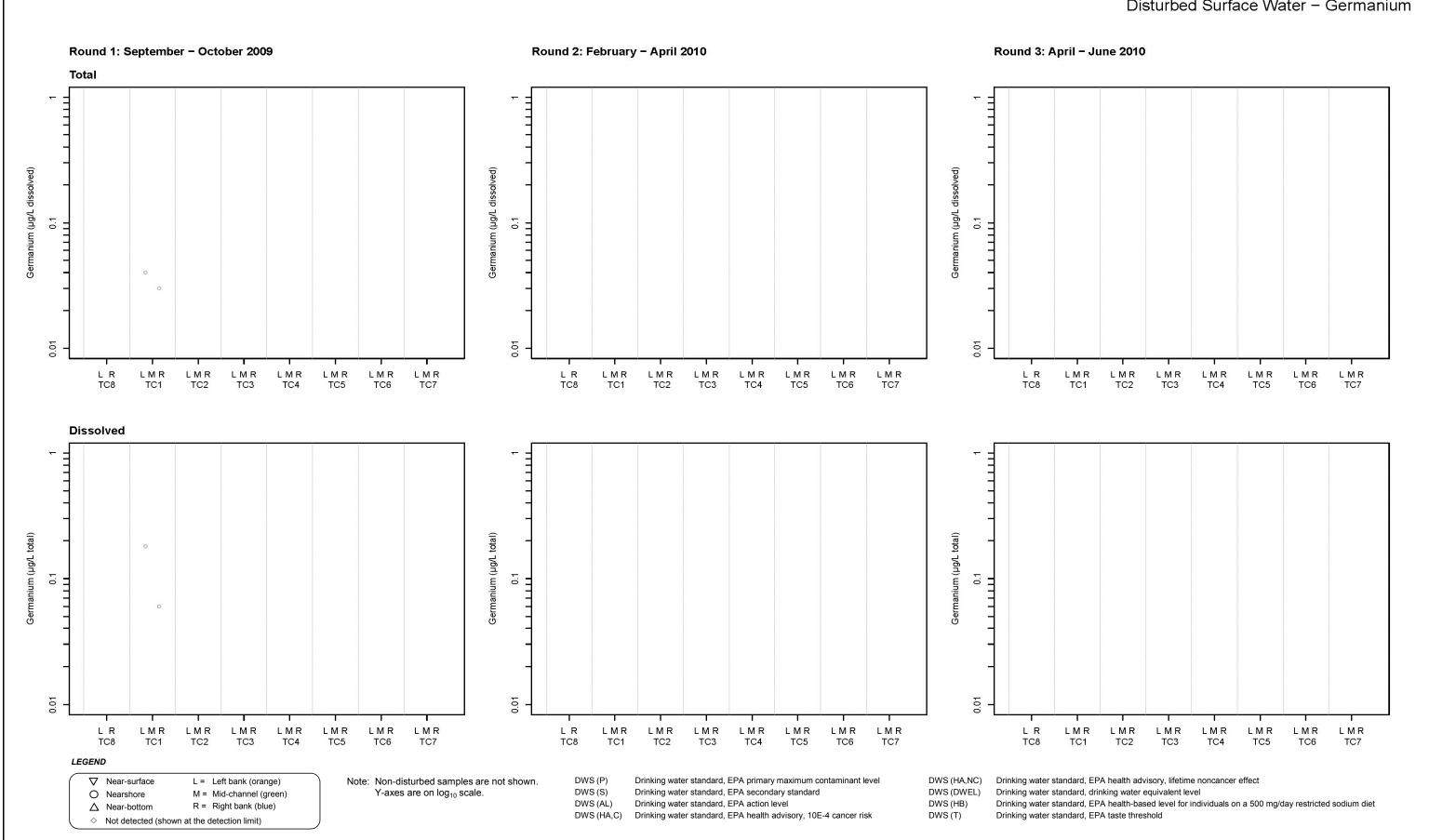


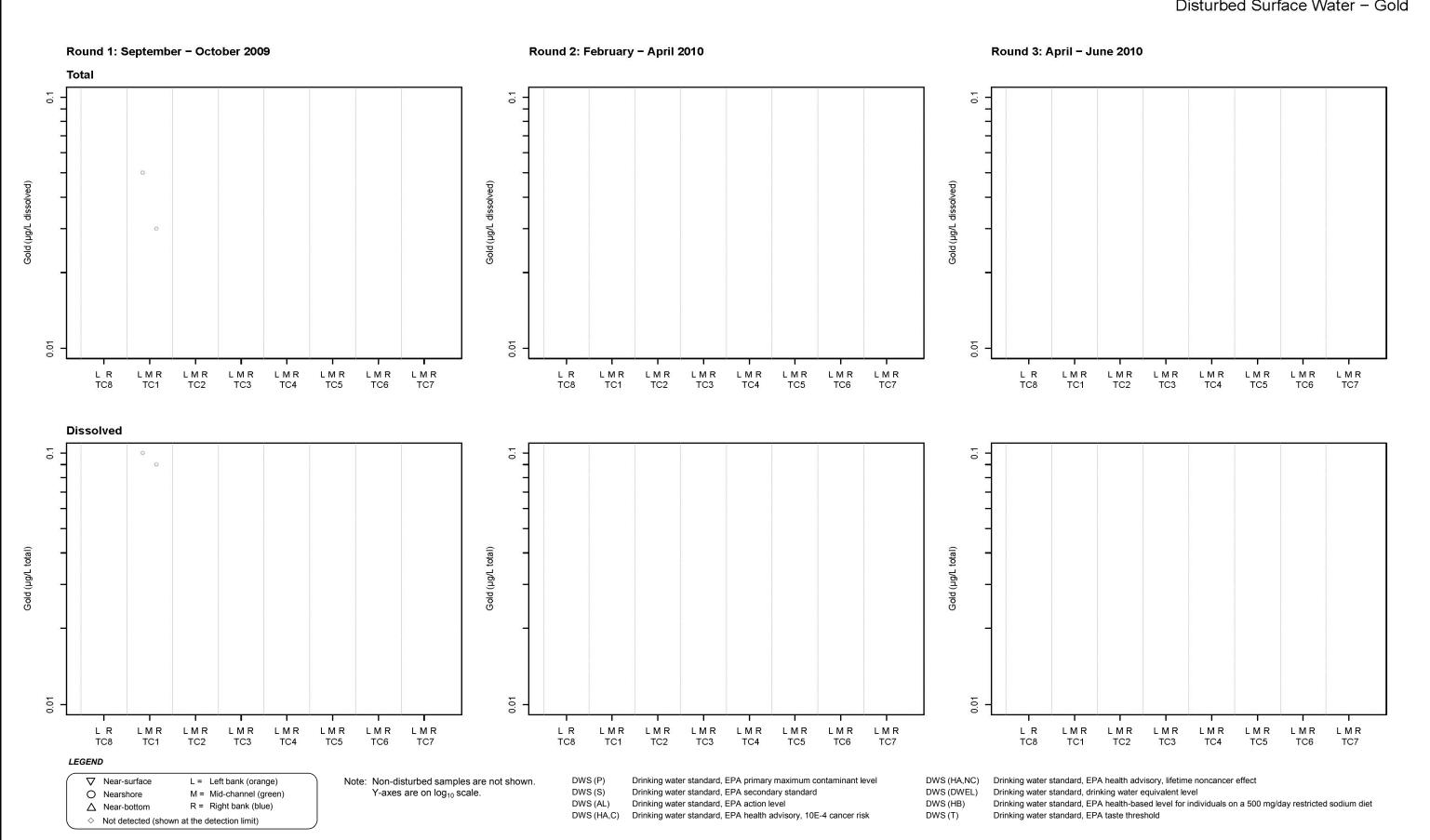


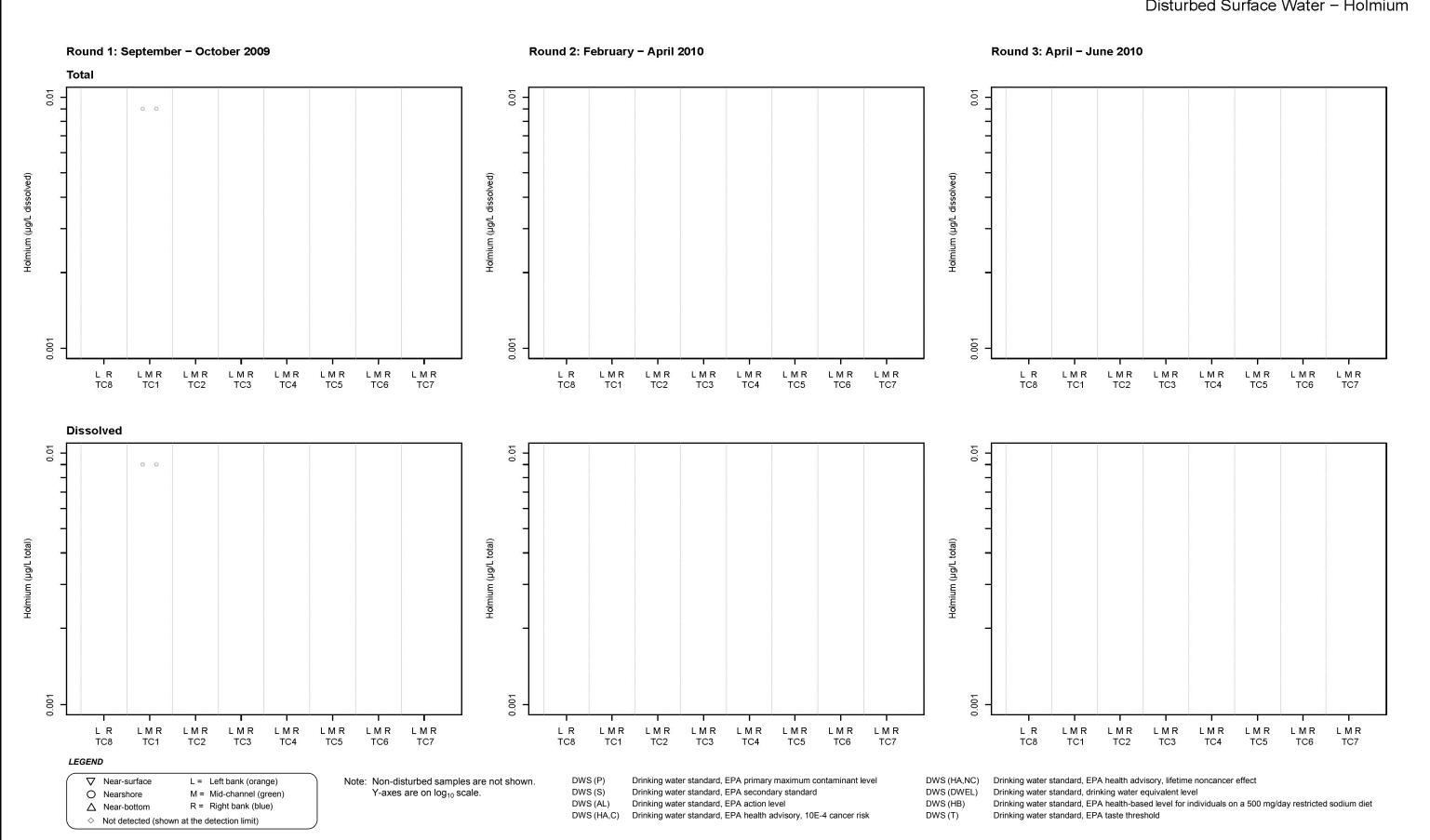


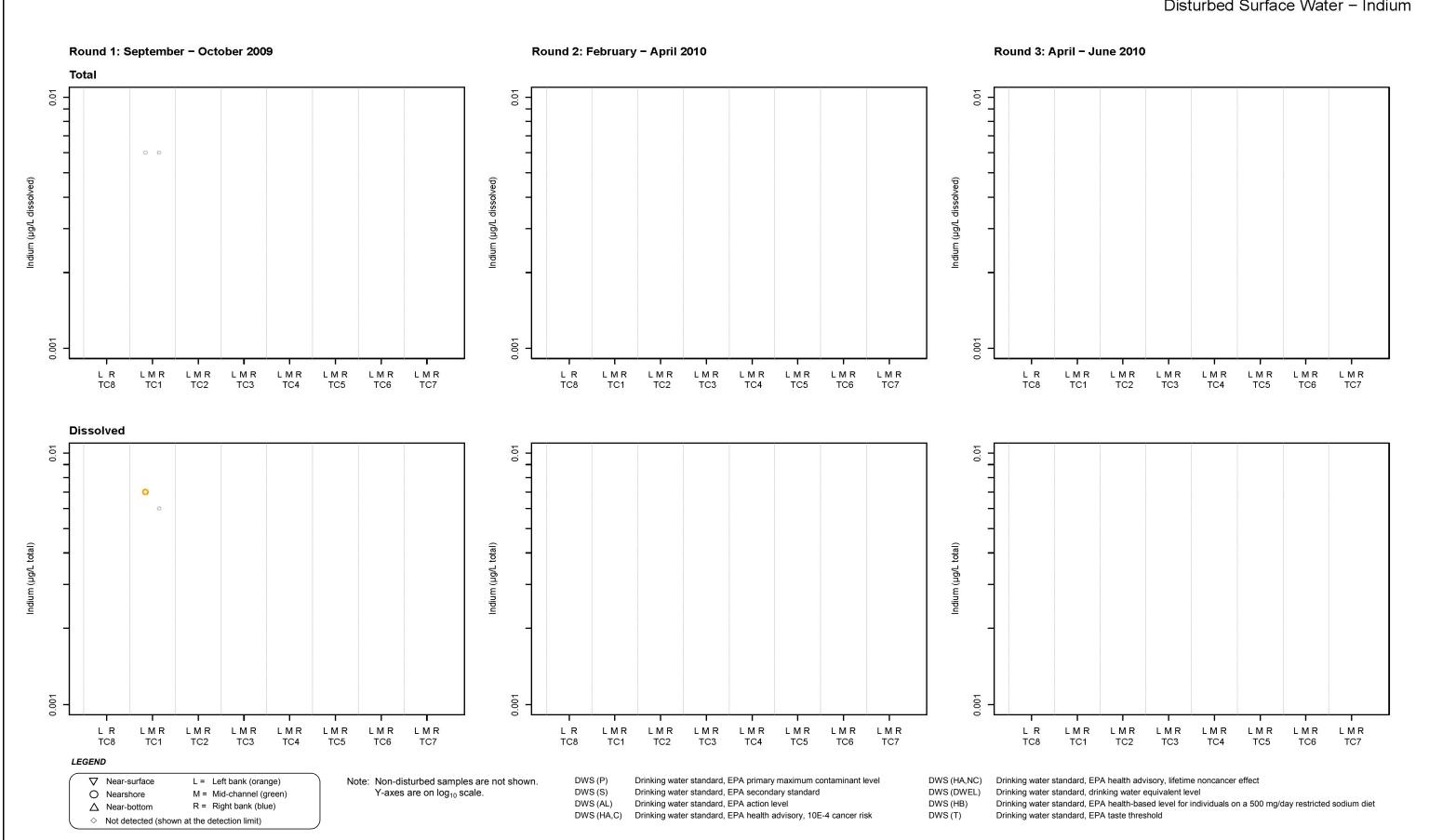


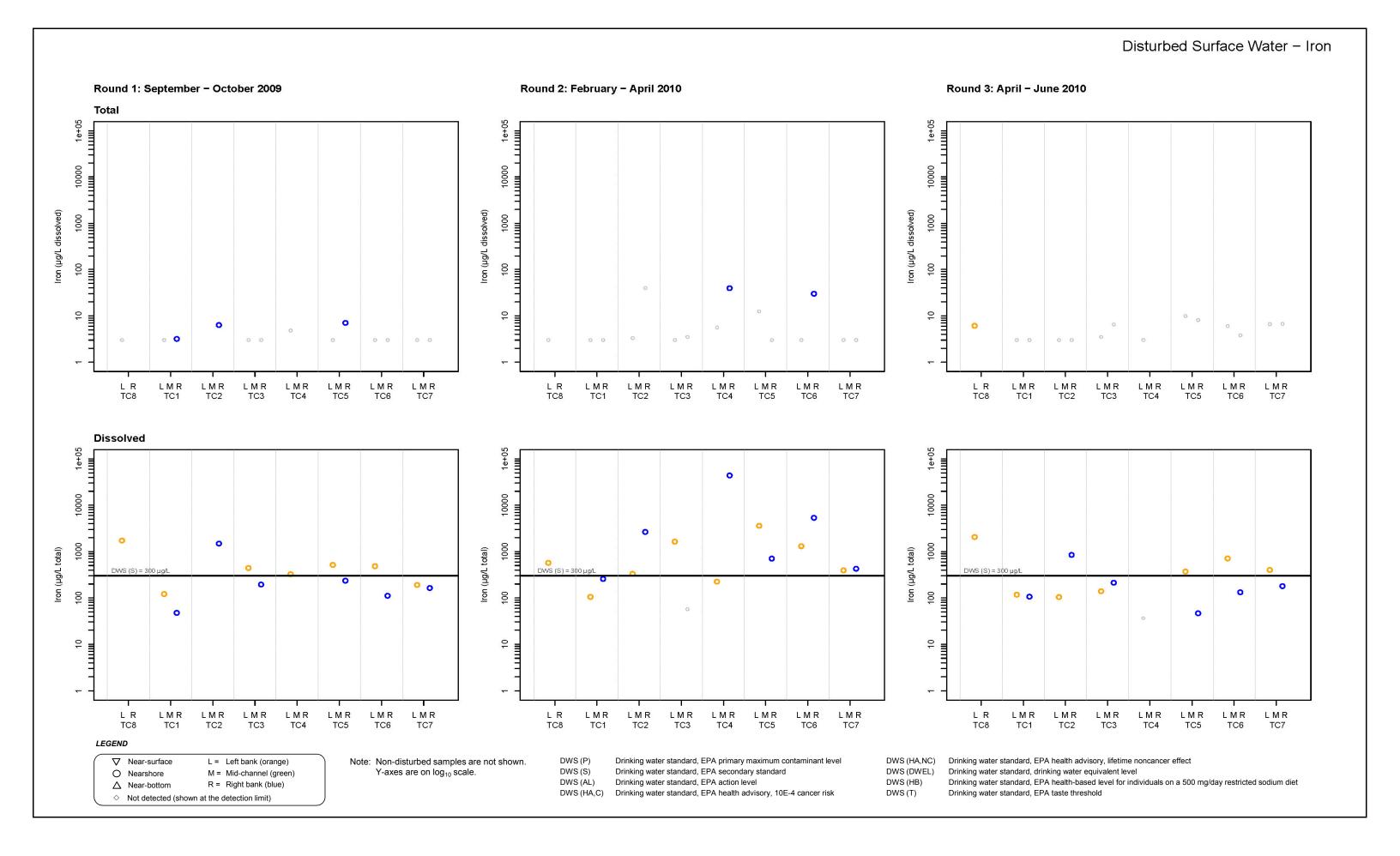


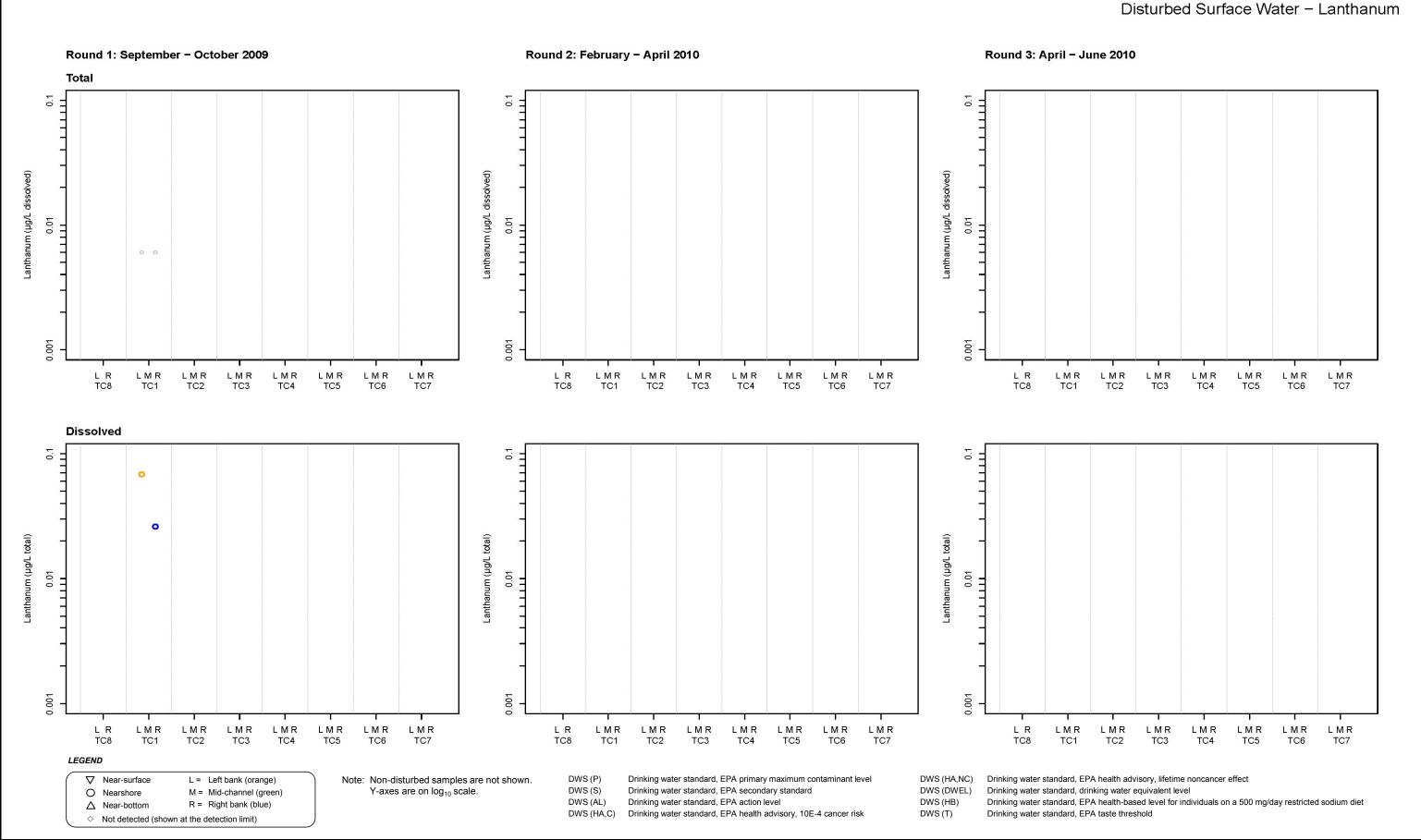


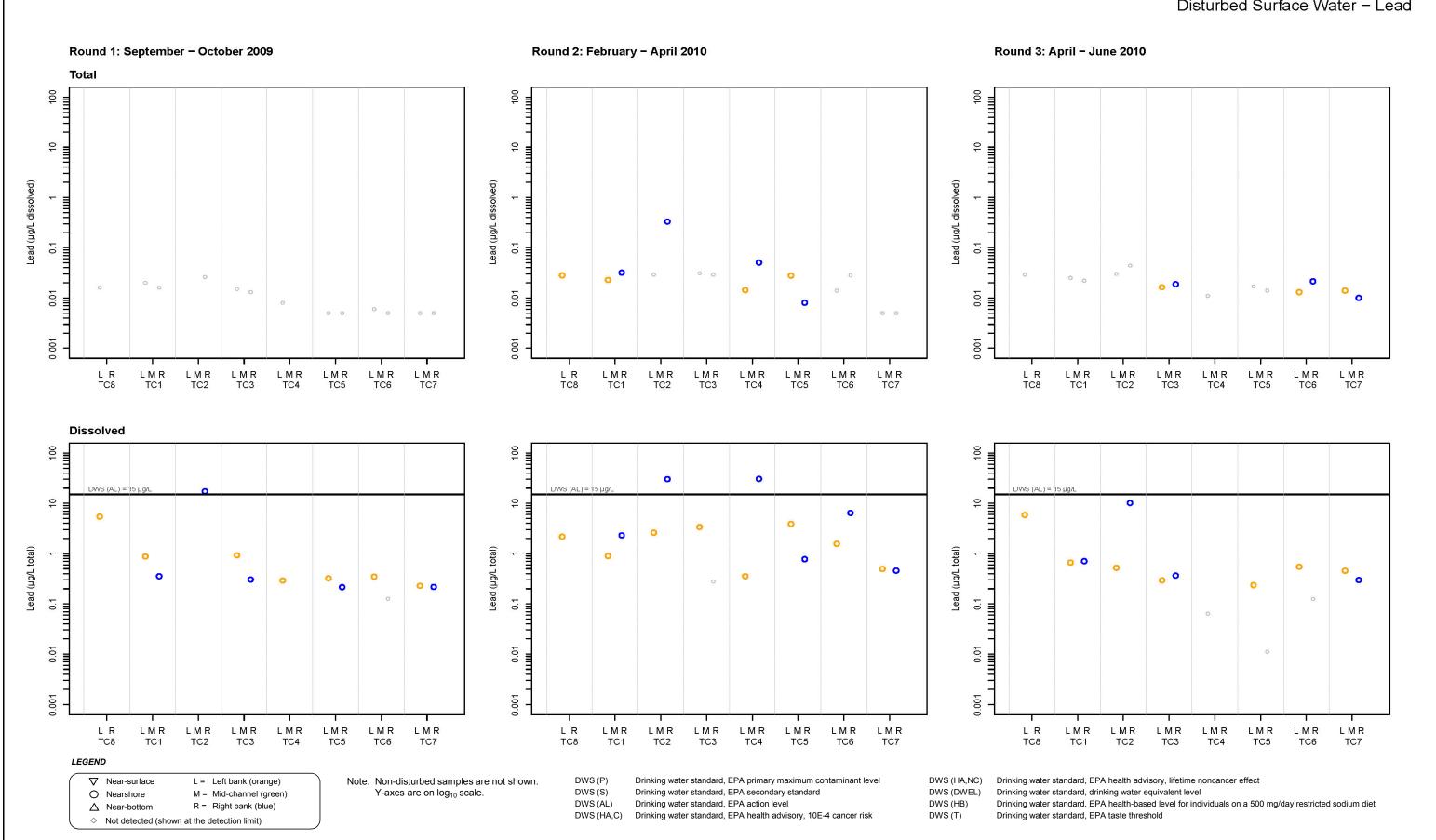


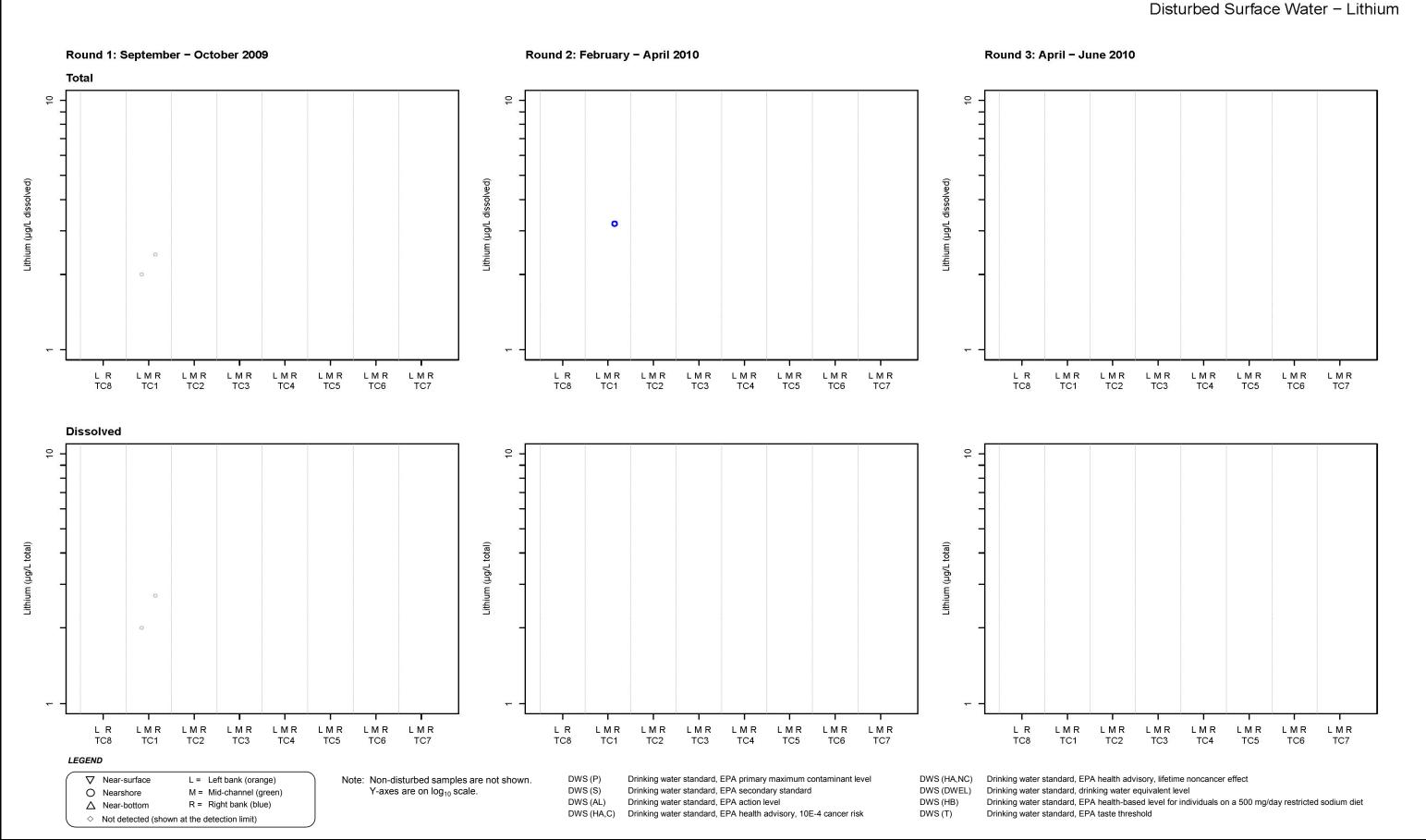


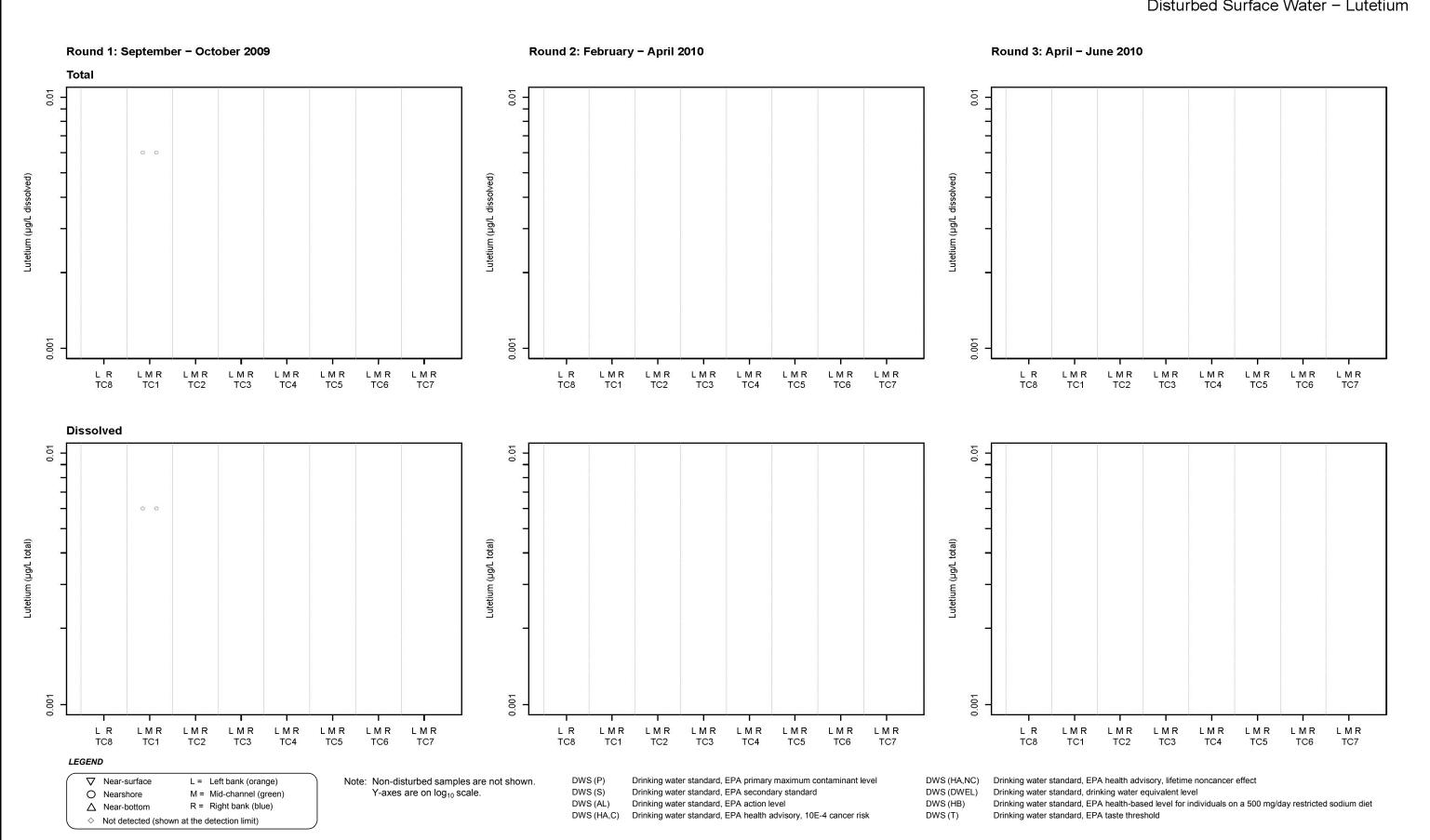


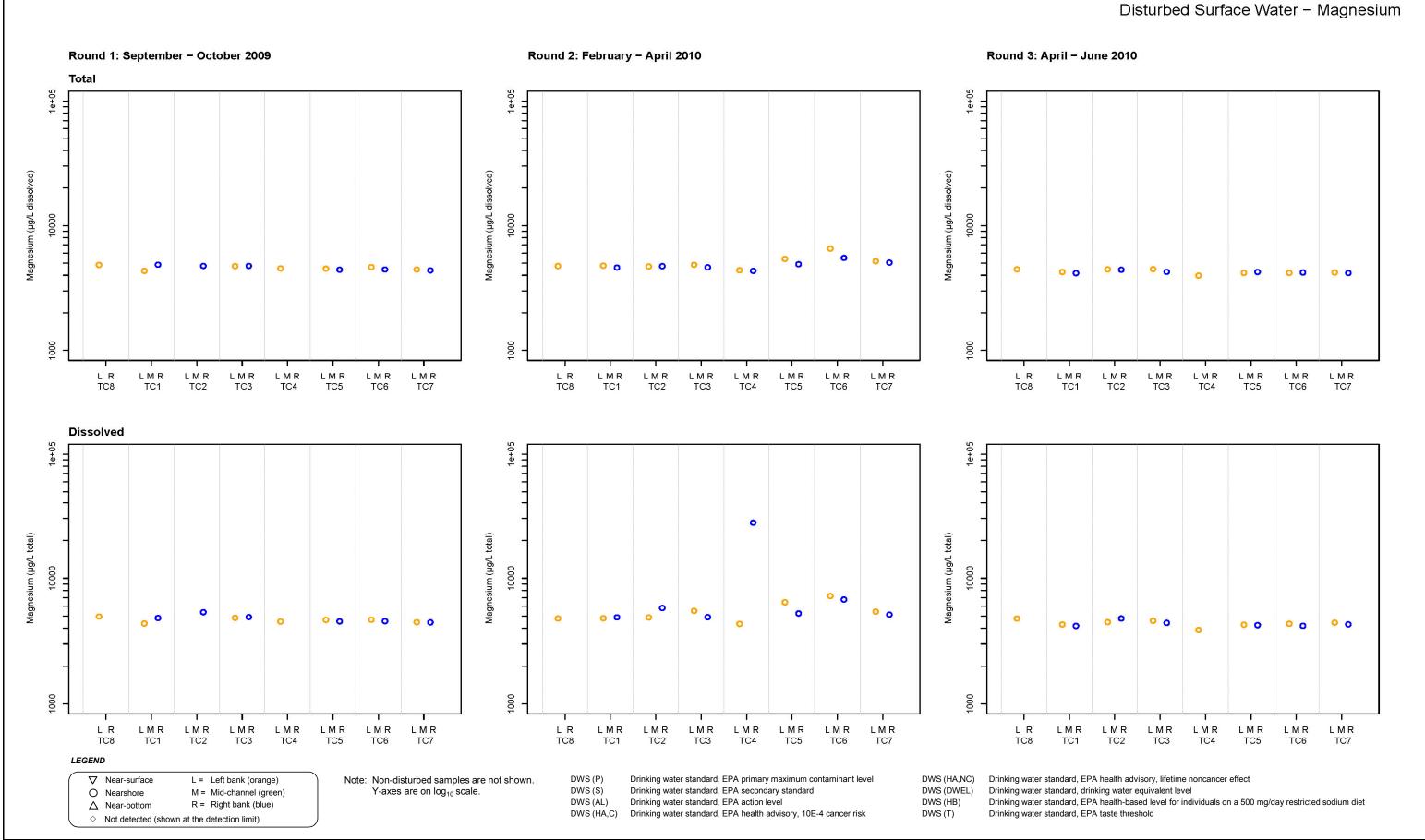


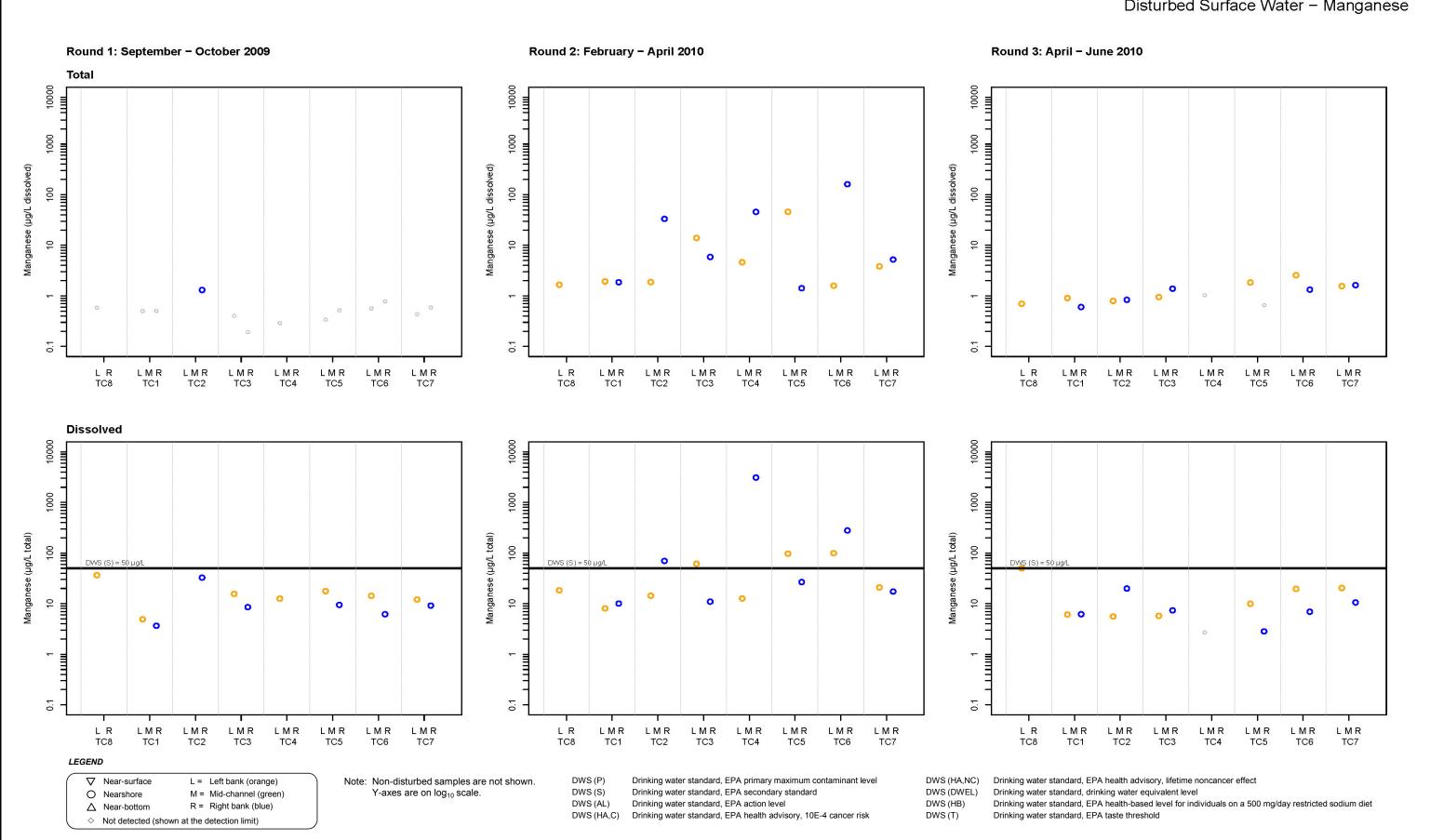


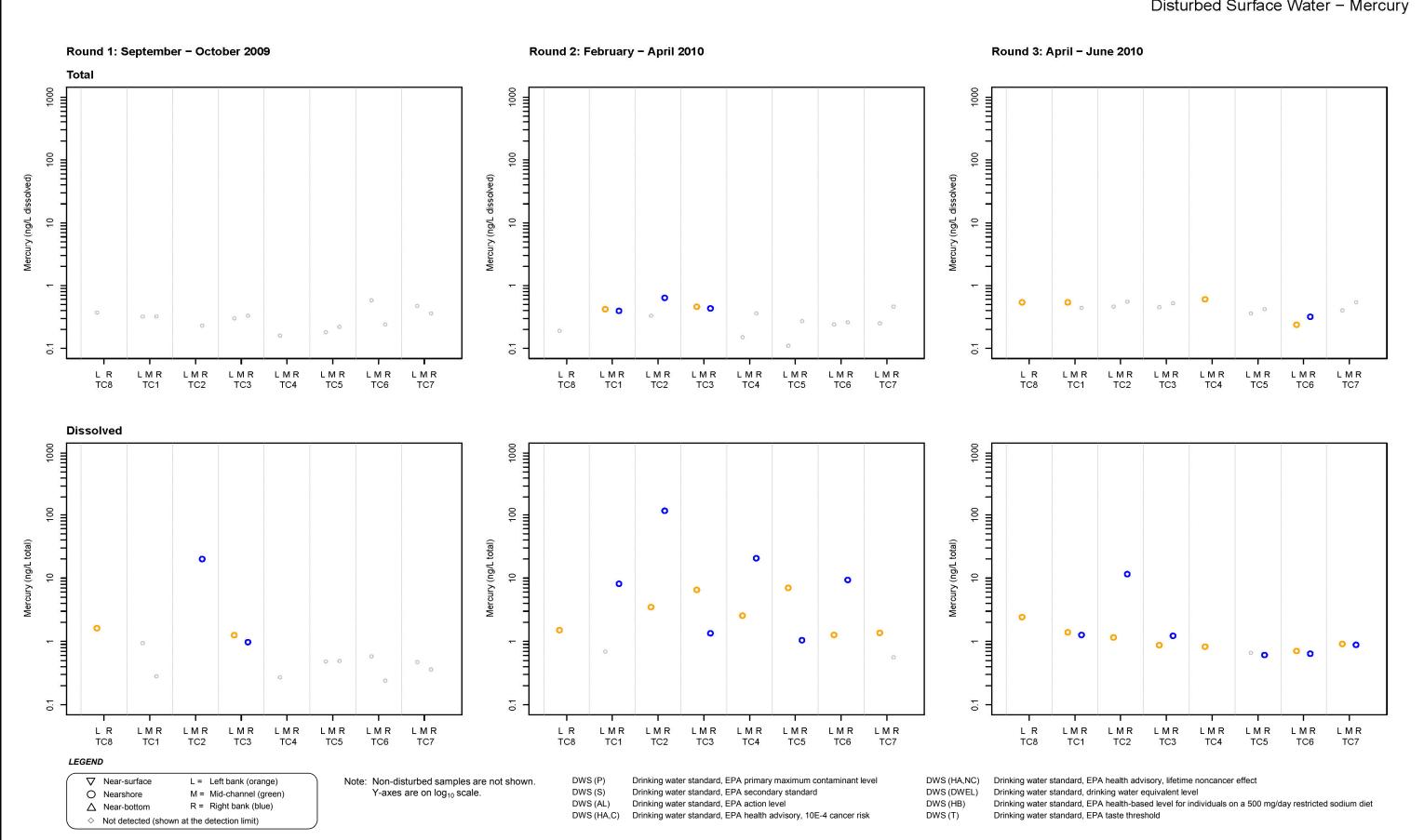


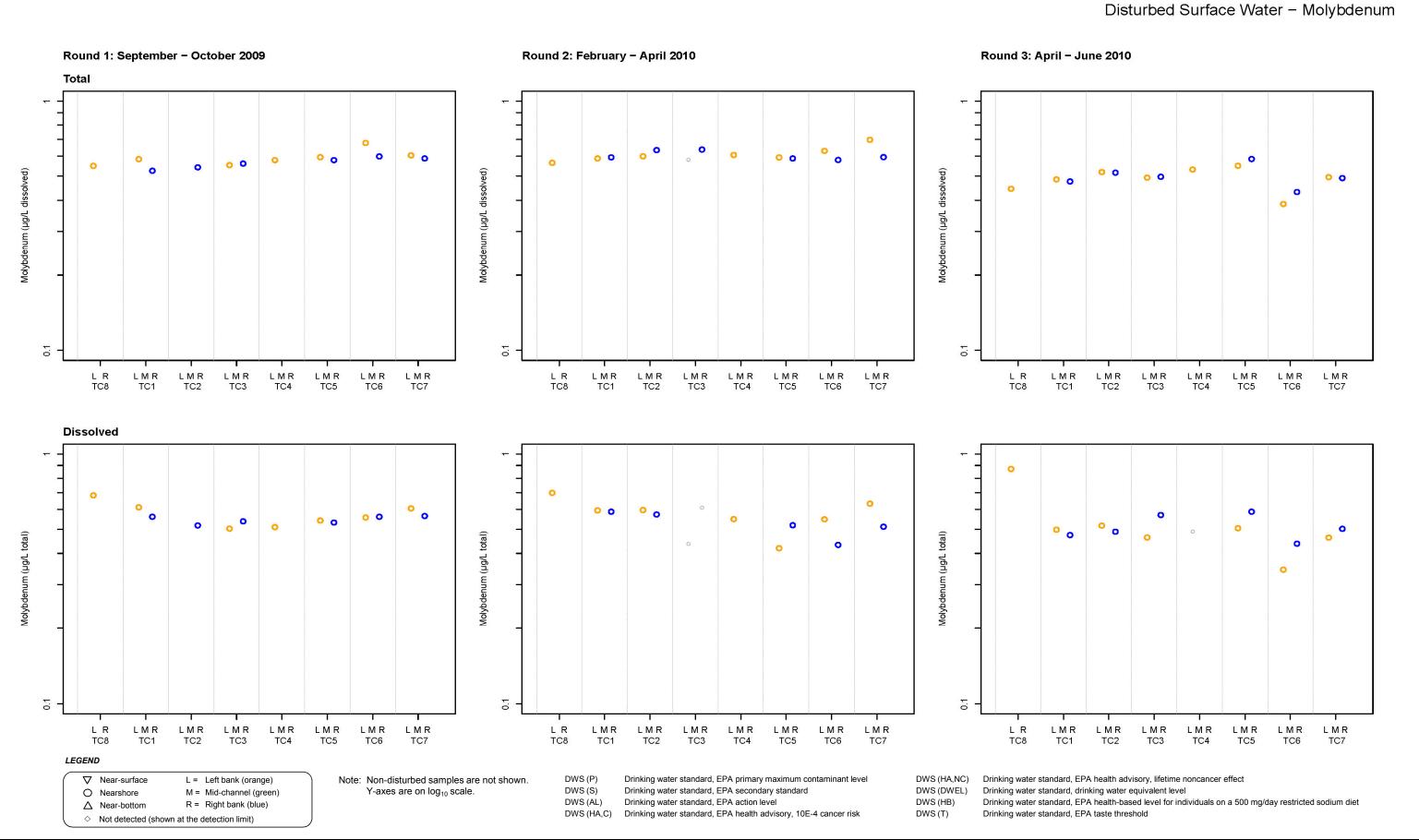


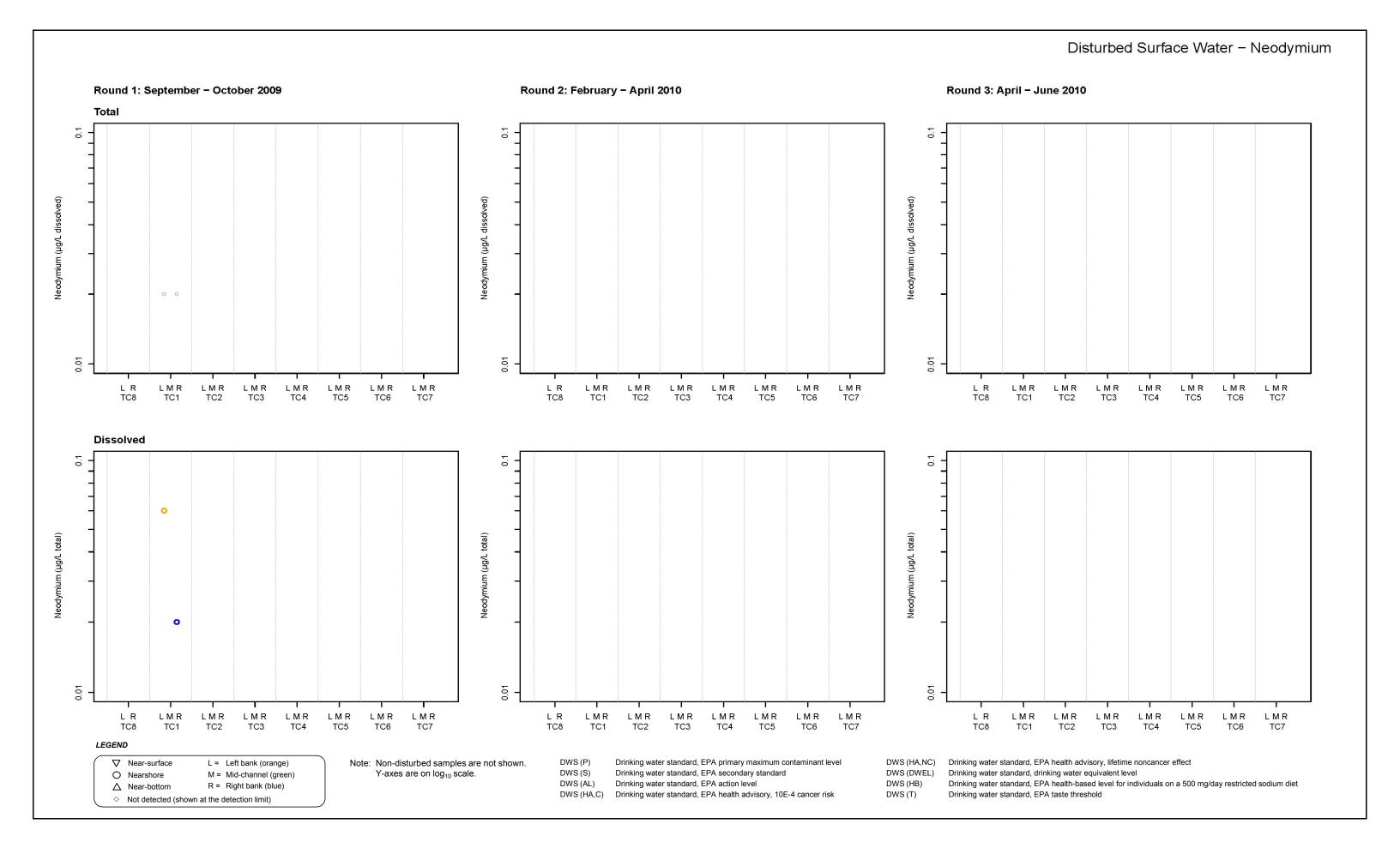


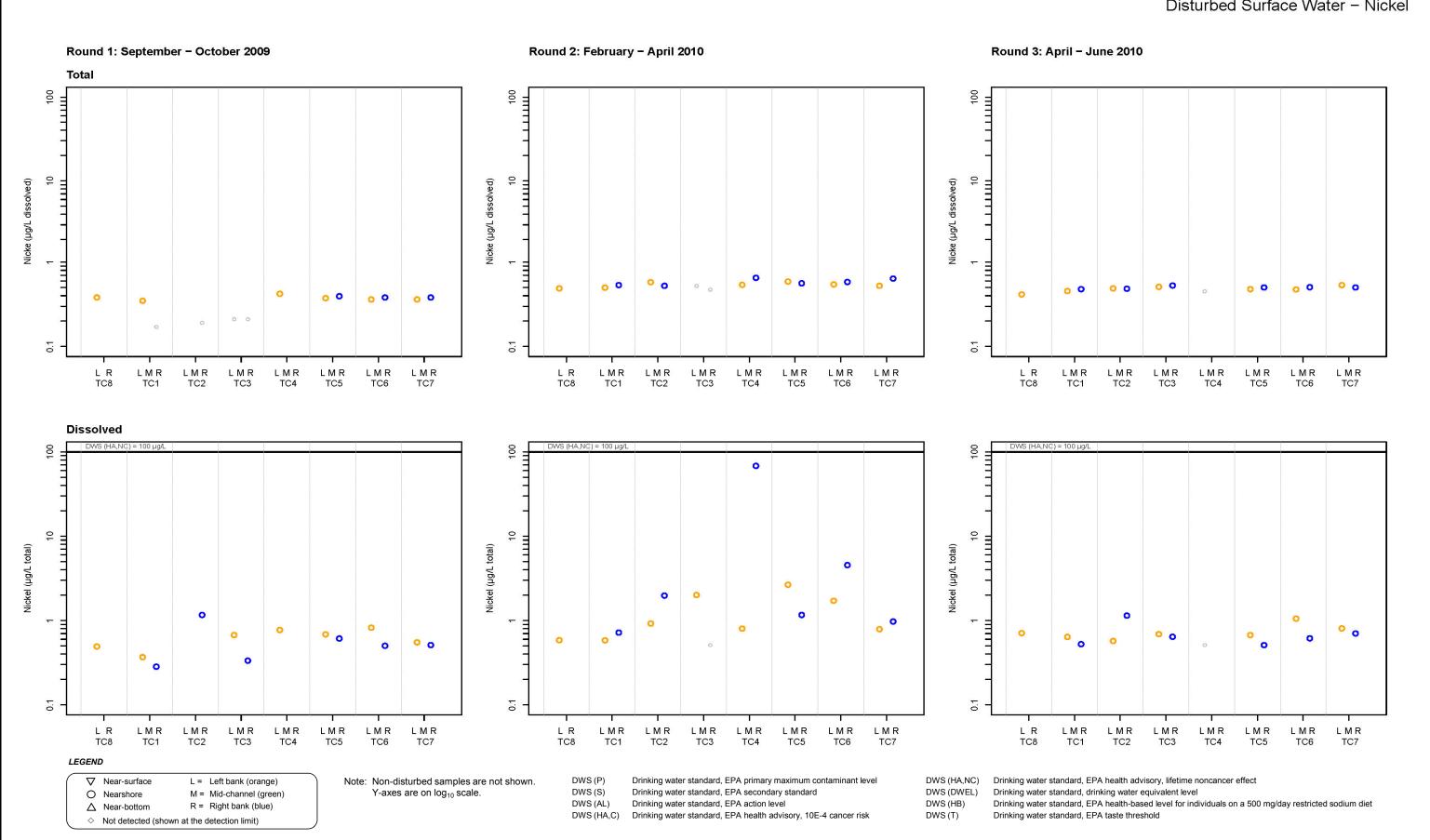


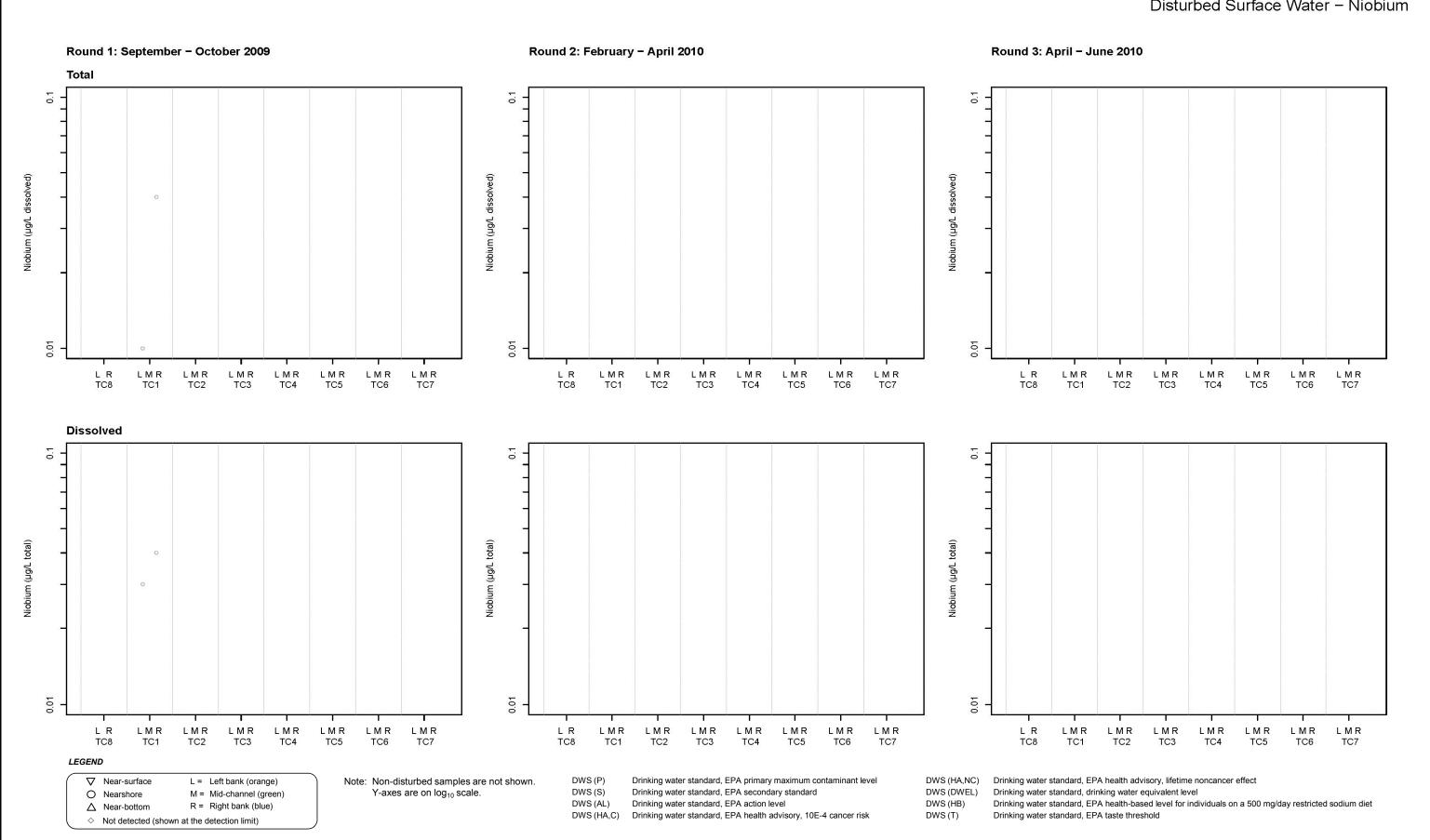


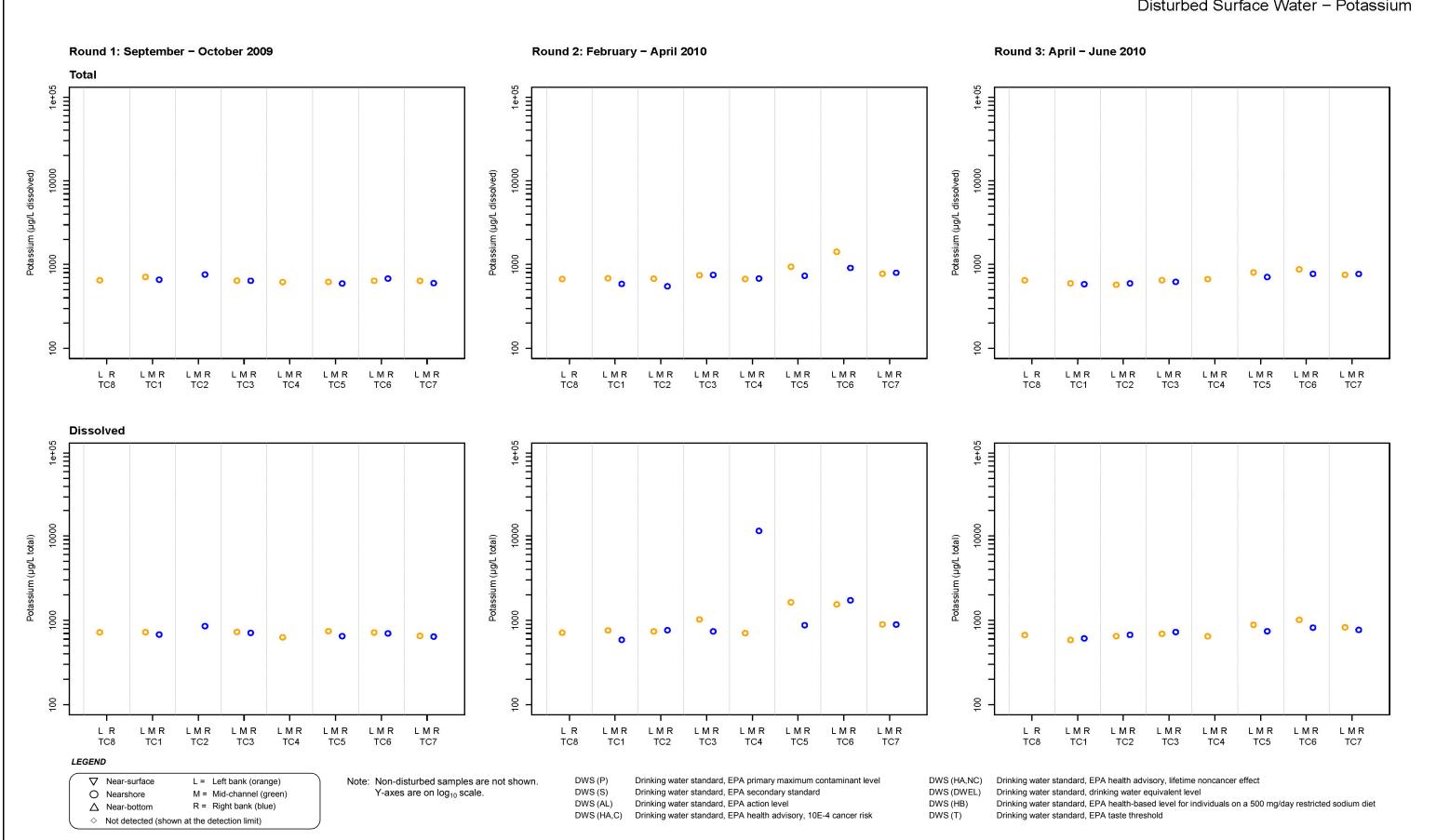


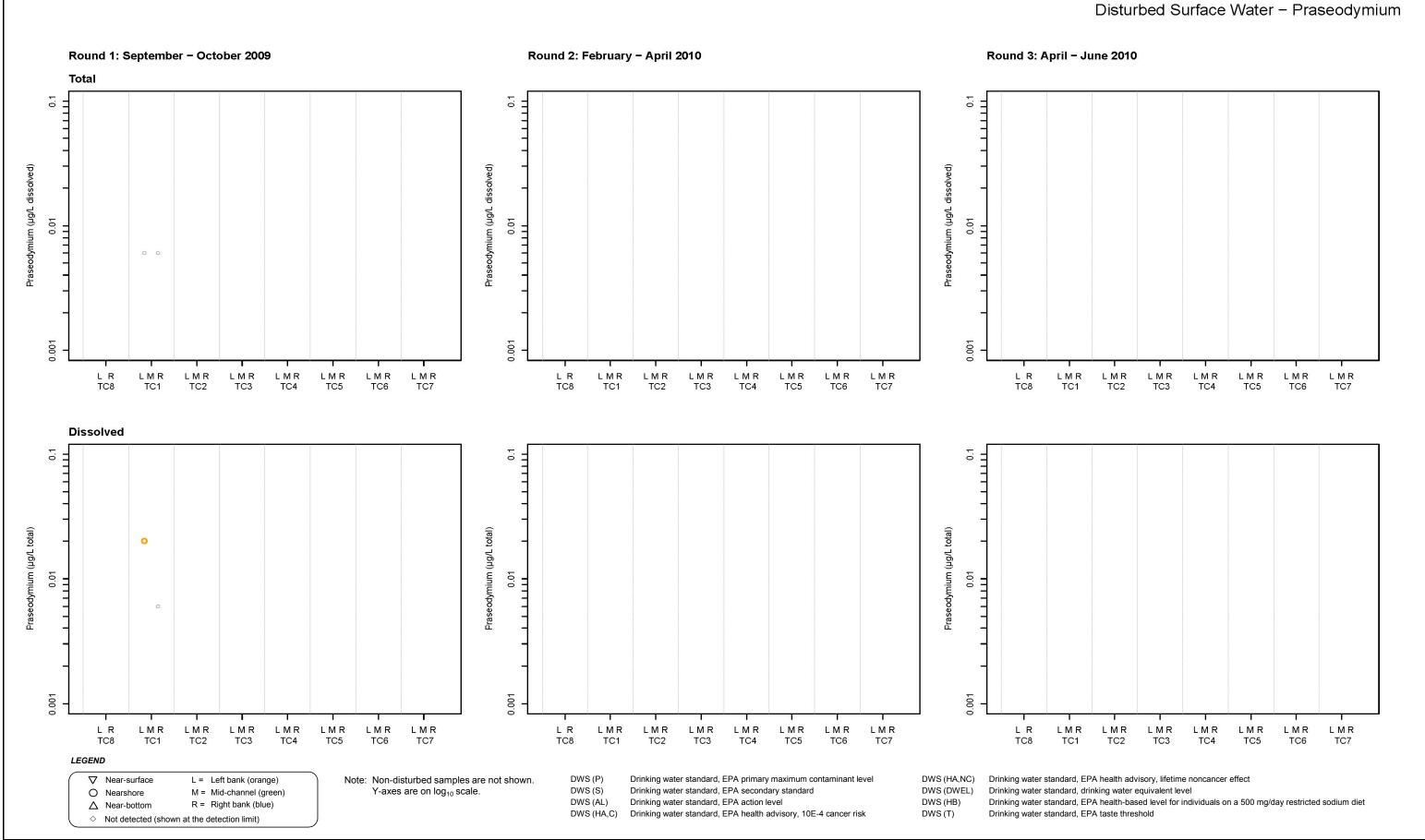


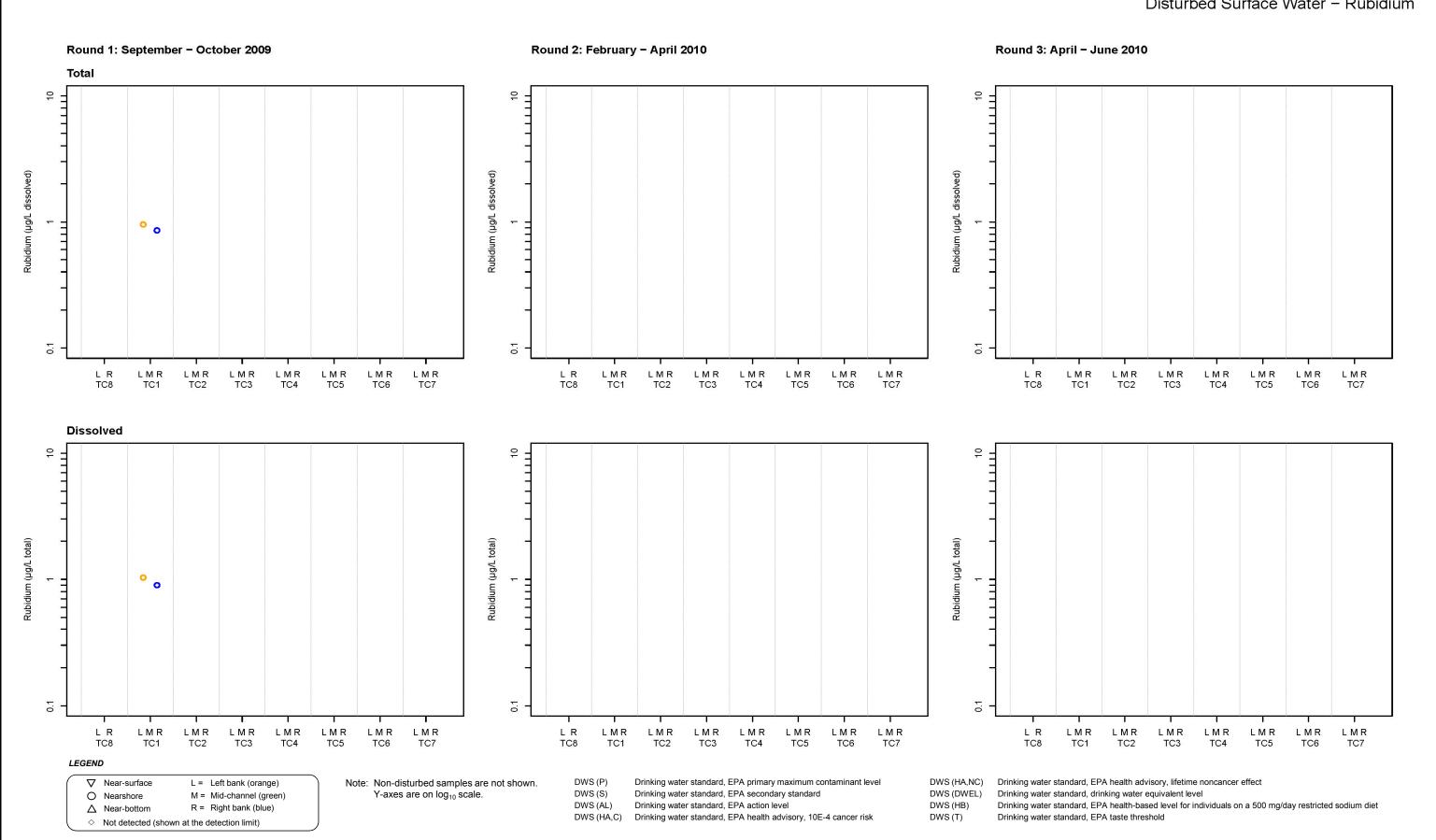


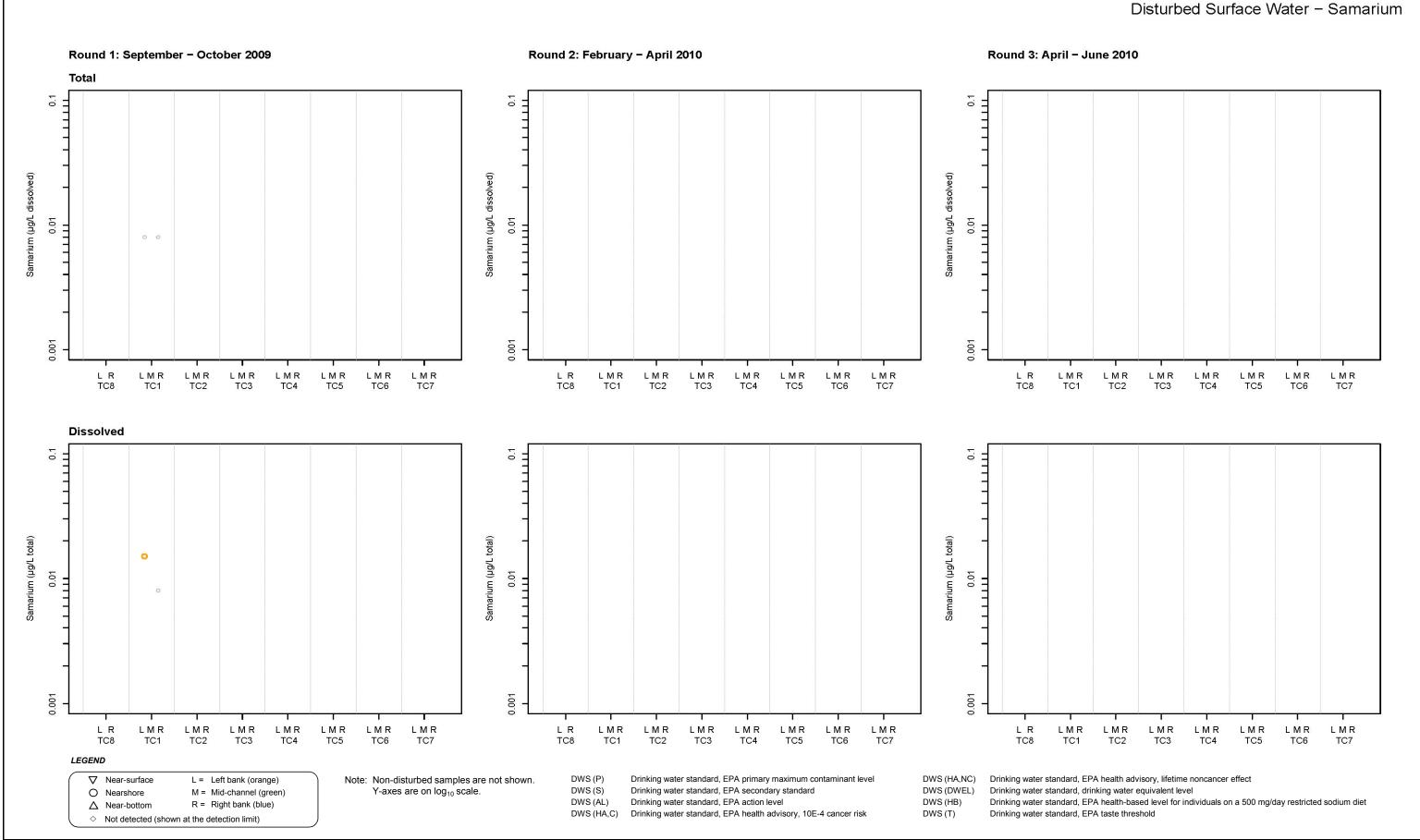


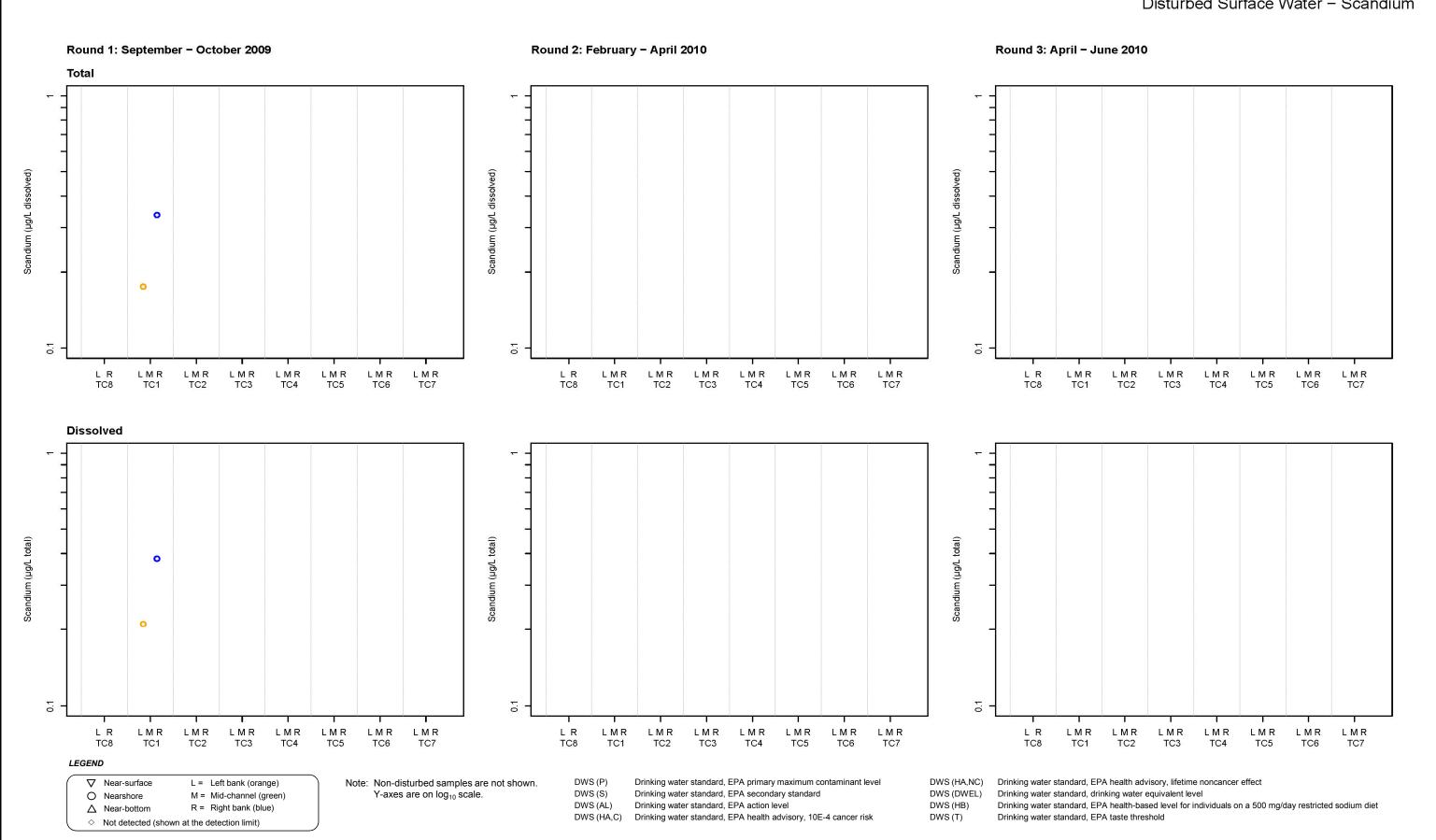


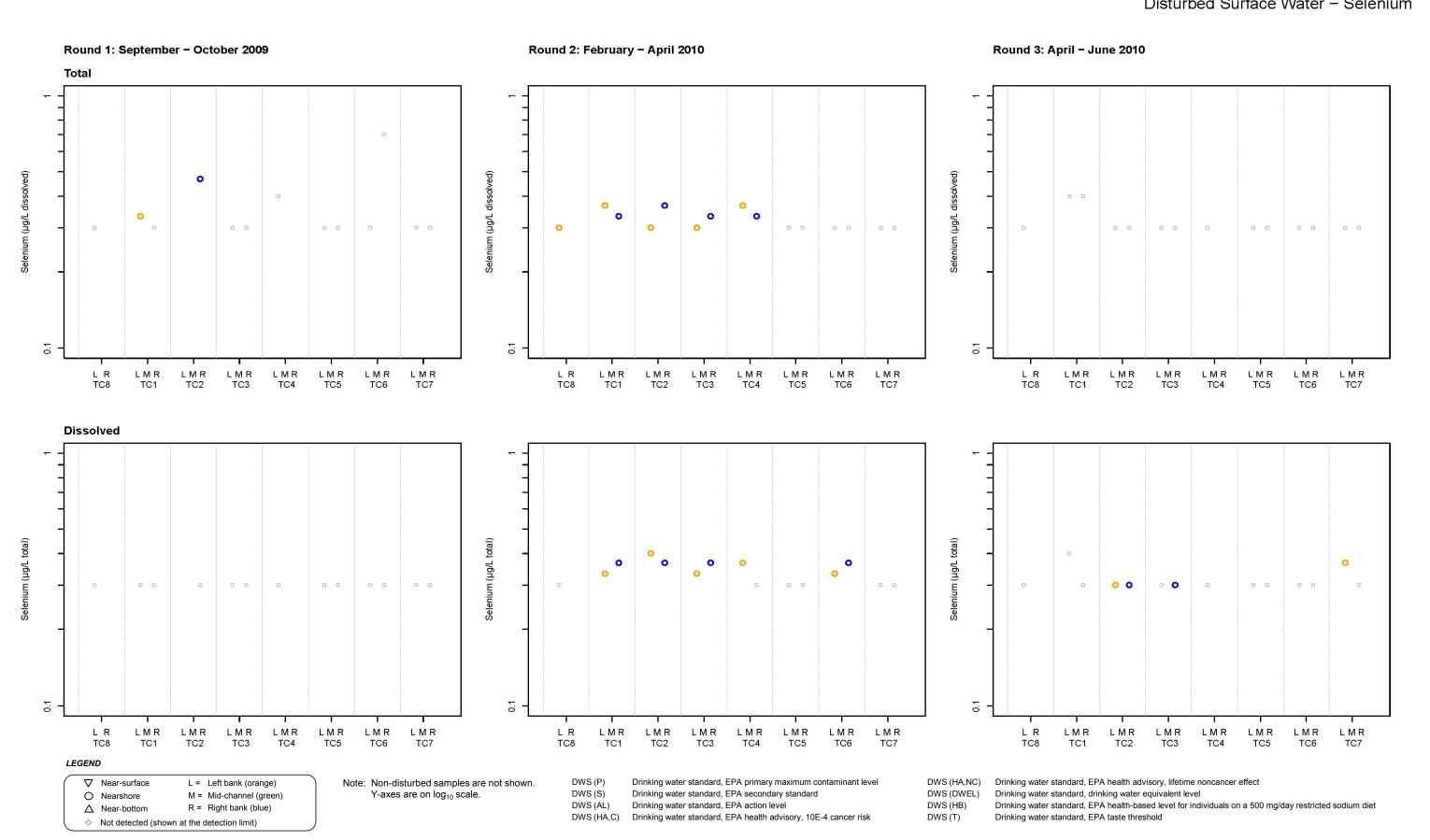


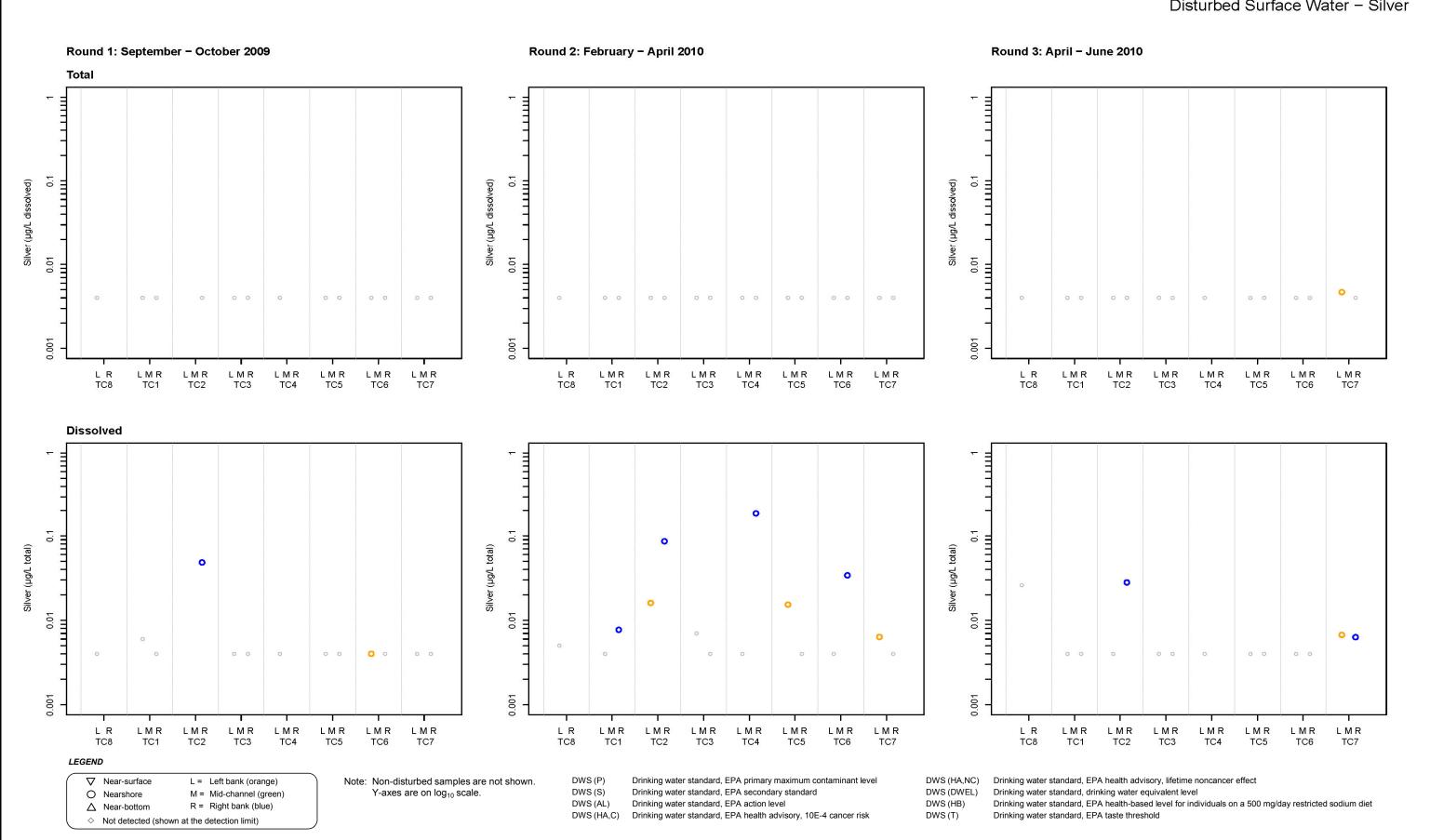


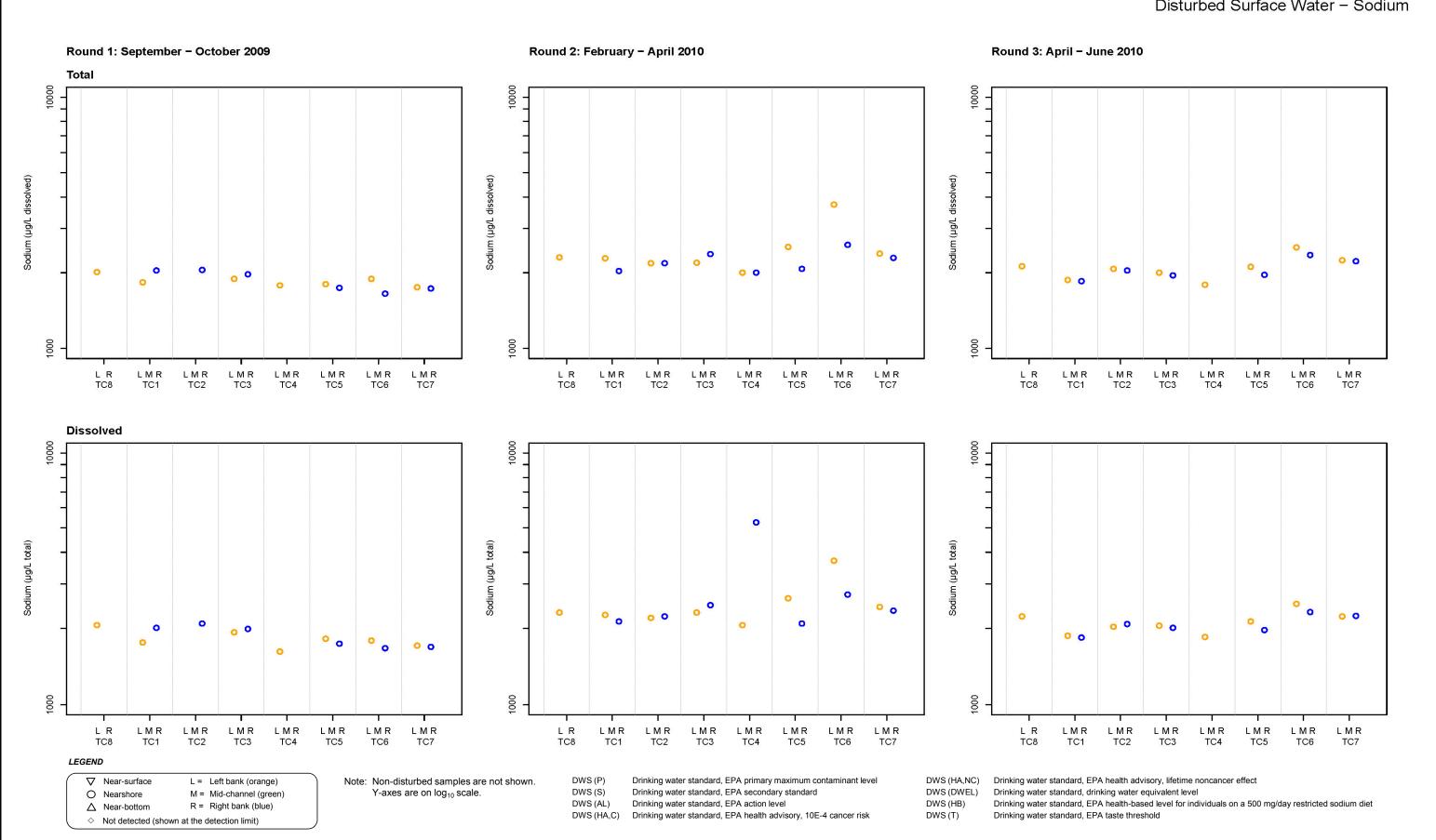


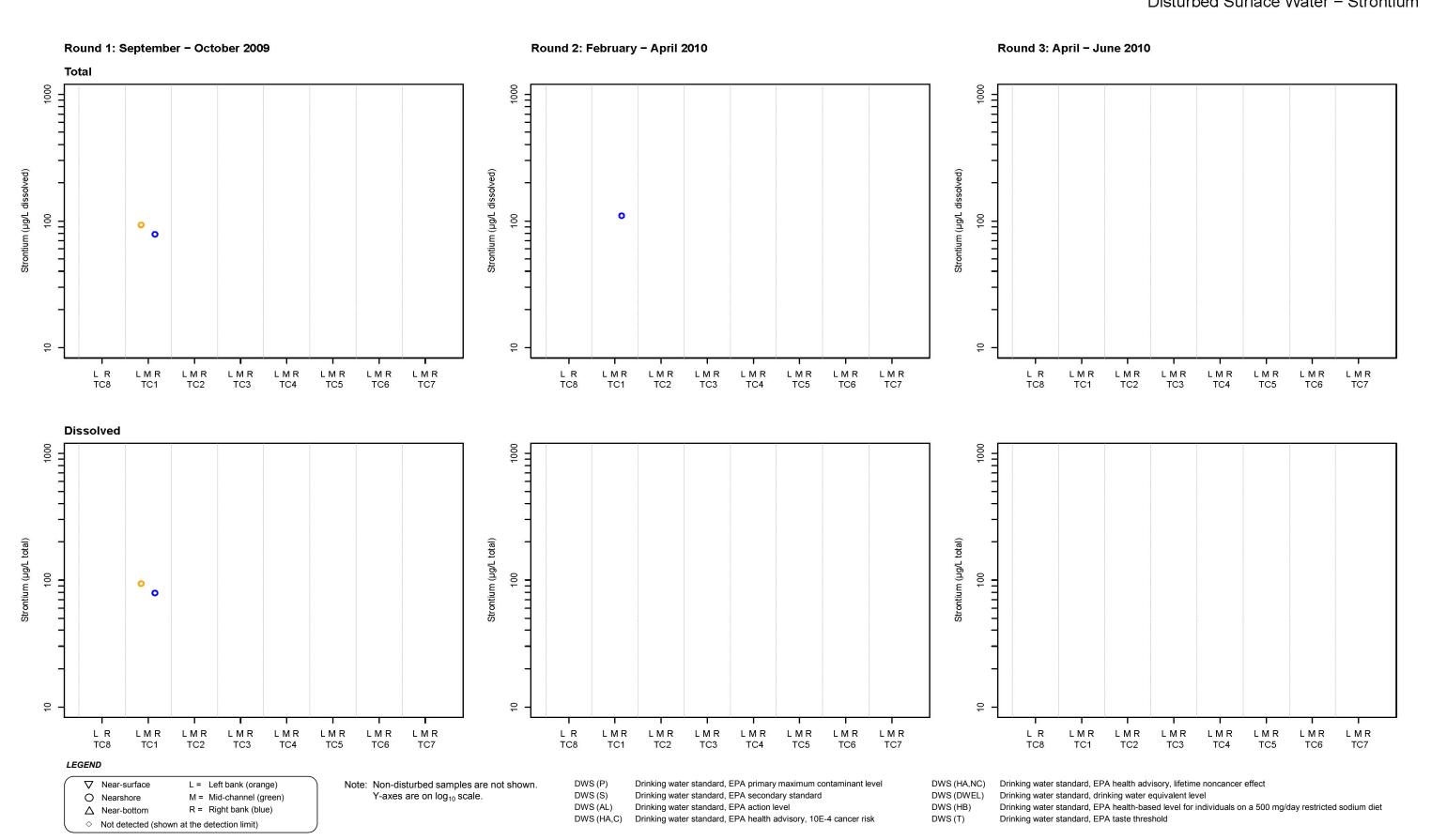


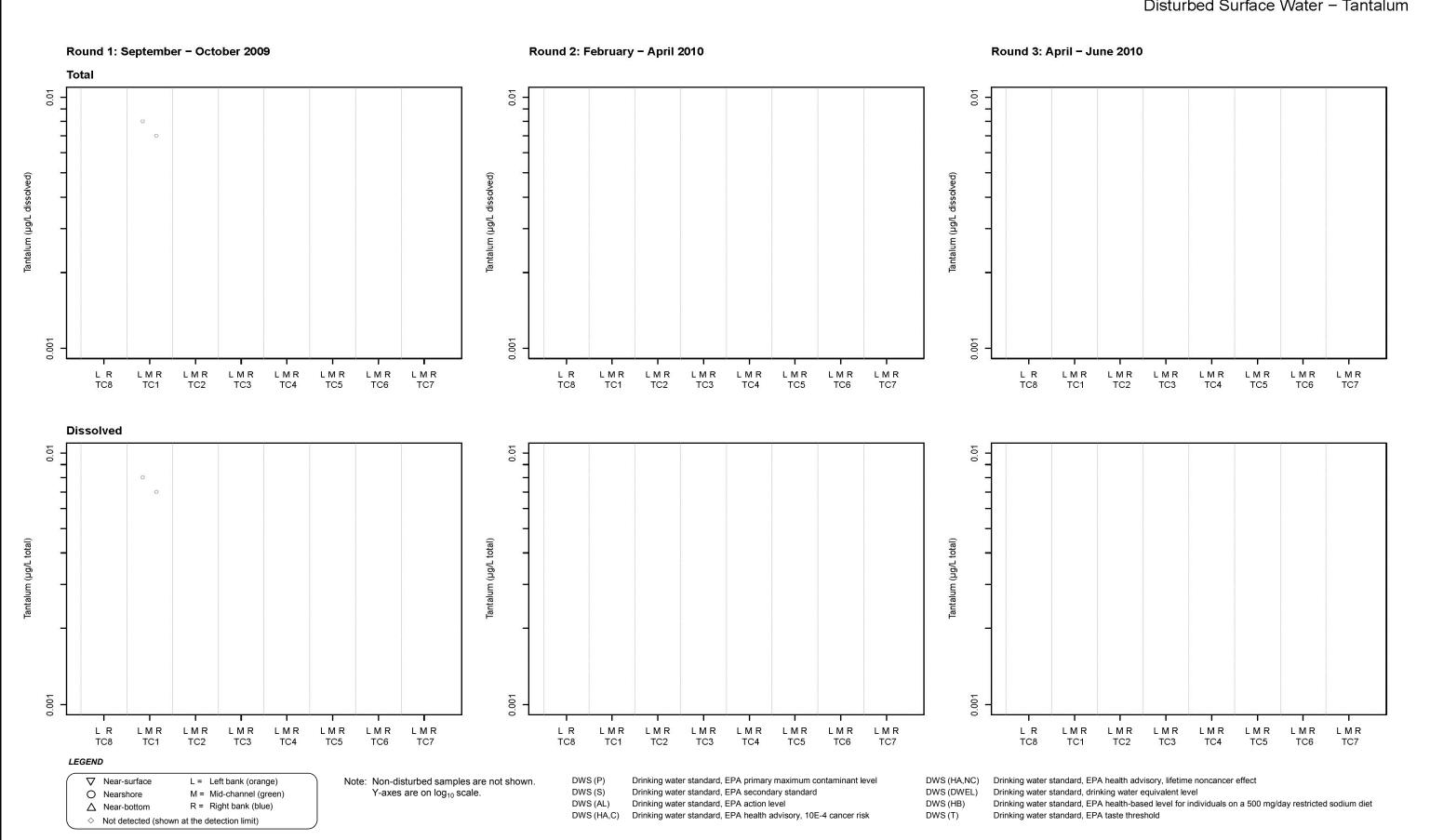


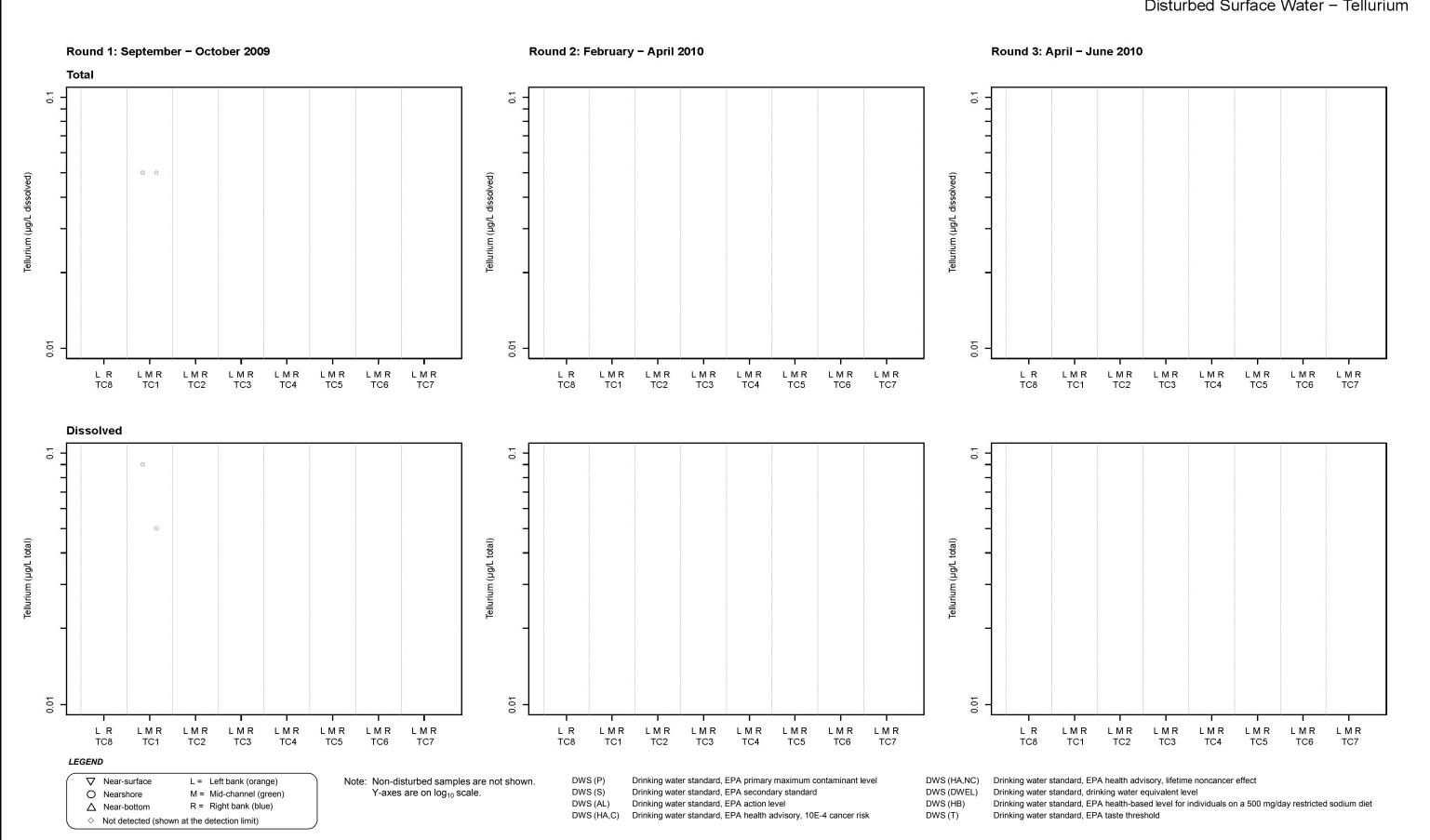


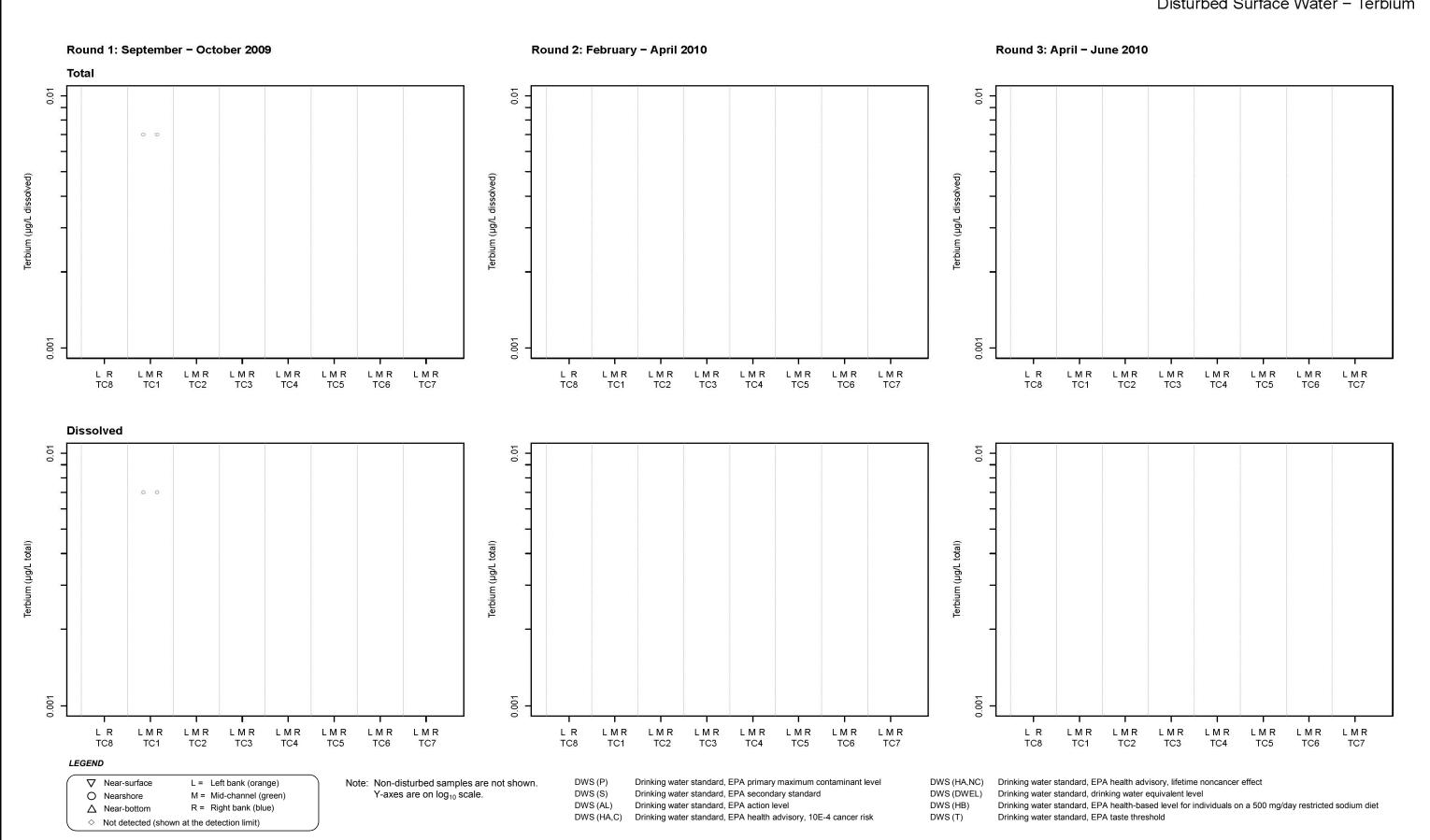


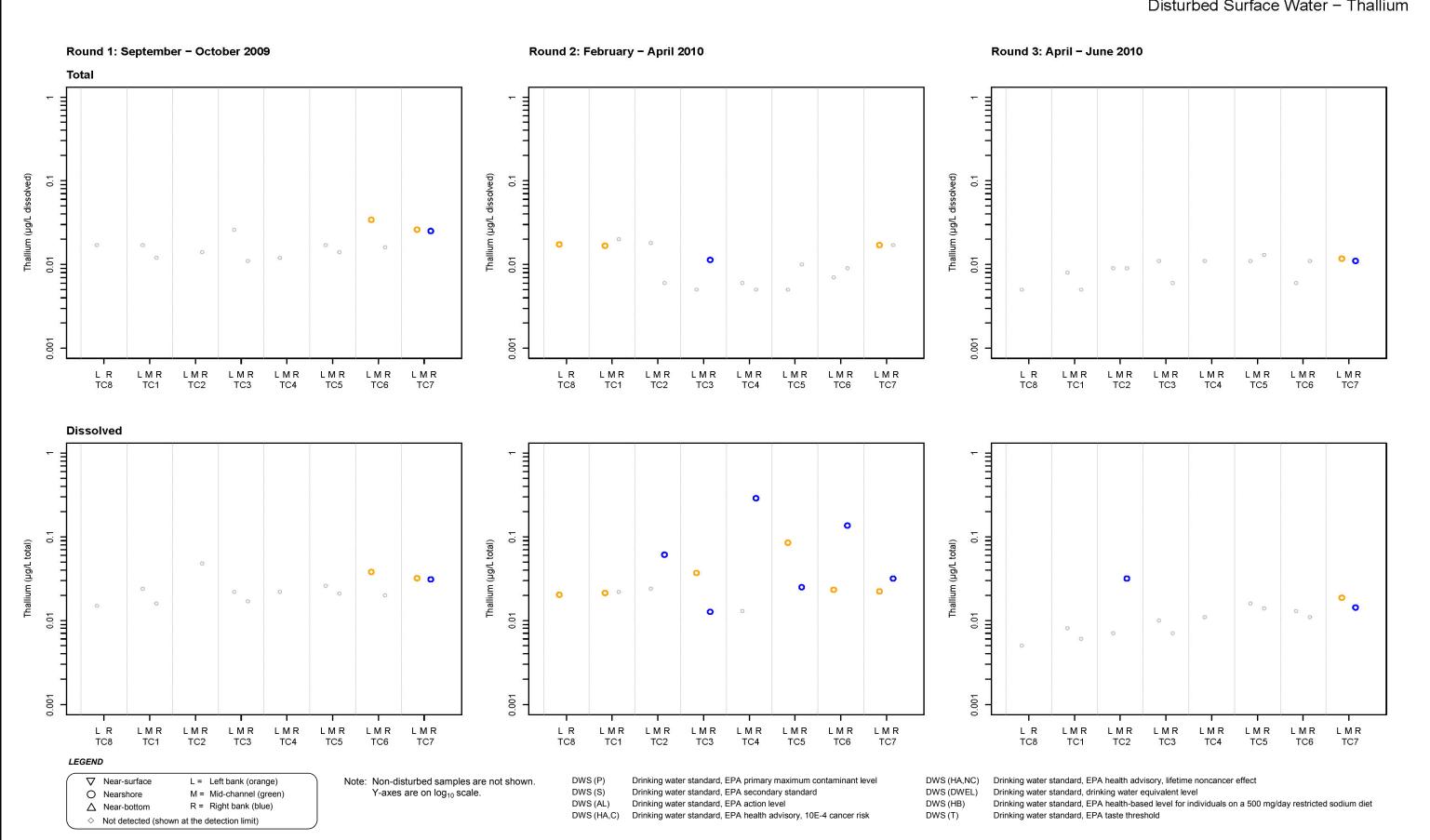


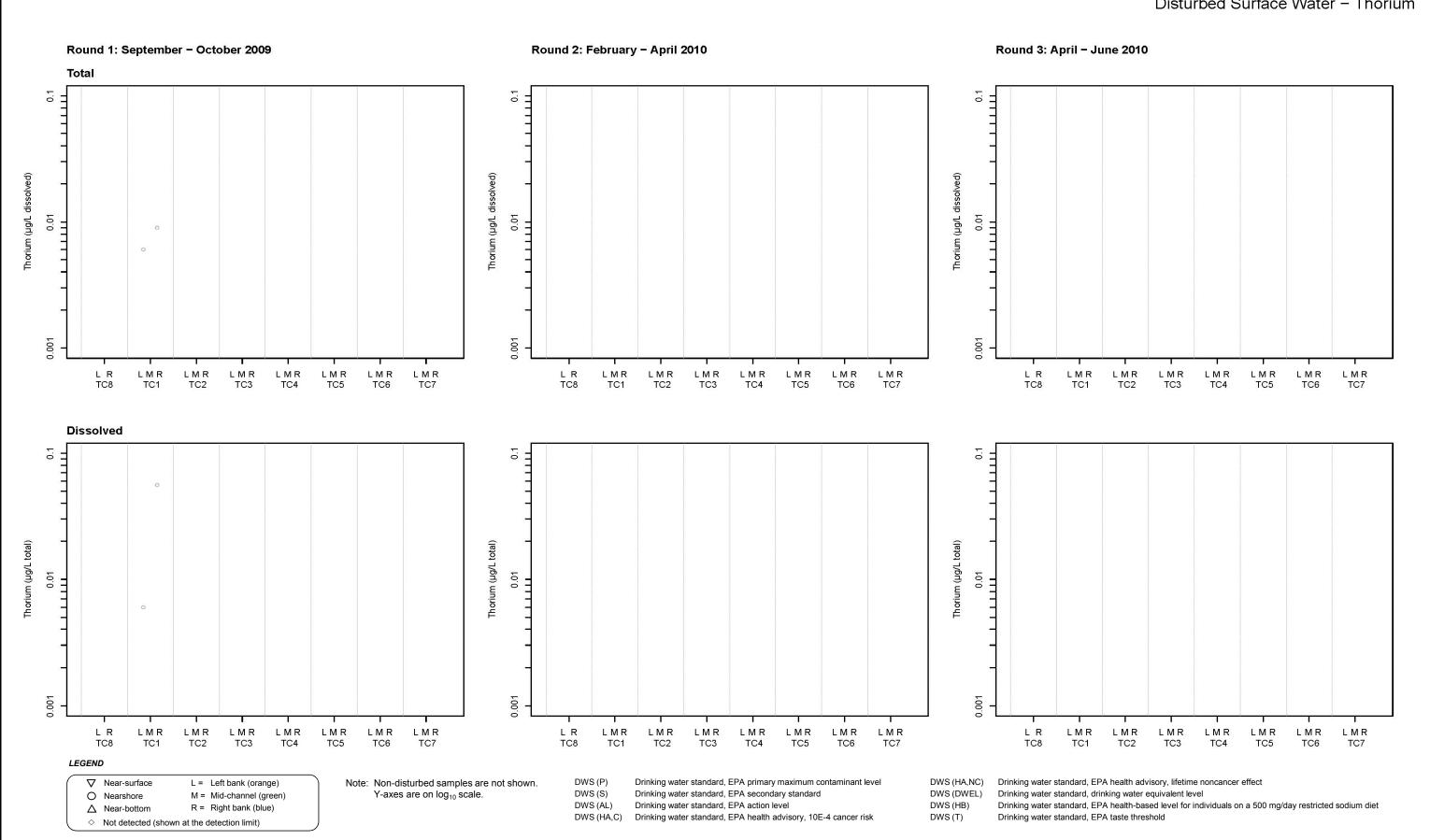


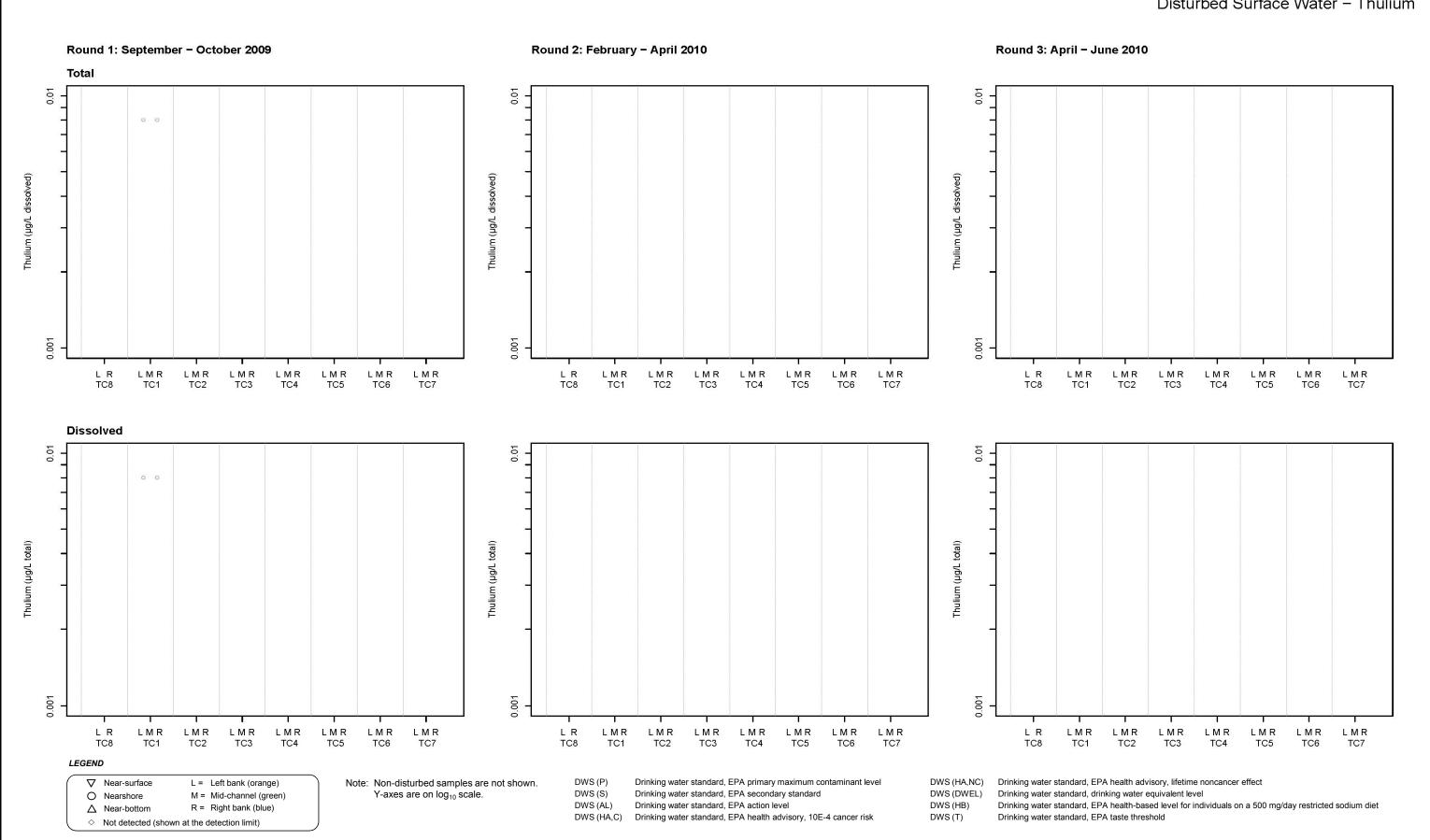


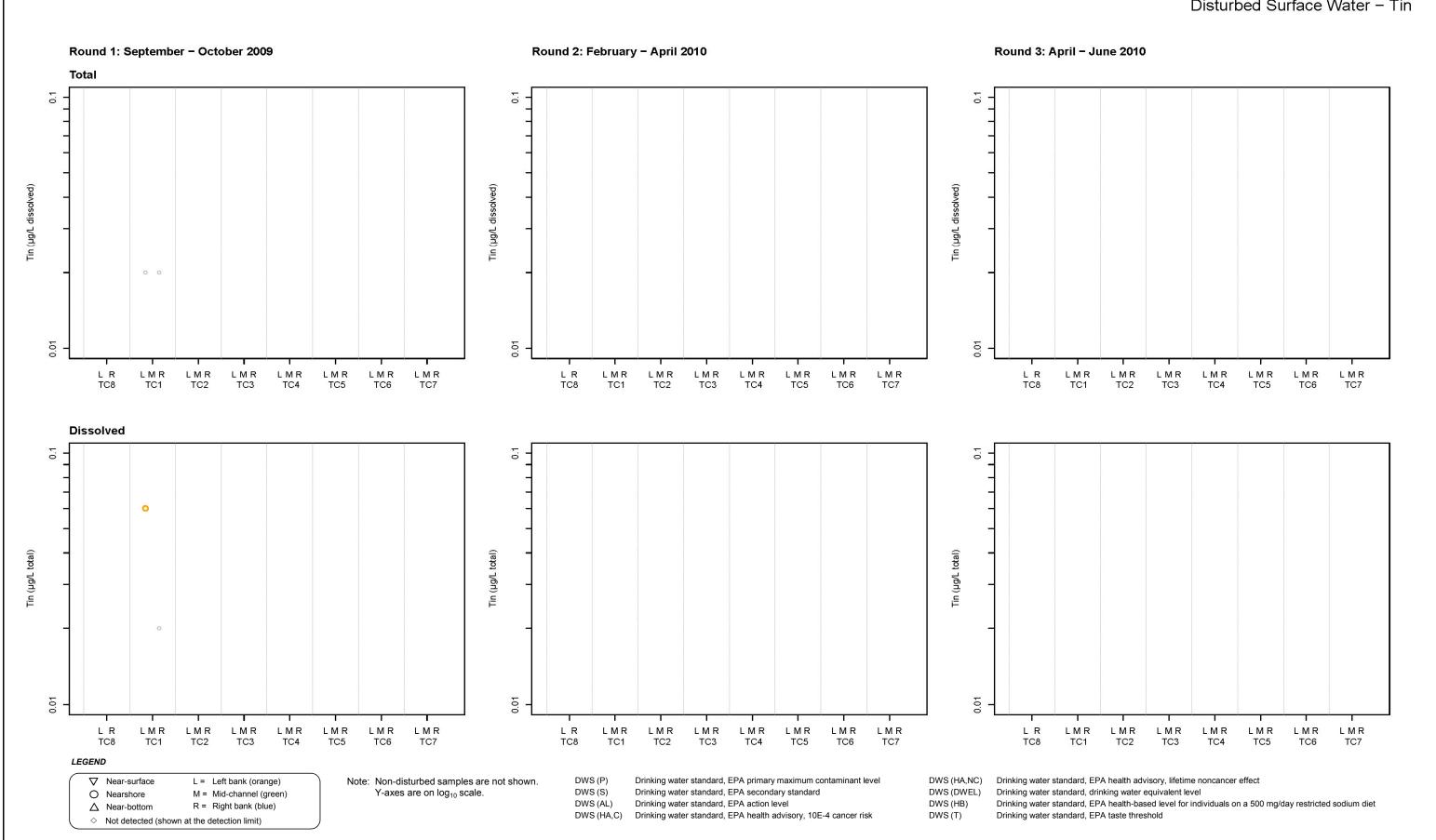


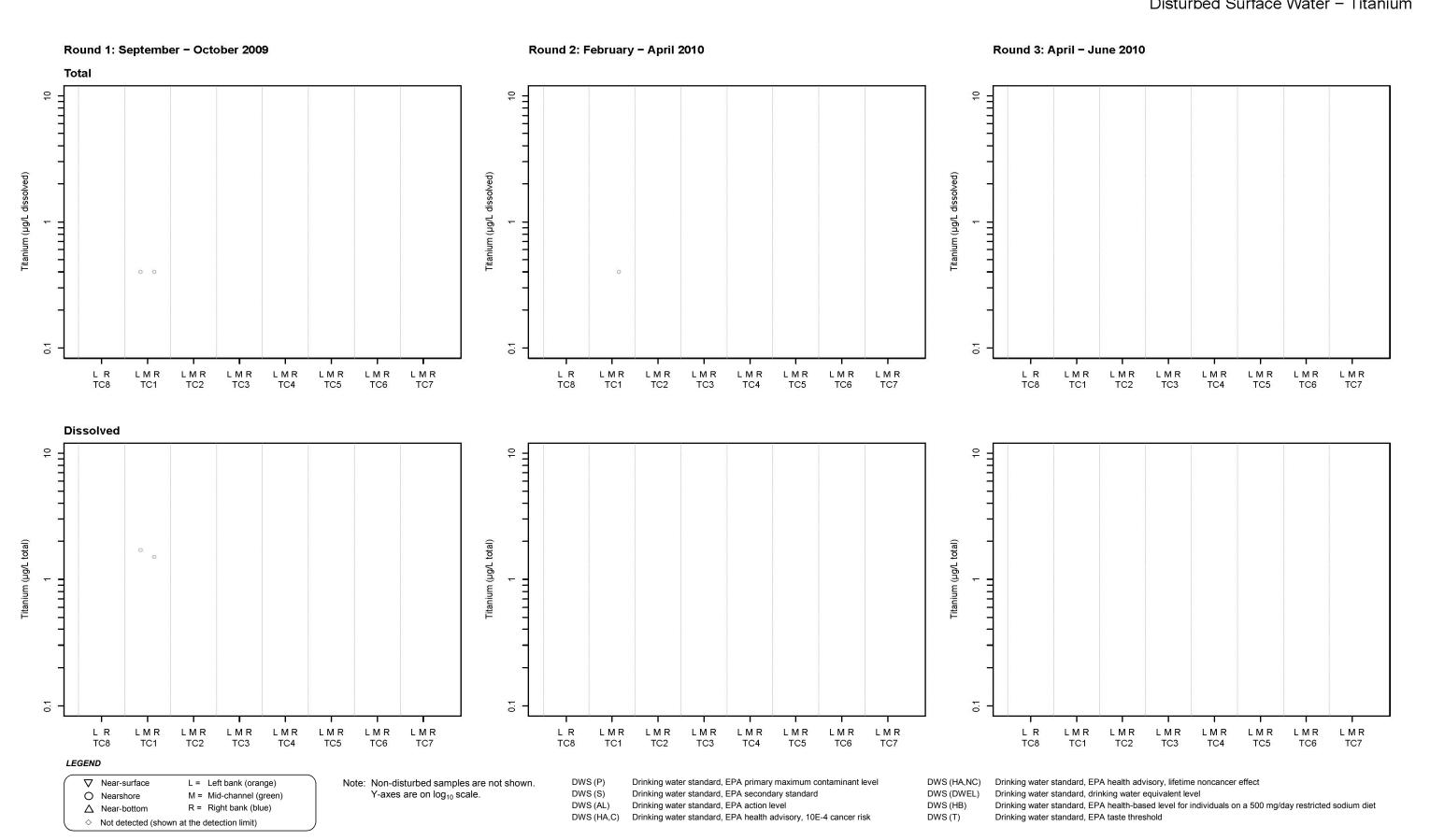


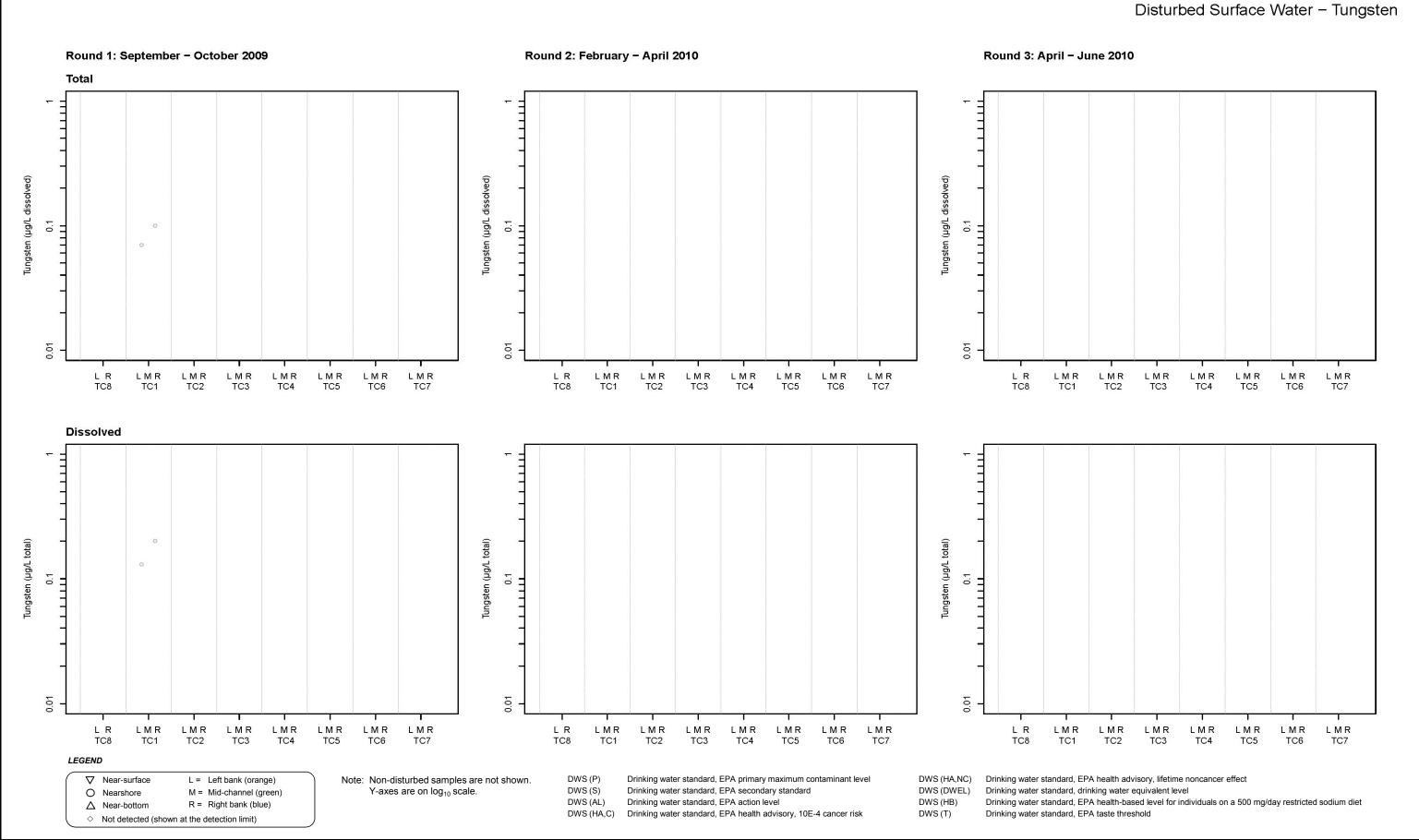


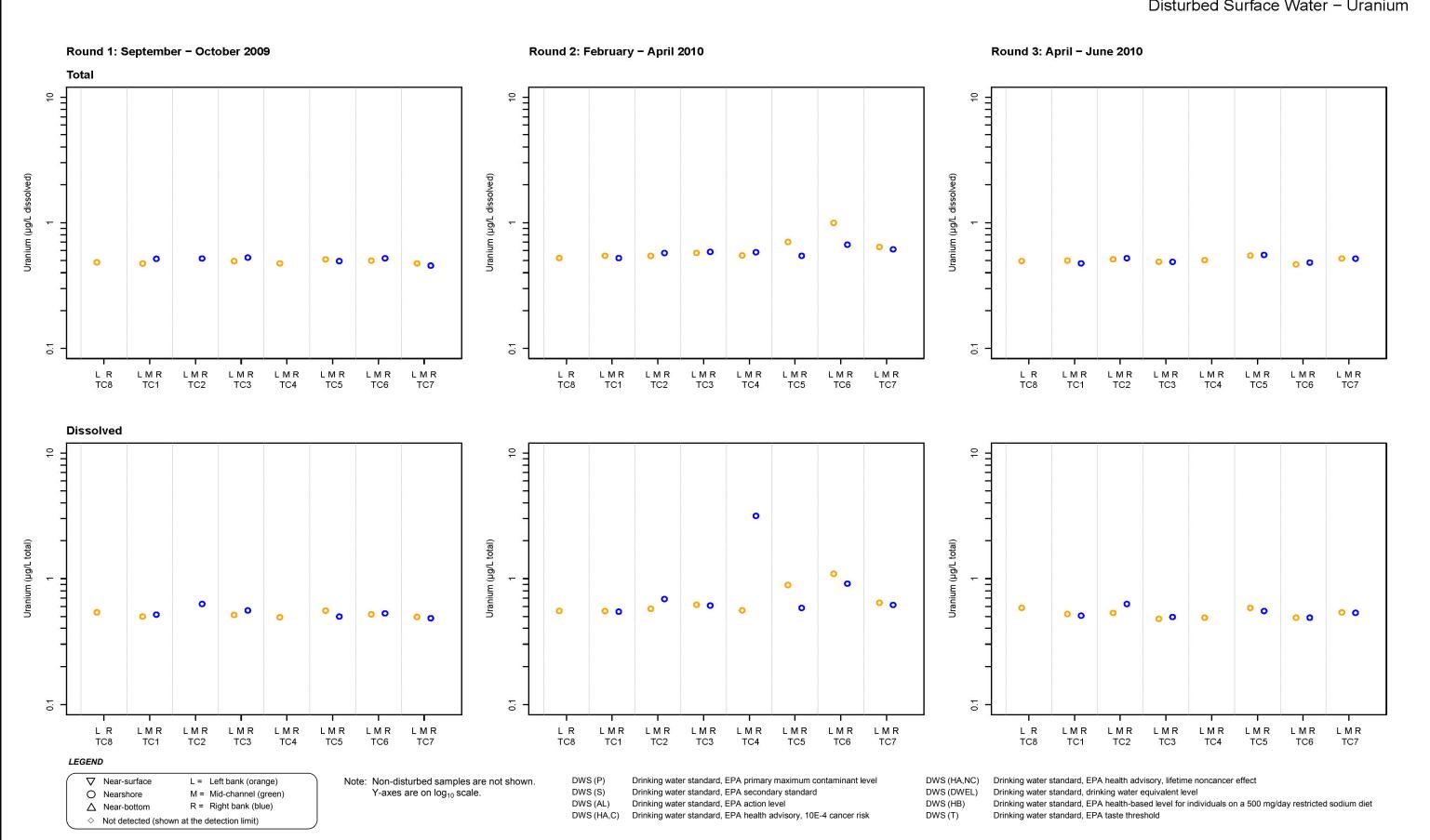


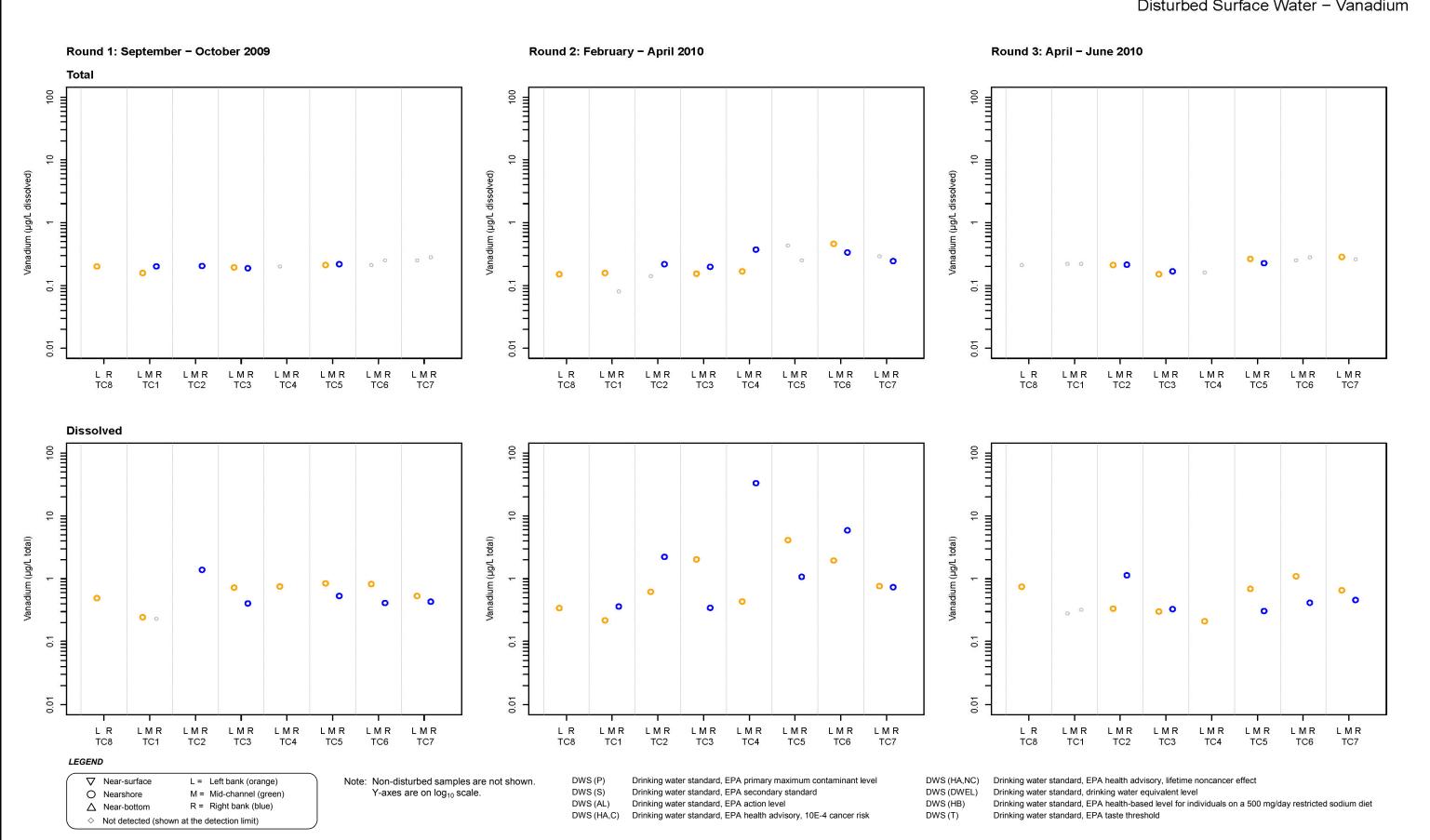


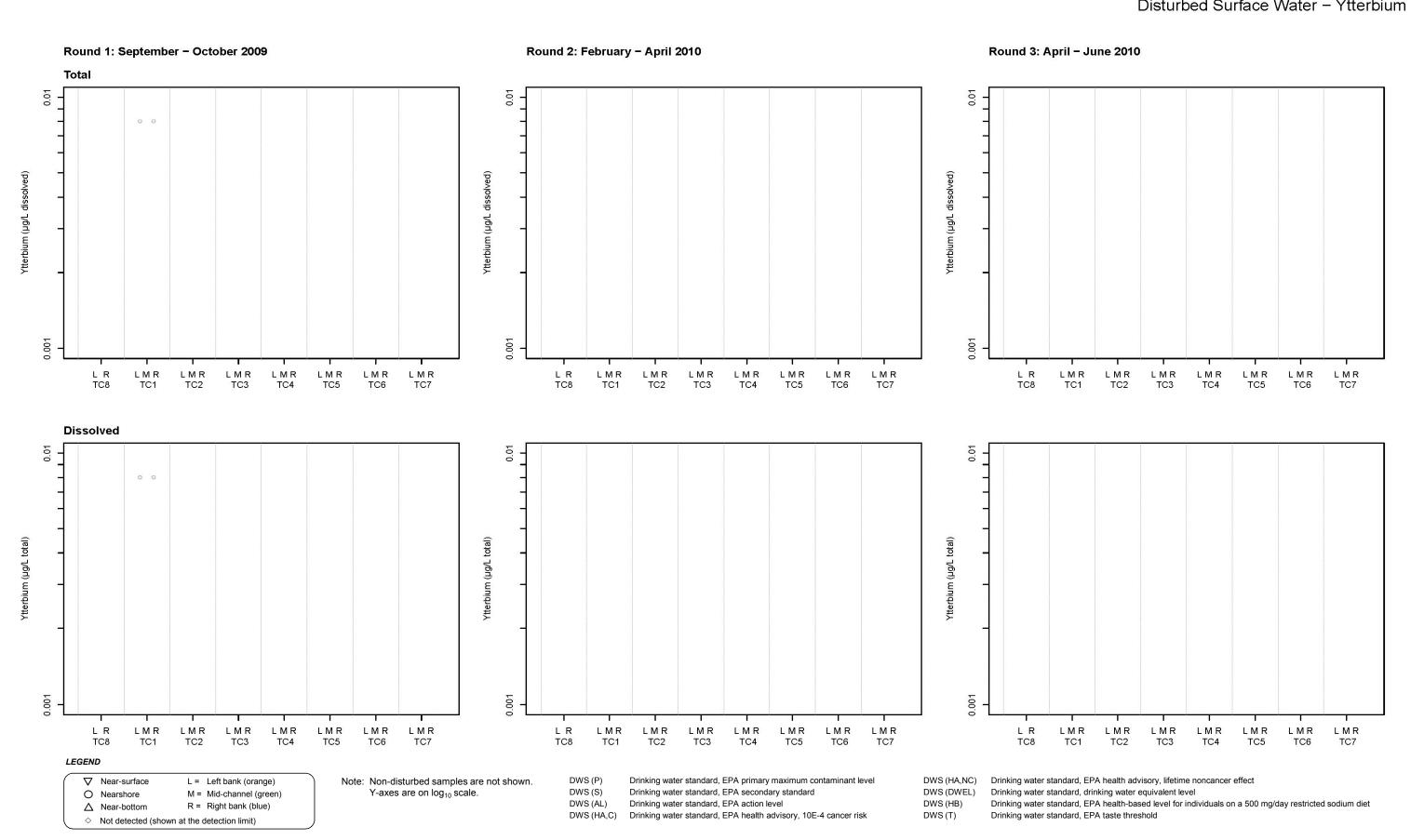


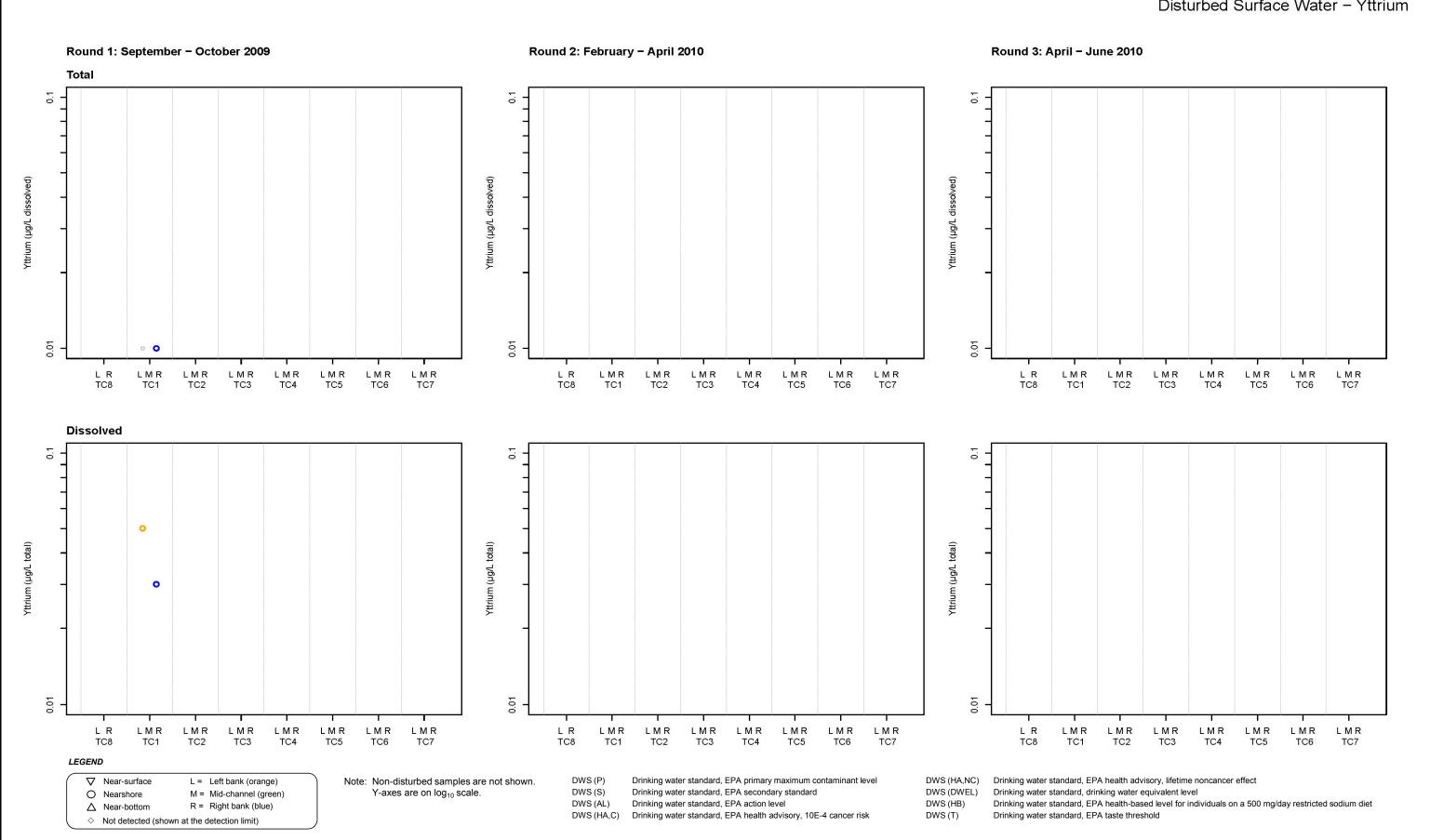


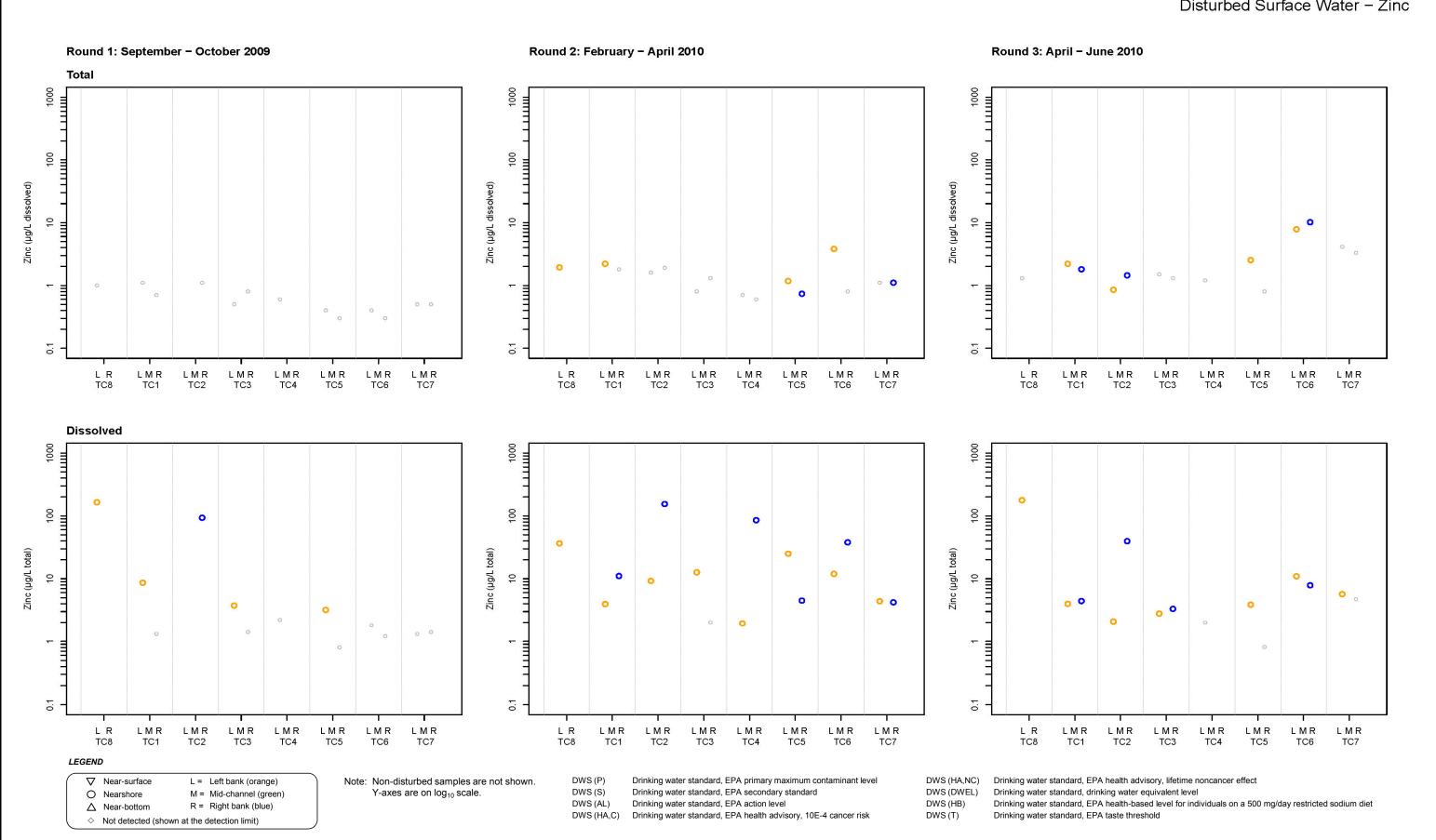


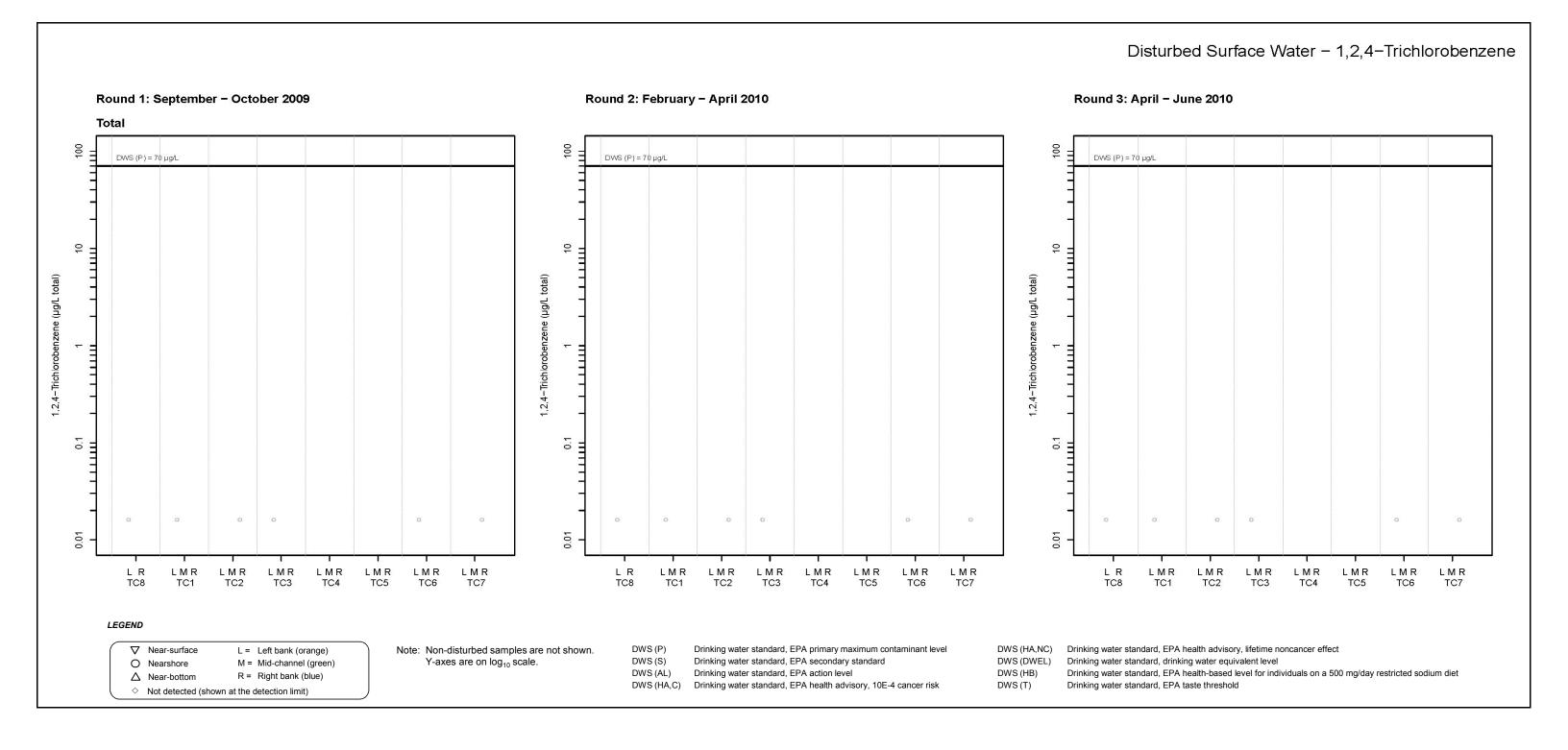


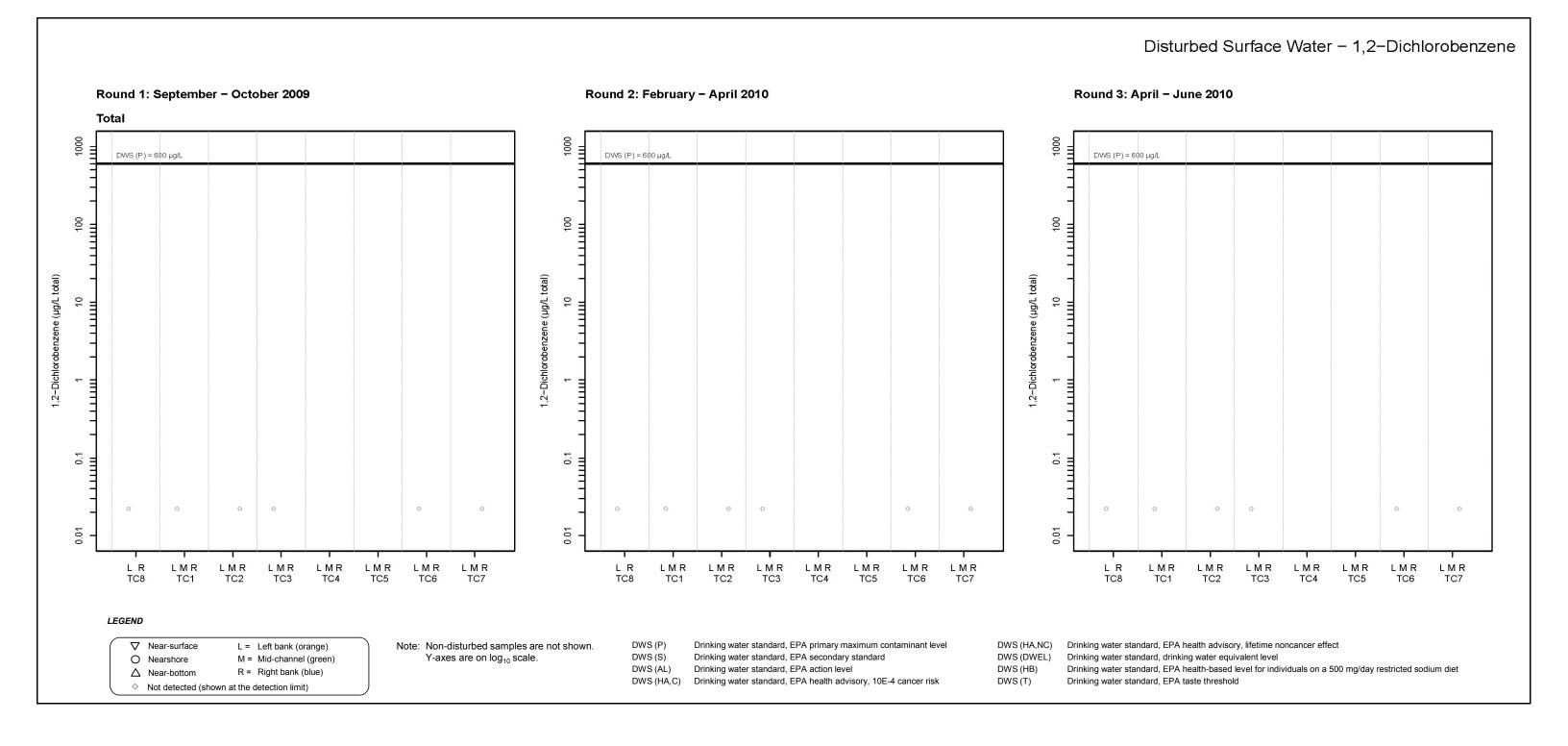


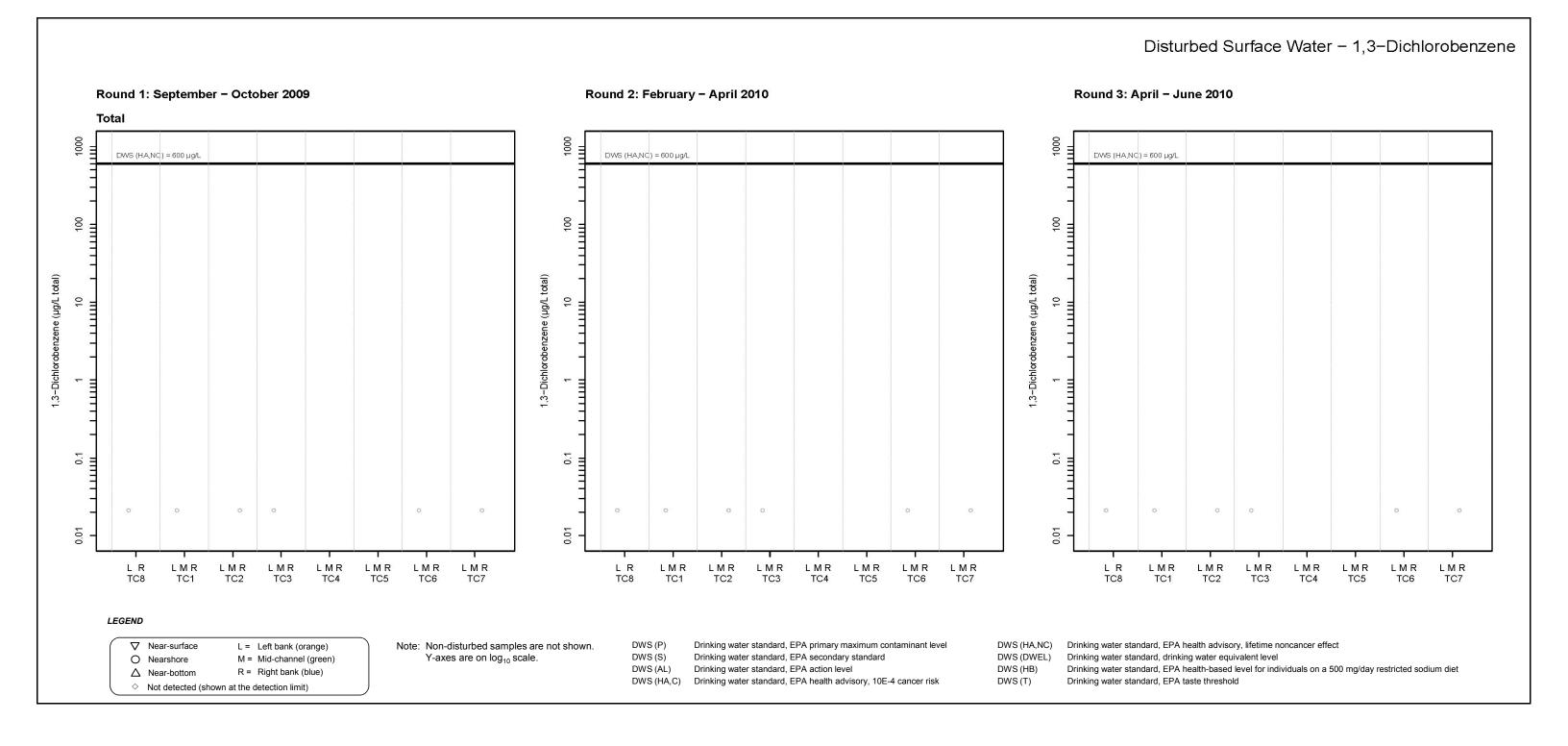


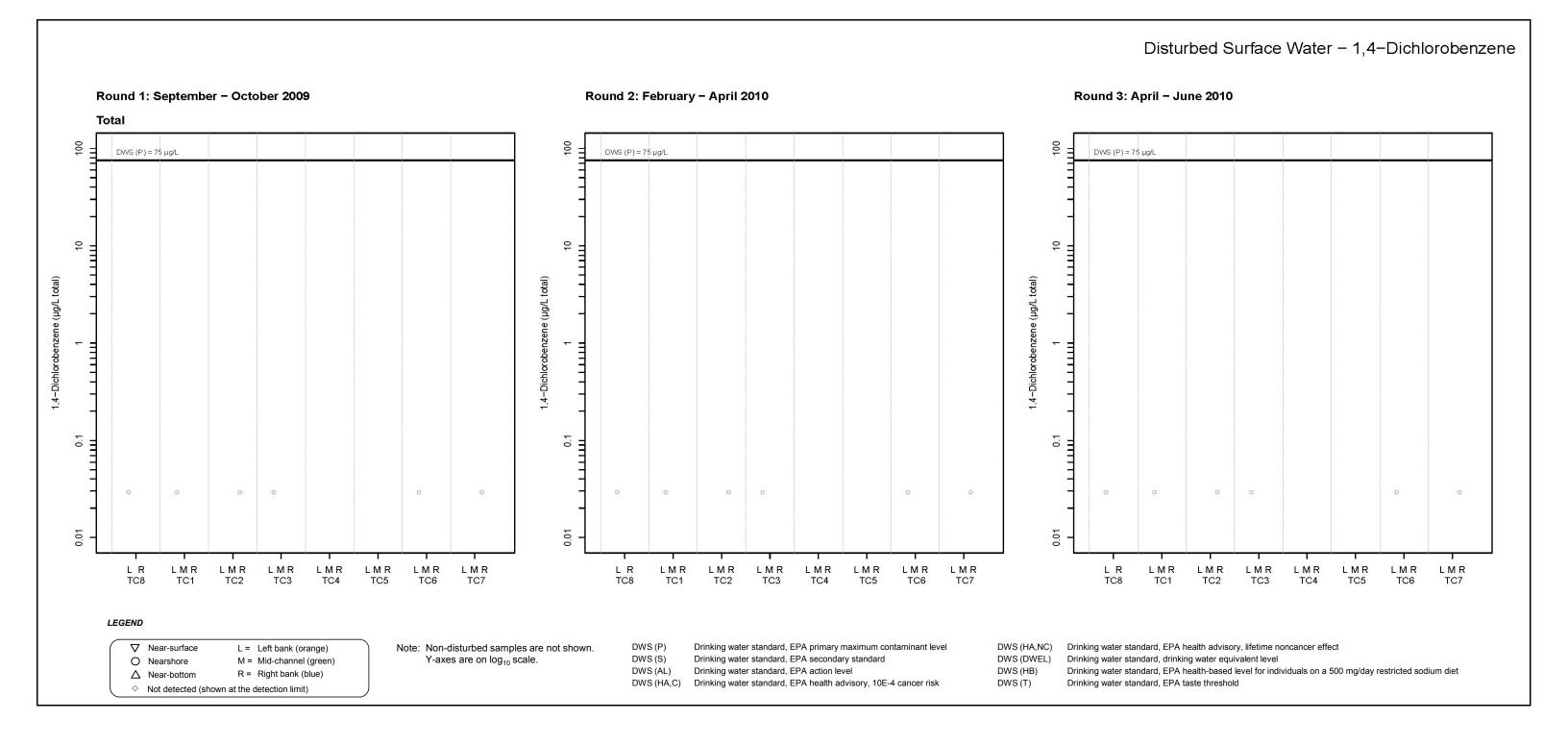


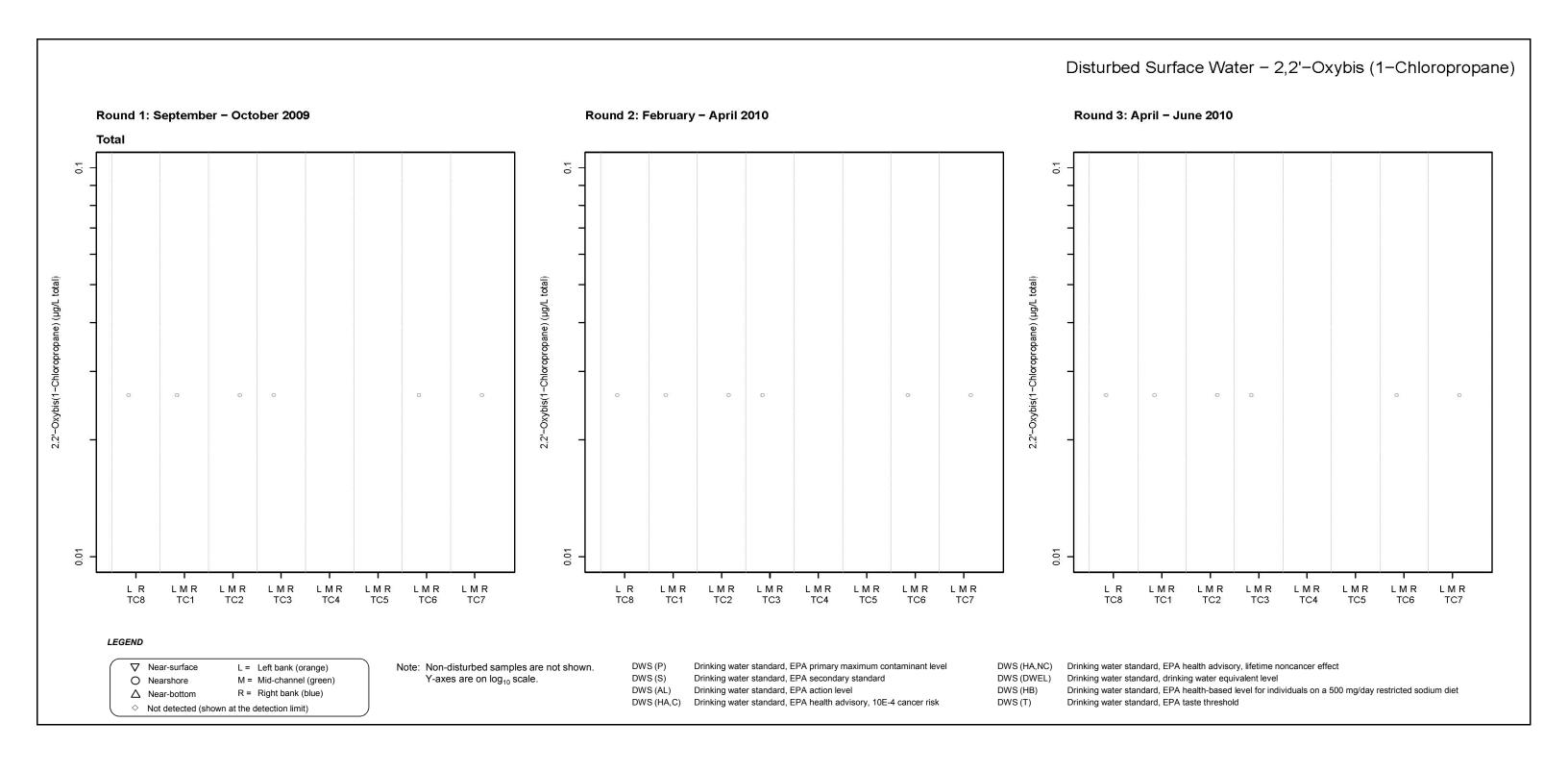


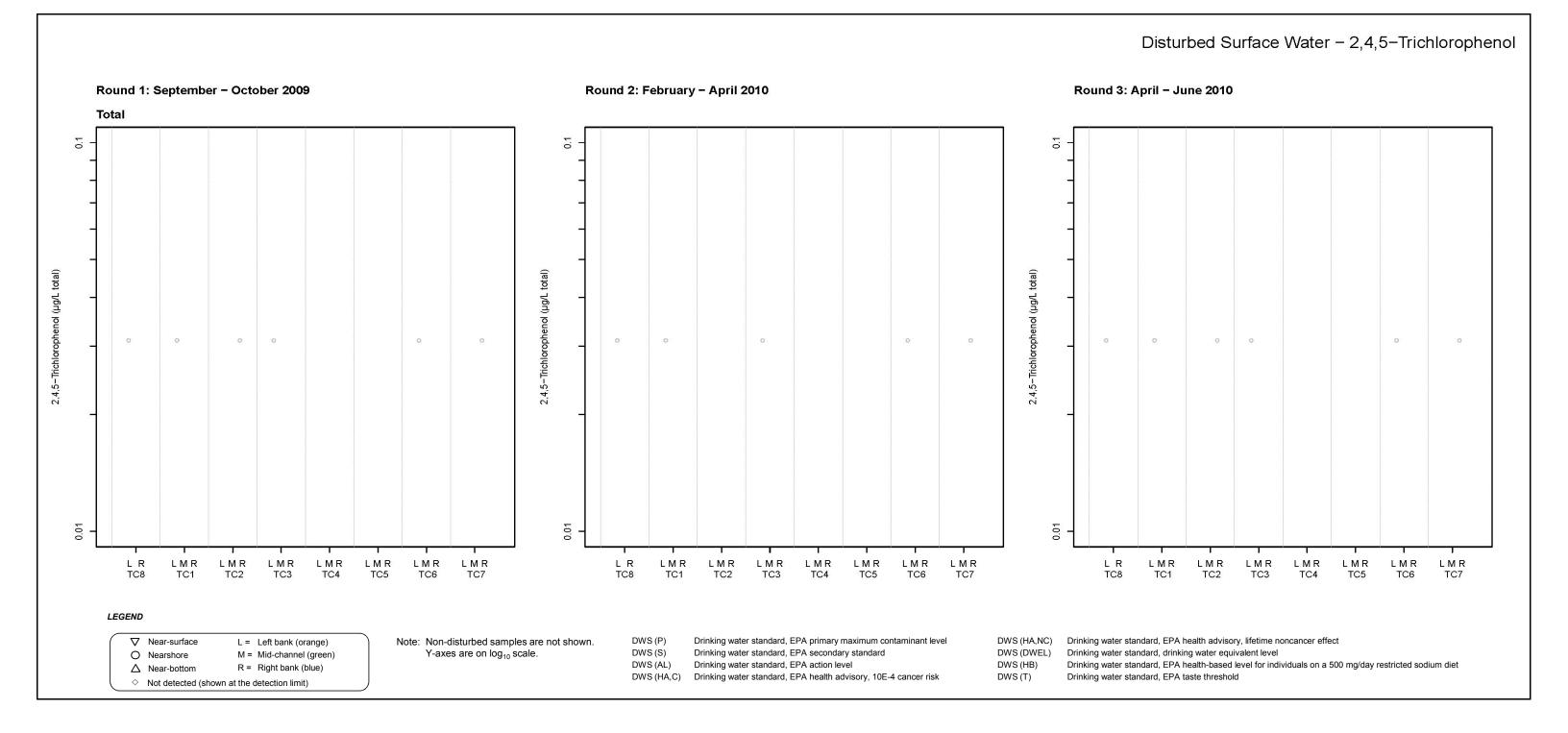


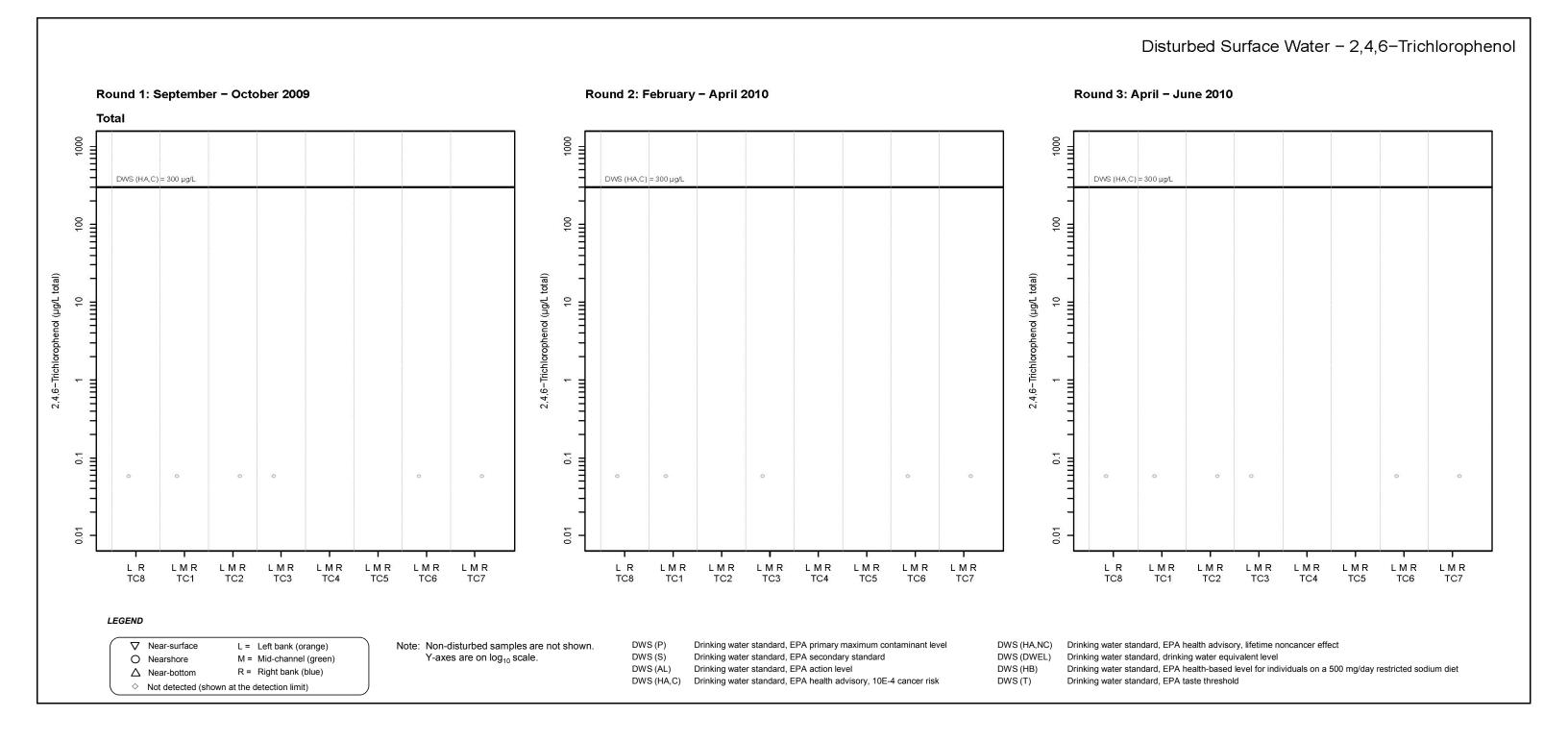


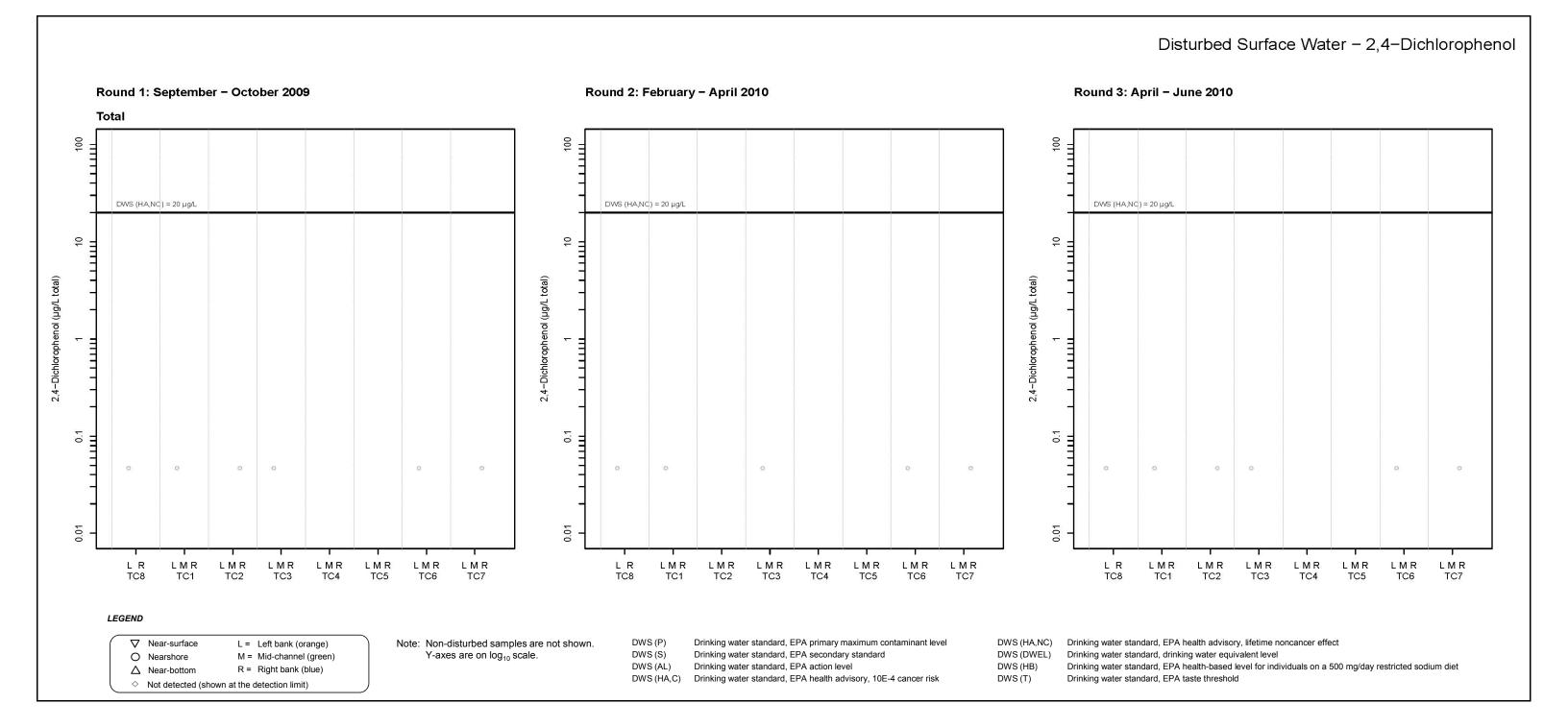


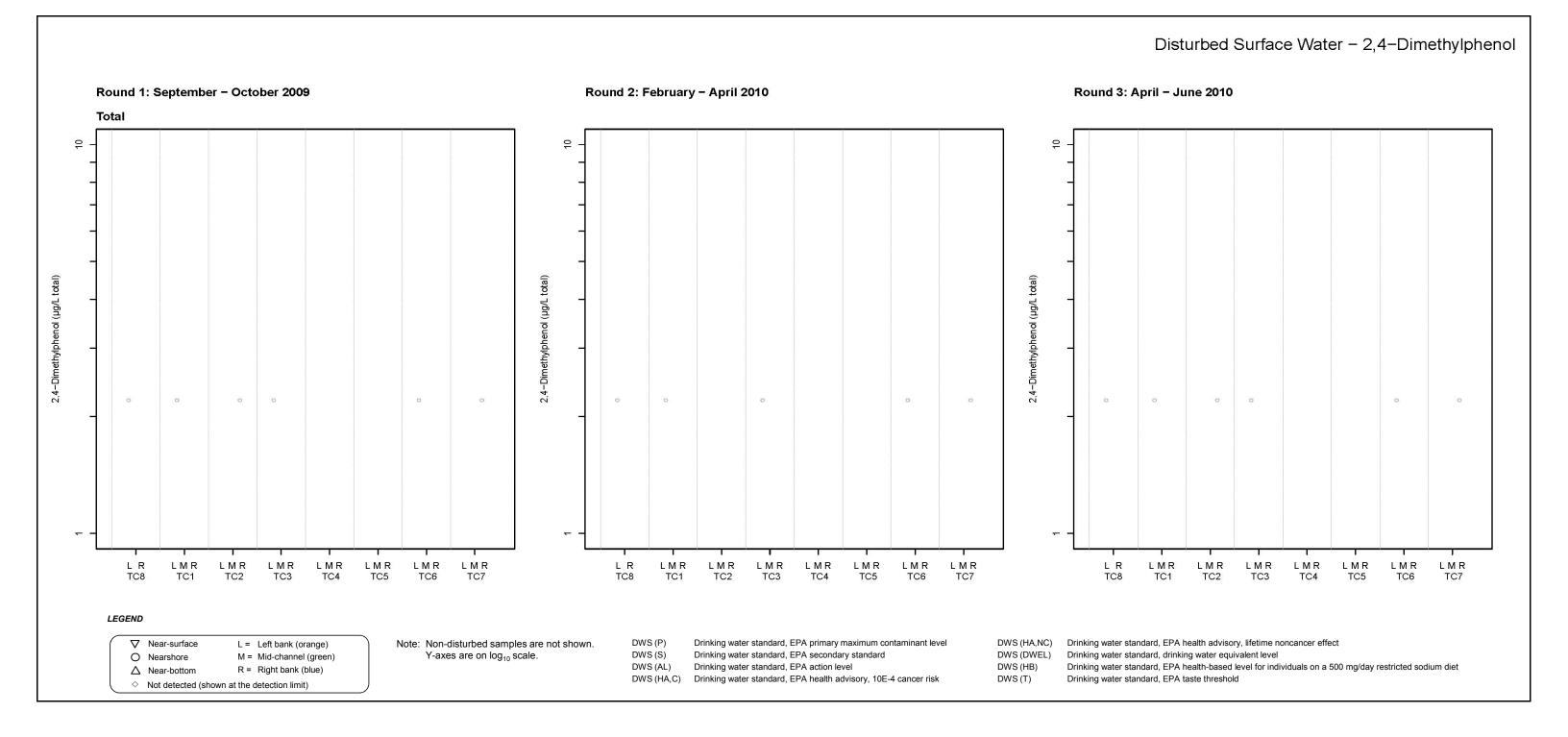


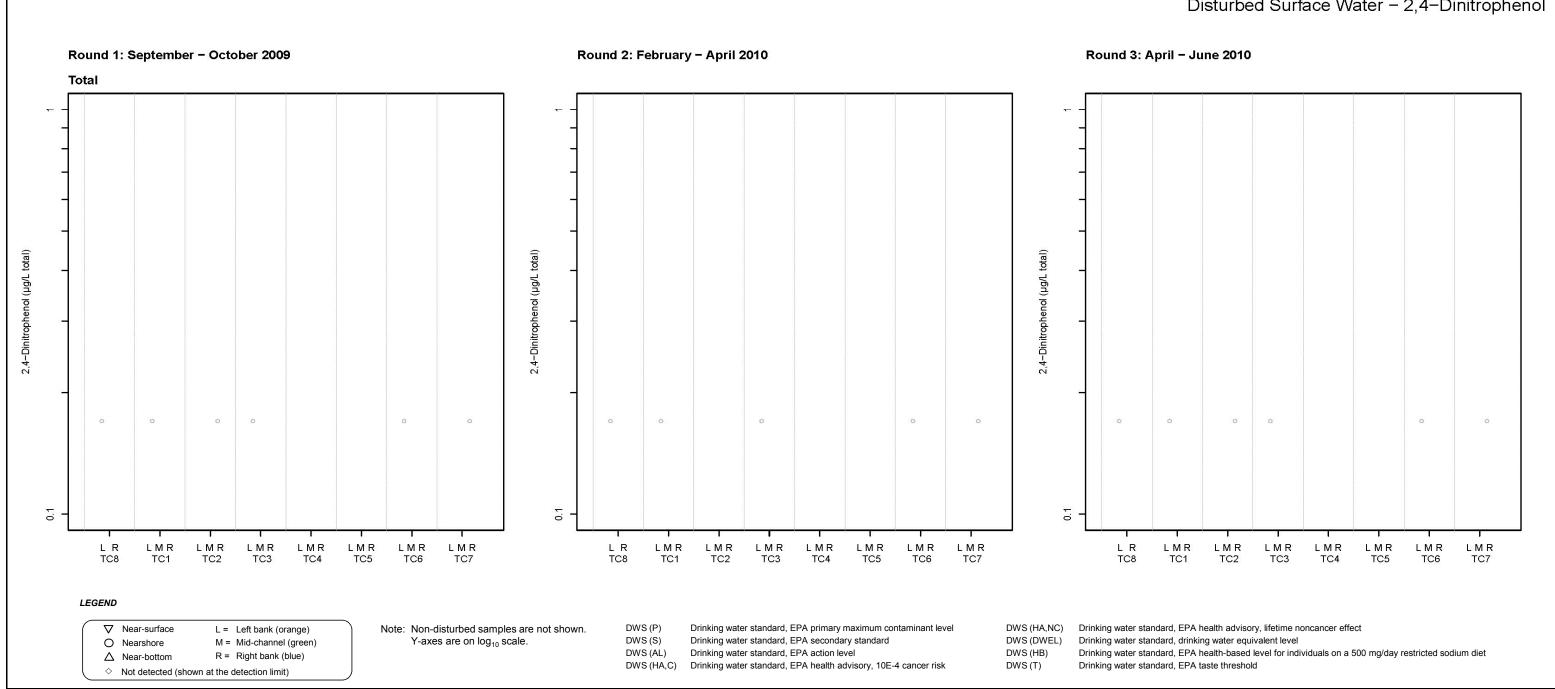


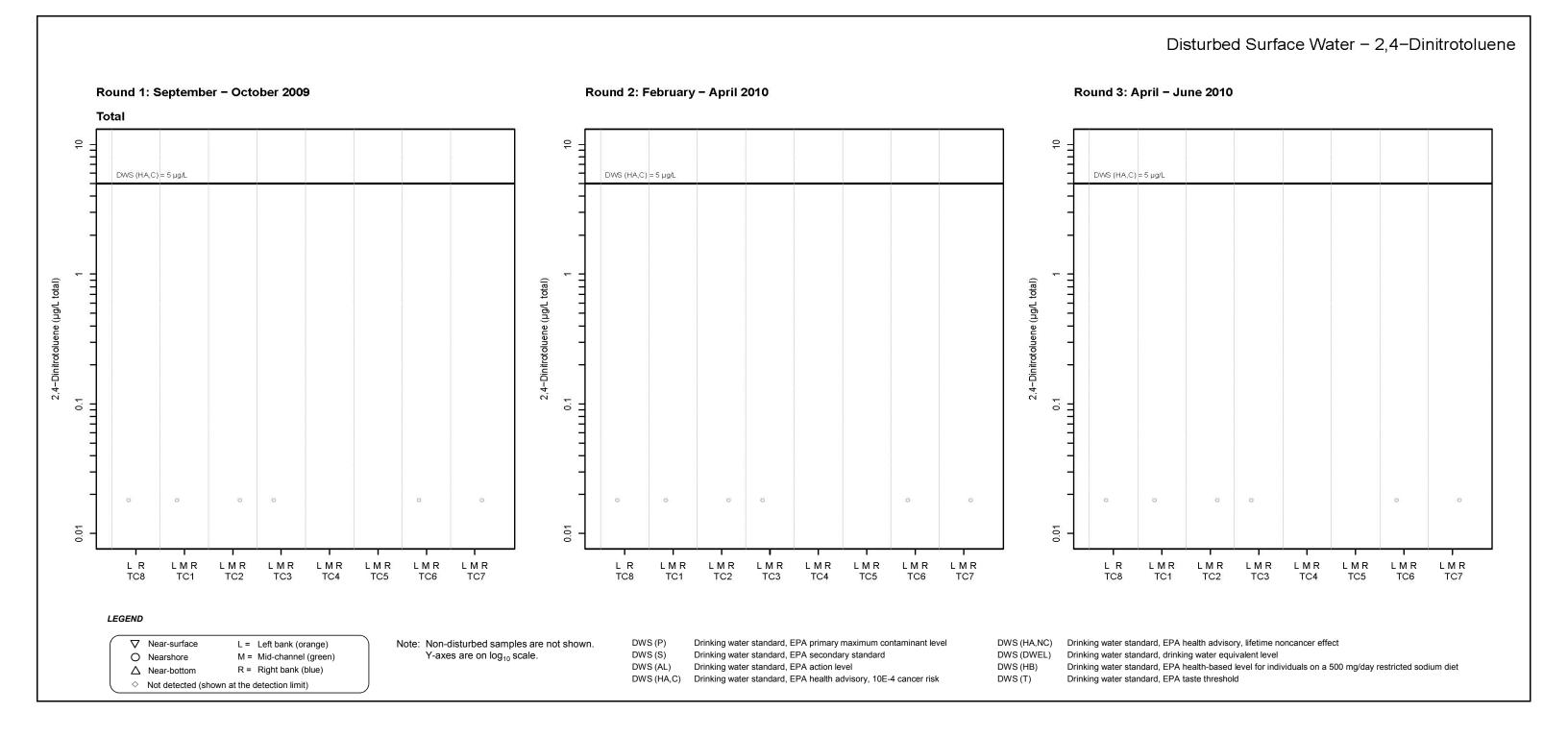


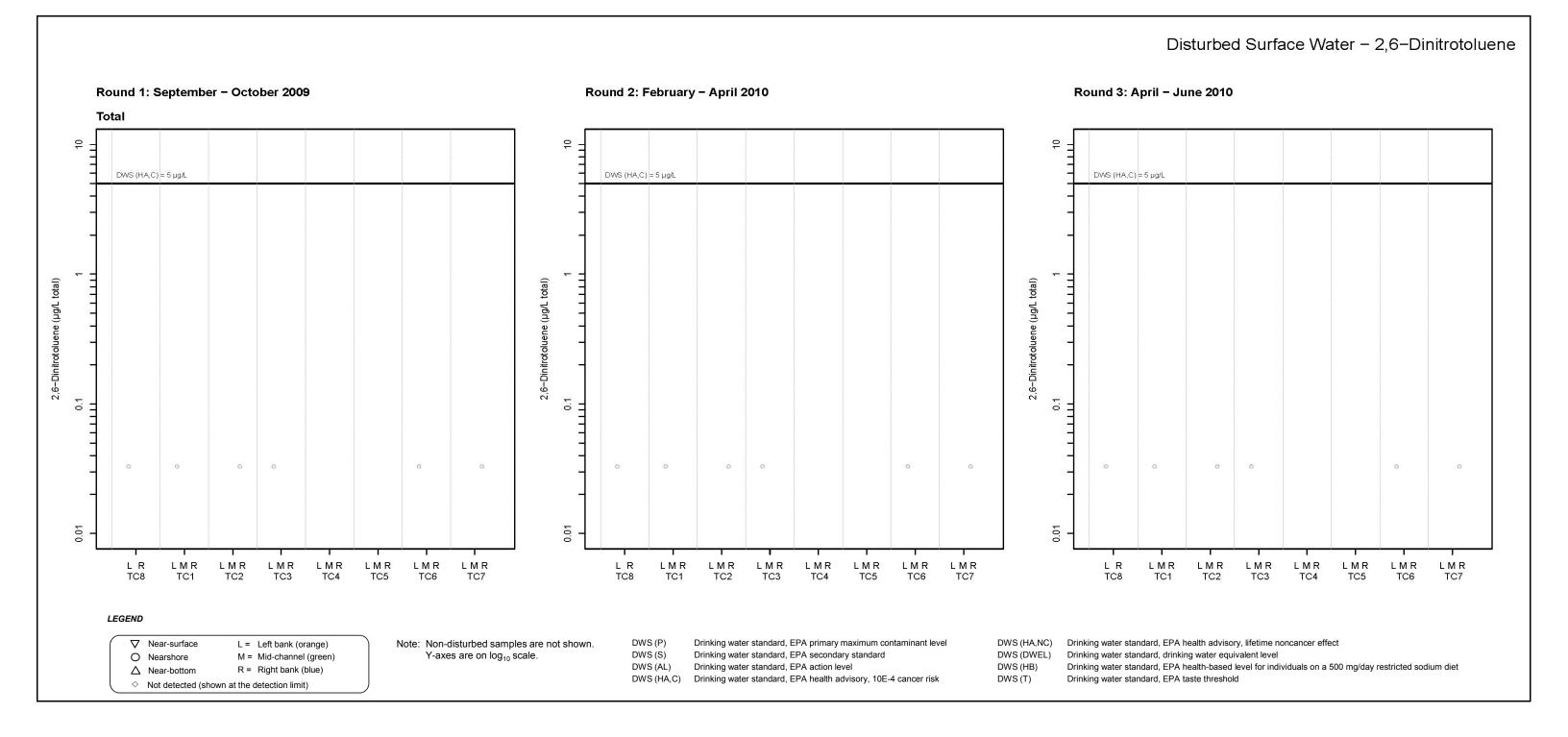


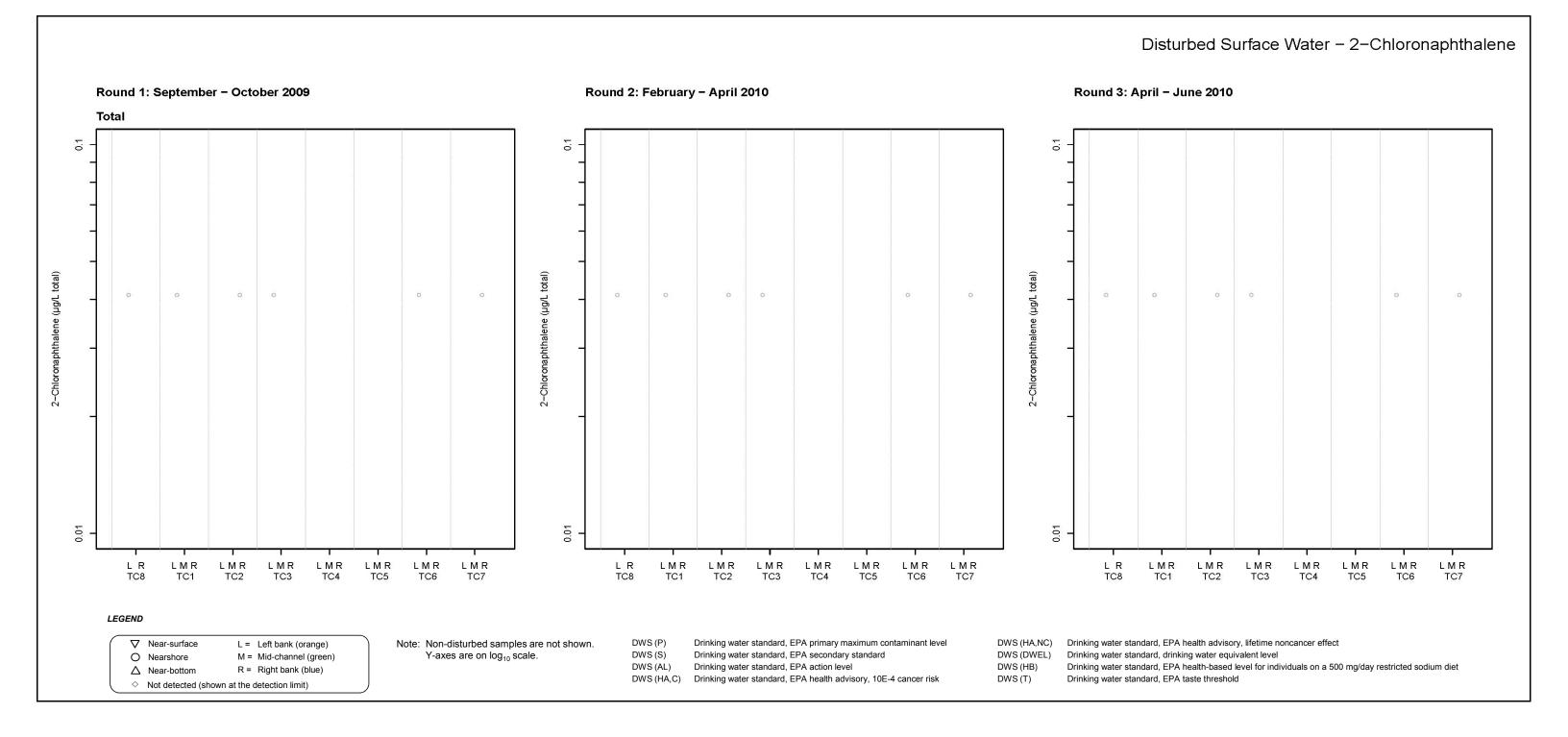




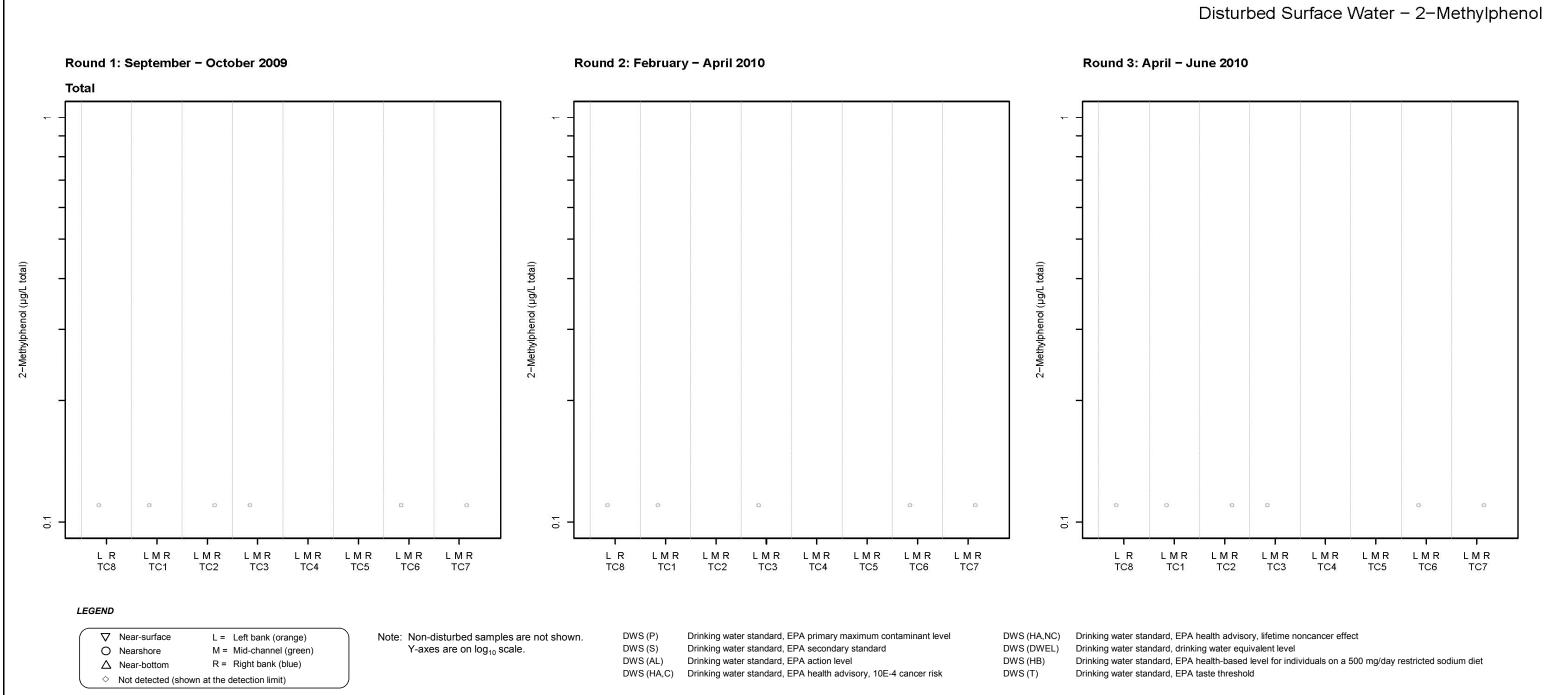


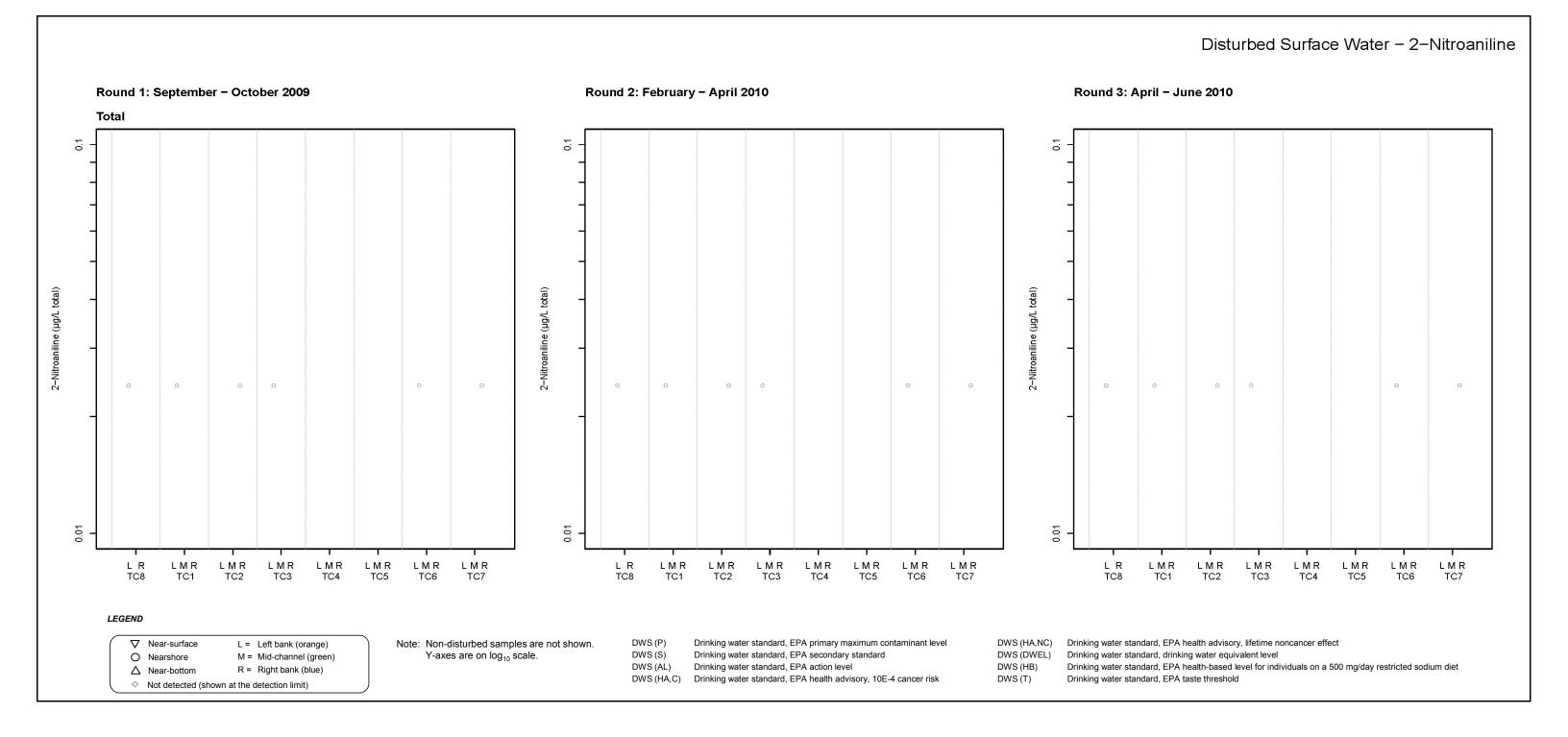


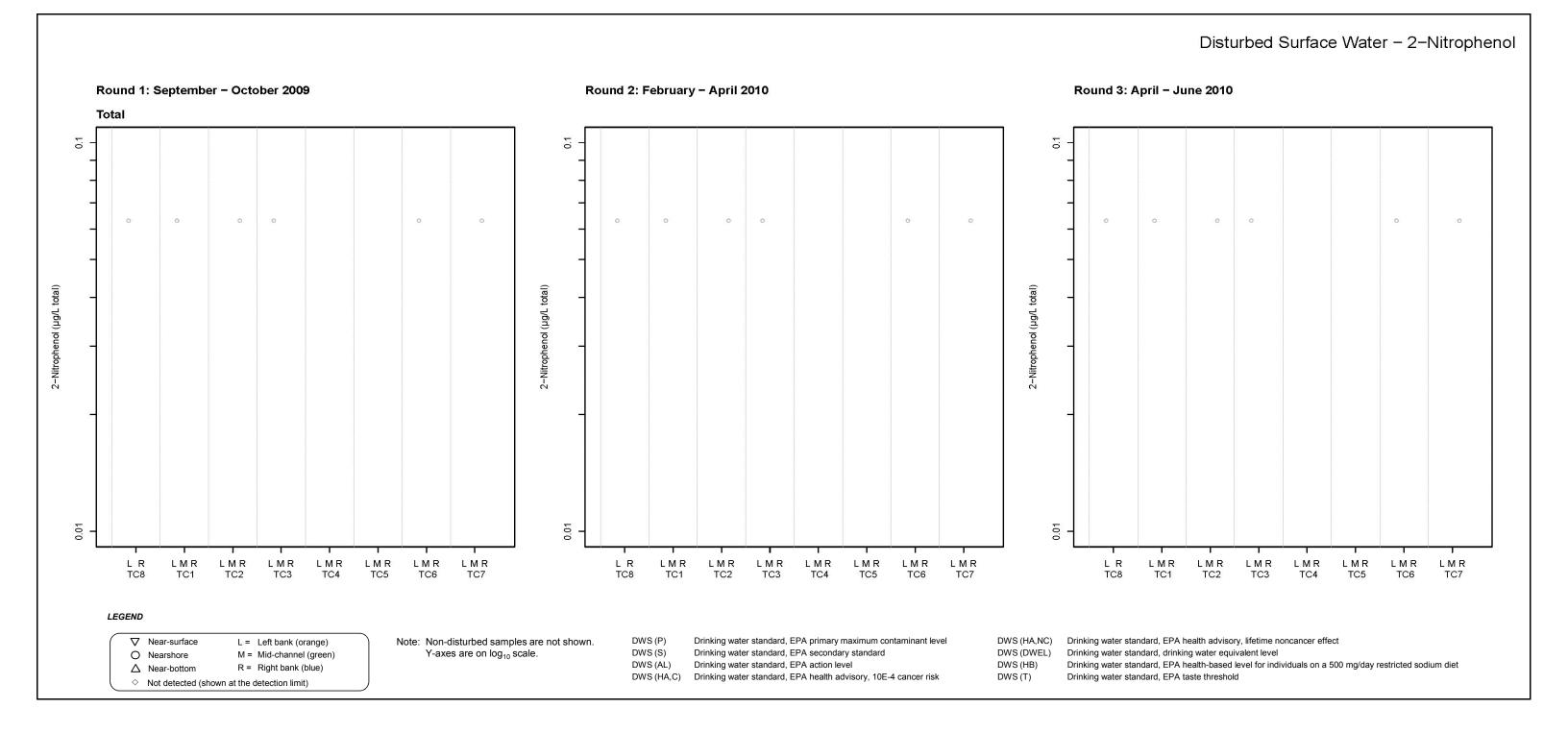


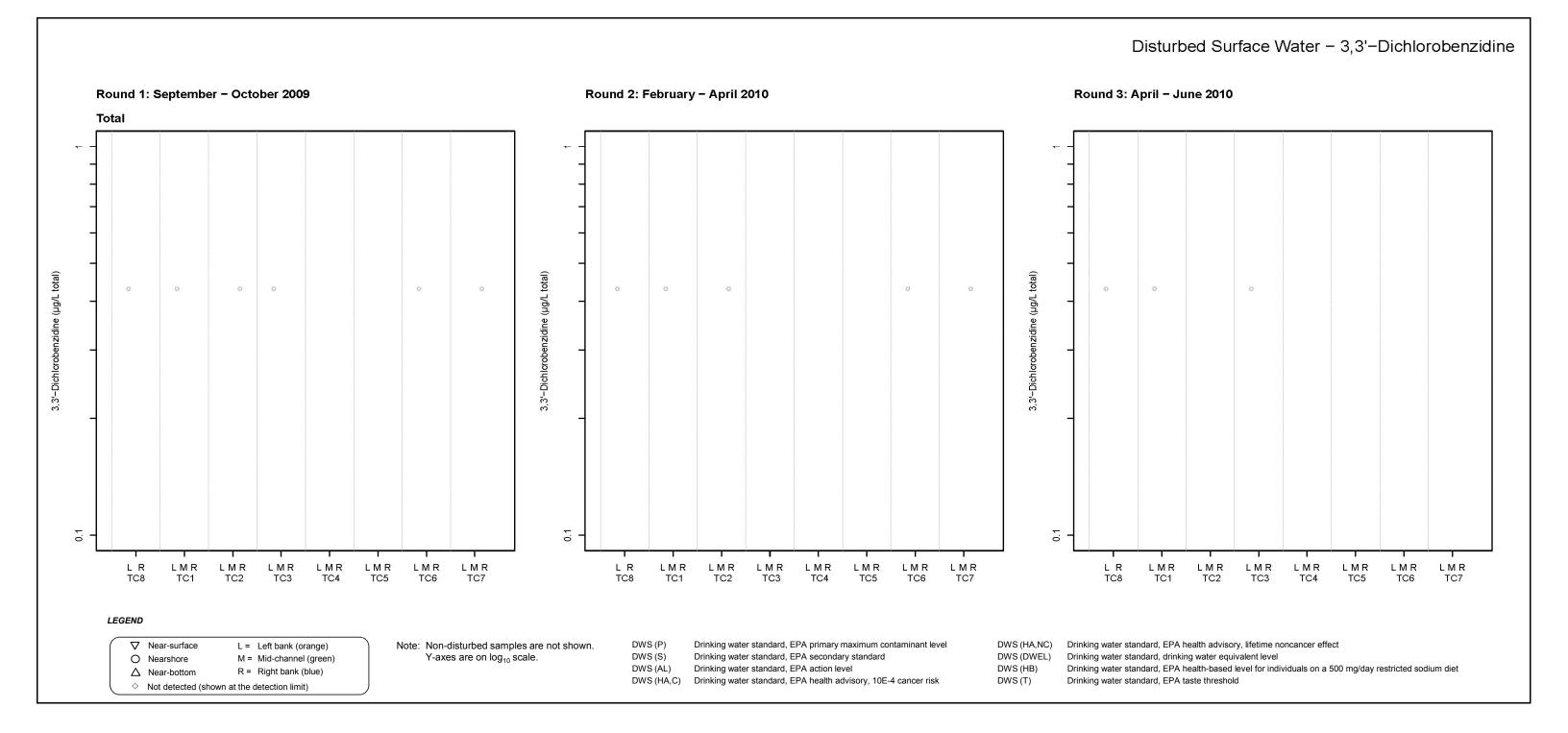


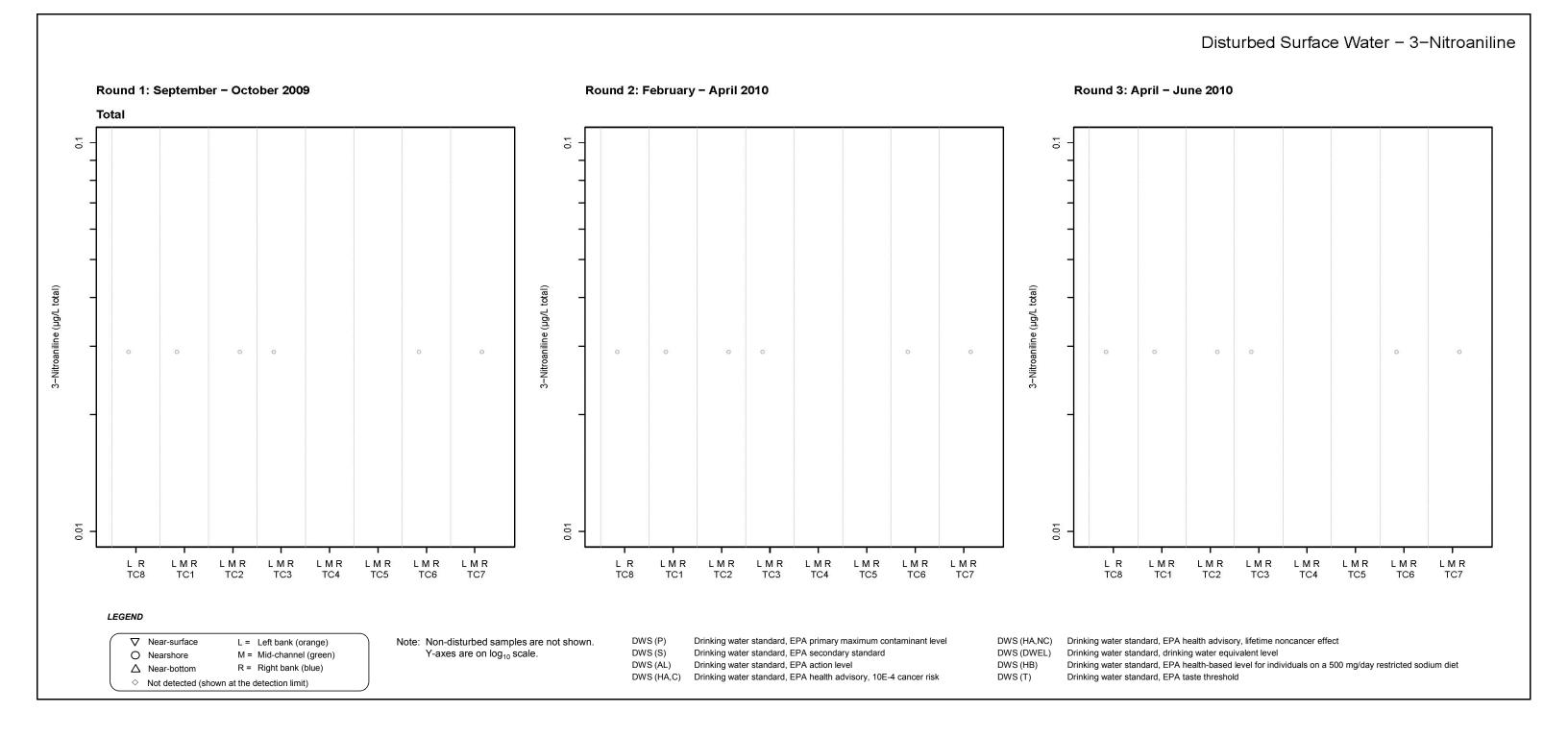
Disturbed Surface Water - 2,4-Dinitrophenol

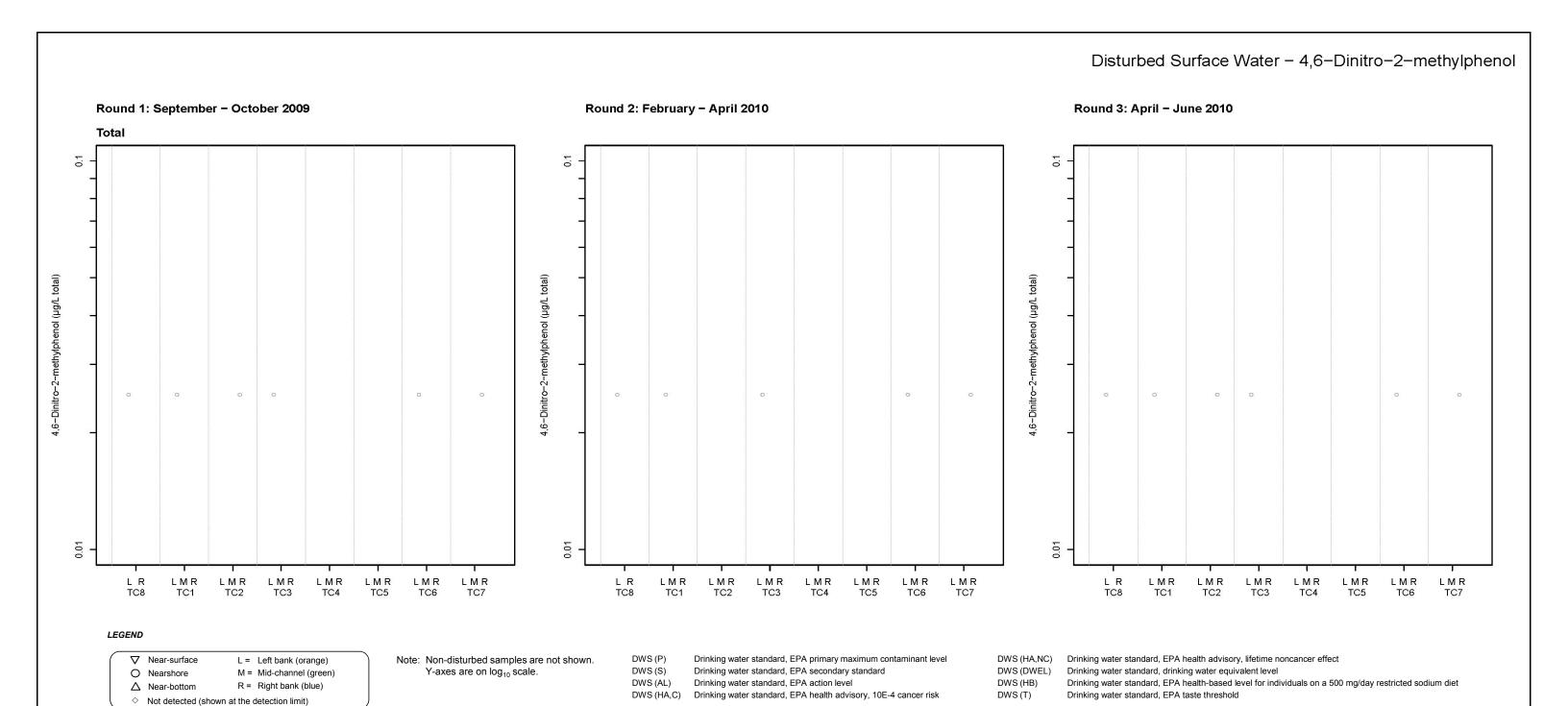


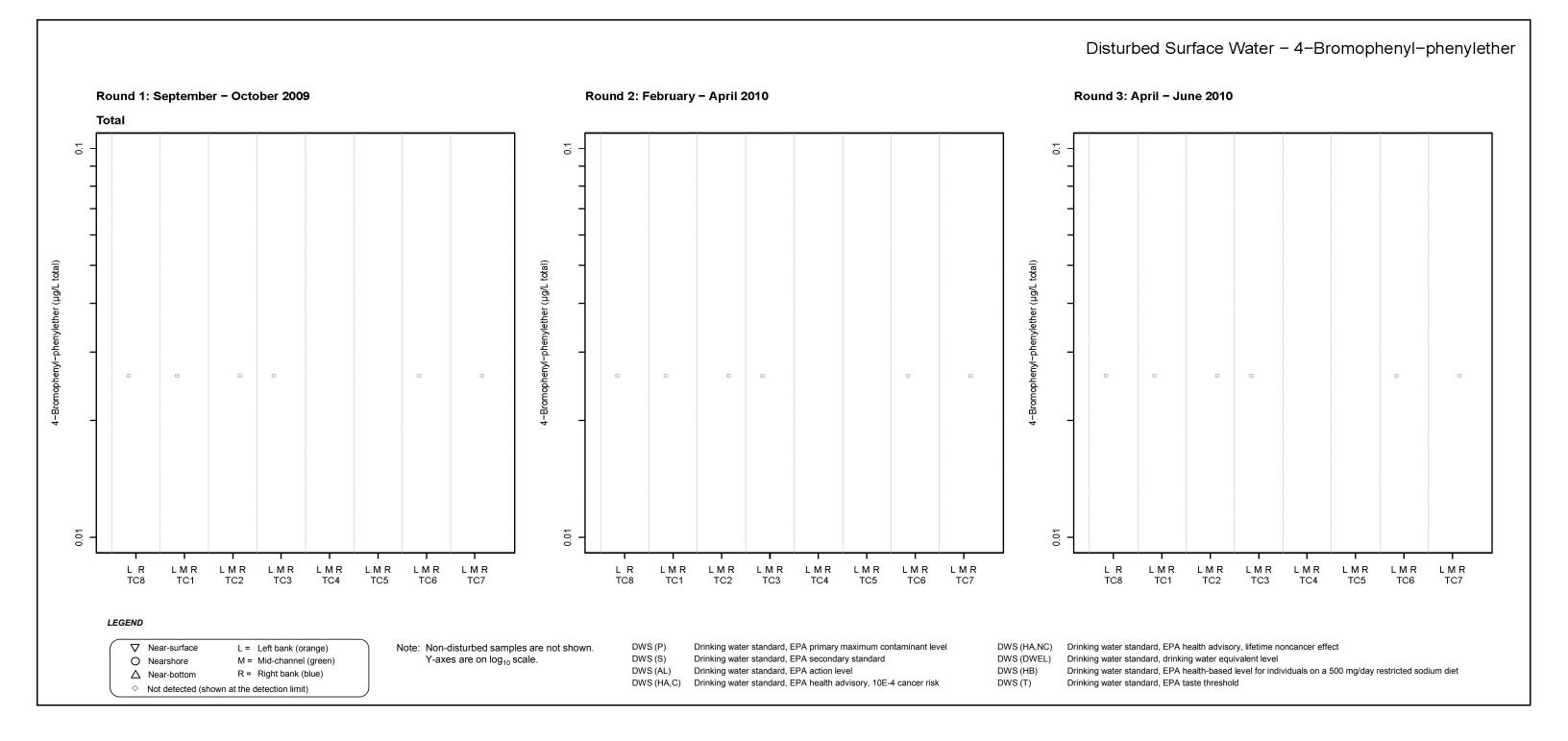


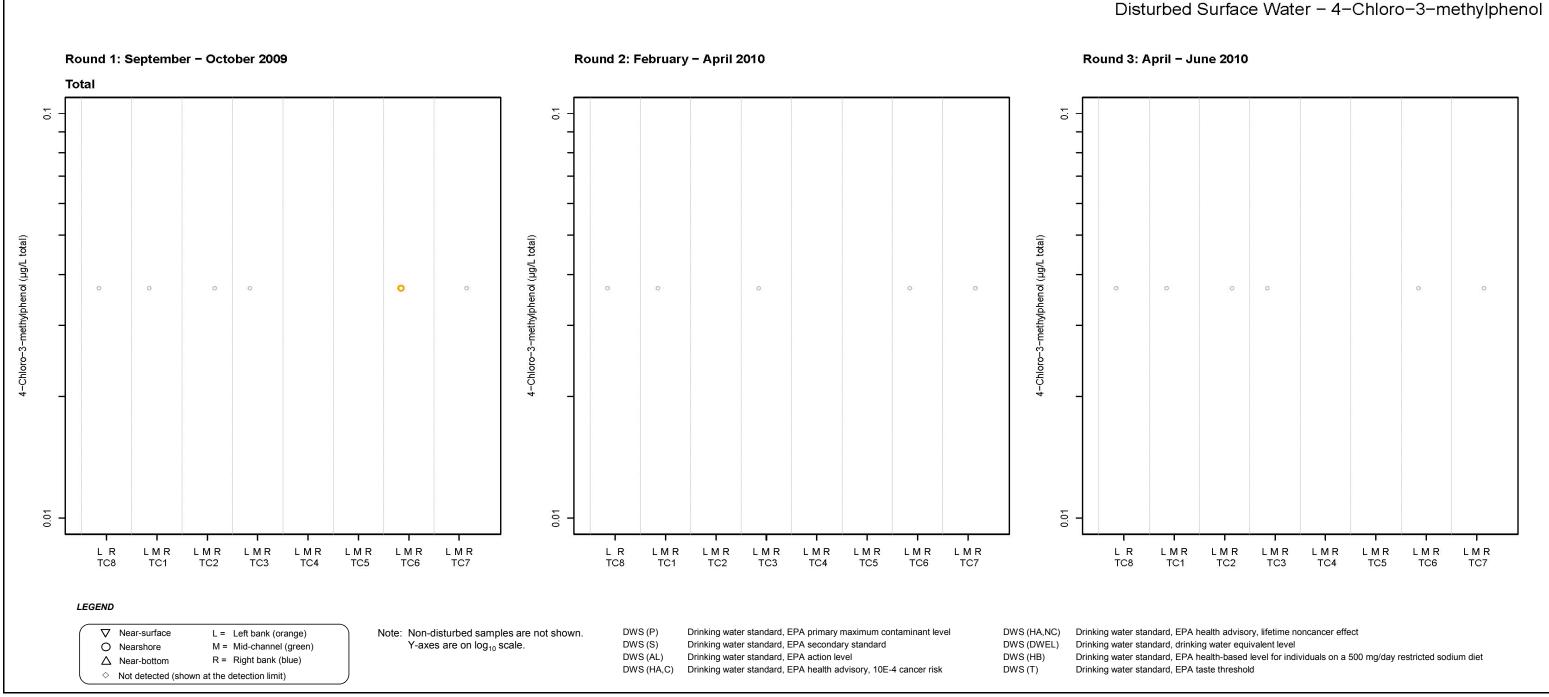


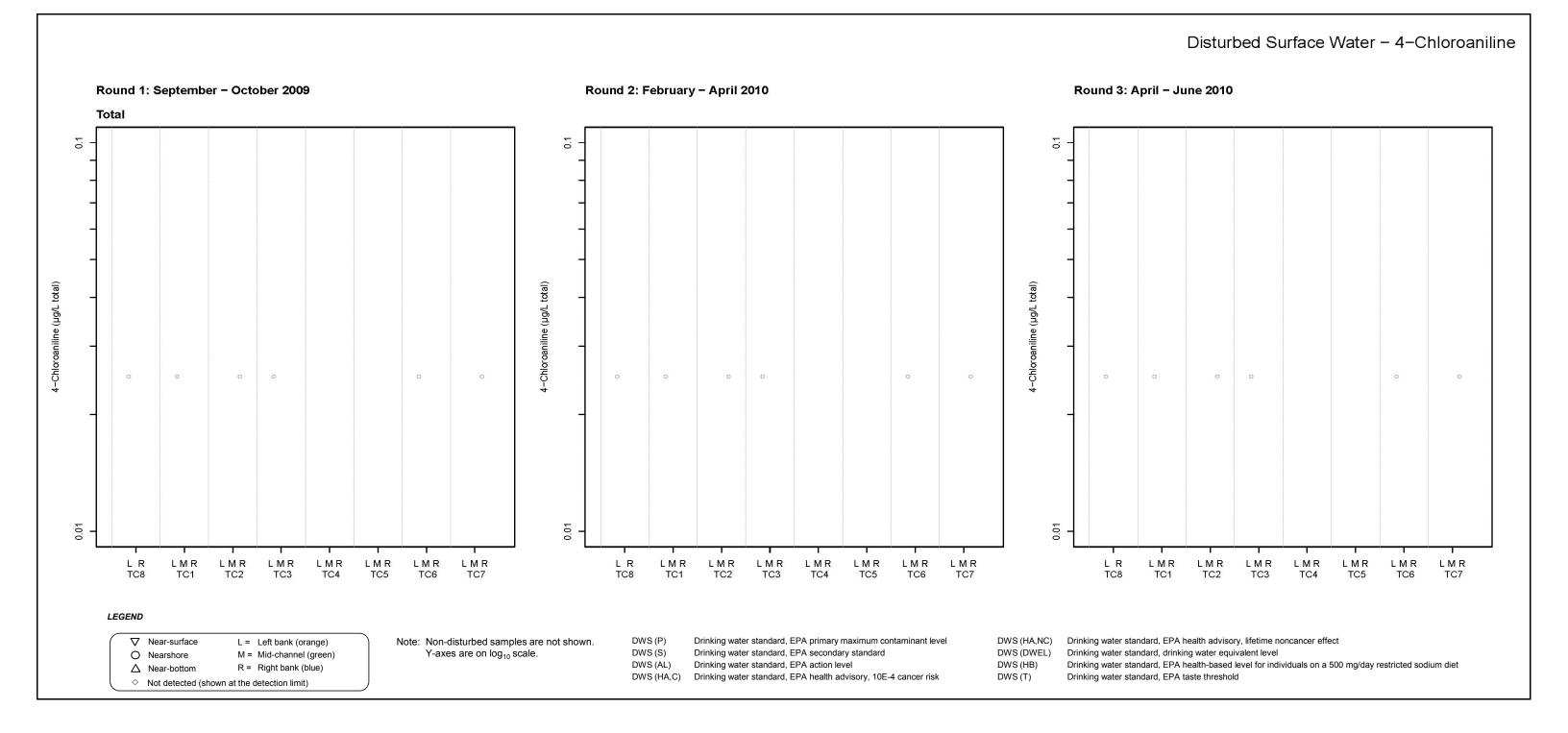


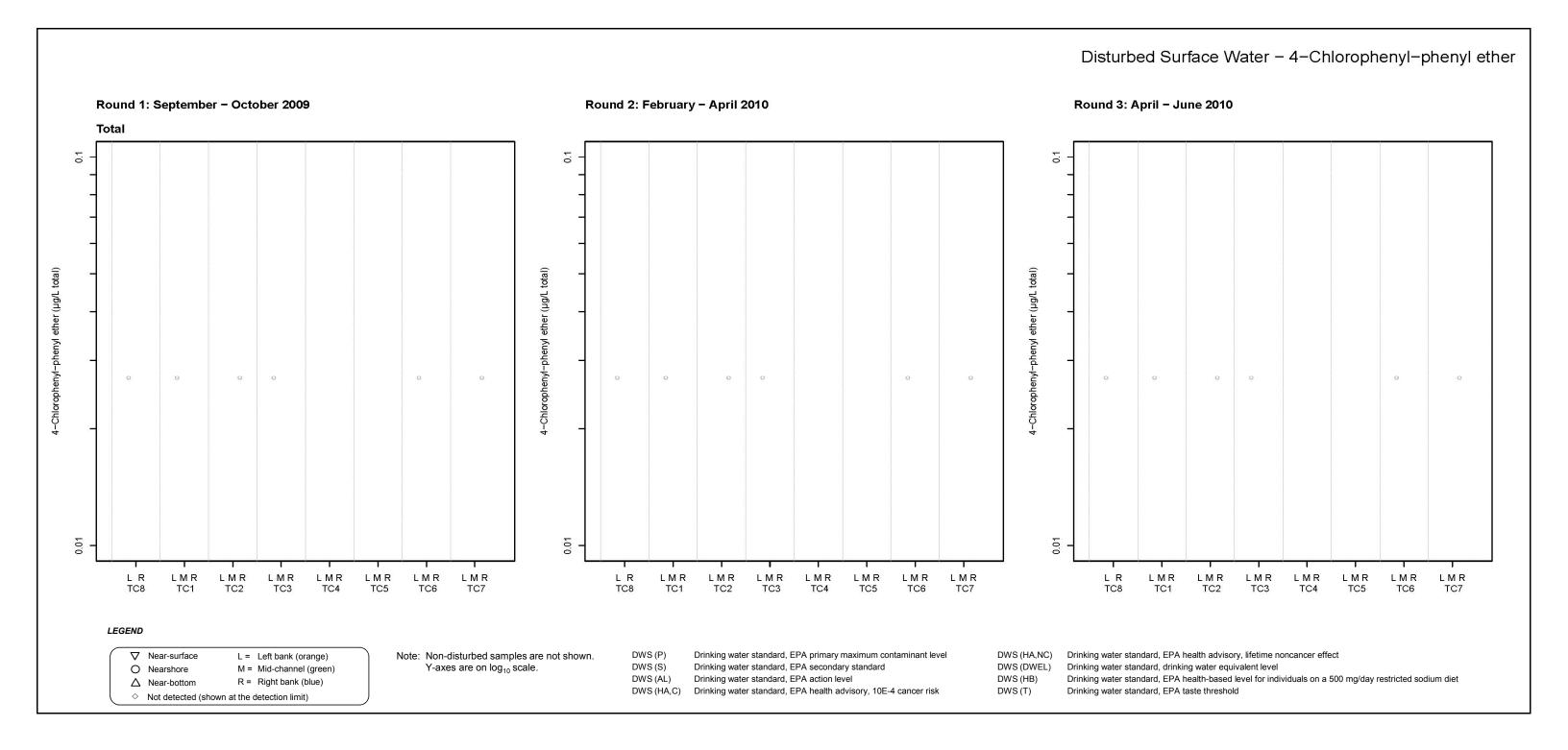


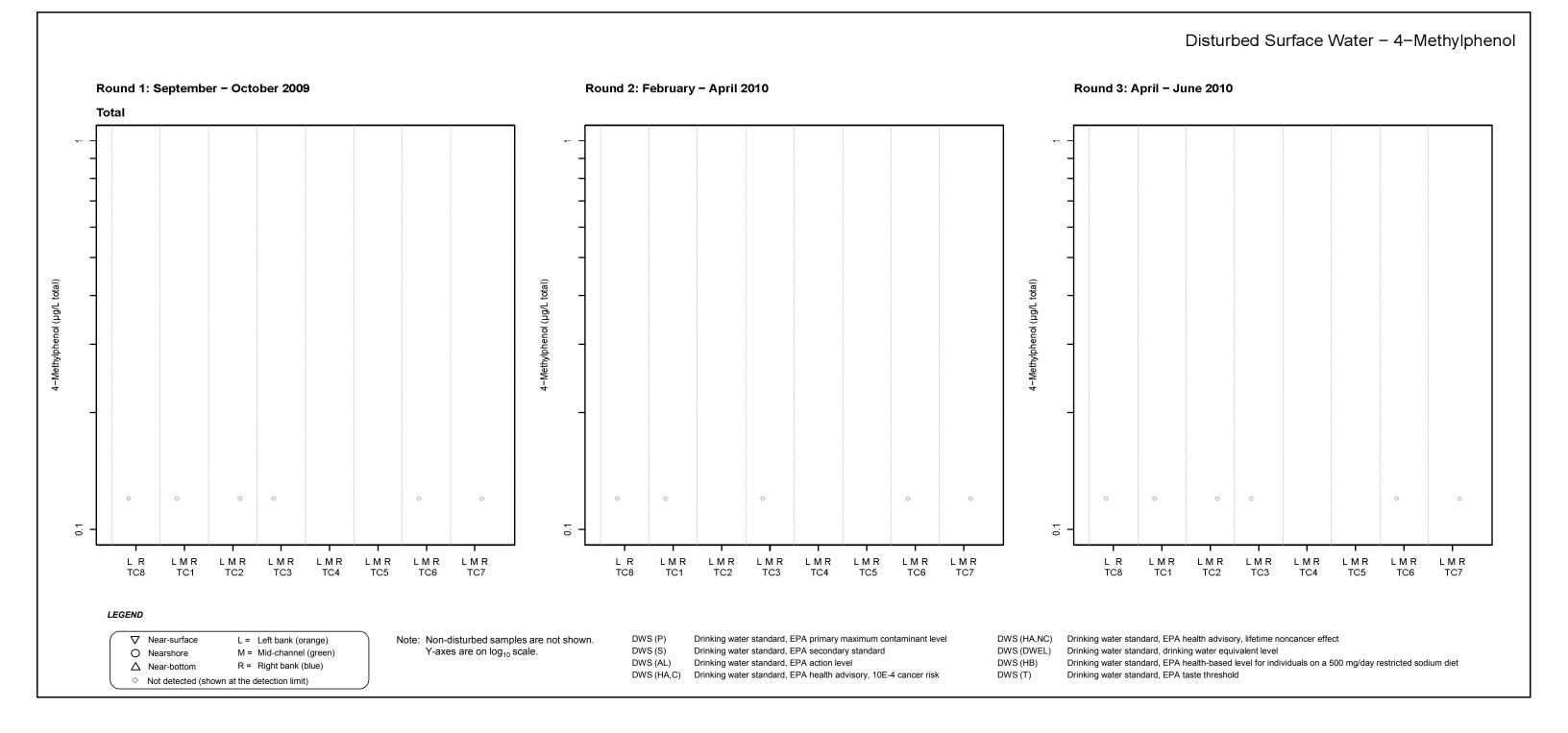


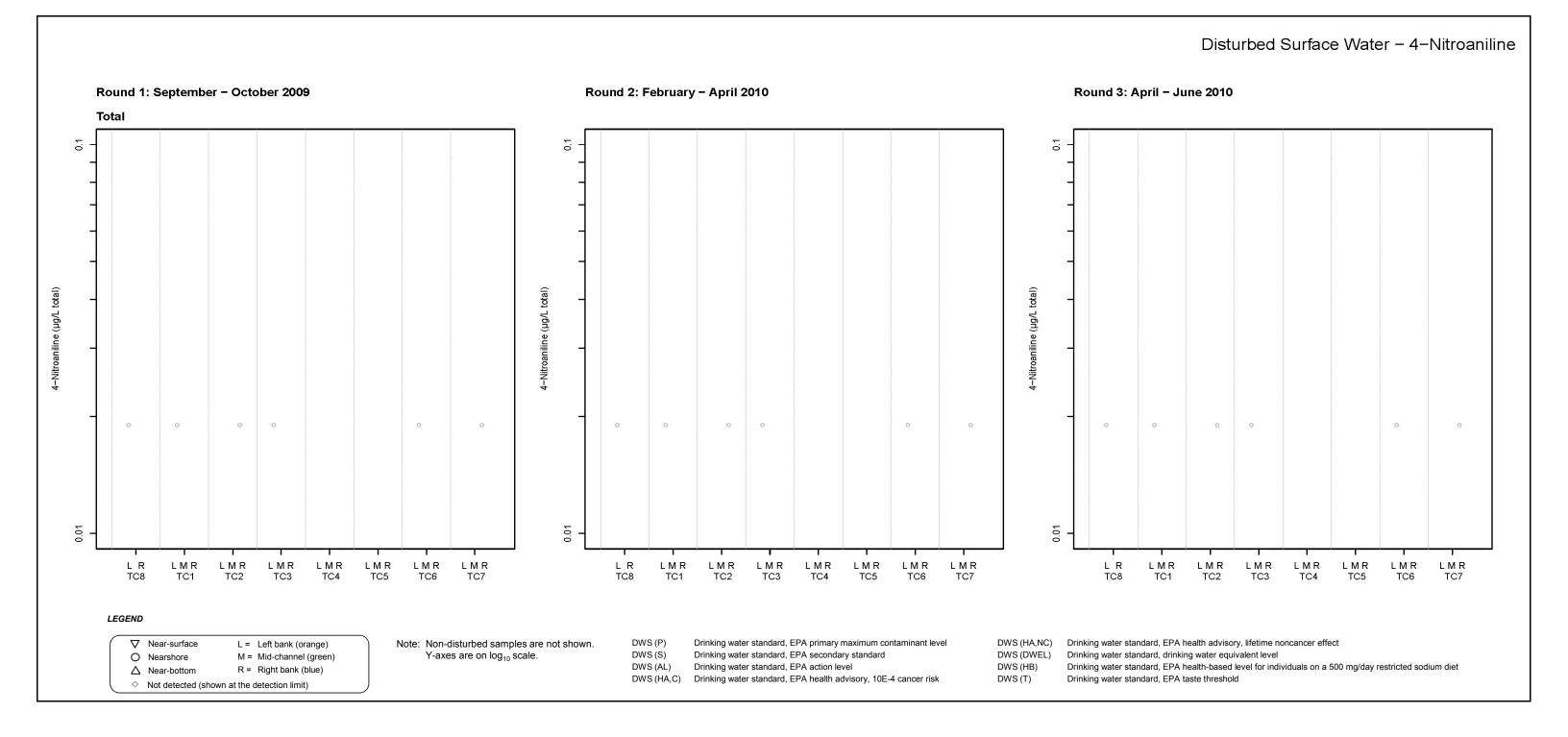


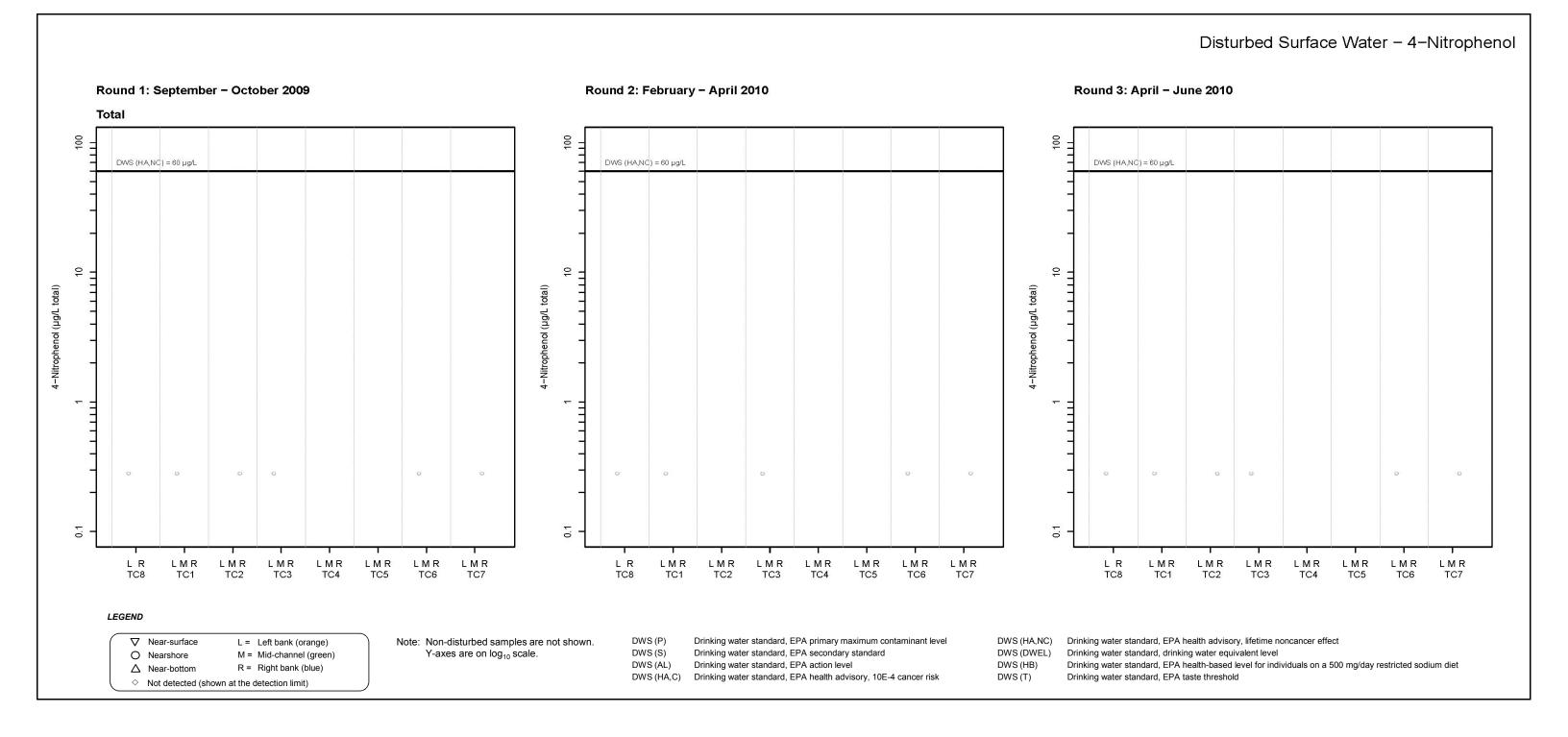


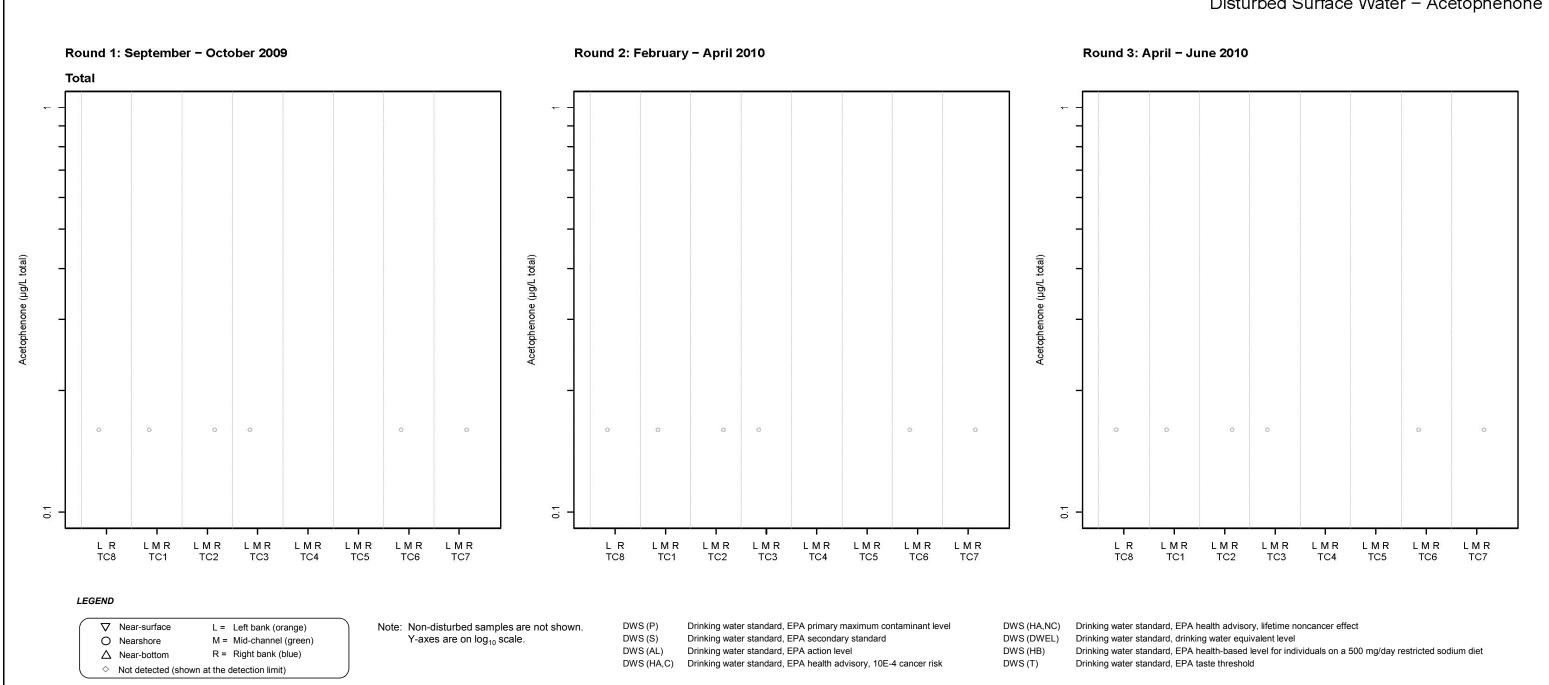


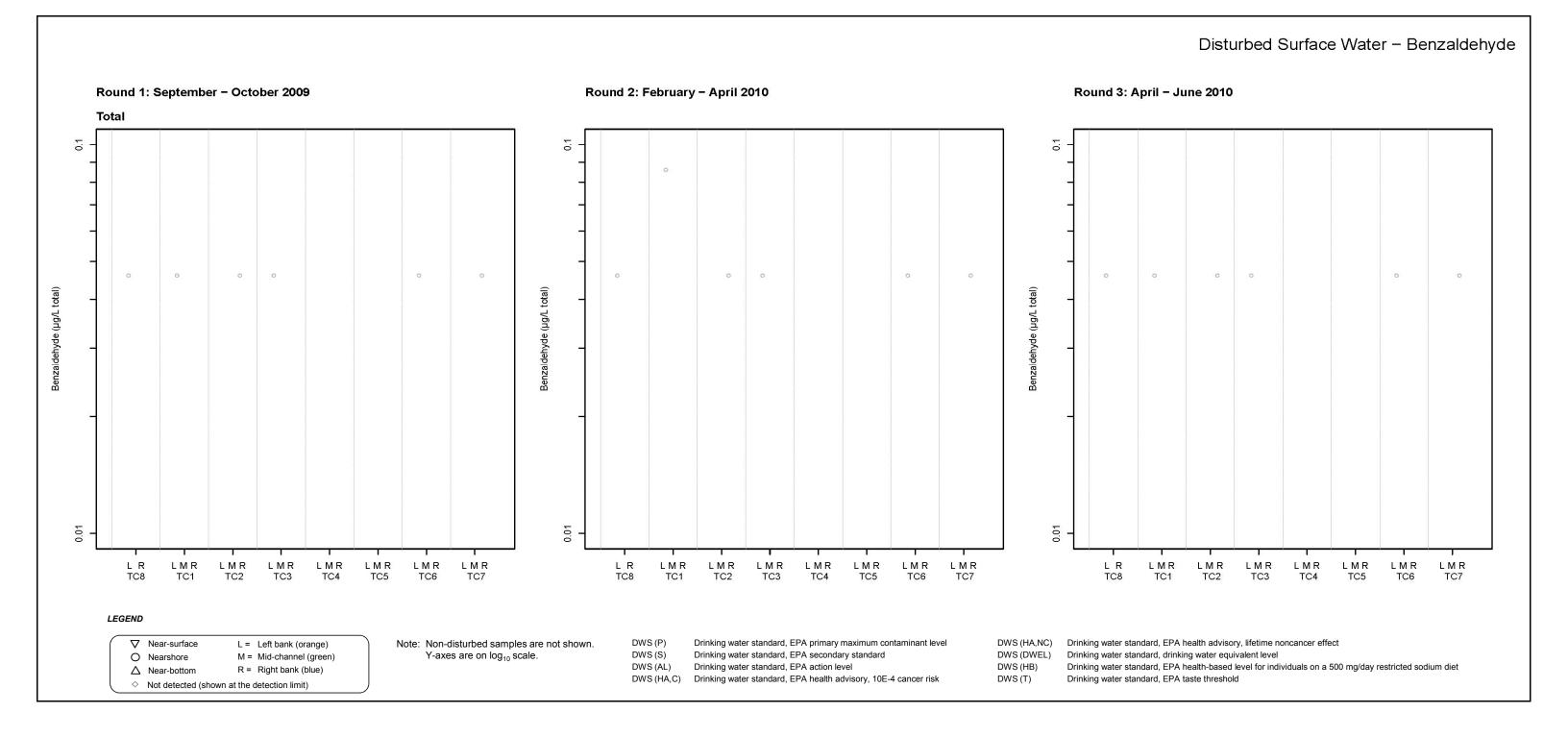


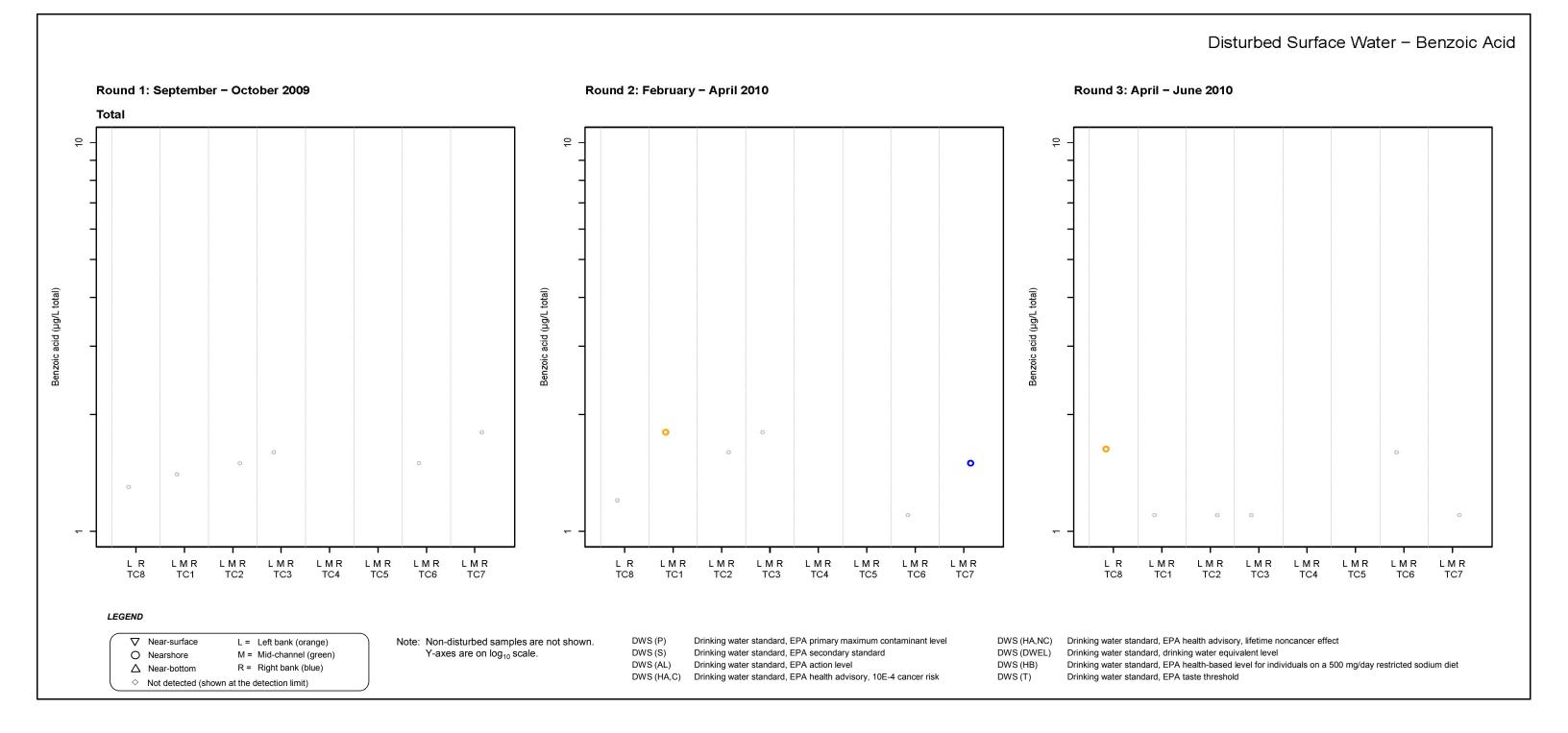


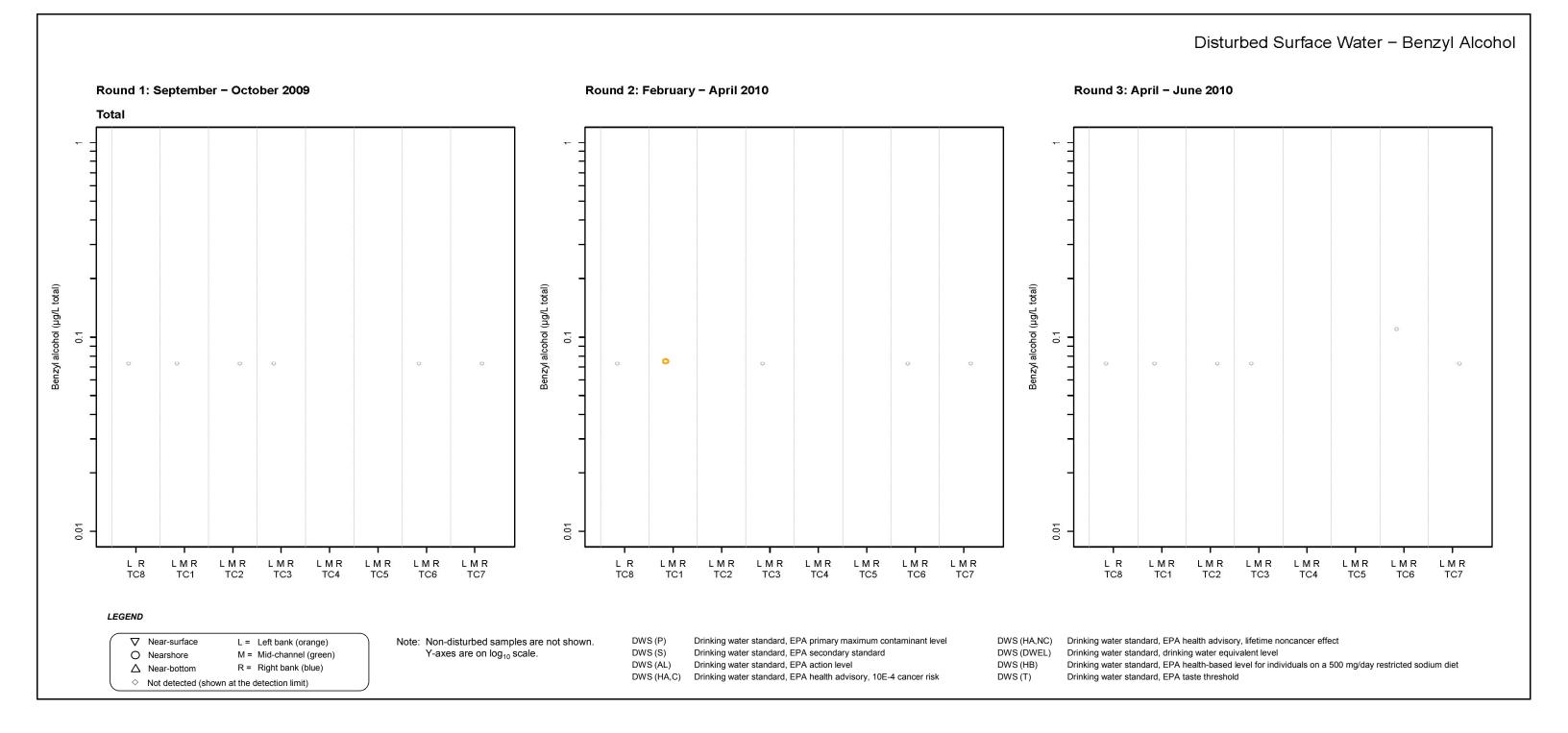

Disturbed Surface Water - 4-Chloro-3-methylphenol

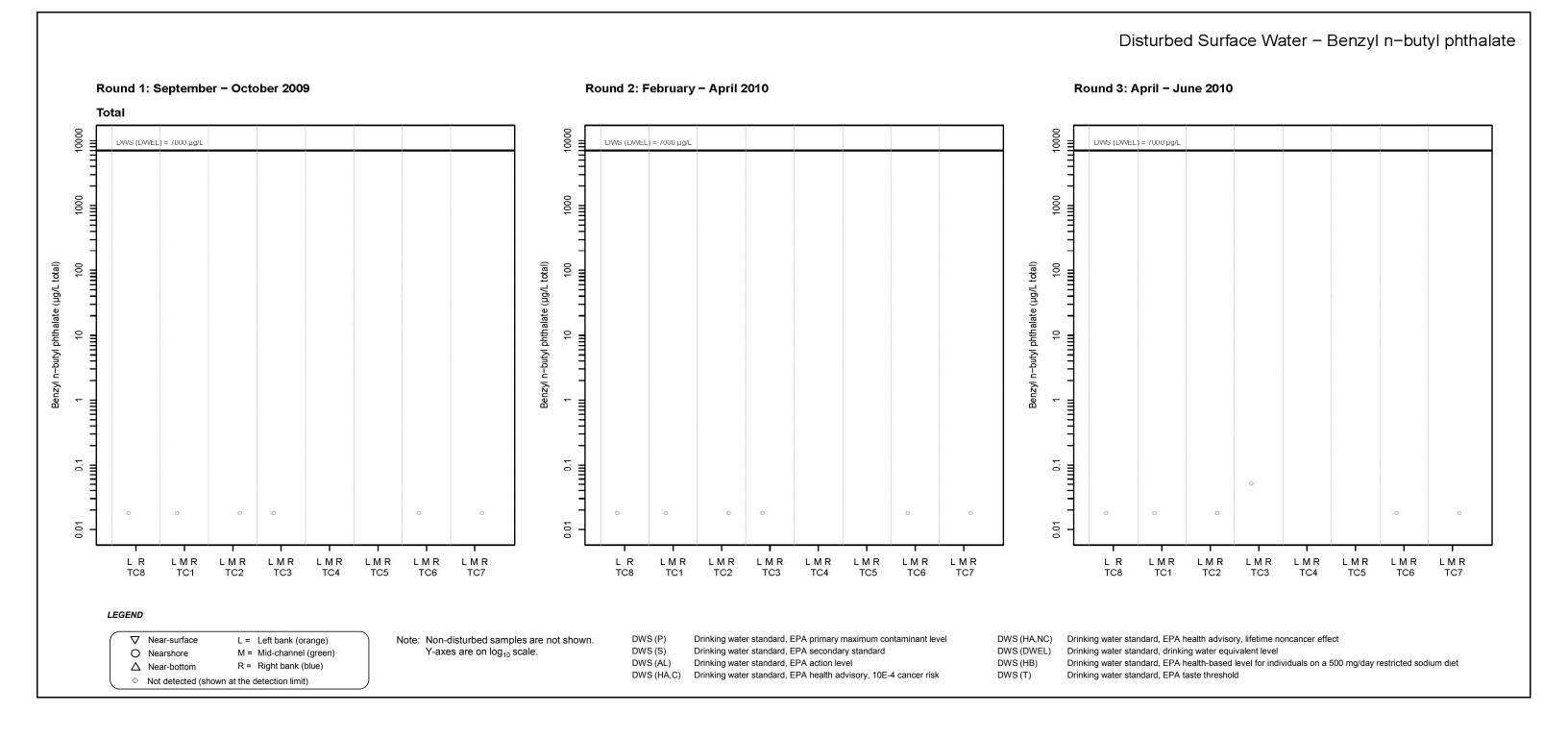


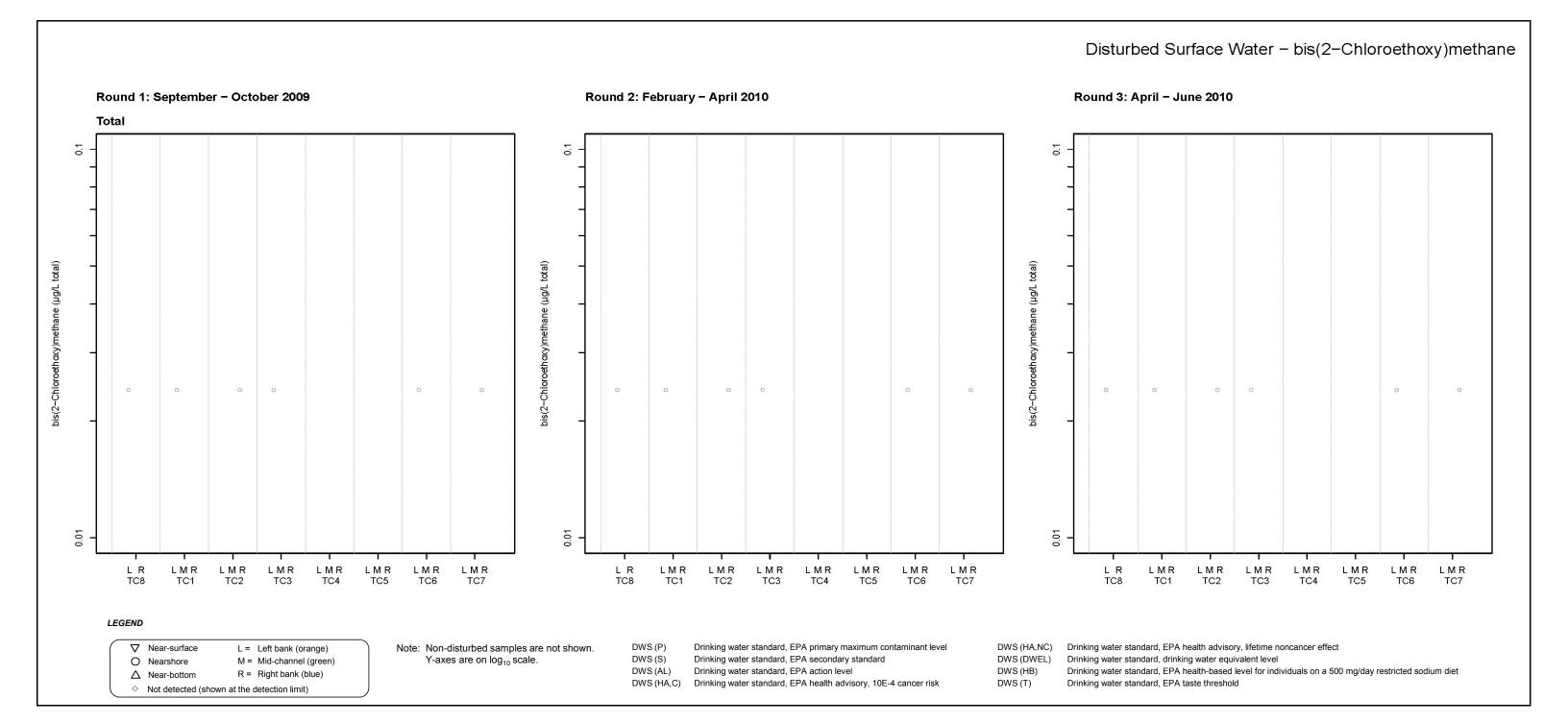


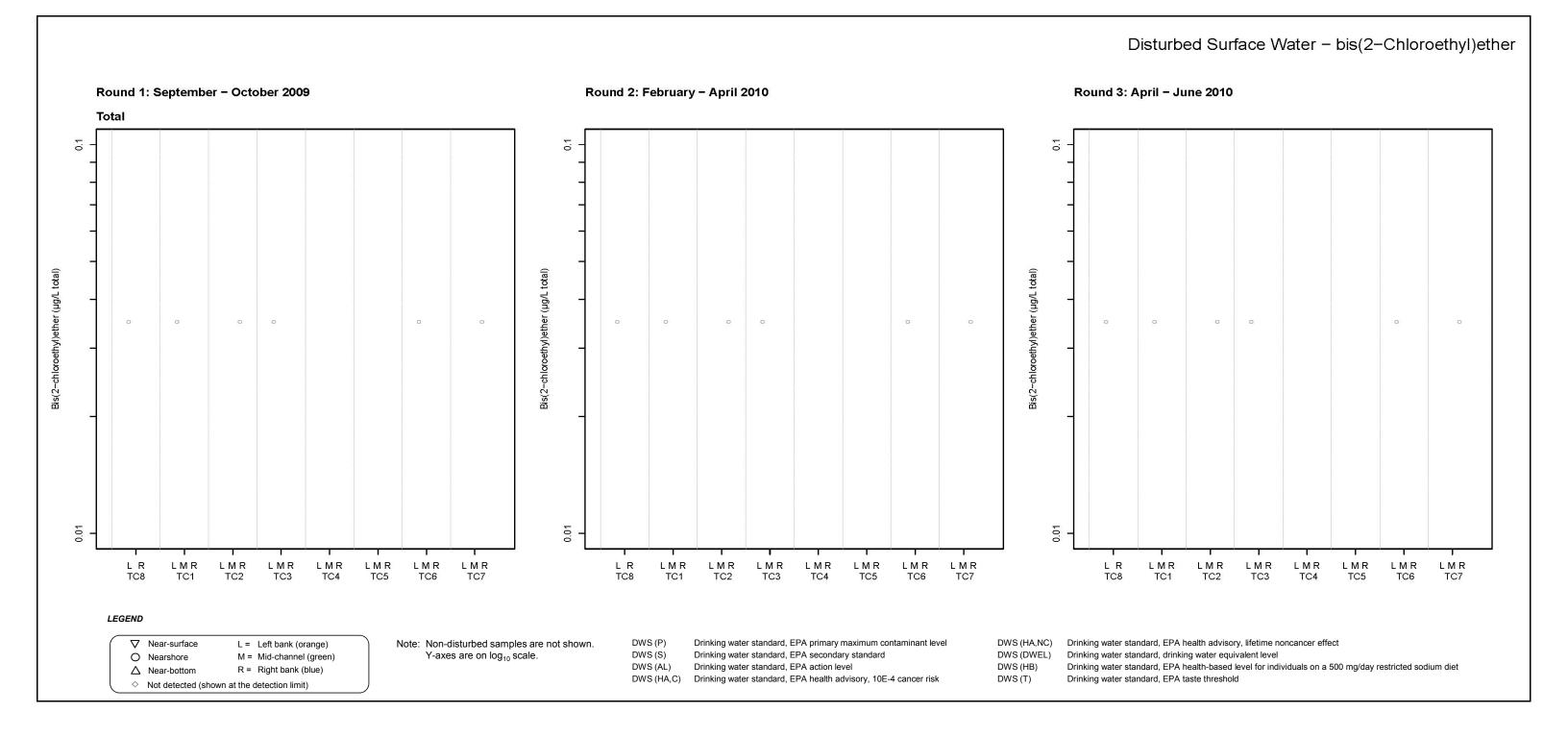


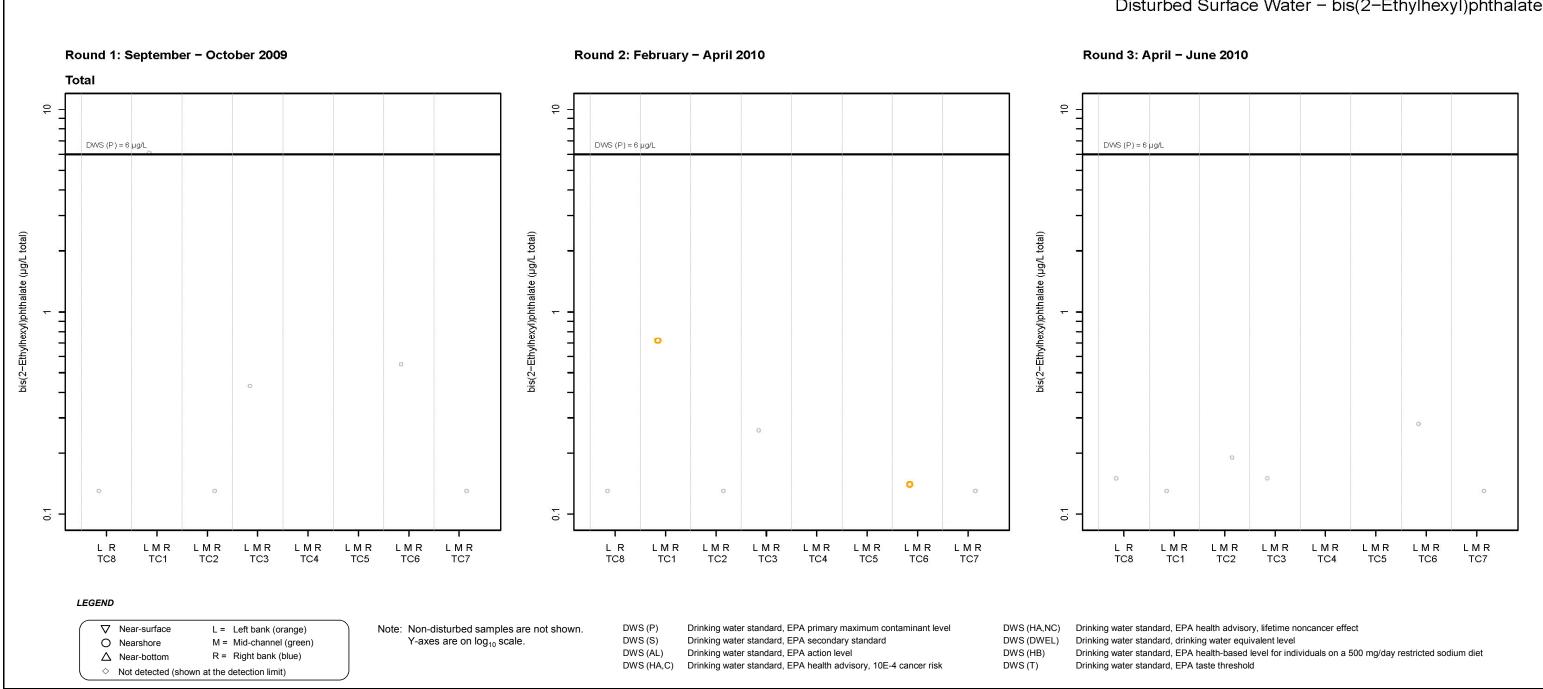


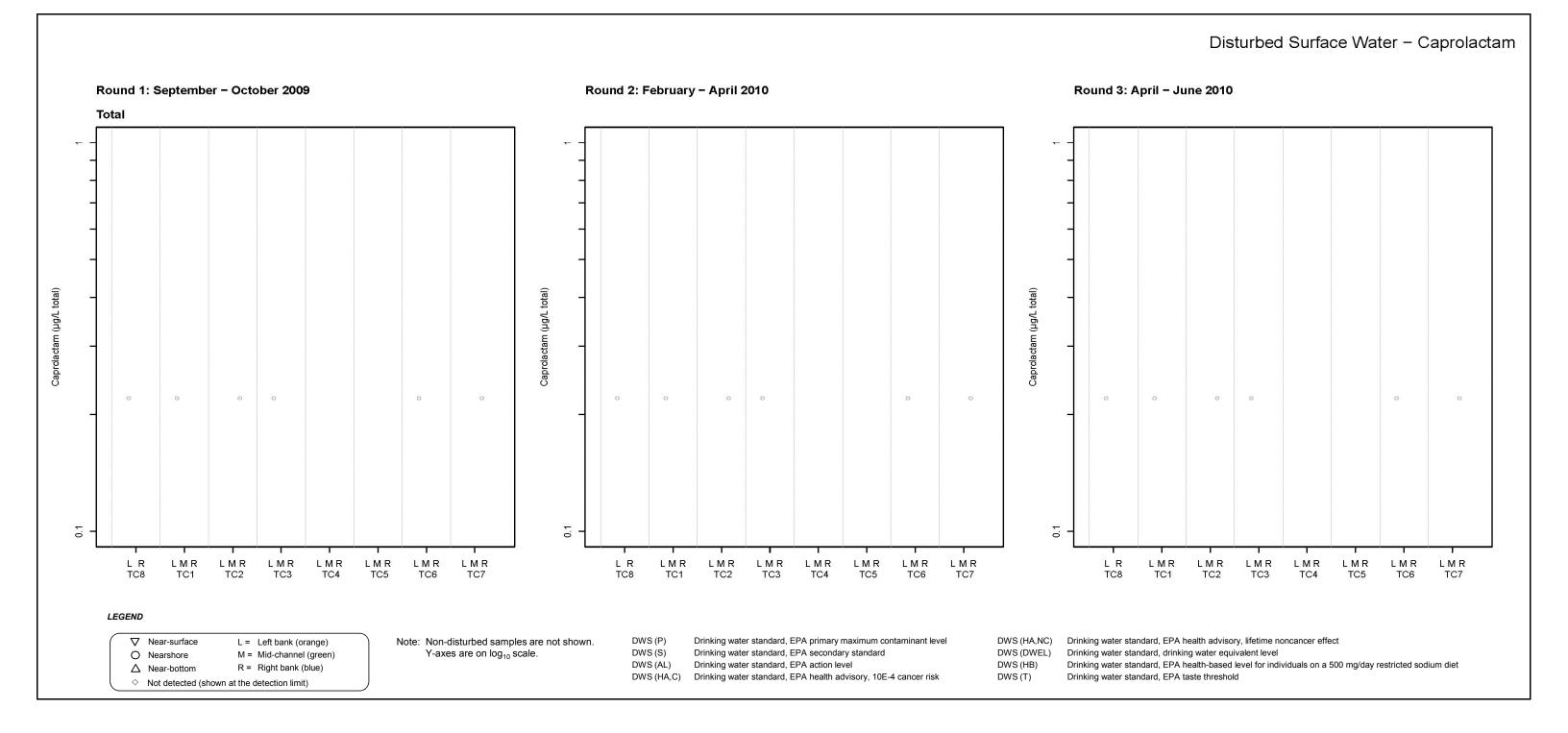


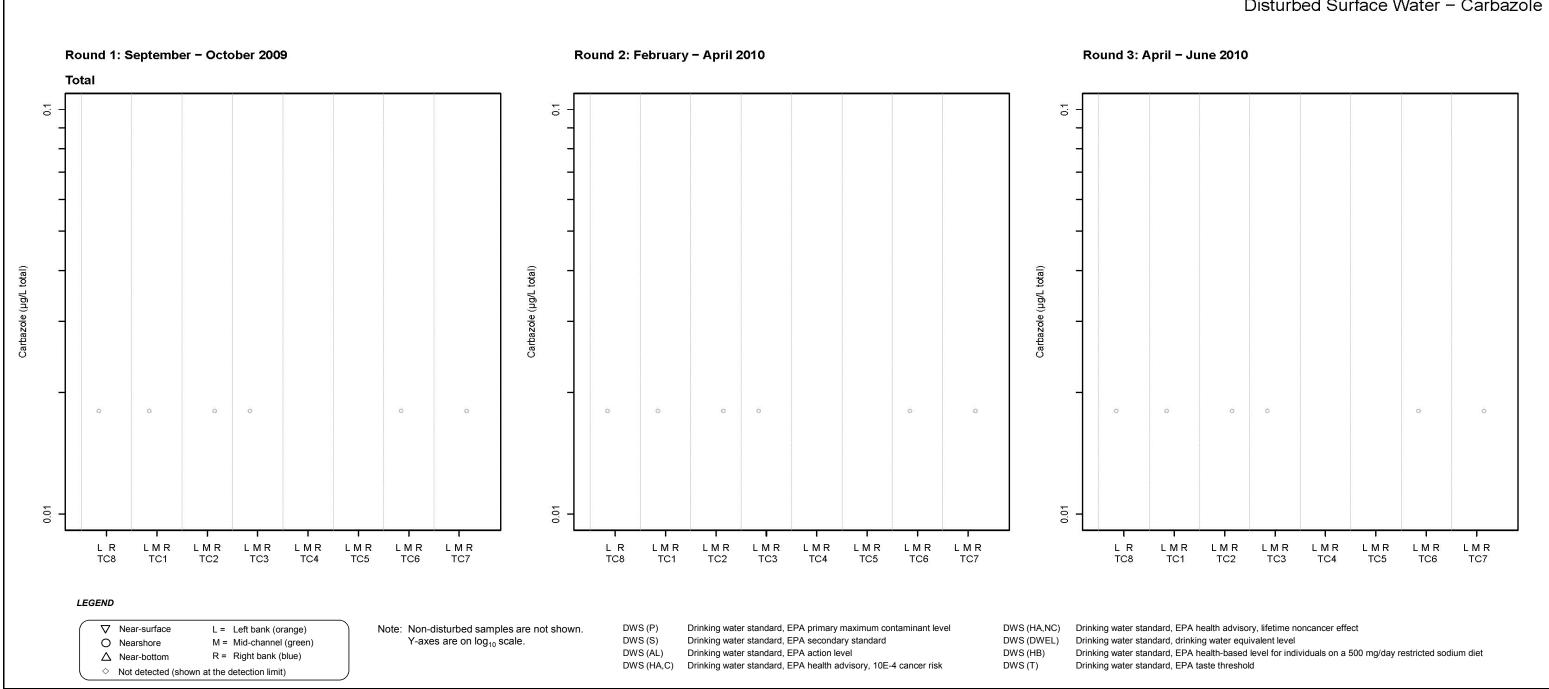

Disturbed Surface Water - Acetophenone



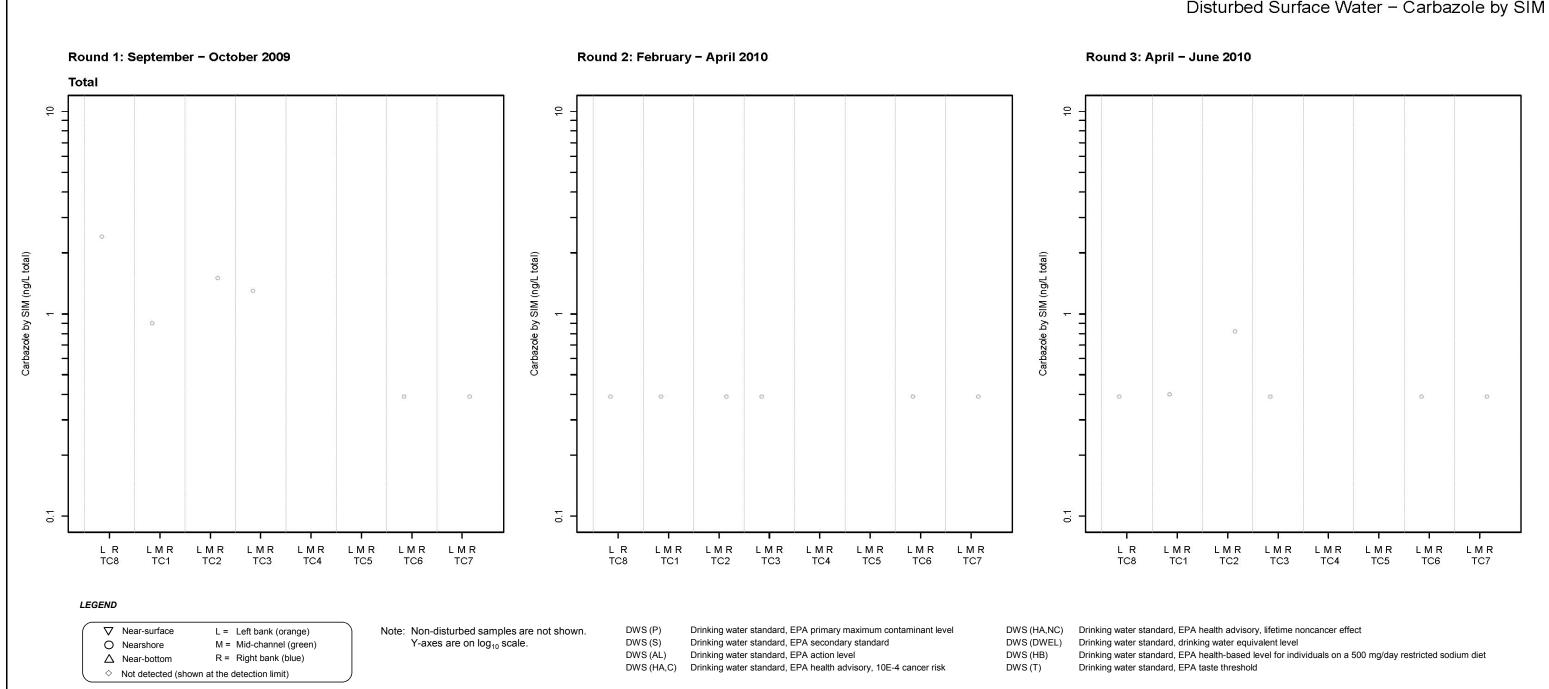


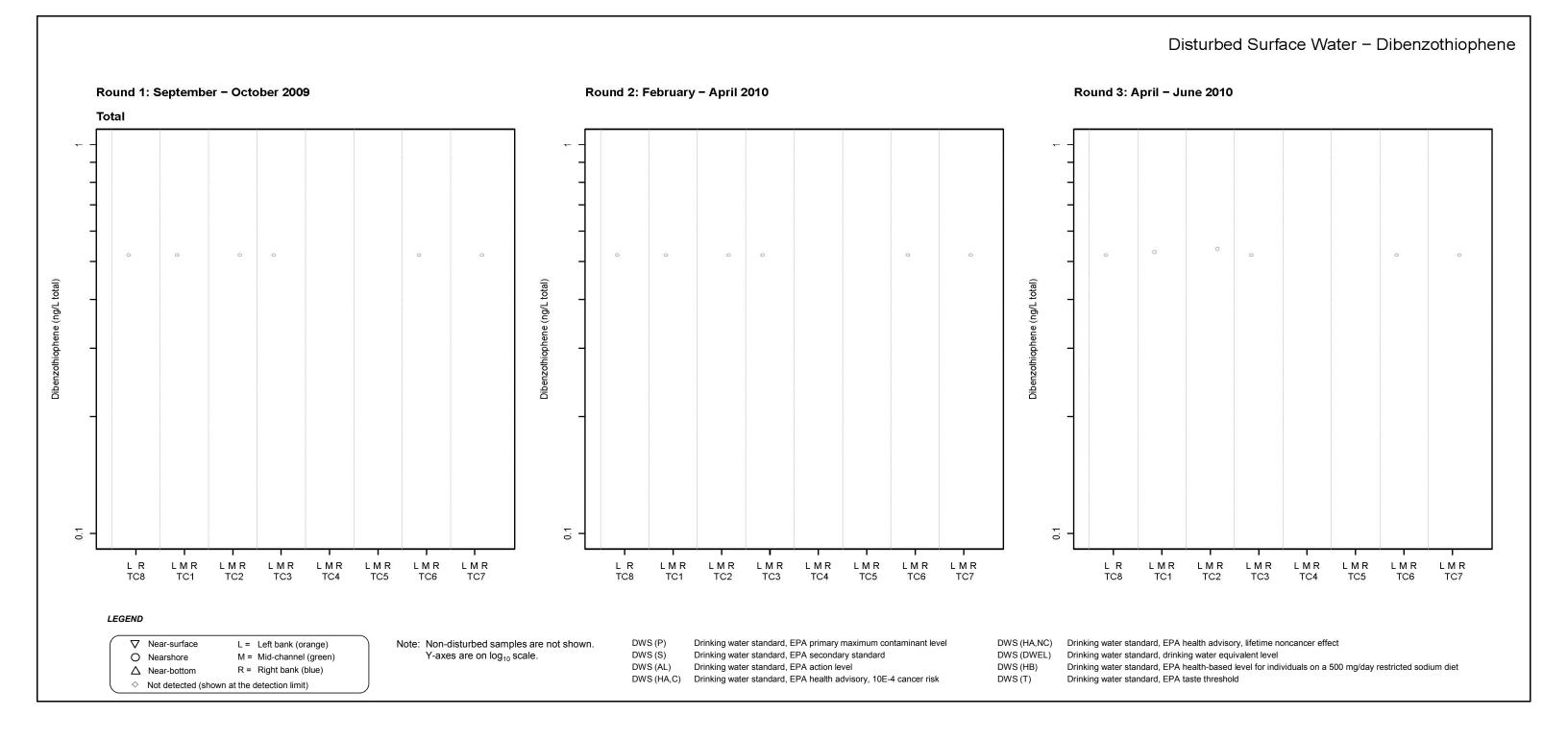


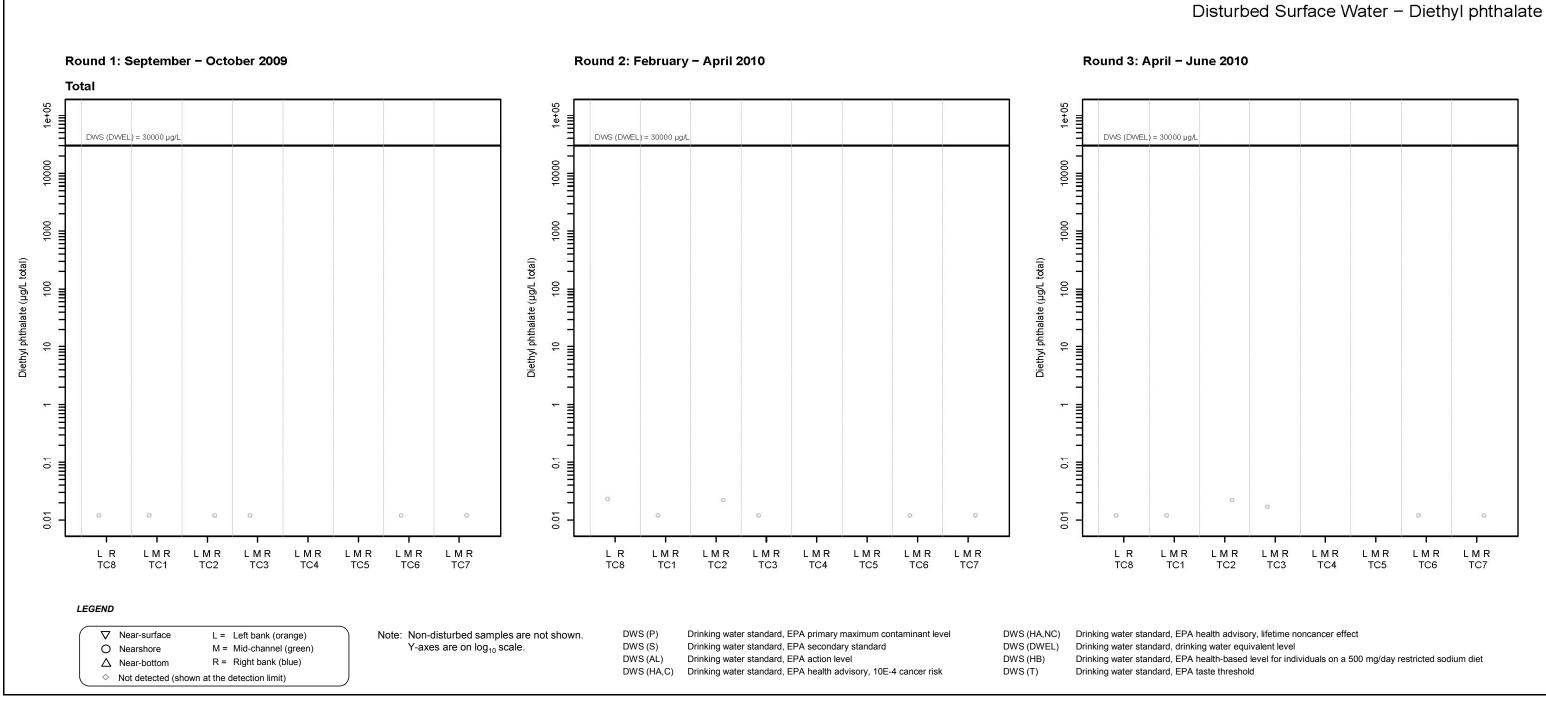


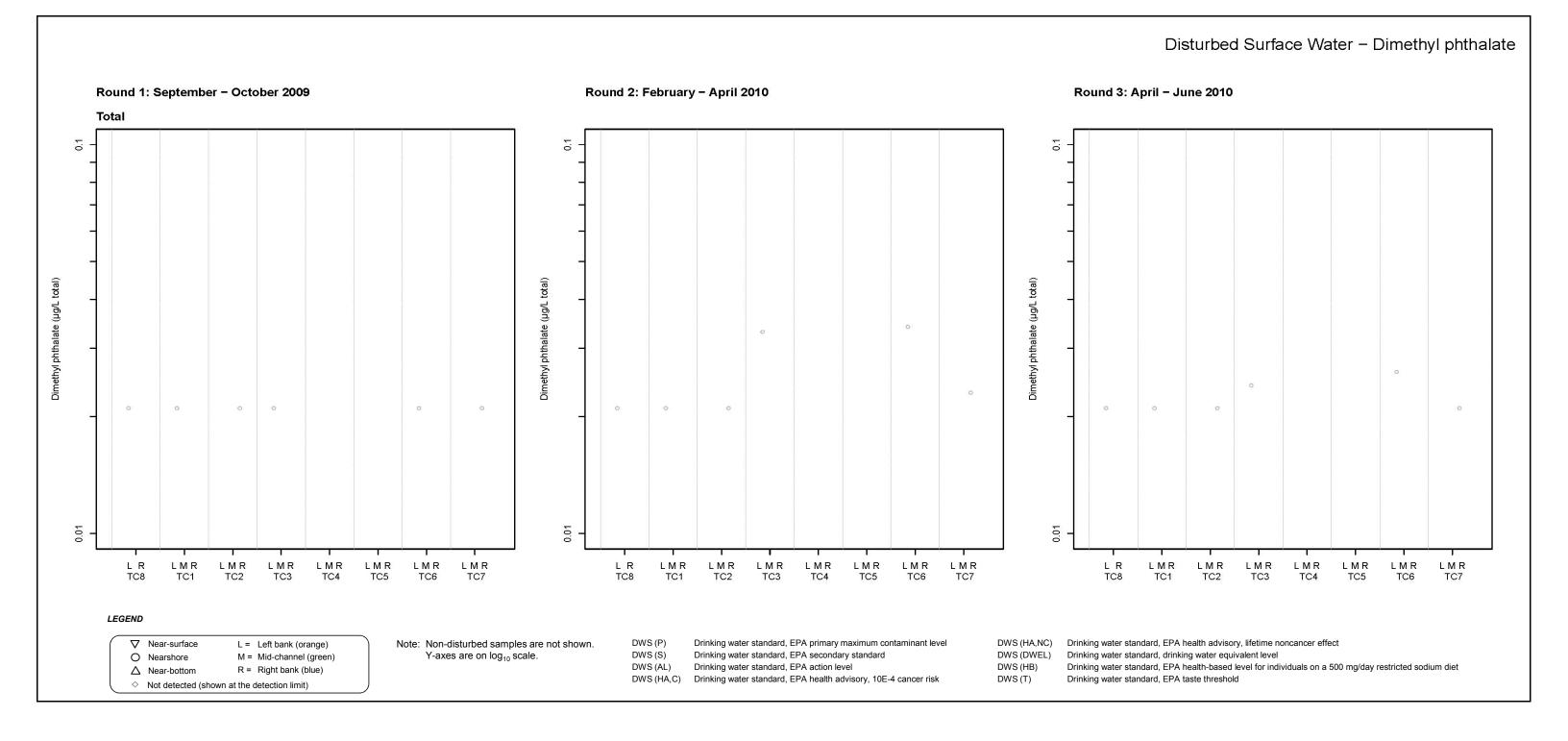


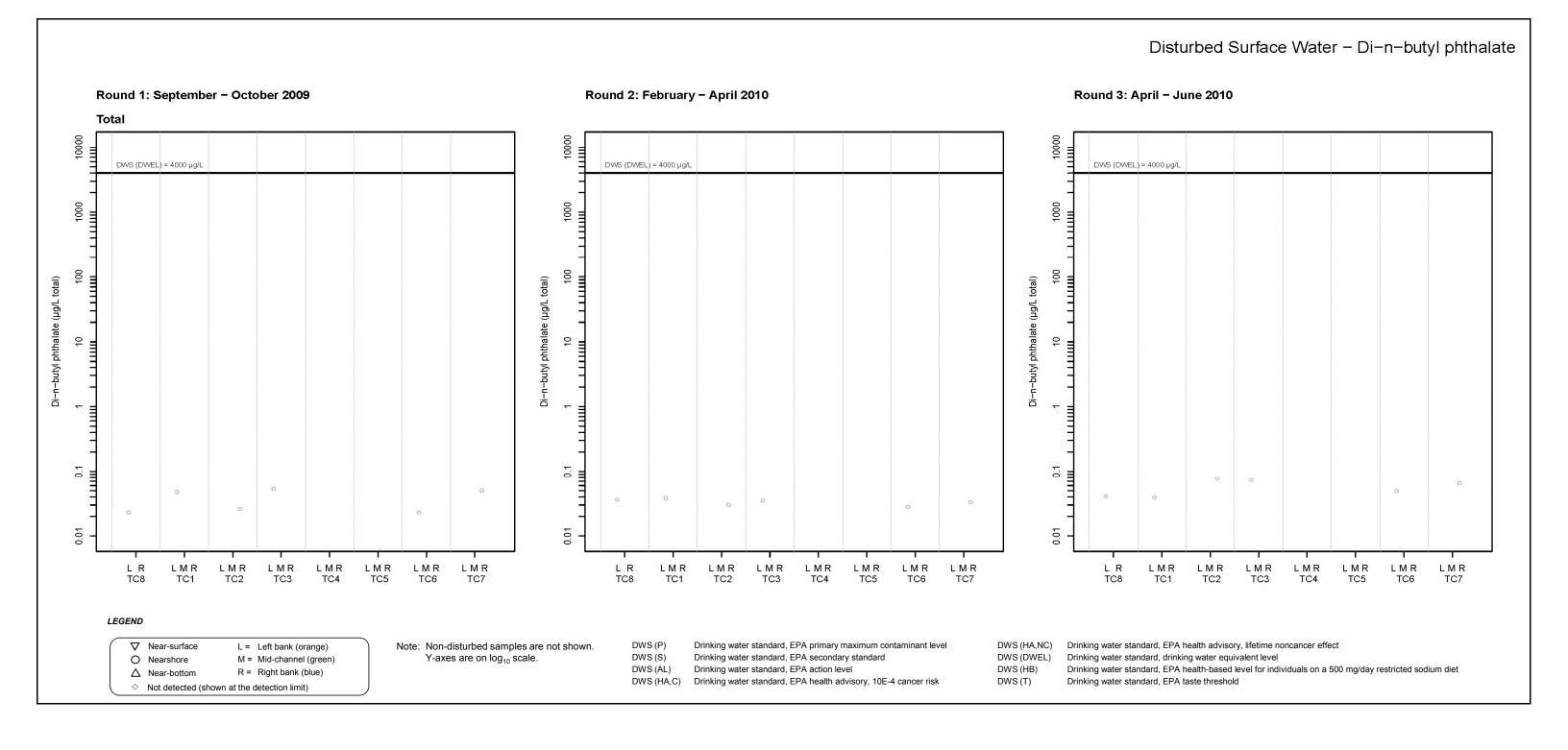
Disturbed Surface Water - bis(2-Ethylhexyl)phthalate

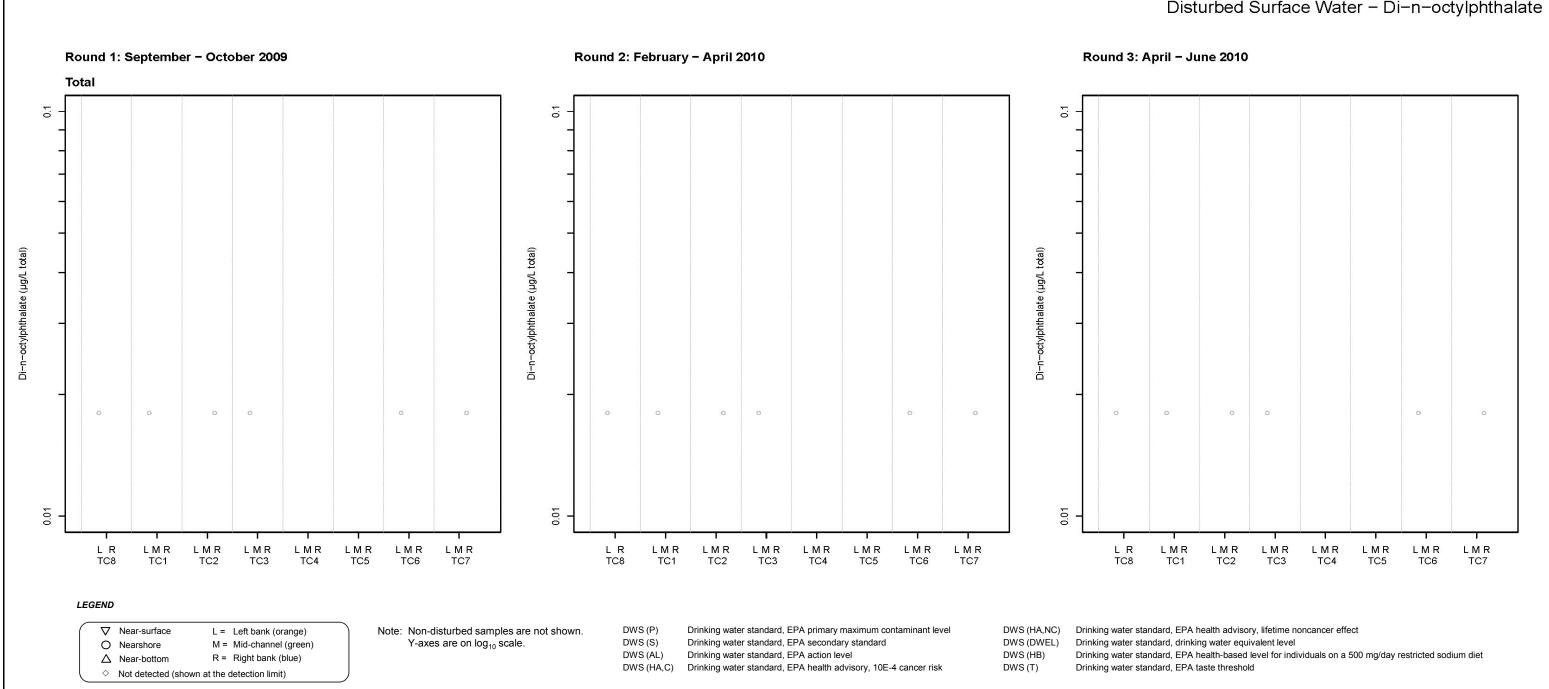


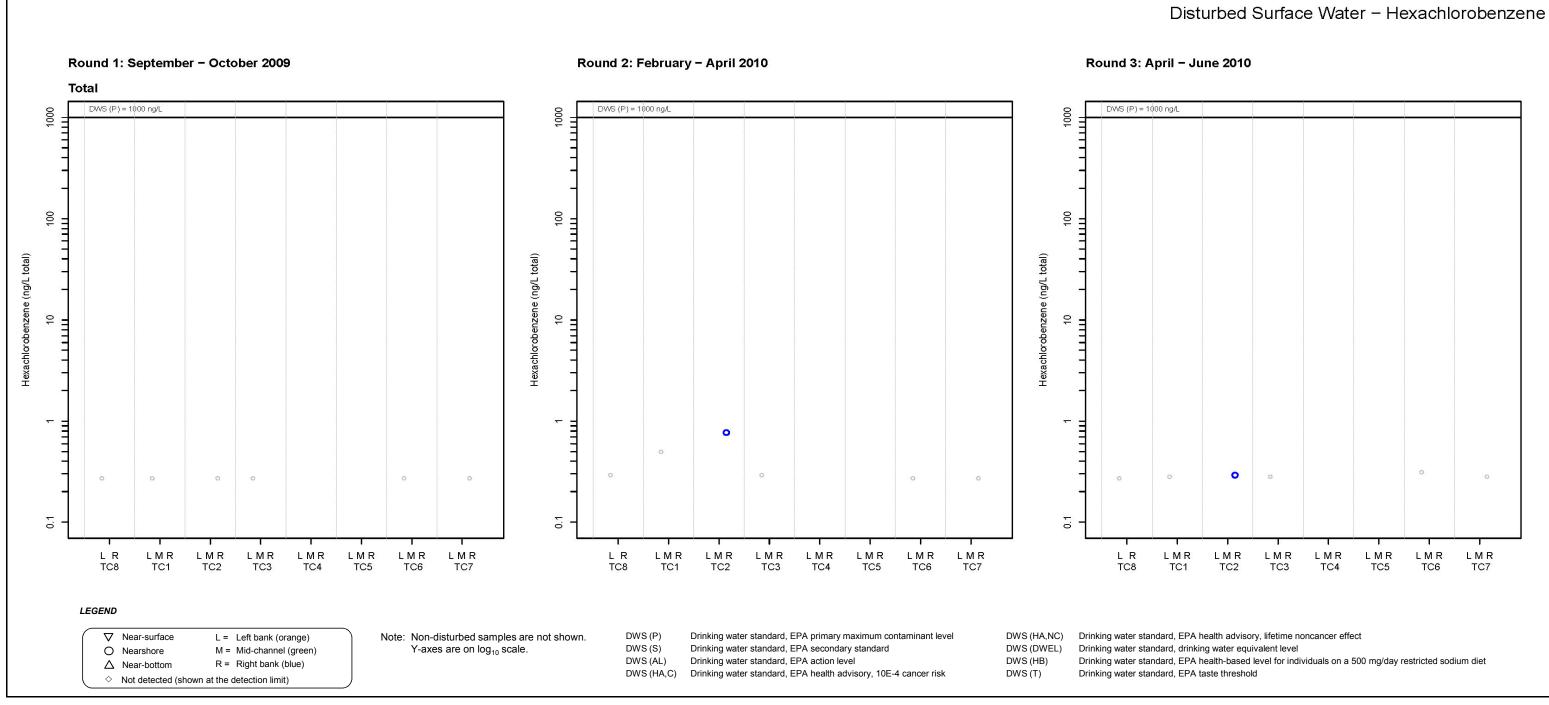


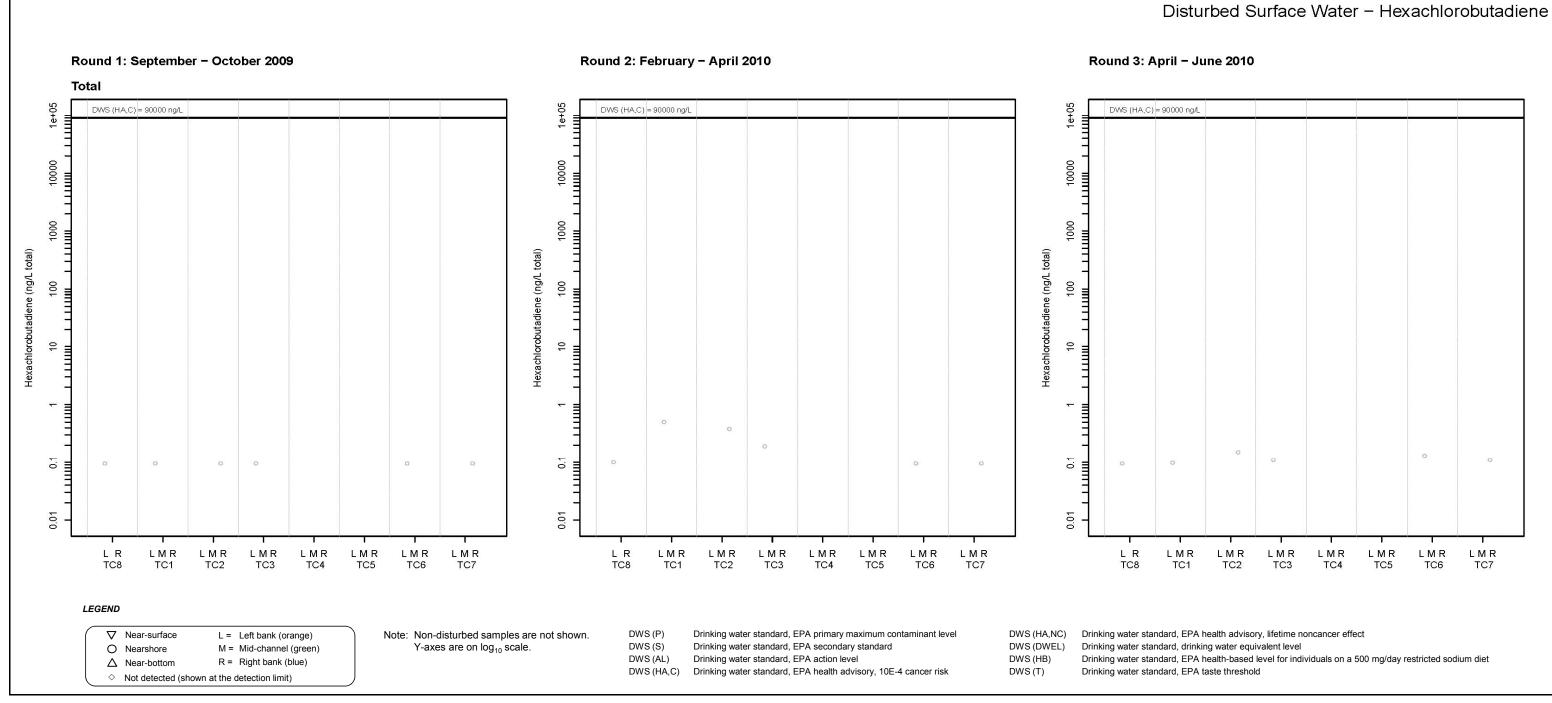

Disturbed Surface Water - Carbazole



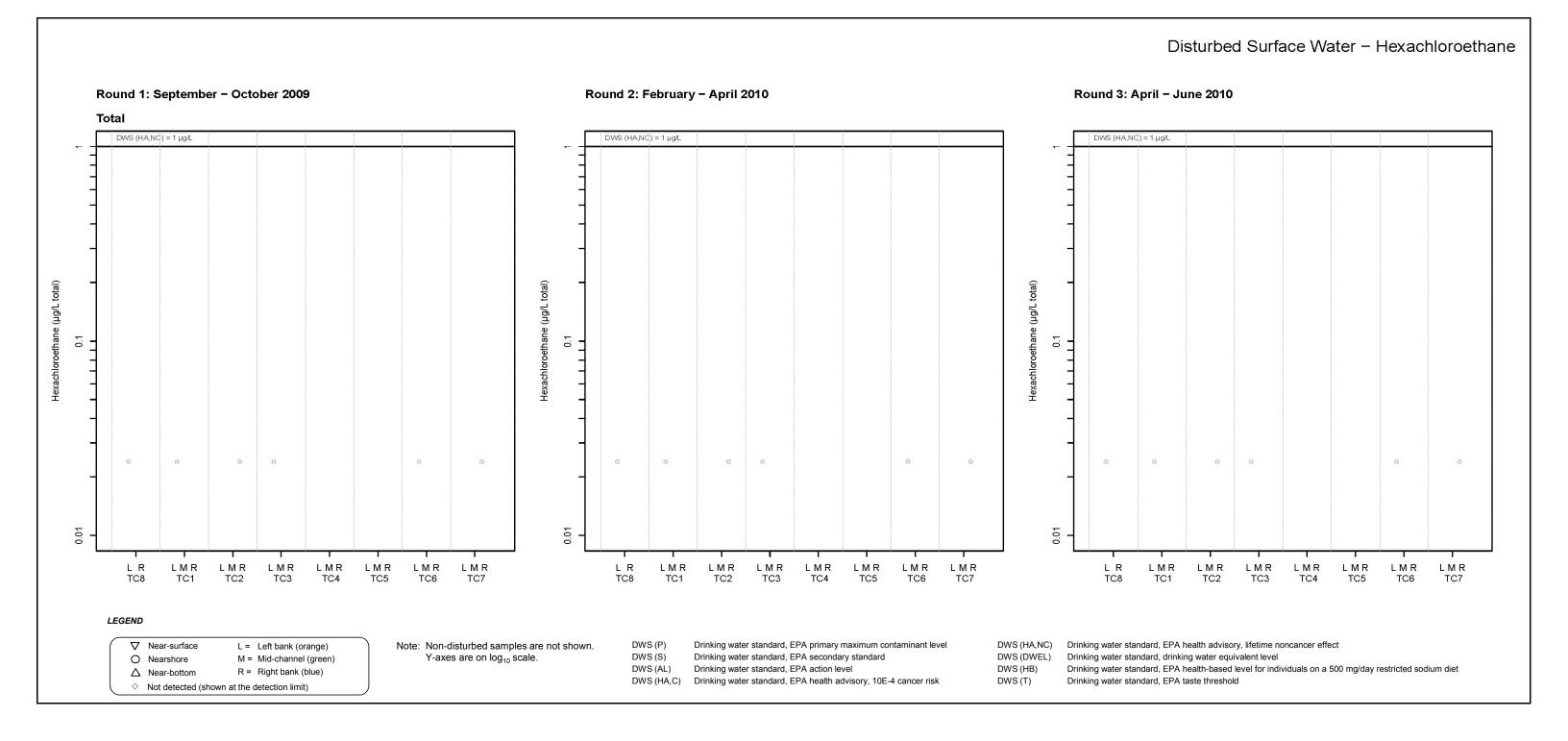

Disturbed Surface Water - Carbazole by SIM

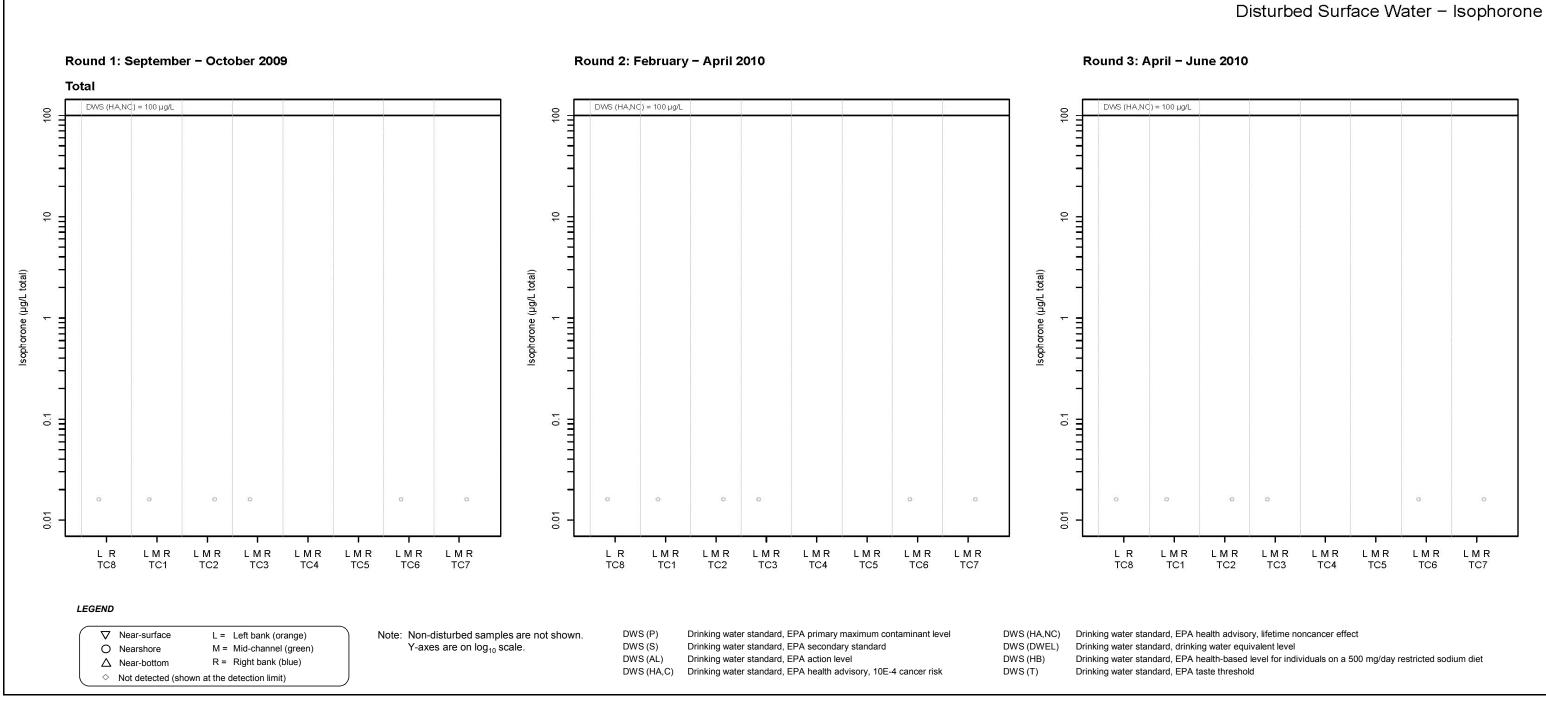




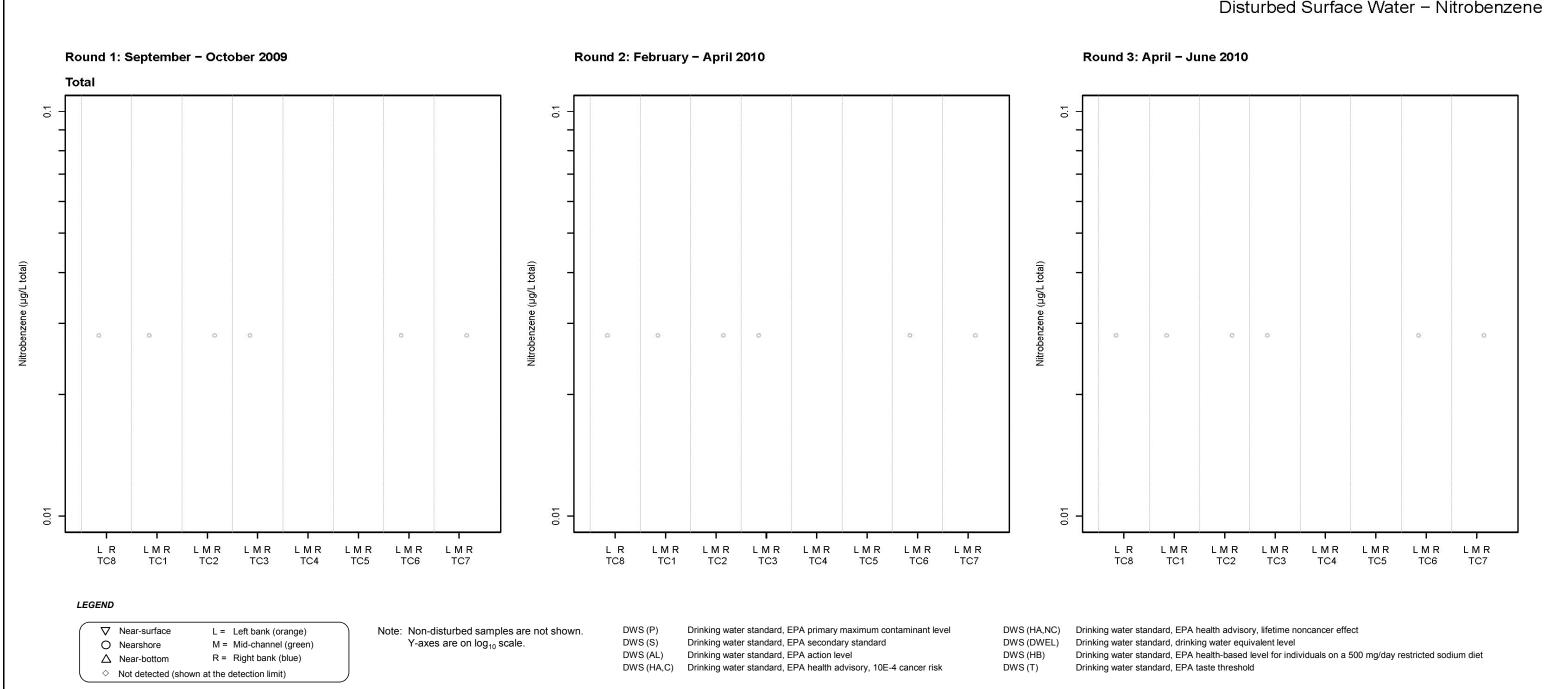


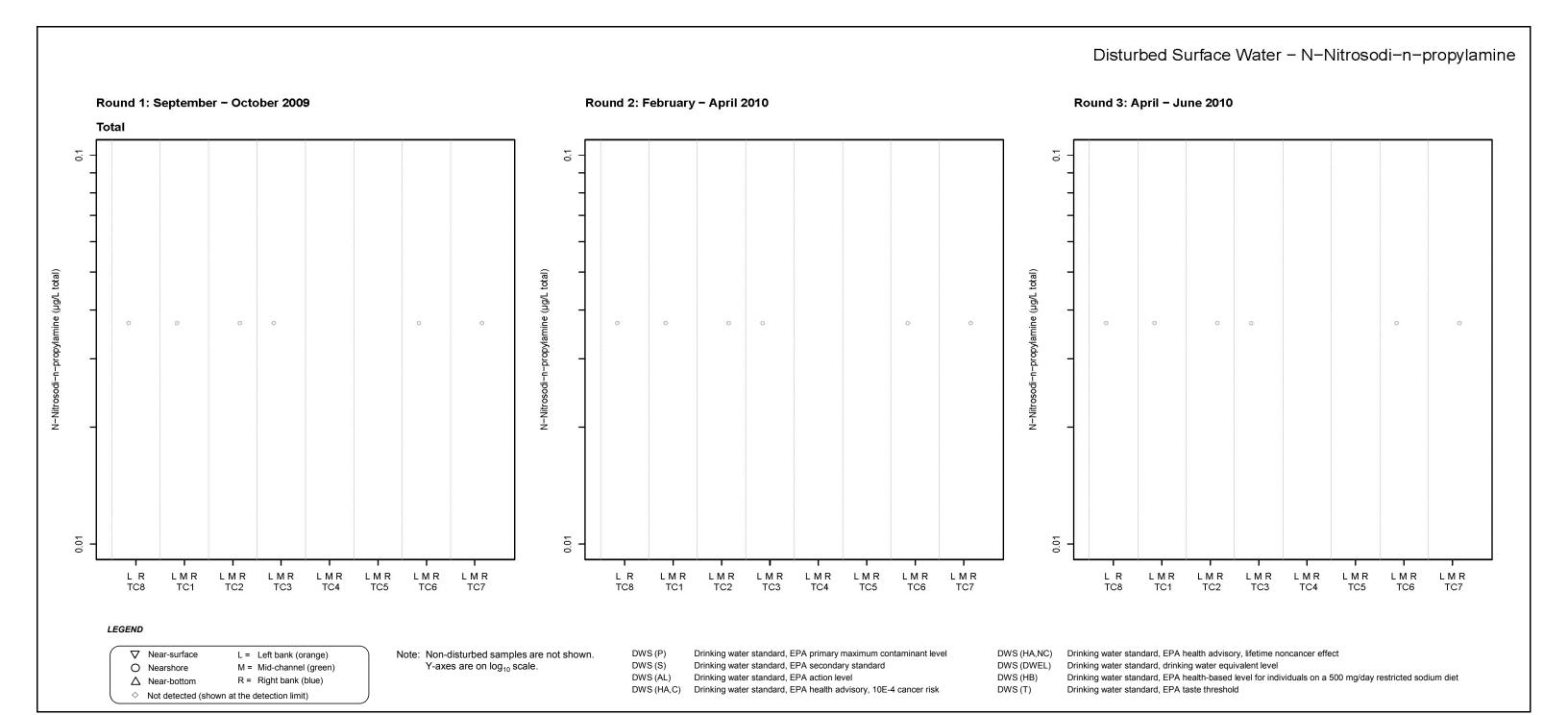
Disturbed Surface Water - Di-n-octylphthalate

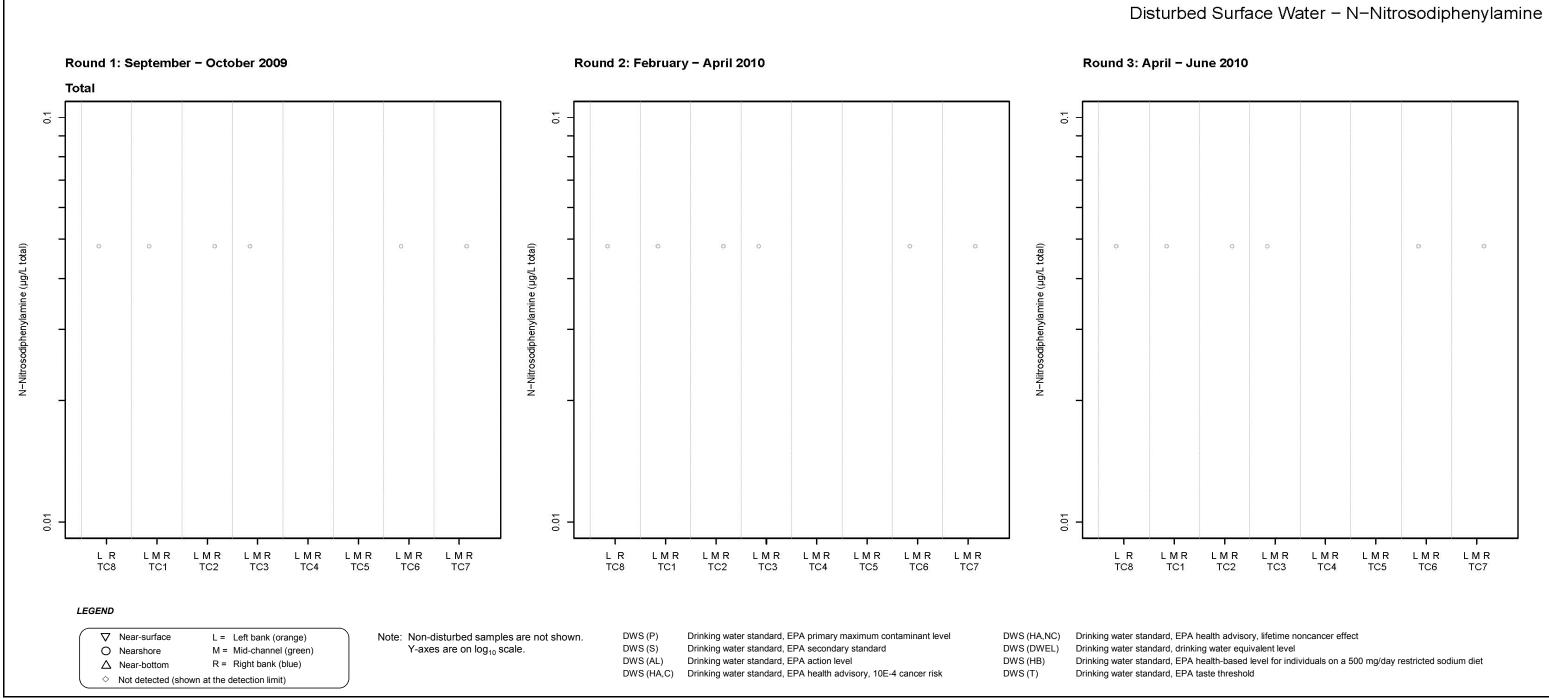

Disturbed Surface Water - Hexachlorocyclopentadiene Round 3: April - June 2010 Round 1: September - October 2009 Round 2: February - April 2010 Total 100 DWS (P) = 50 μg/L DWS (P) = 50 µg/L DWS (P) = 50 µg/L Hexachlorocyclopentadiene (µg/L total) 9 L R TC8 L R LMR TC1 TC4 TC7 TC1 TC4 TC6 TC2 TC3 TC6 TC5 TC6 TC2 TC1 TC4 LEGEND Drinking water standard, EPA primary maximum contaminant level DWS (HA,NC) DWS (P) Drinking water standard, EPA health advisory, lifetime noncancer effect ∇ Near-surface L = Left bank (orange) Note: Non-disturbed samples are not shown. Y-axes are on log₁₀ scale. DWS (S) Drinking water standard, EPA secondary standard DWS (DWEL) Drinking water standard, drinking water equivalent level O Nearshore M = Mid-channel (green) DWS (AL) Drinking water standard, EPA action level DWS (HB) Drinking water standard, EPA health-based level for individuals on a 500 mg/day restricted sodium diet R = Right bank (blue) △ Near-bottom

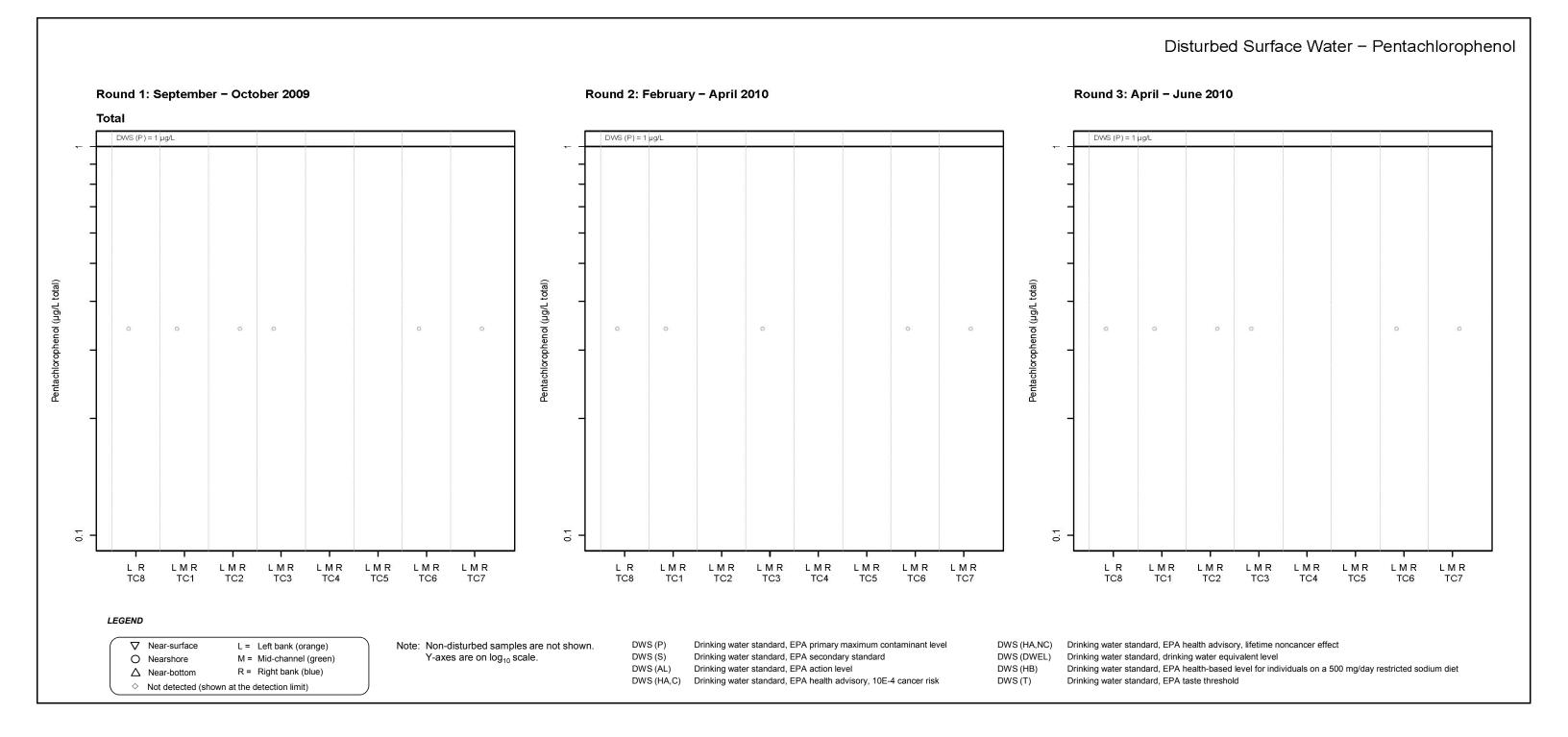

DWS (HA,C) Drinking water standard, EPA health advisory, 10E-4 cancer risk

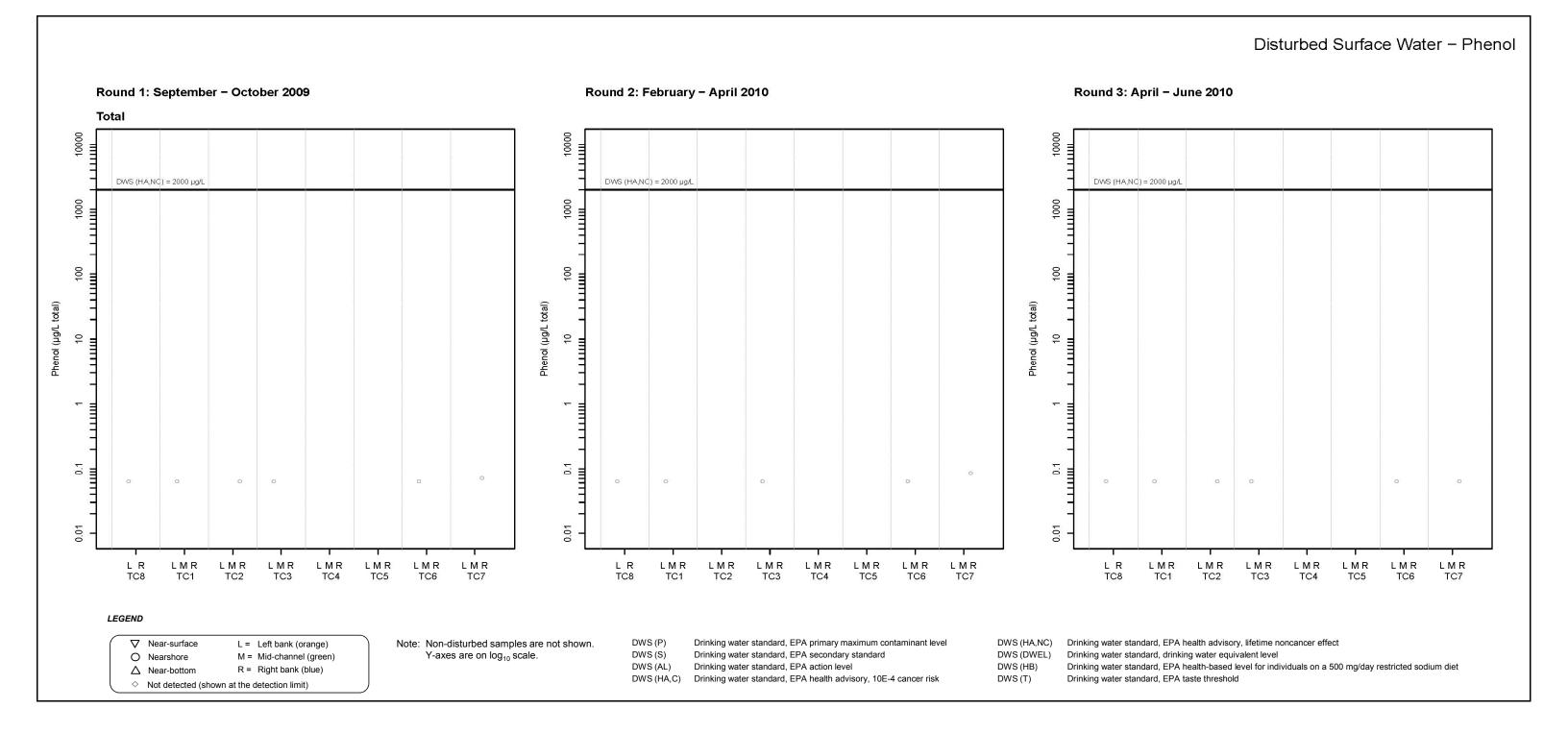
Not detected (shown at the detection limit)

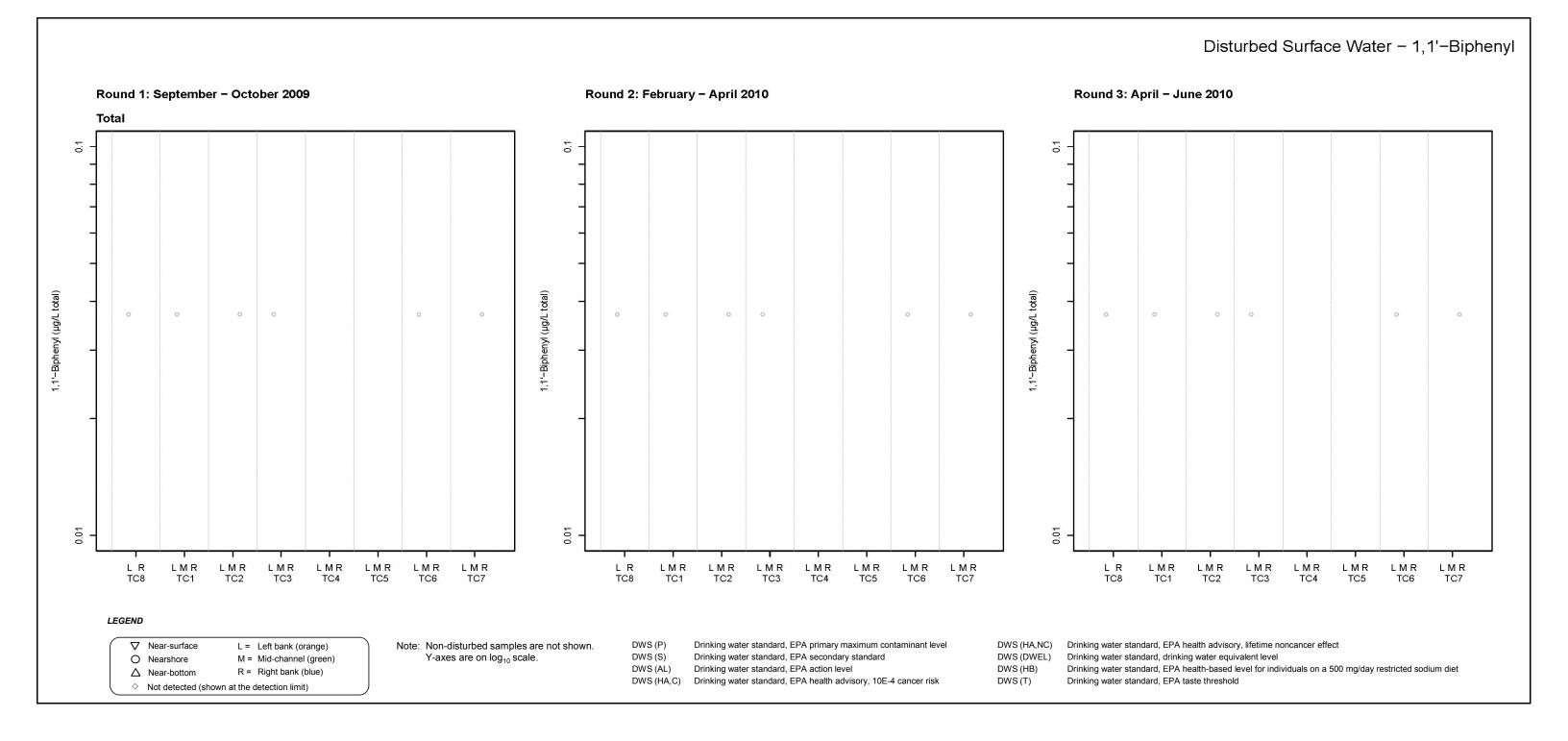

DWS (T)

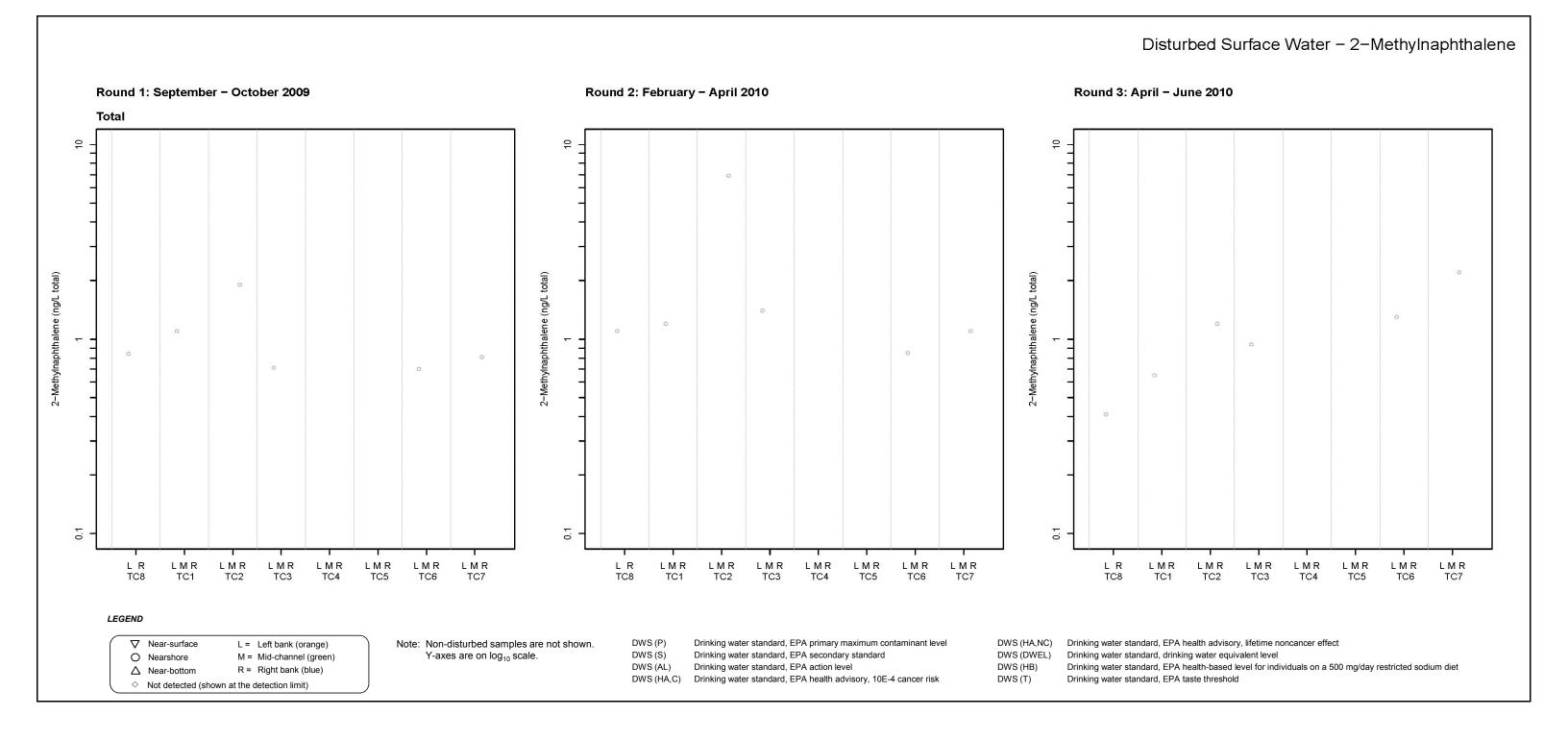

Drinking water standard, EPA taste threshold

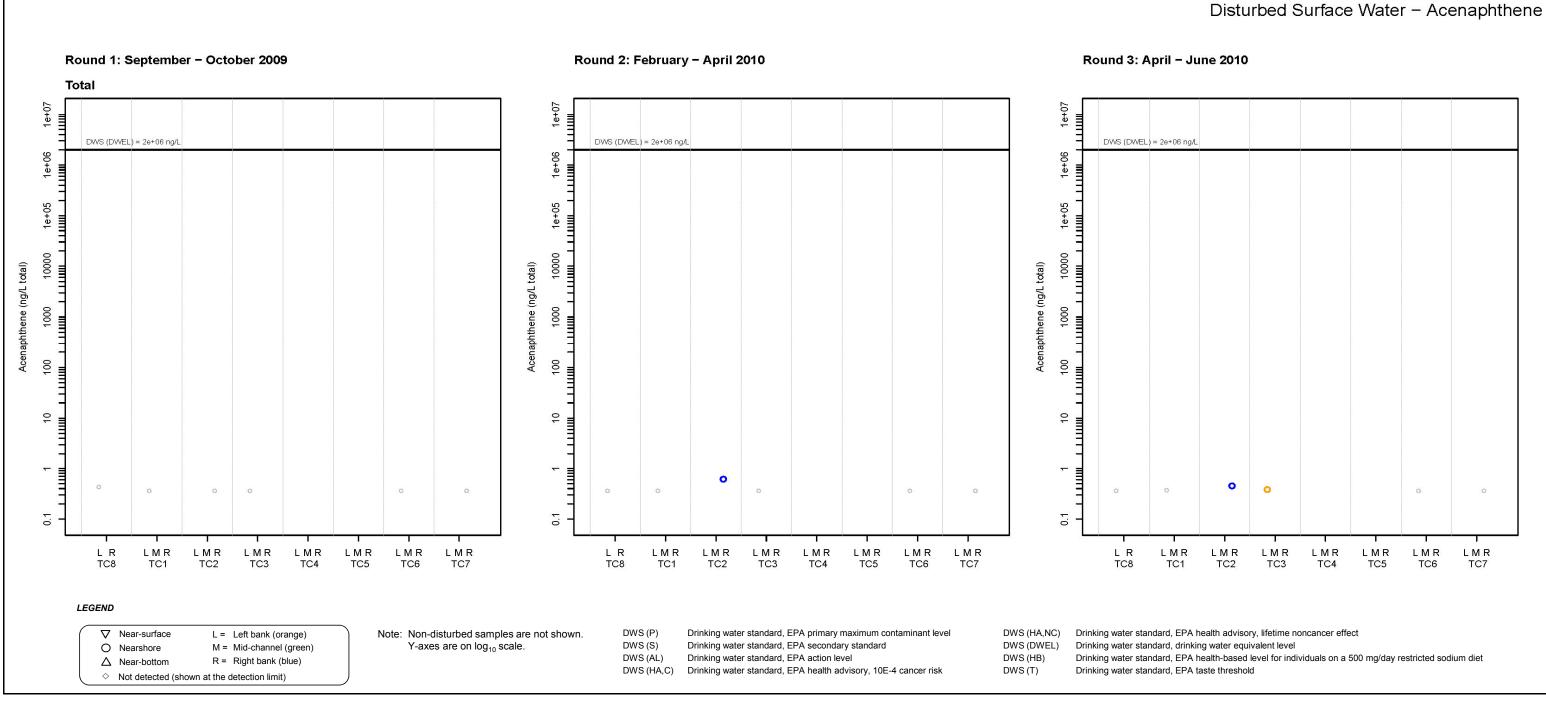


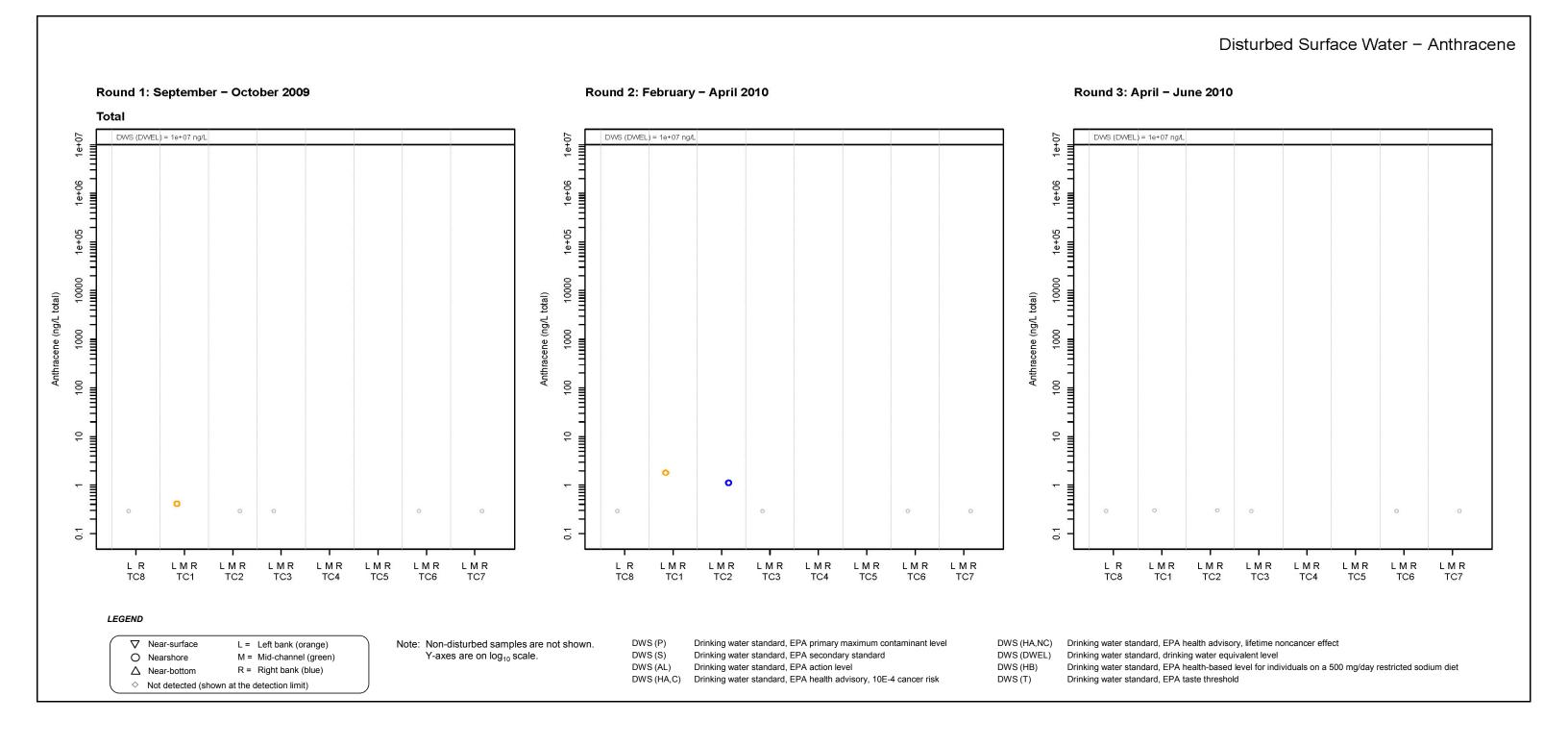


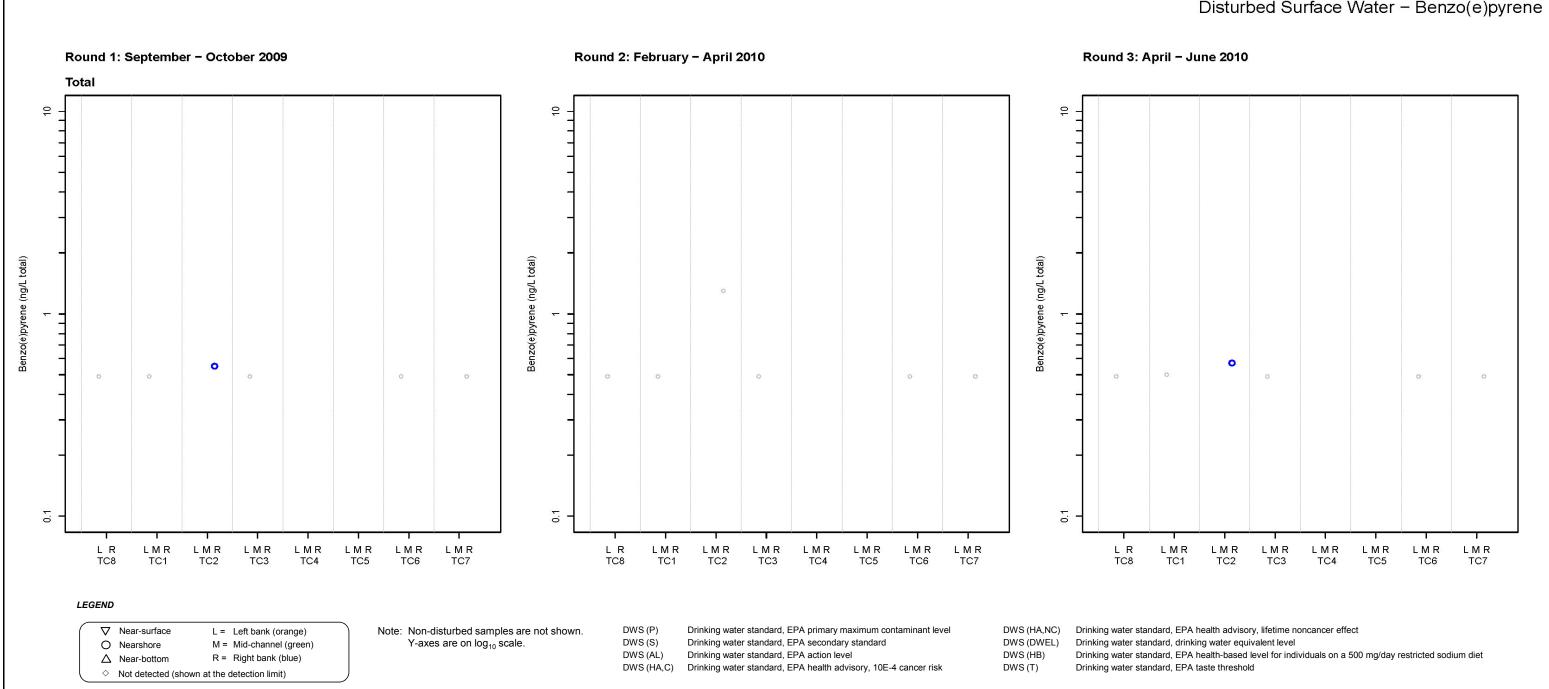

Disturbed Surface Water - Nitrobenzene

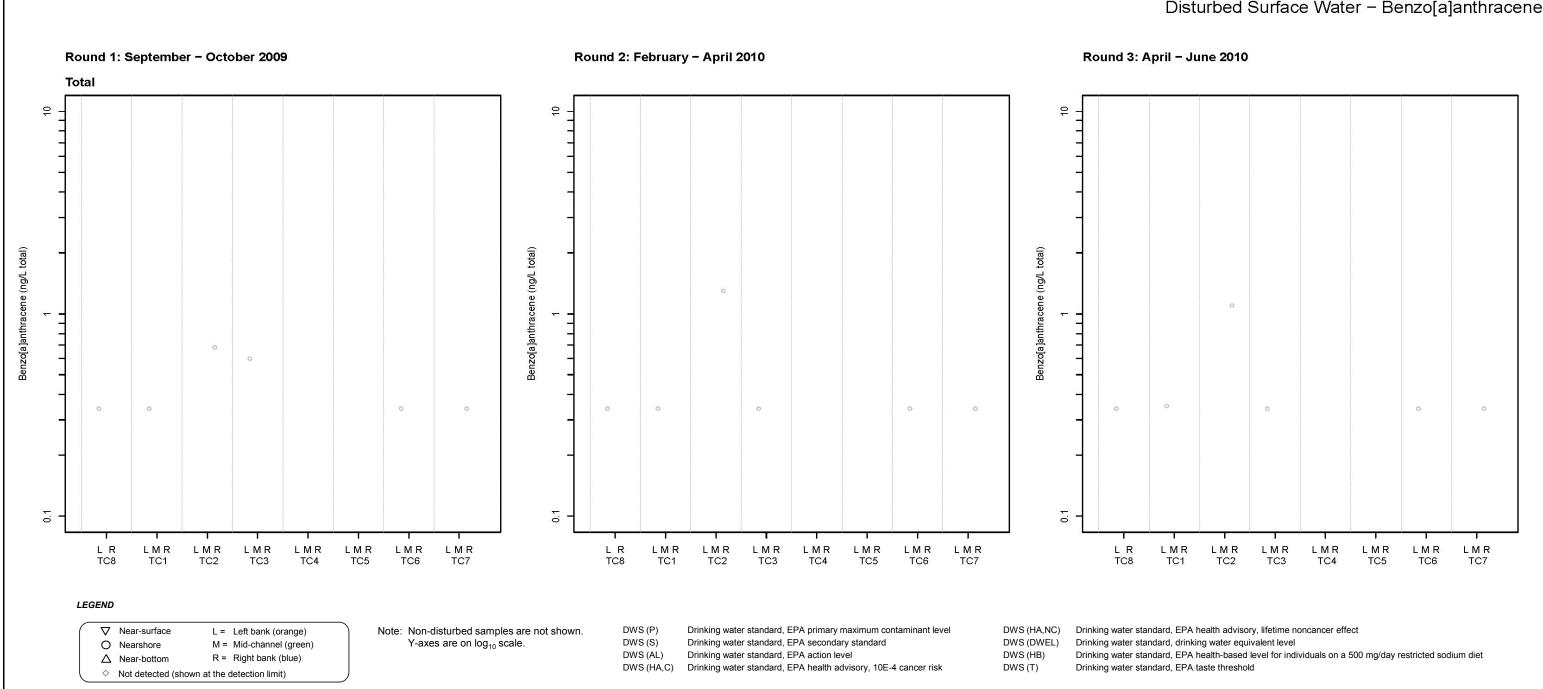


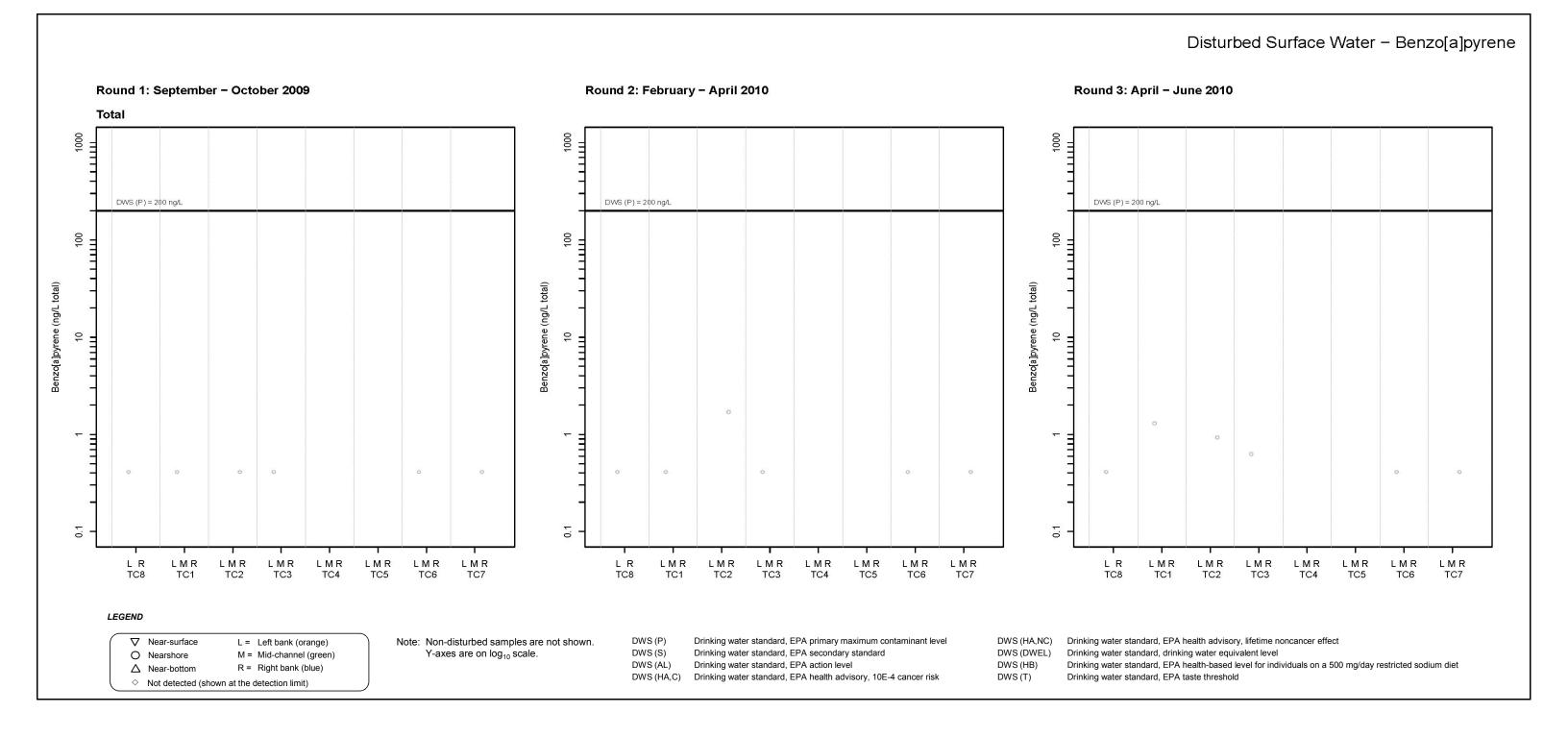


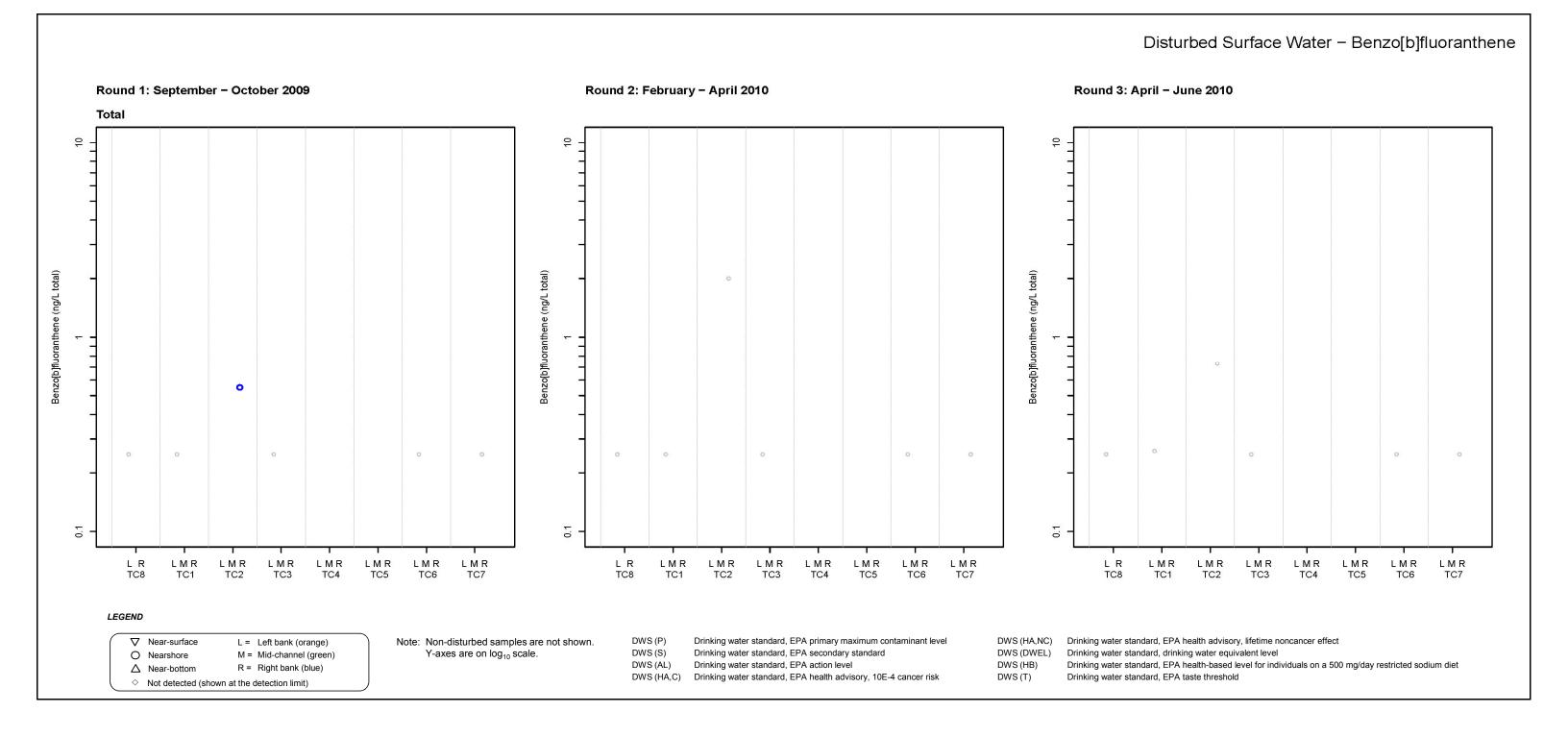


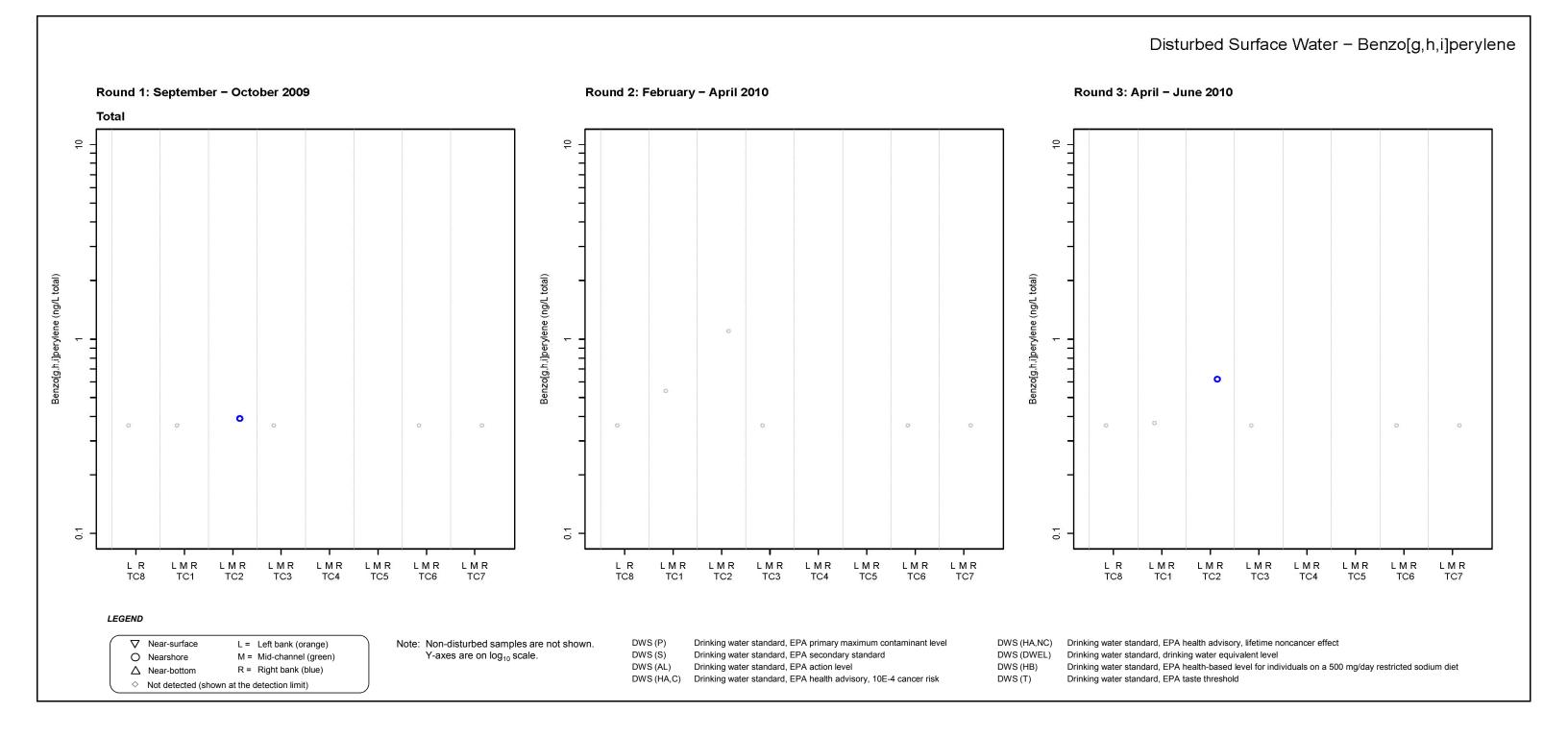


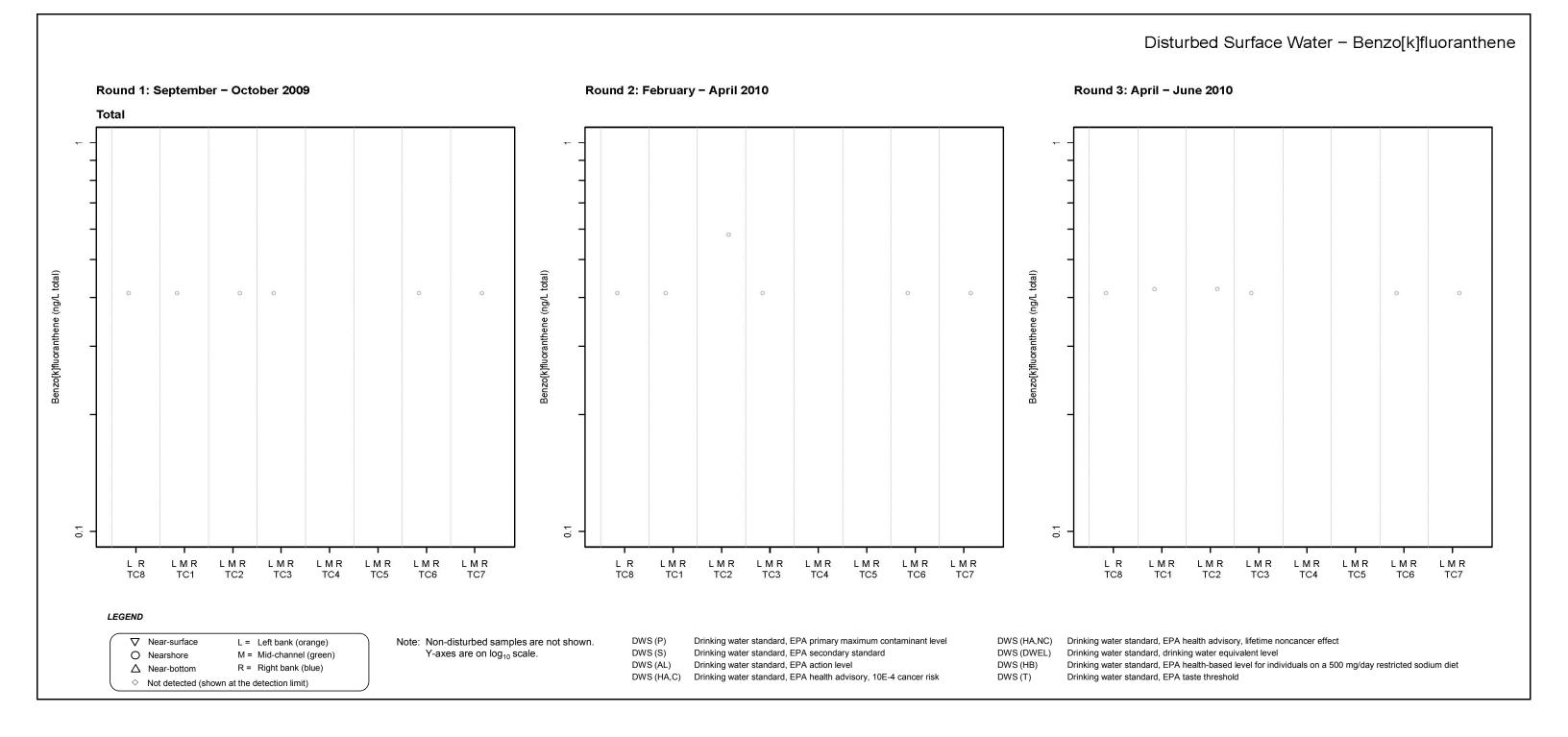


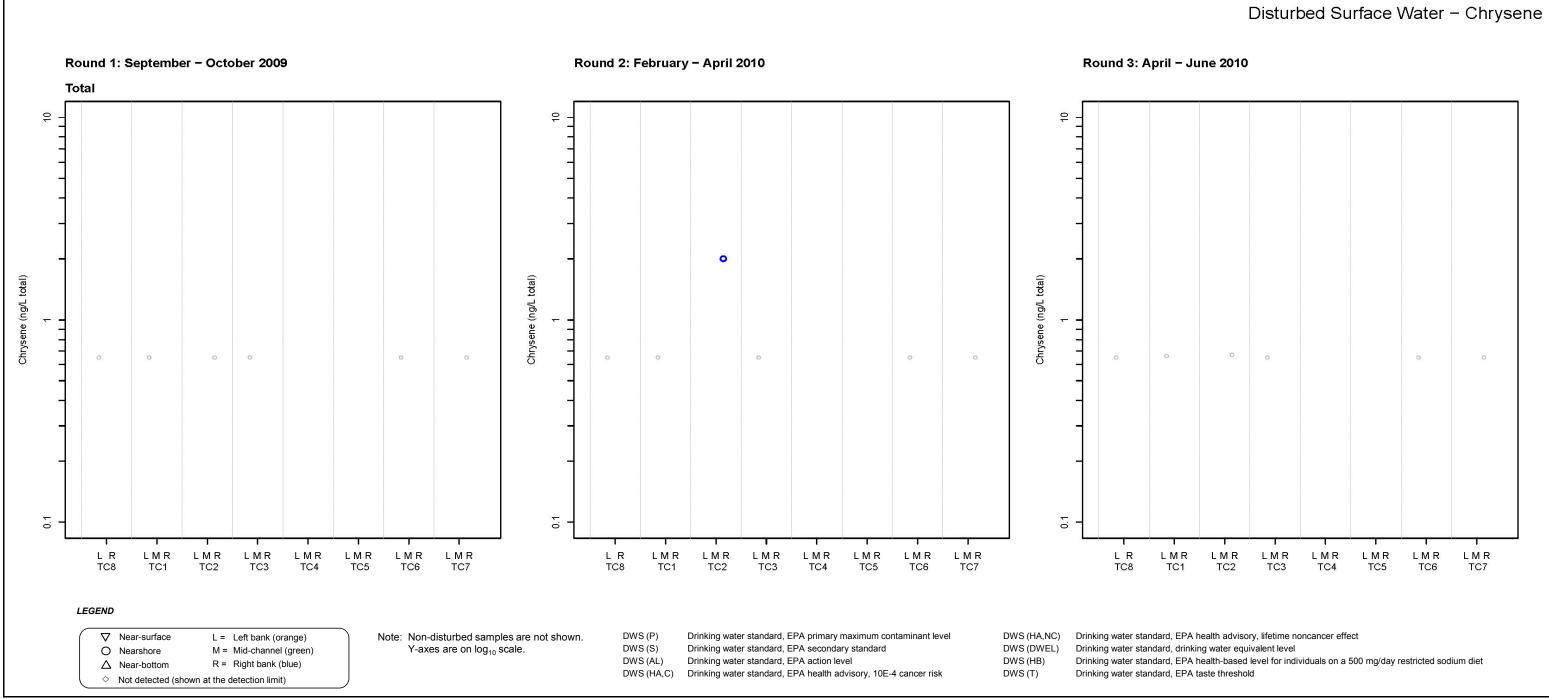


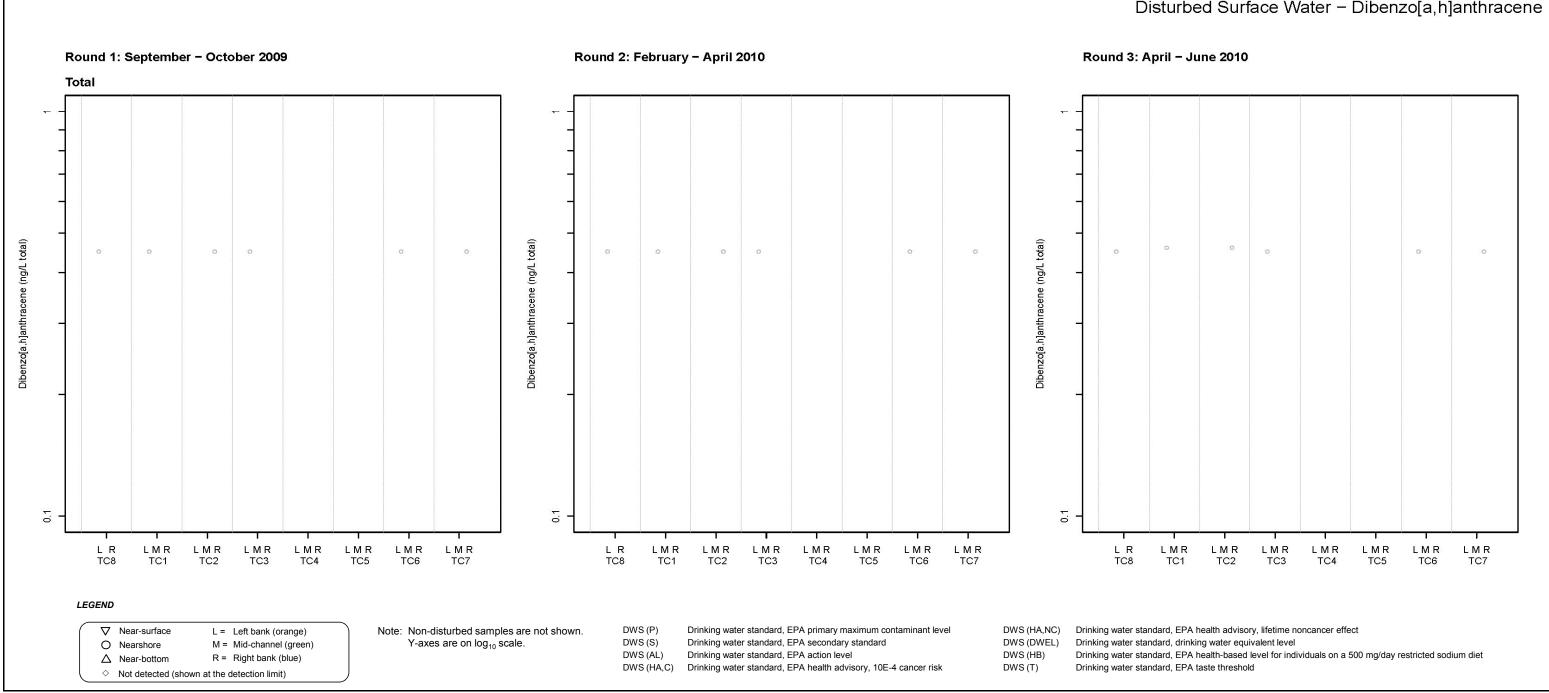


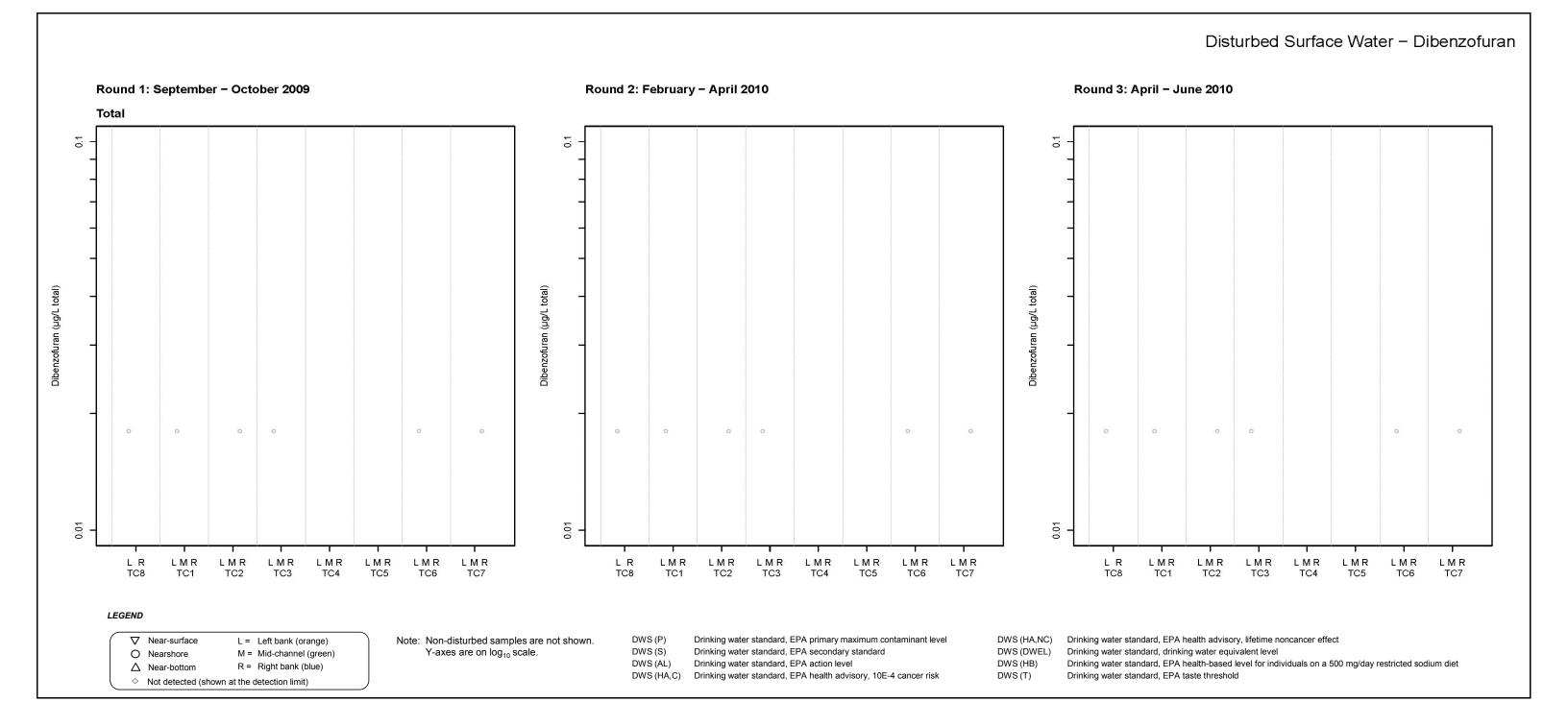

Disturbed Surface Water - Benzo(e)pyrene

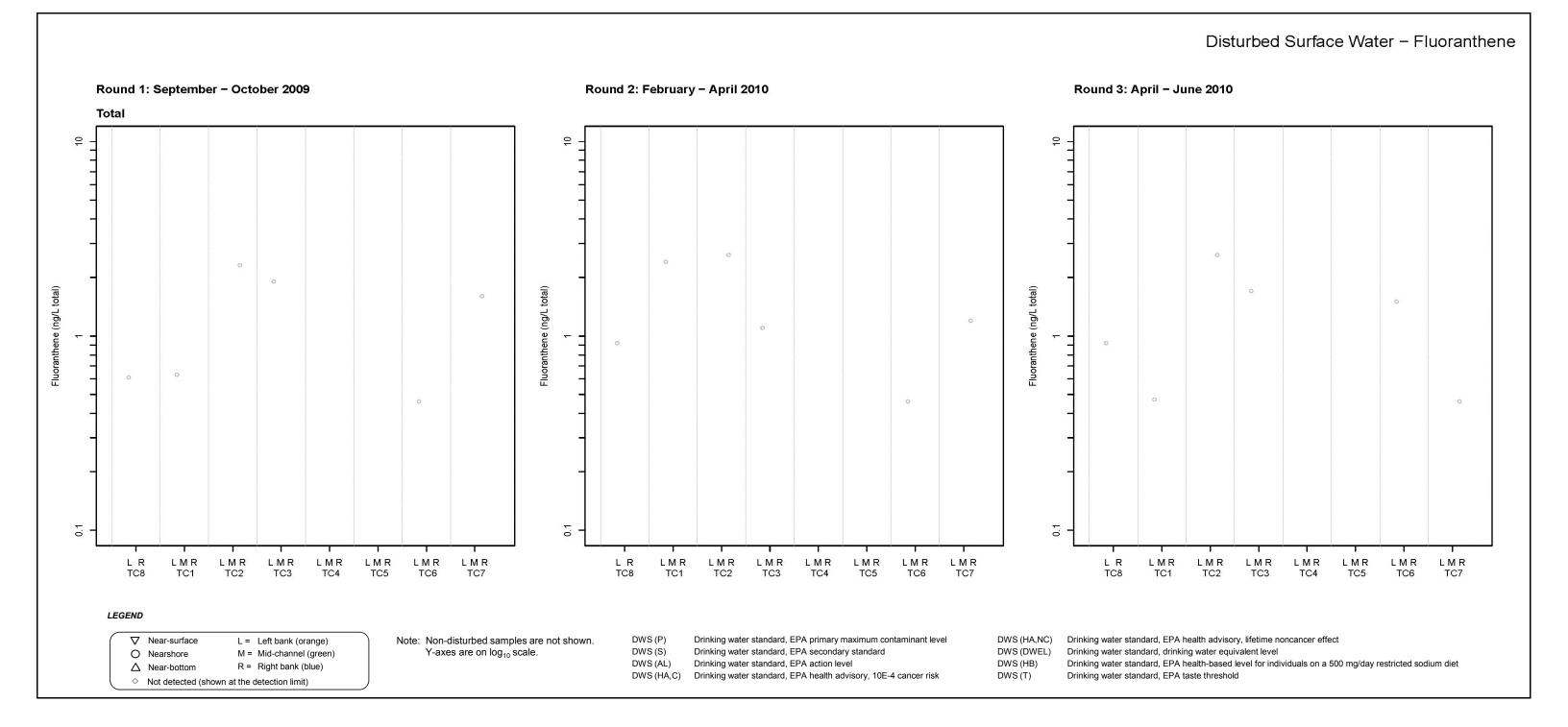


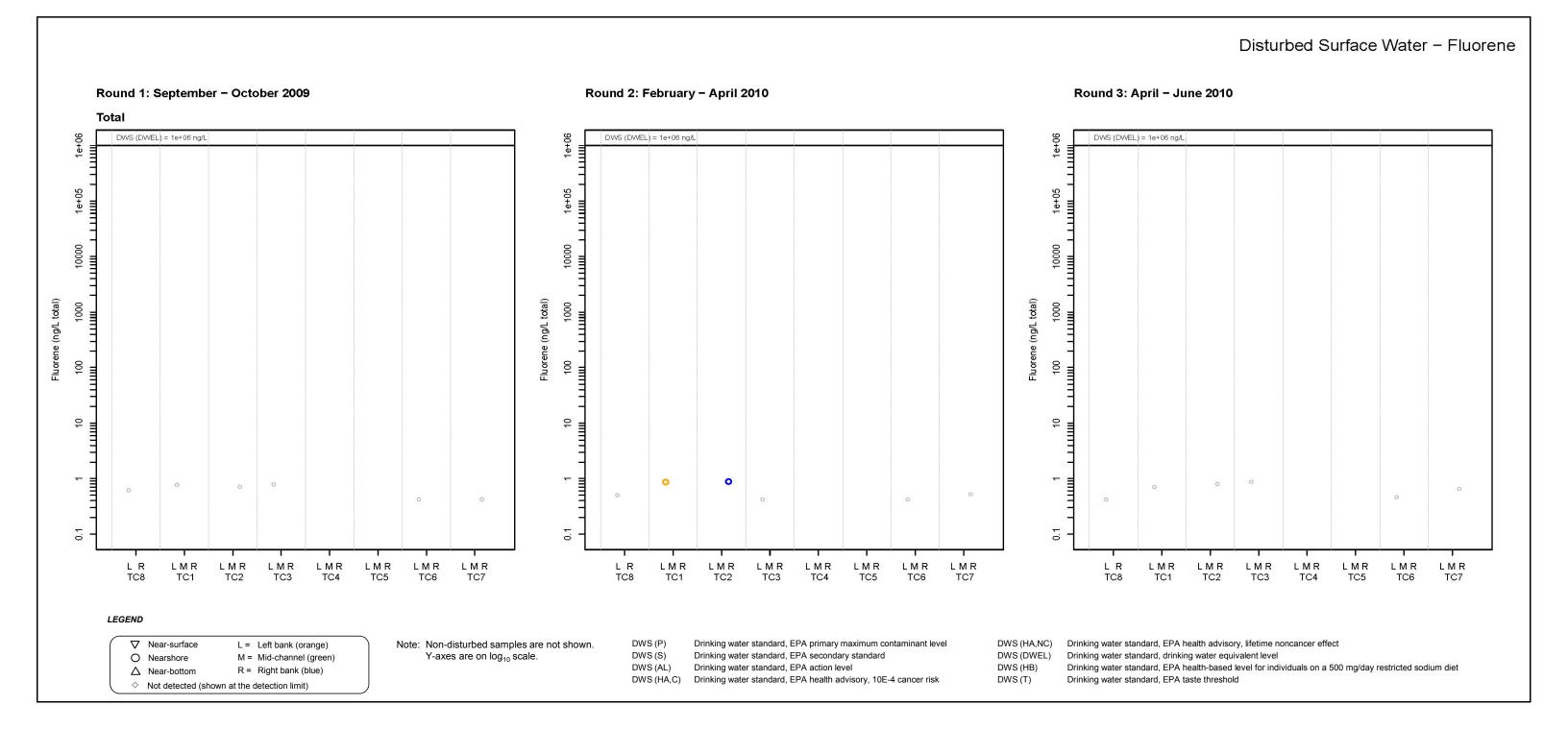

Disturbed Surface Water - Benzo[a]anthracene

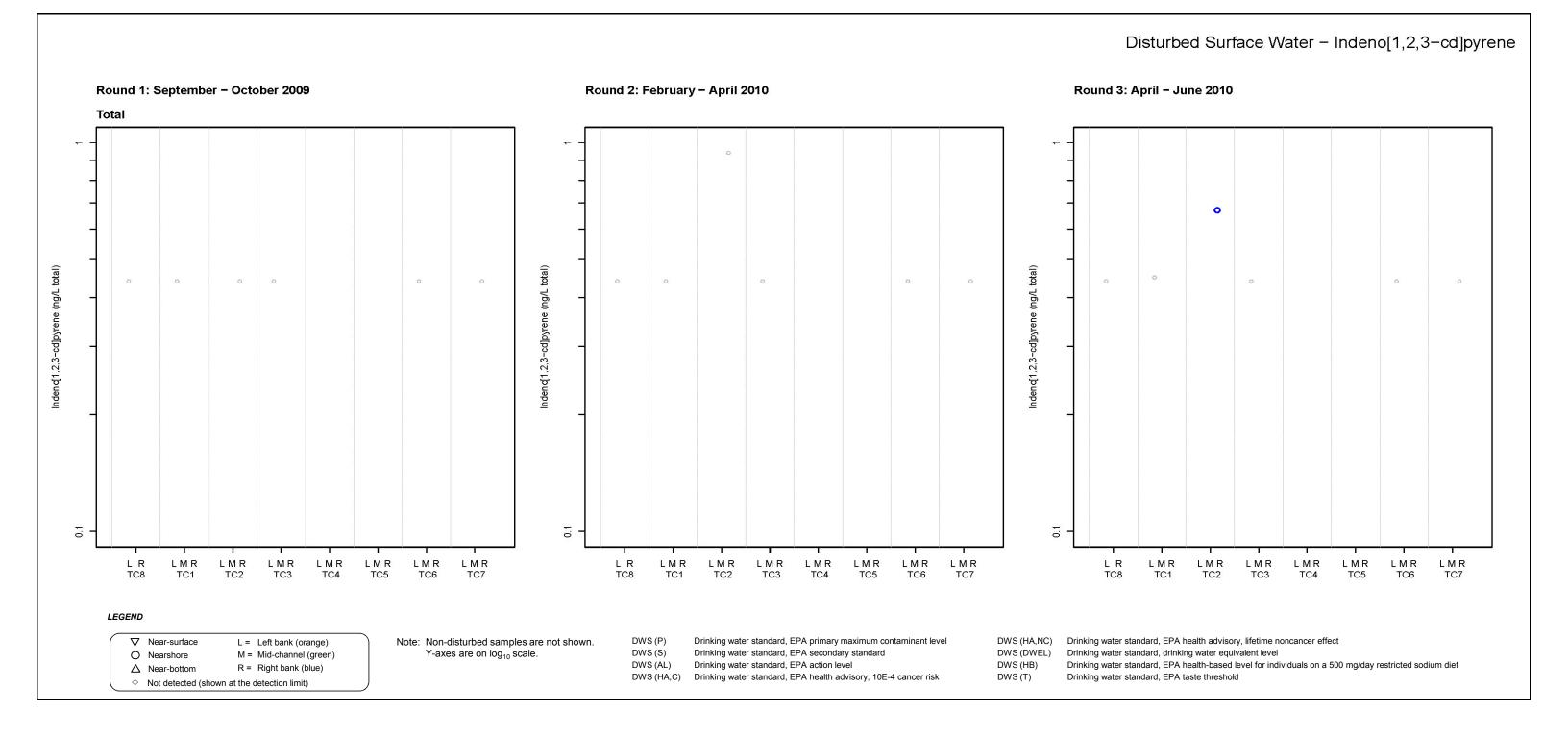


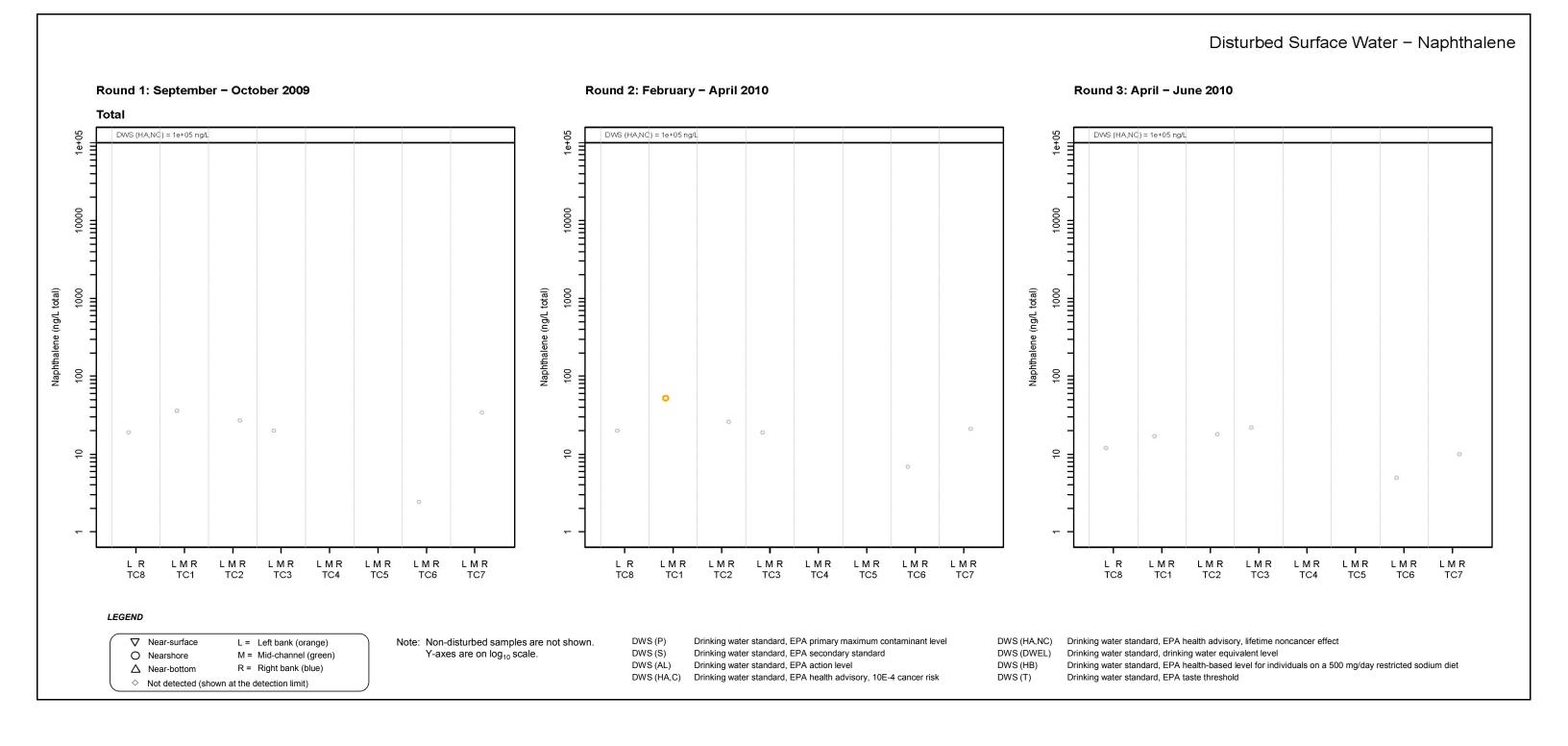


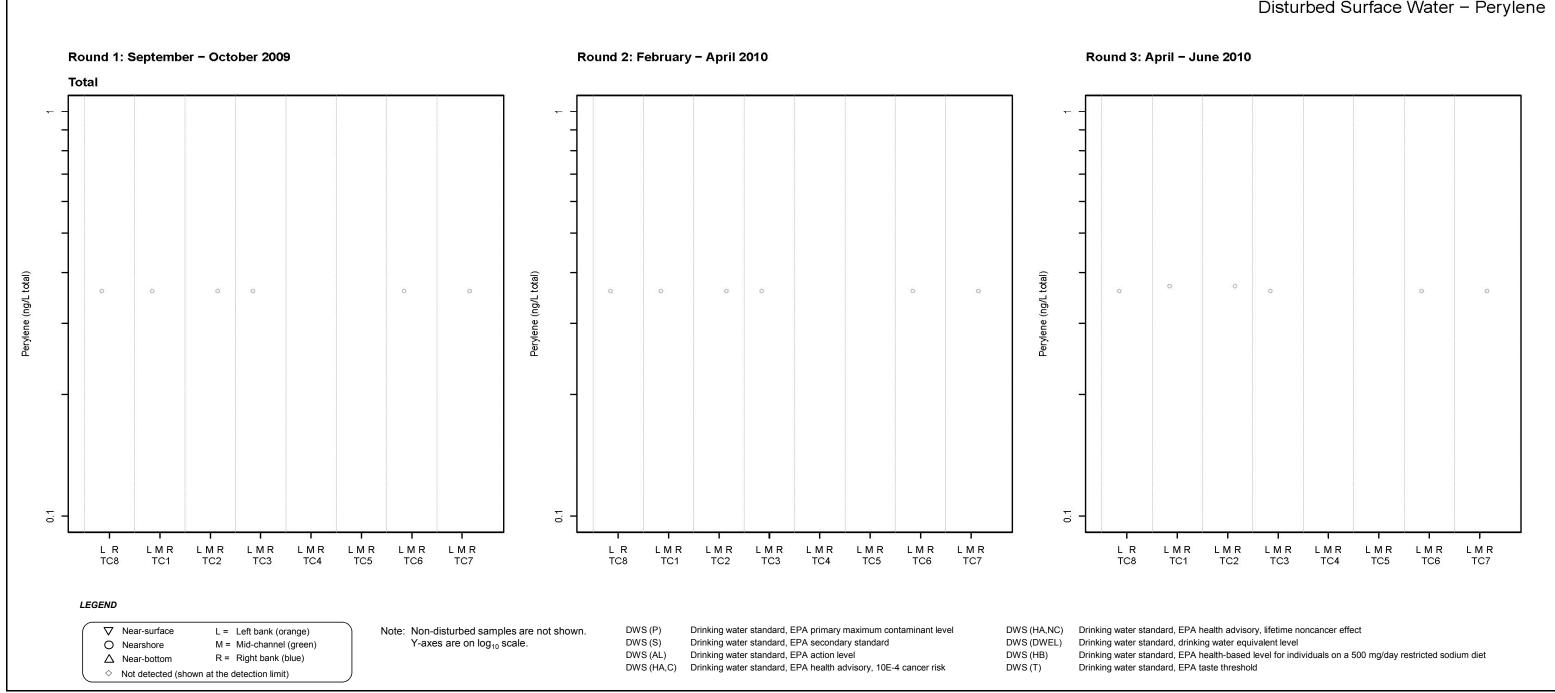


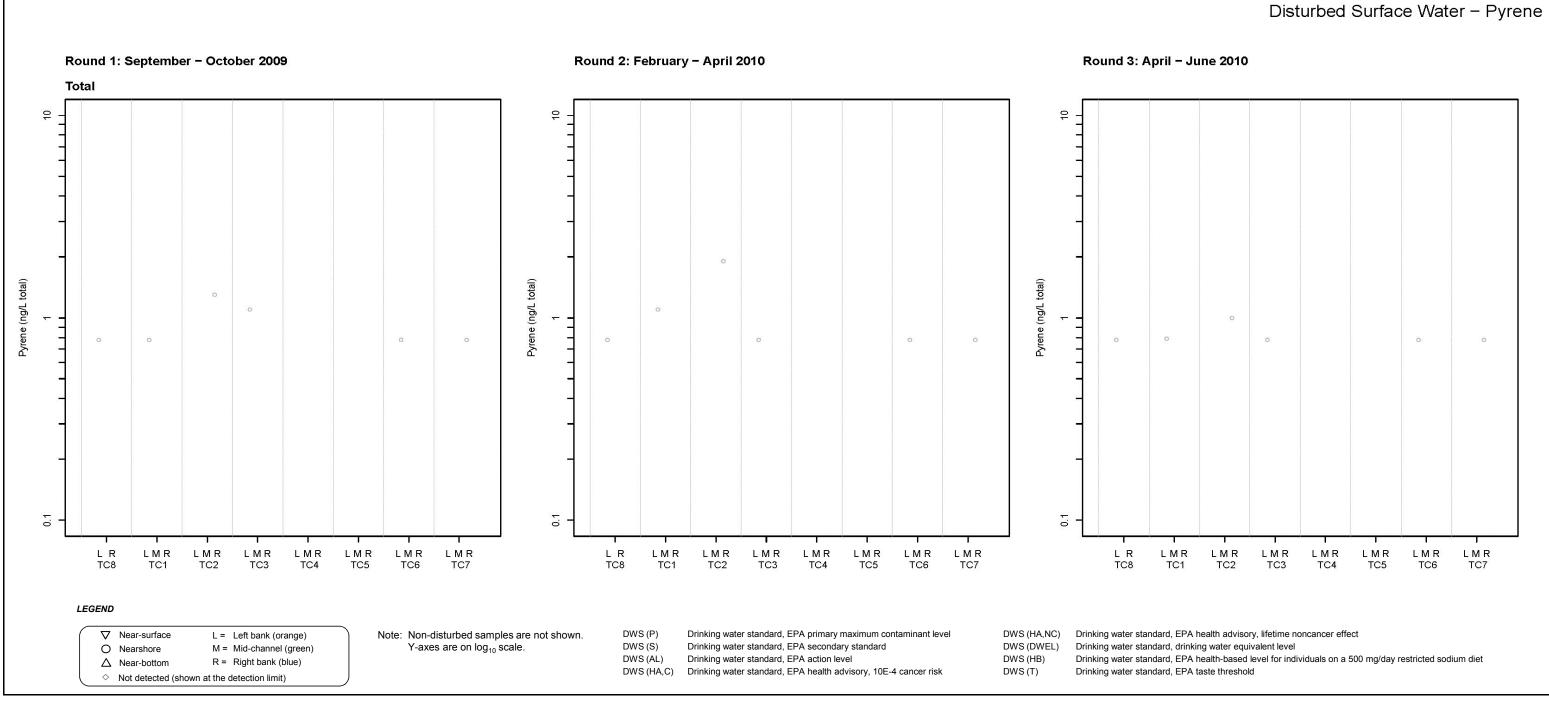


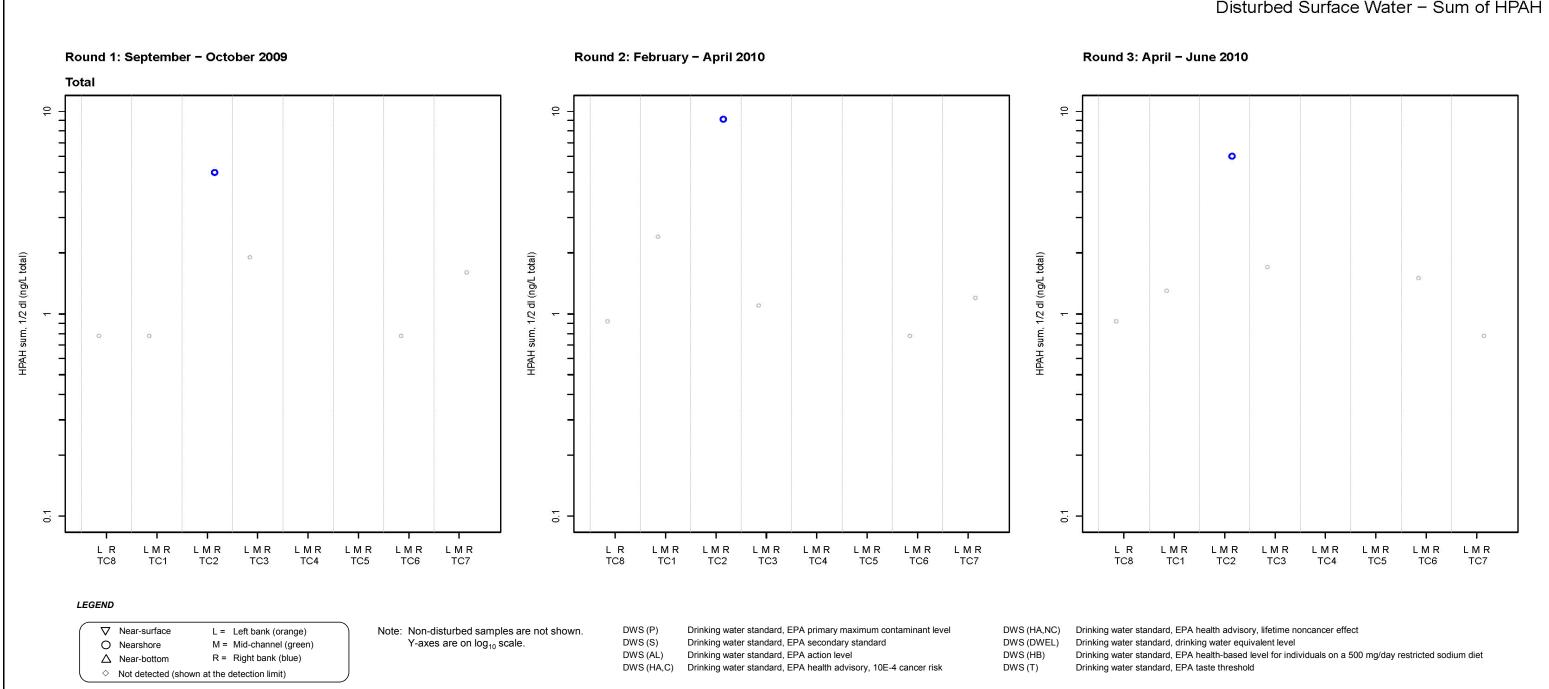


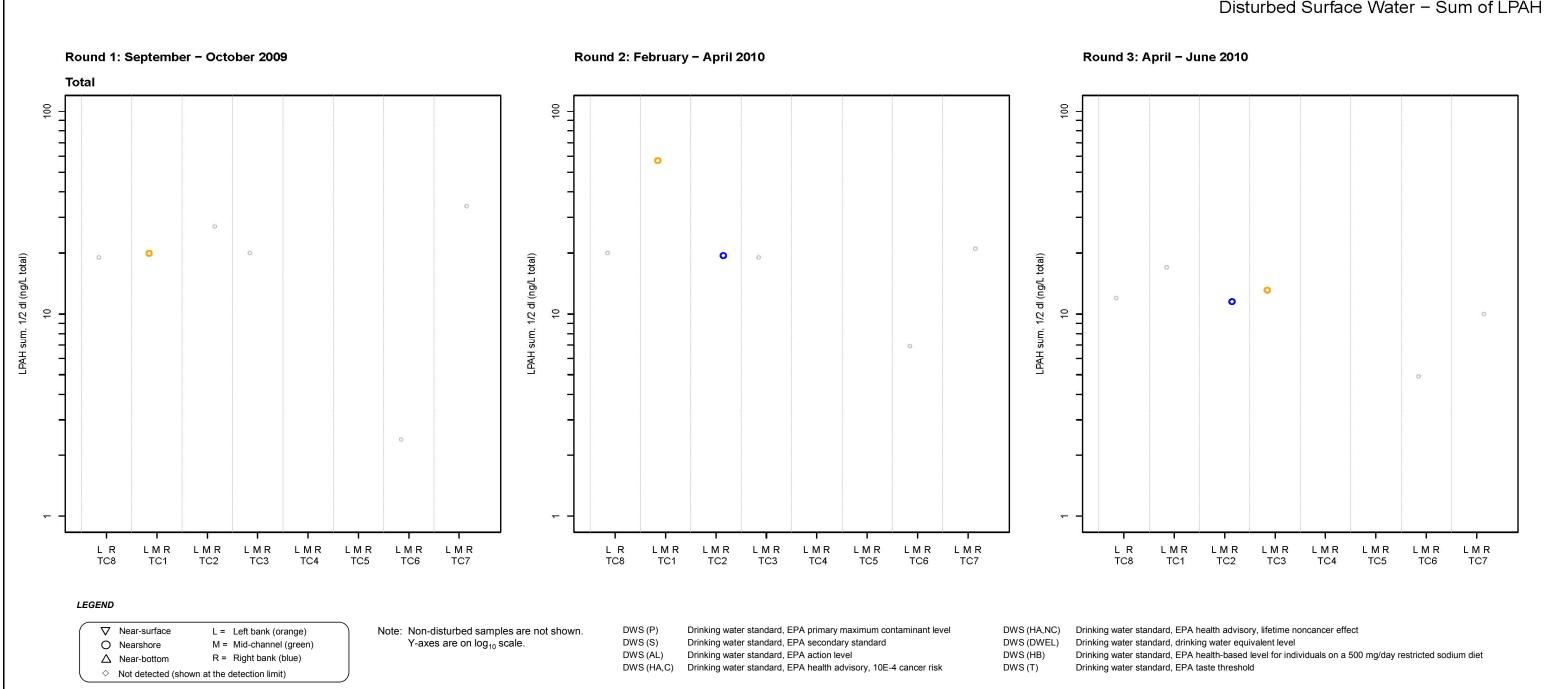

Disturbed Surface Water - Dibenzo[a,h]anthracene

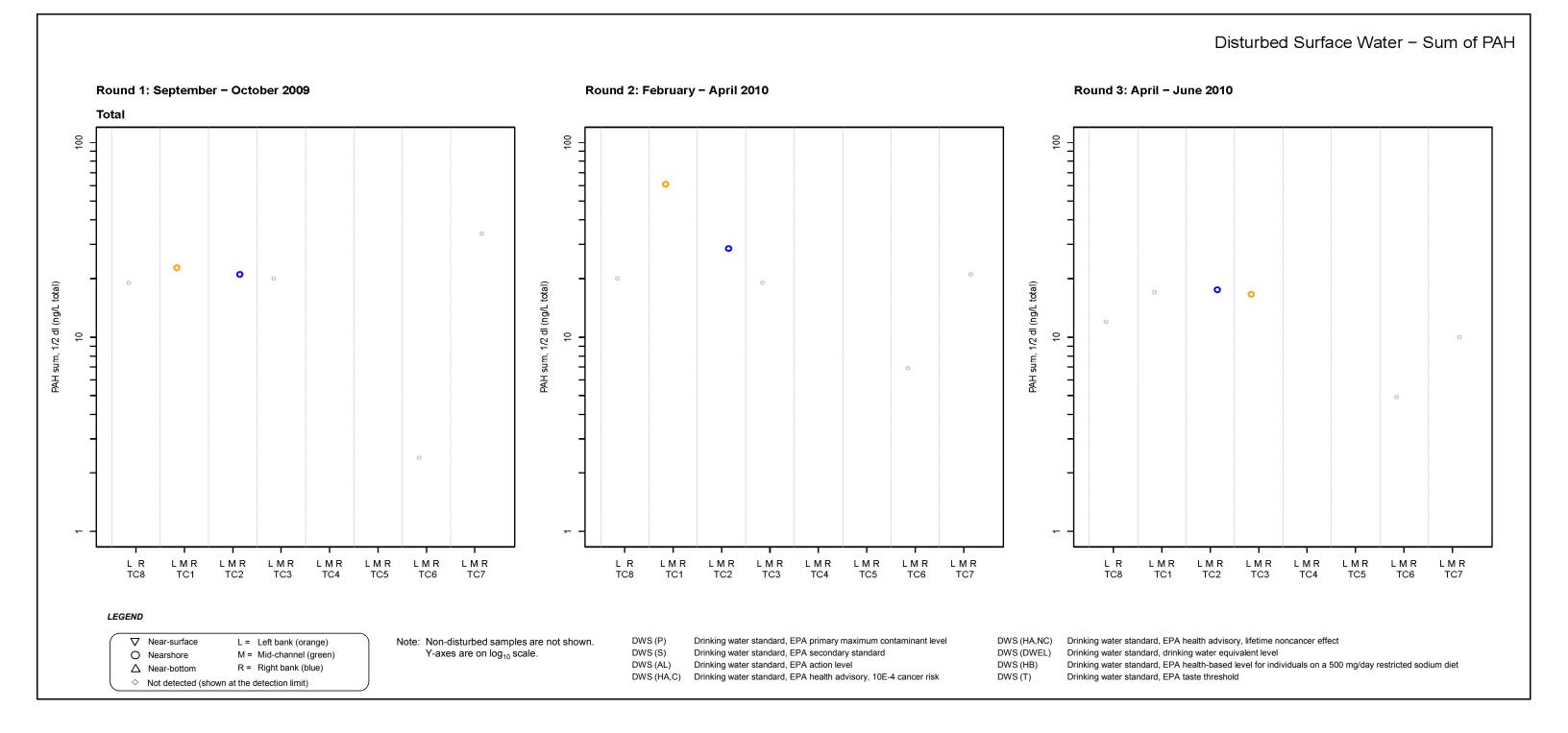


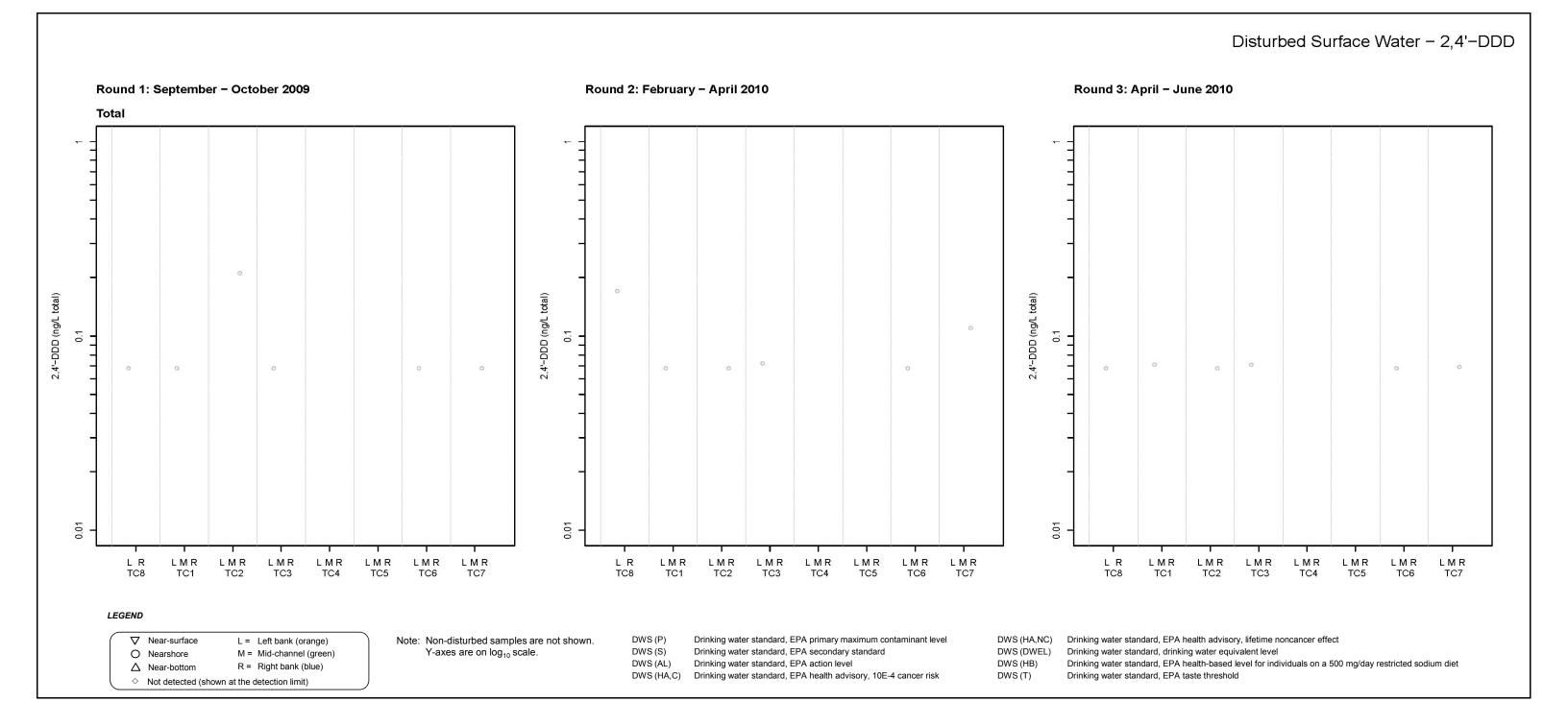


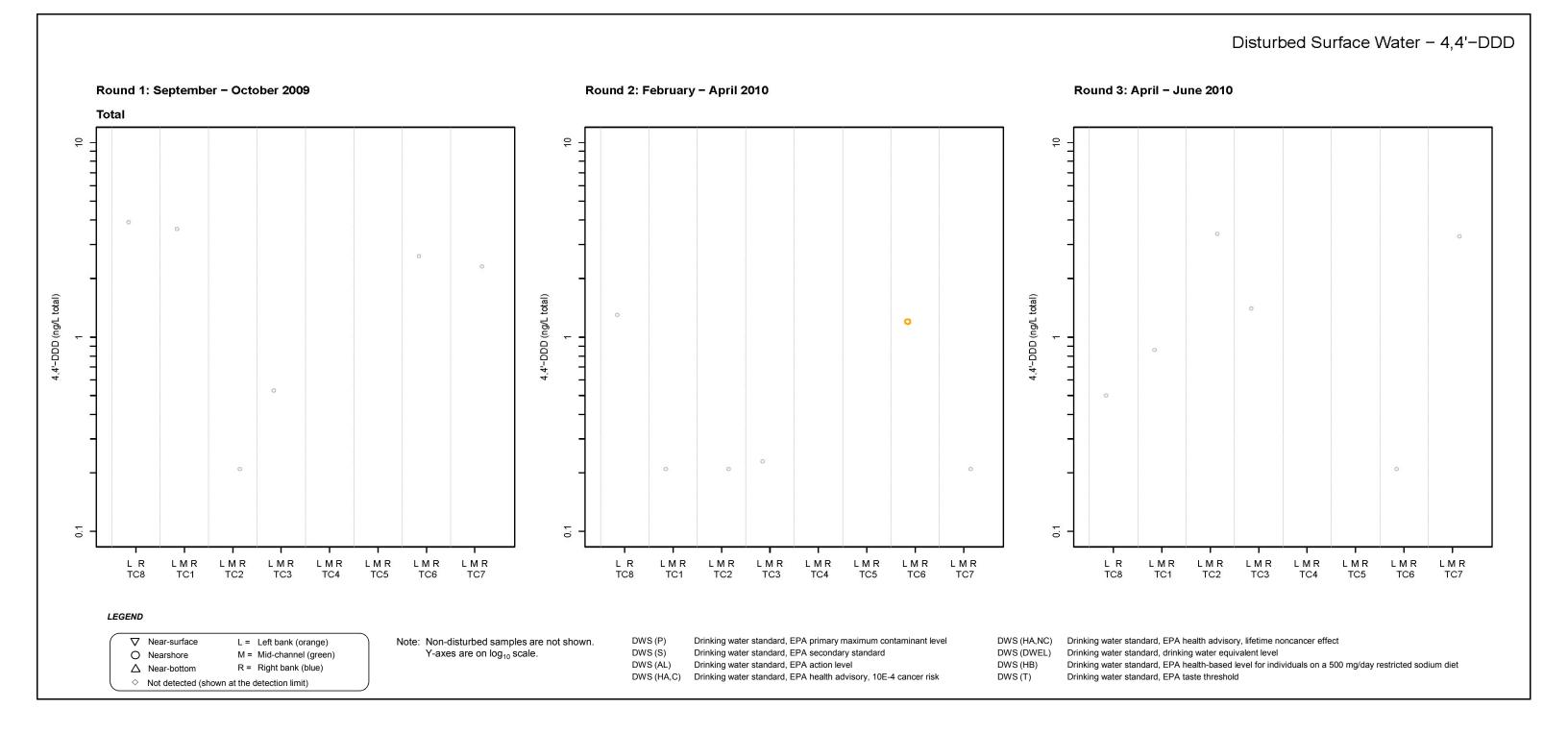


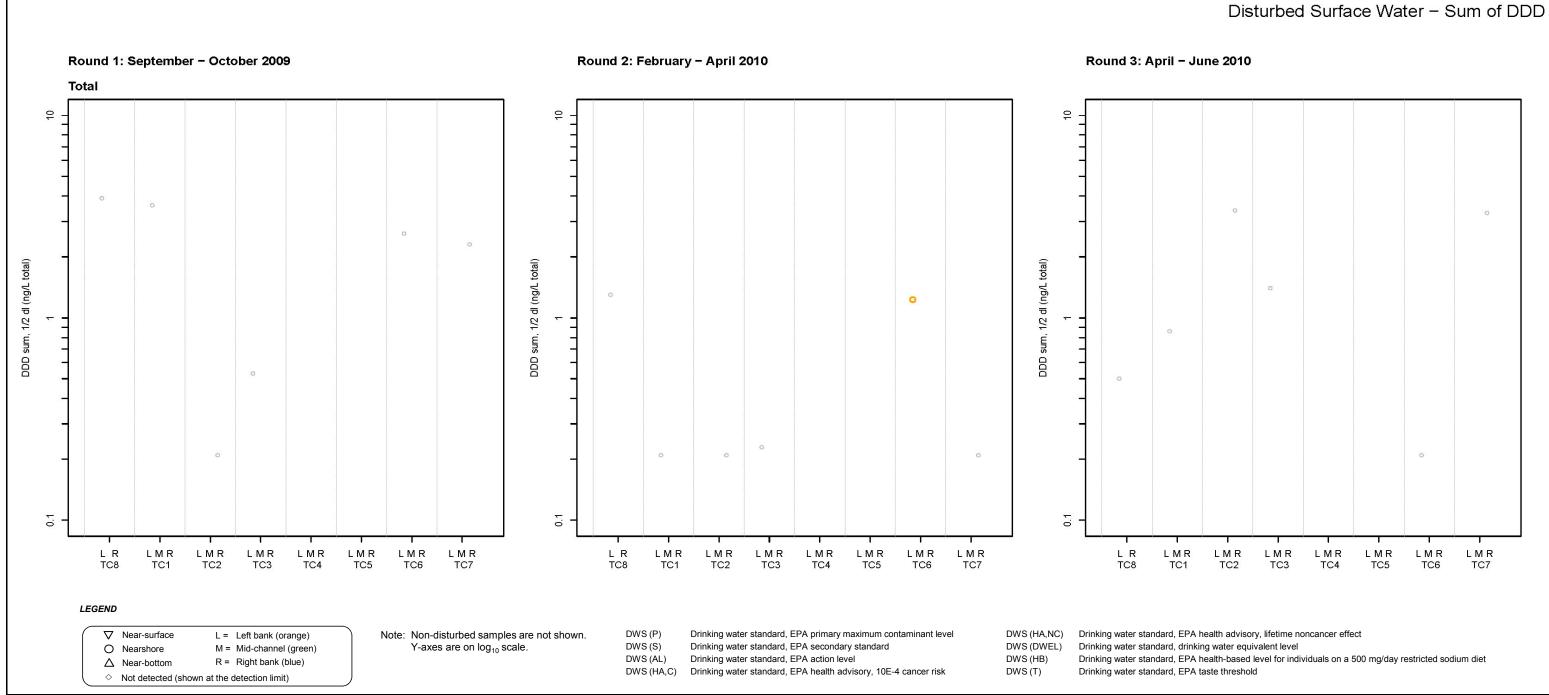

Disturbed Surface Water - Perylene

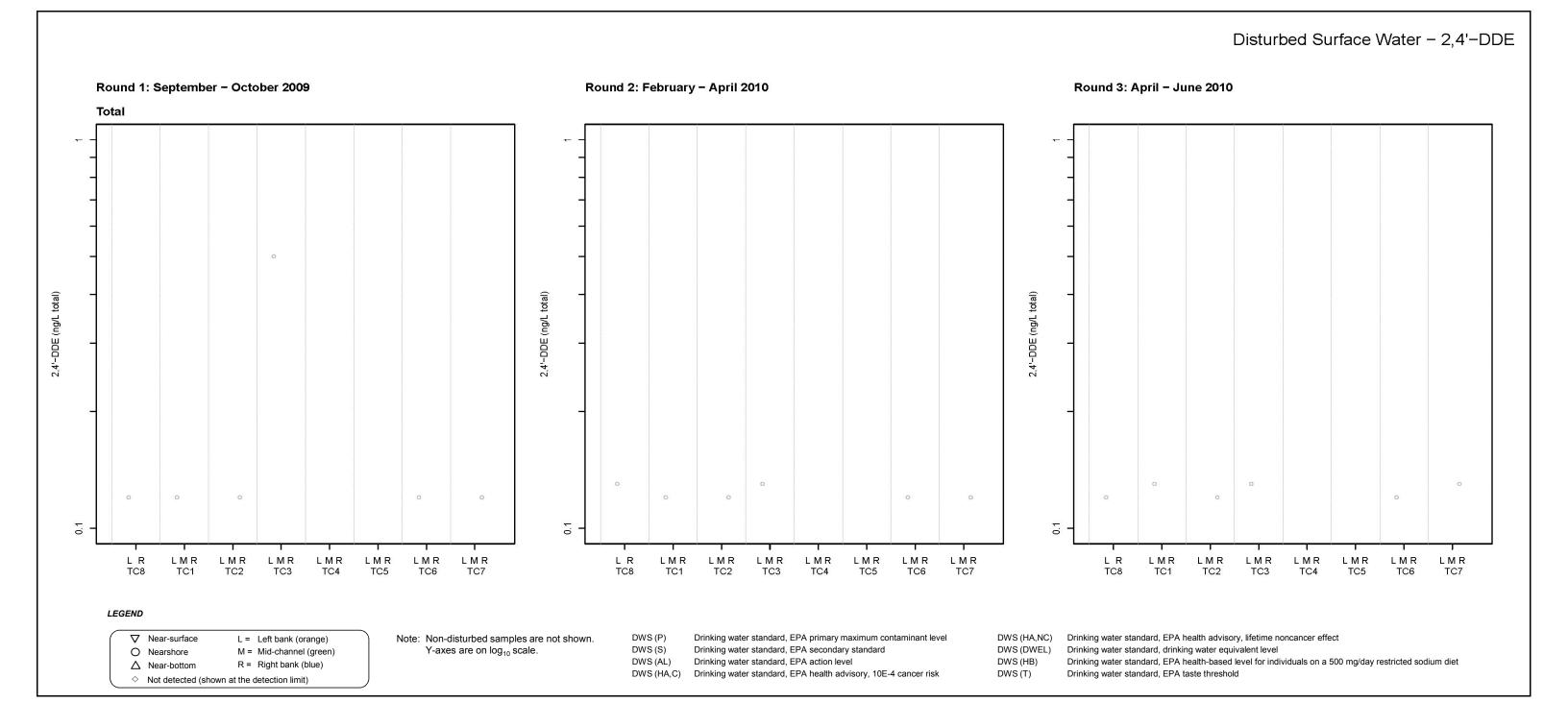


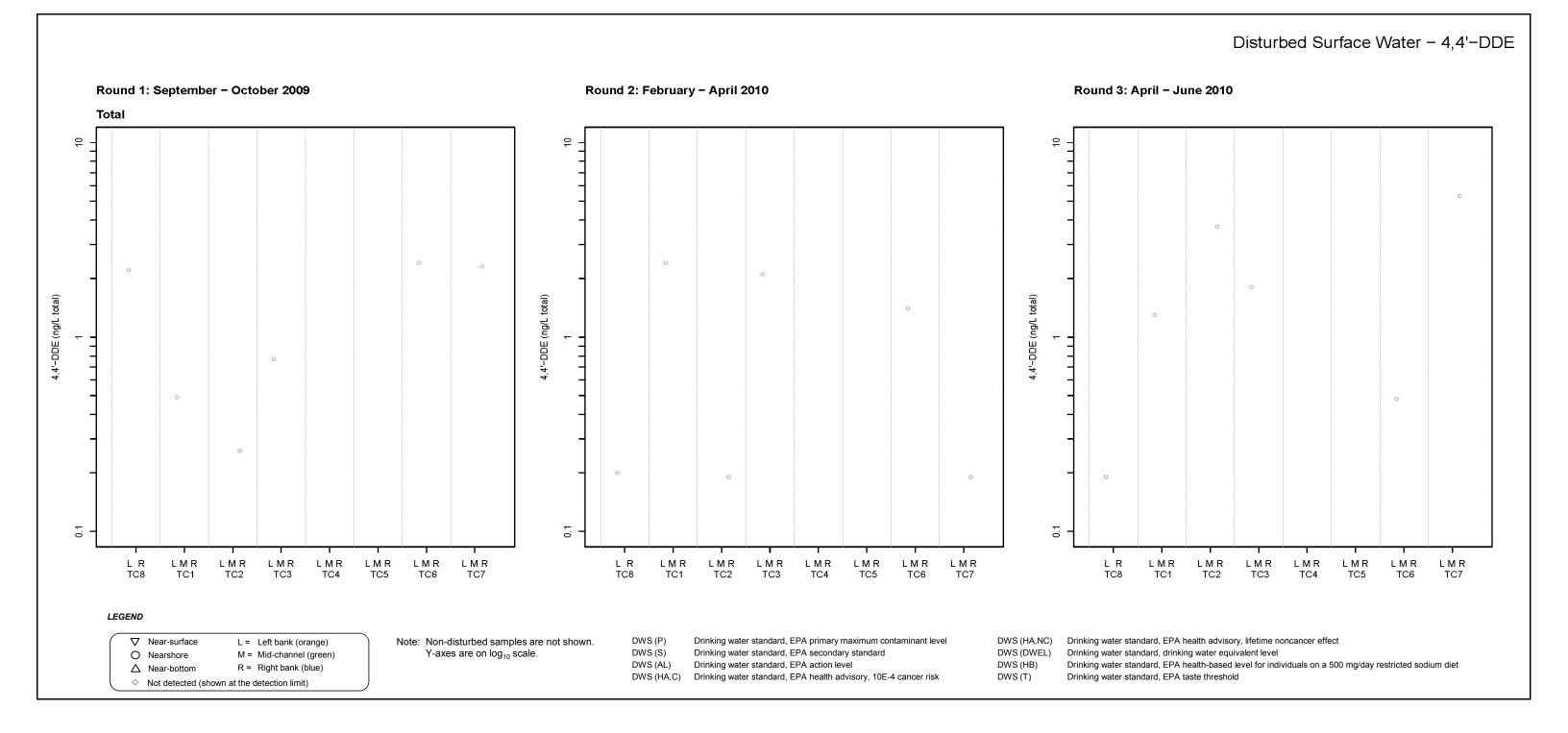


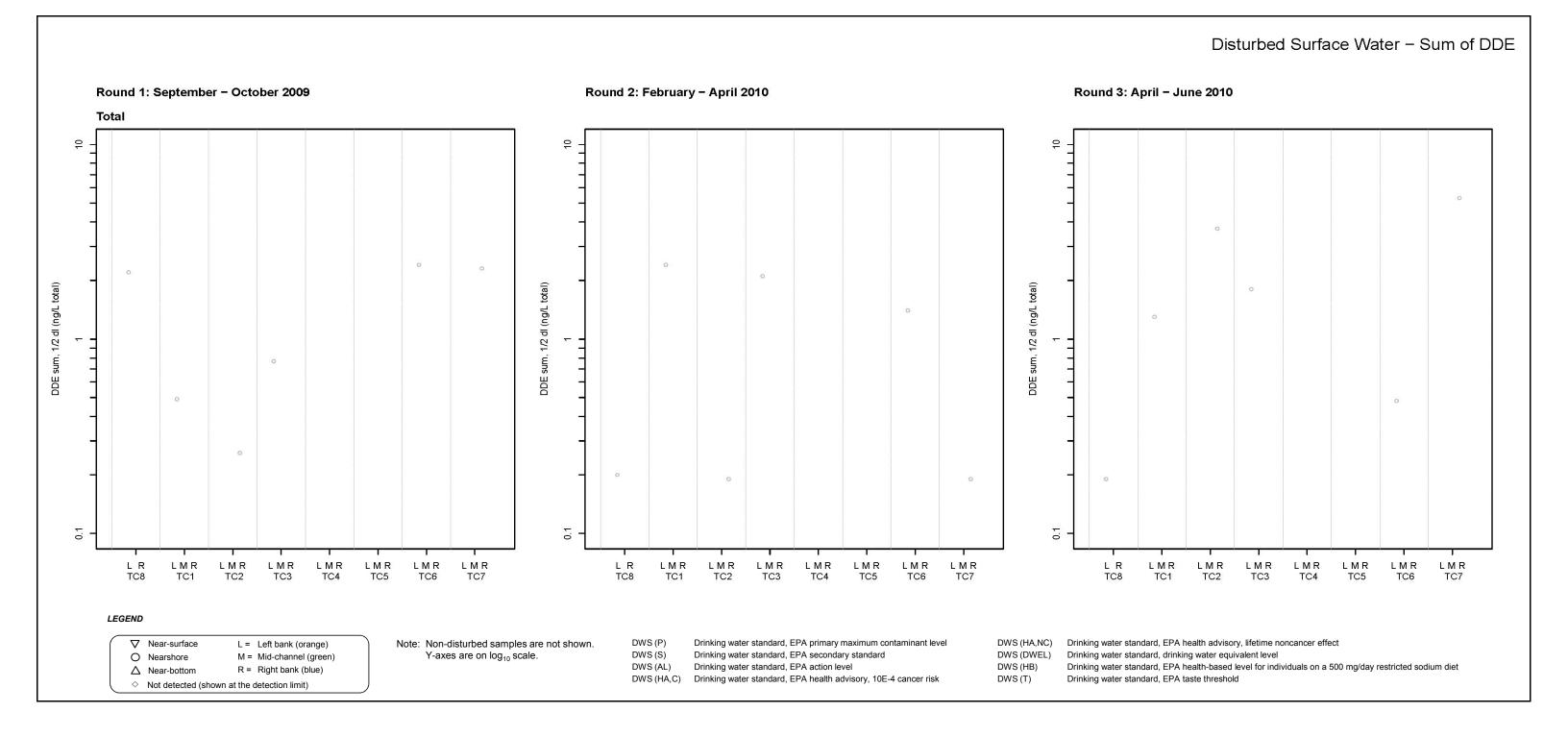

Disturbed Surface Water - Sum of HPAH

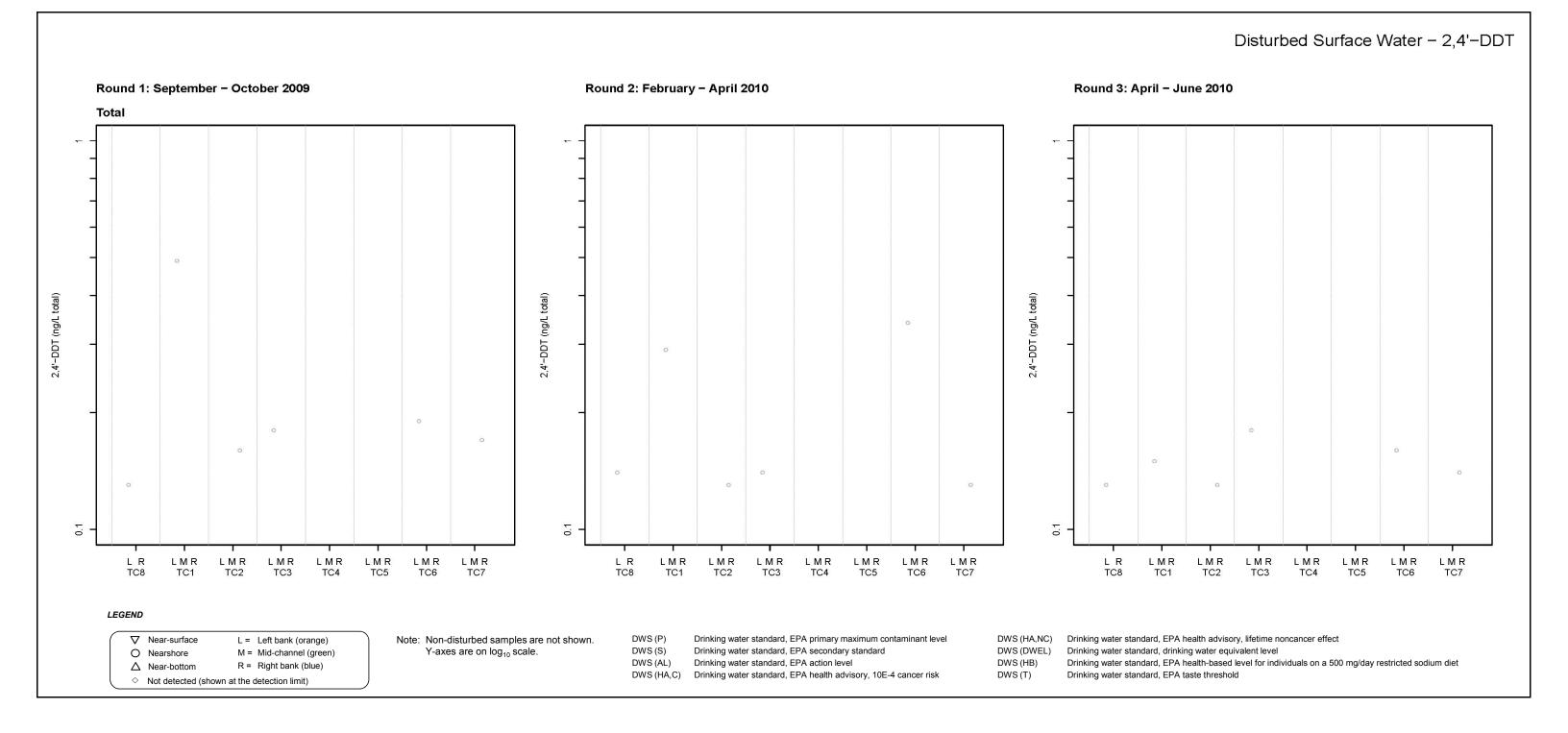


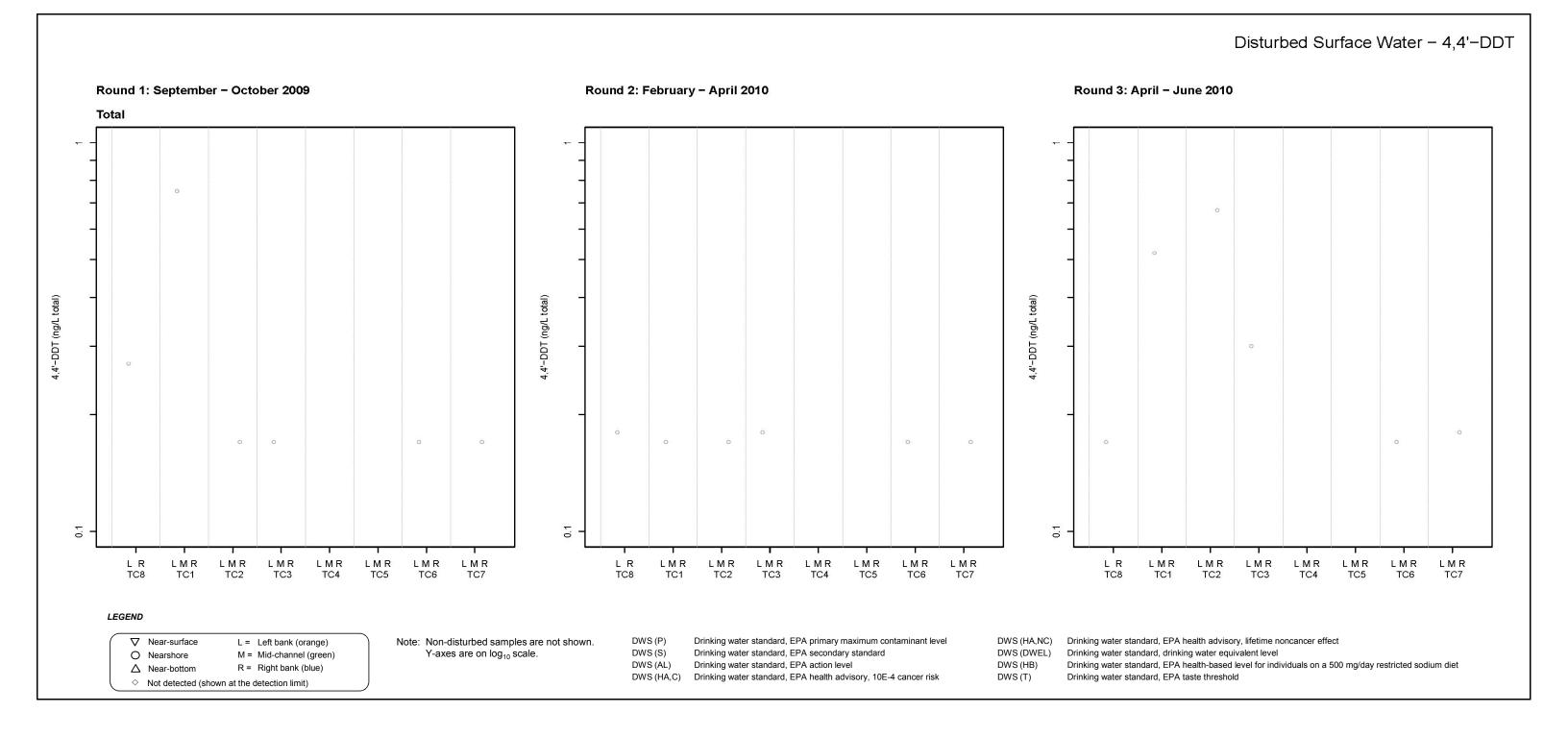

Disturbed Surface Water - Sum of LPAH

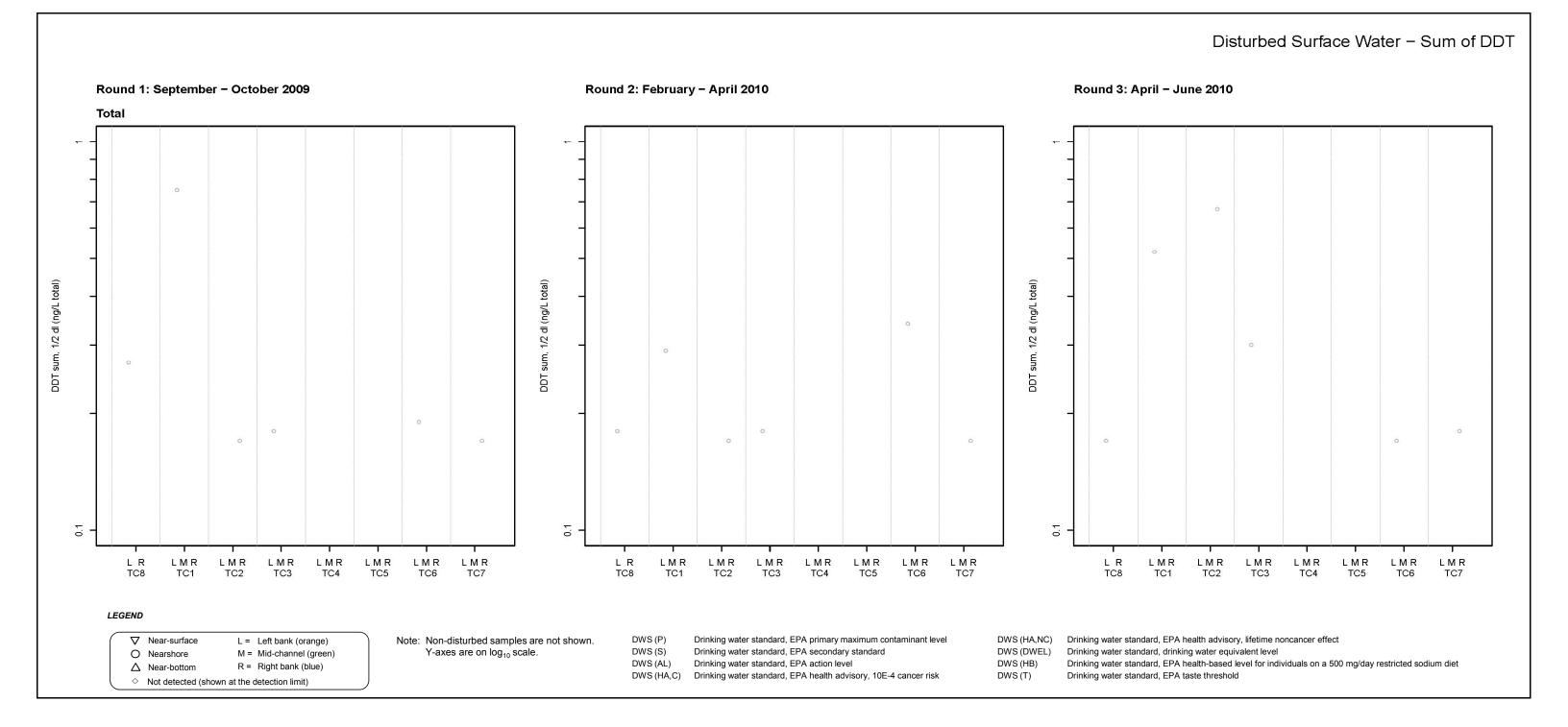




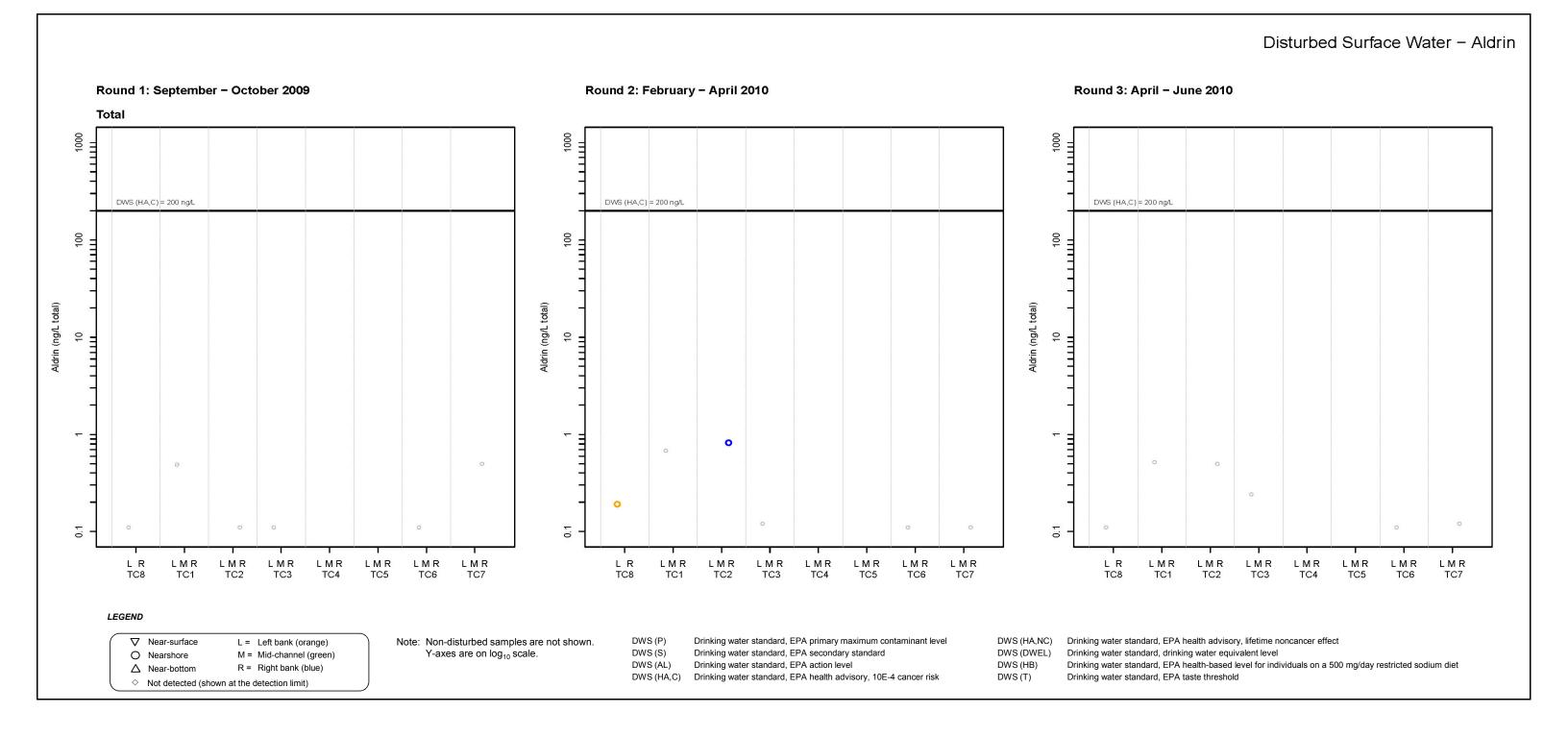


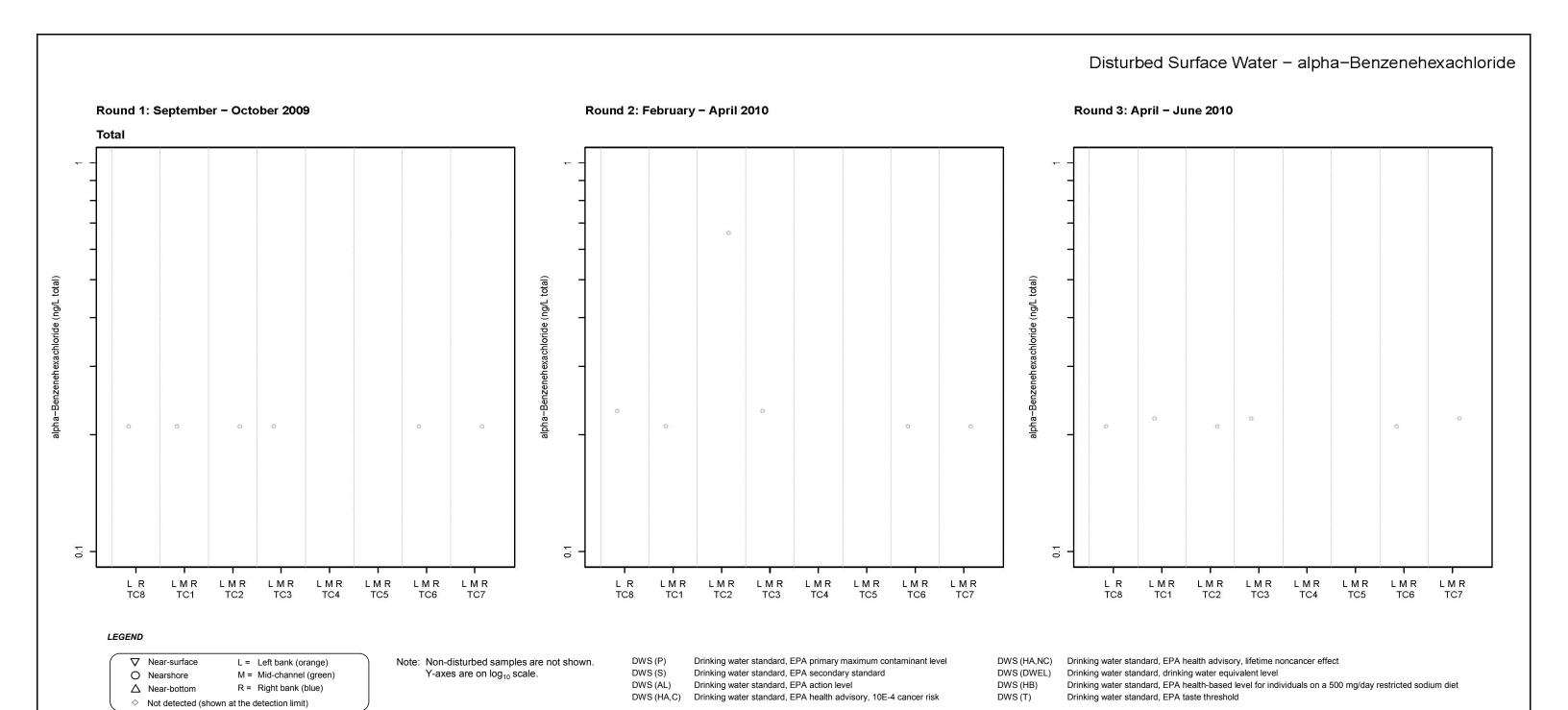


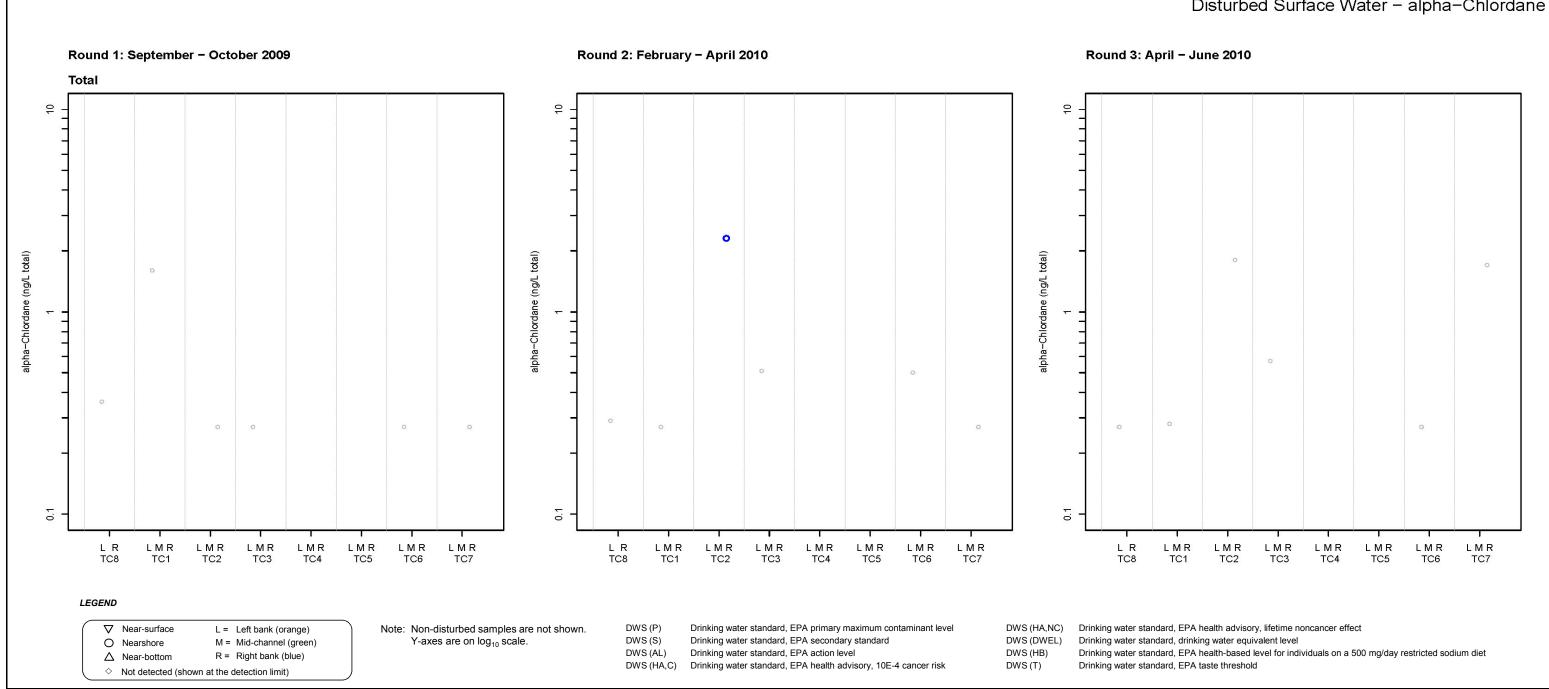


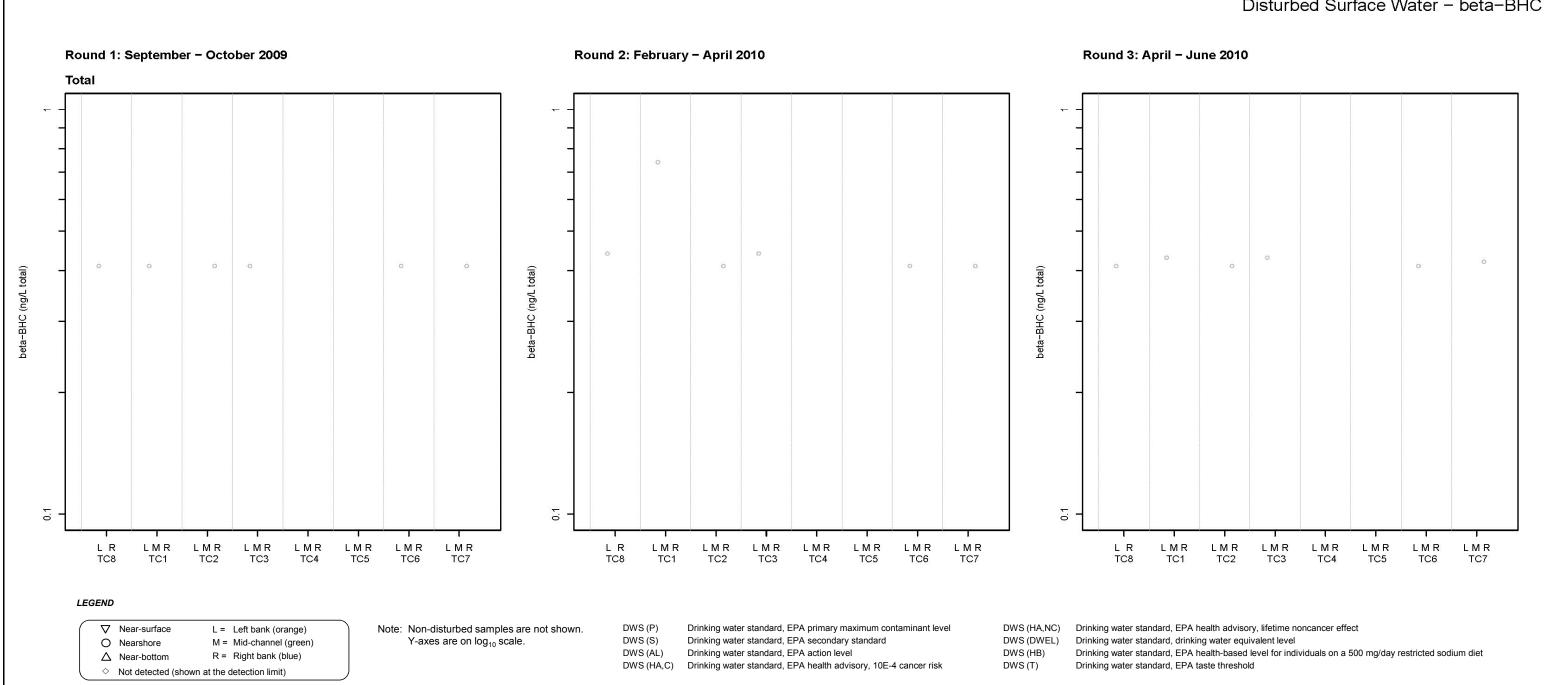


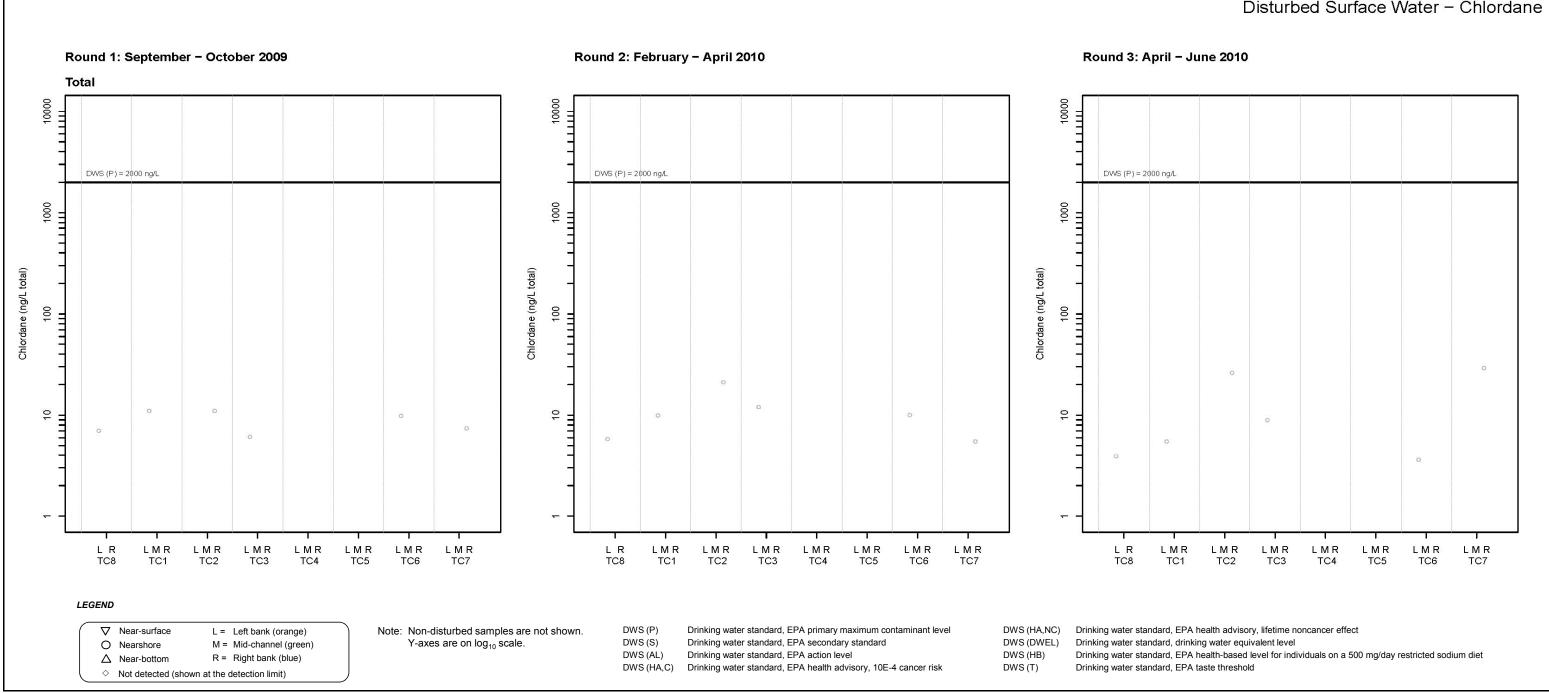


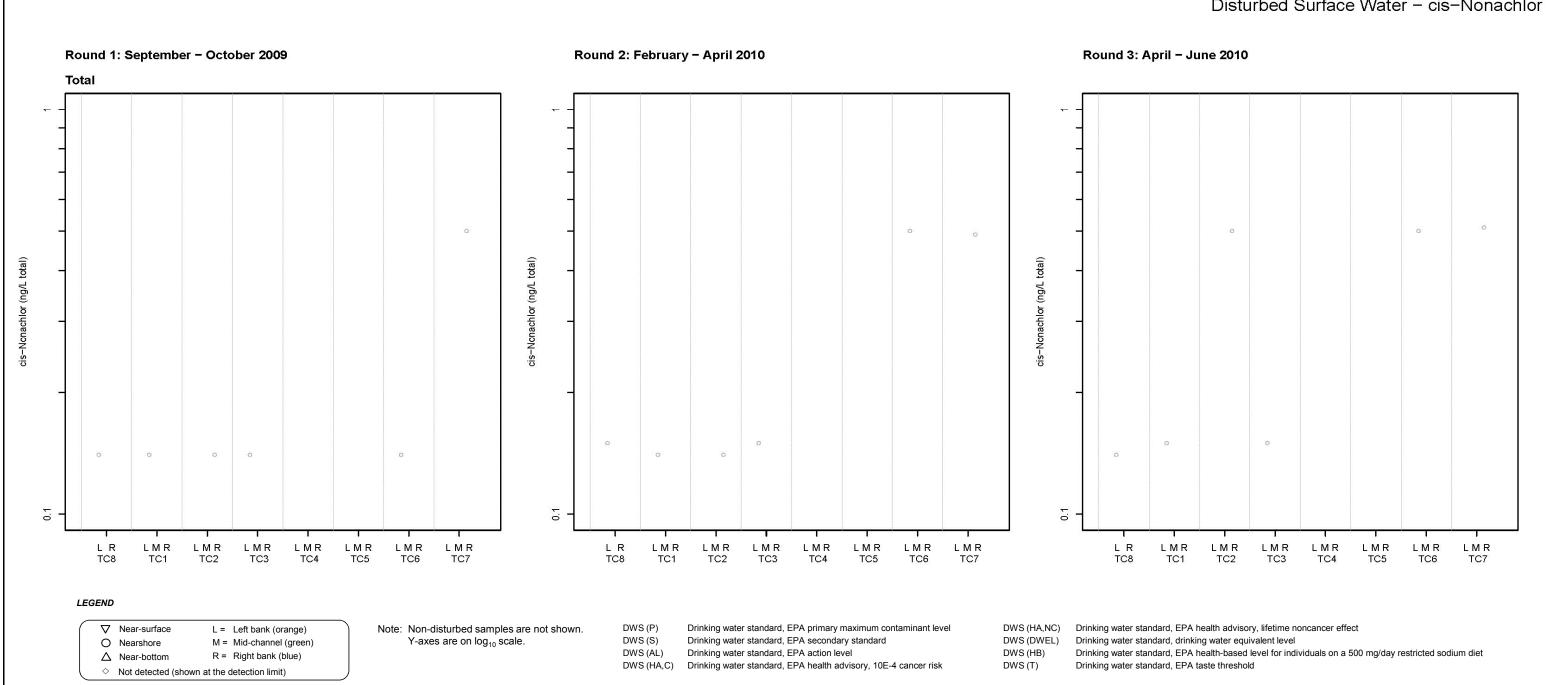


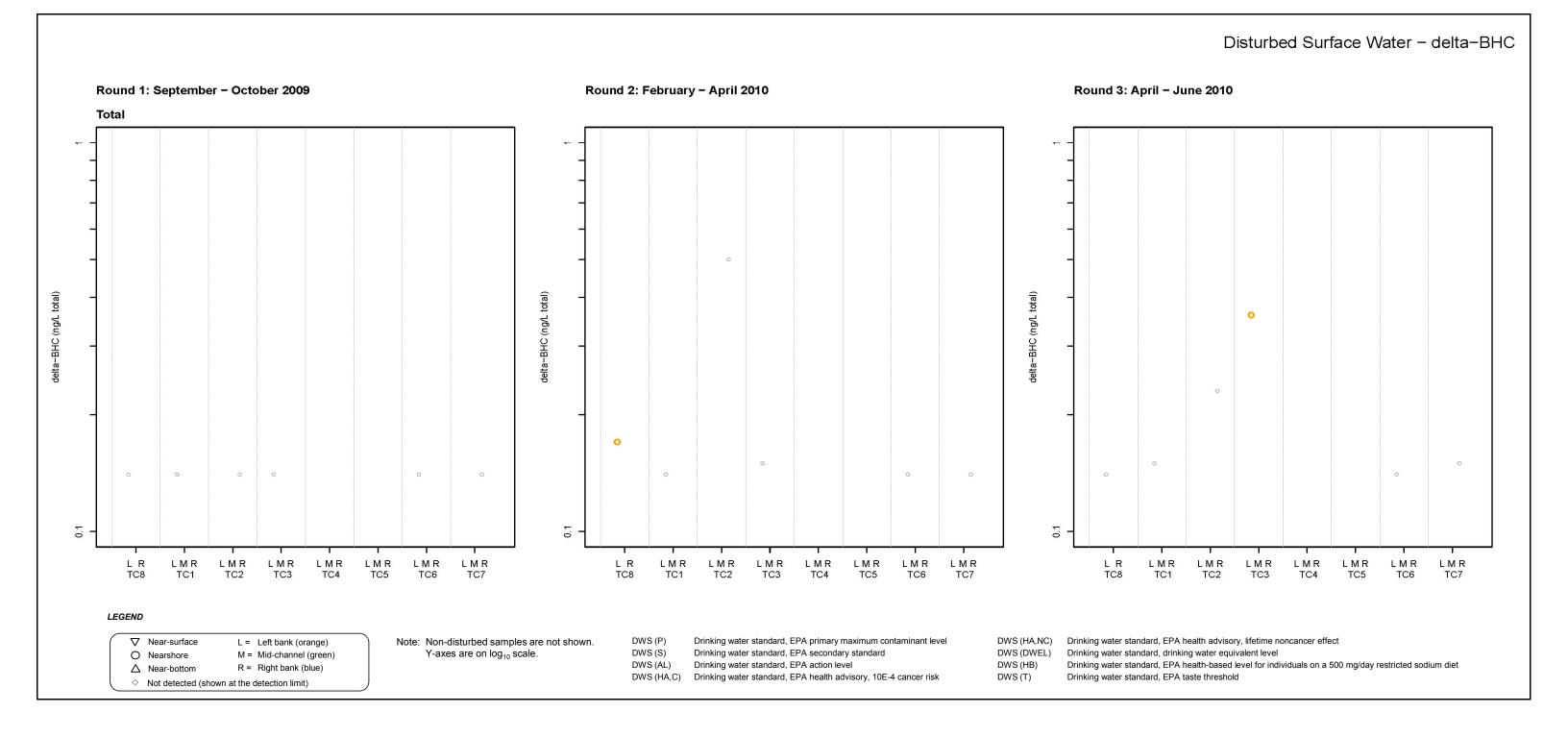


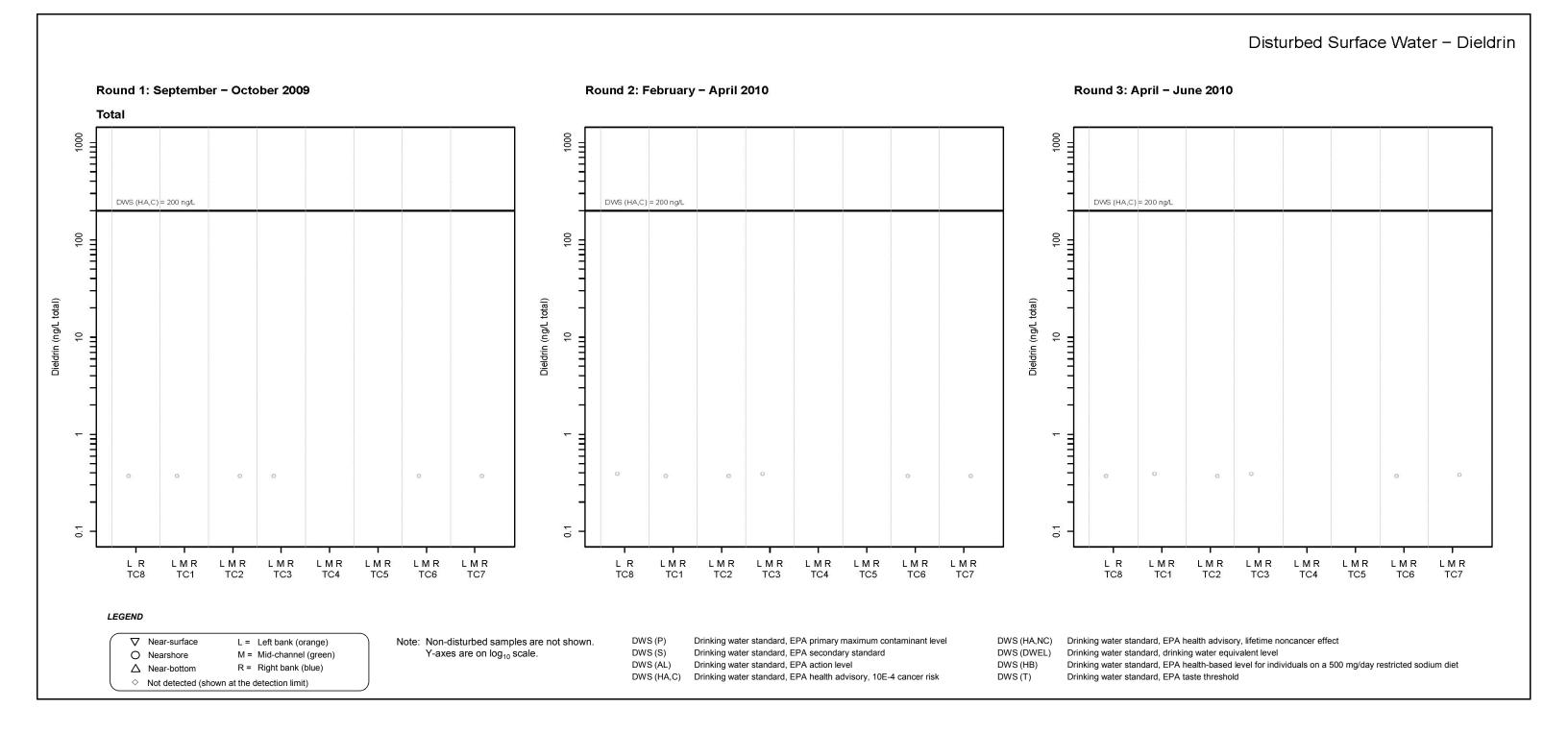


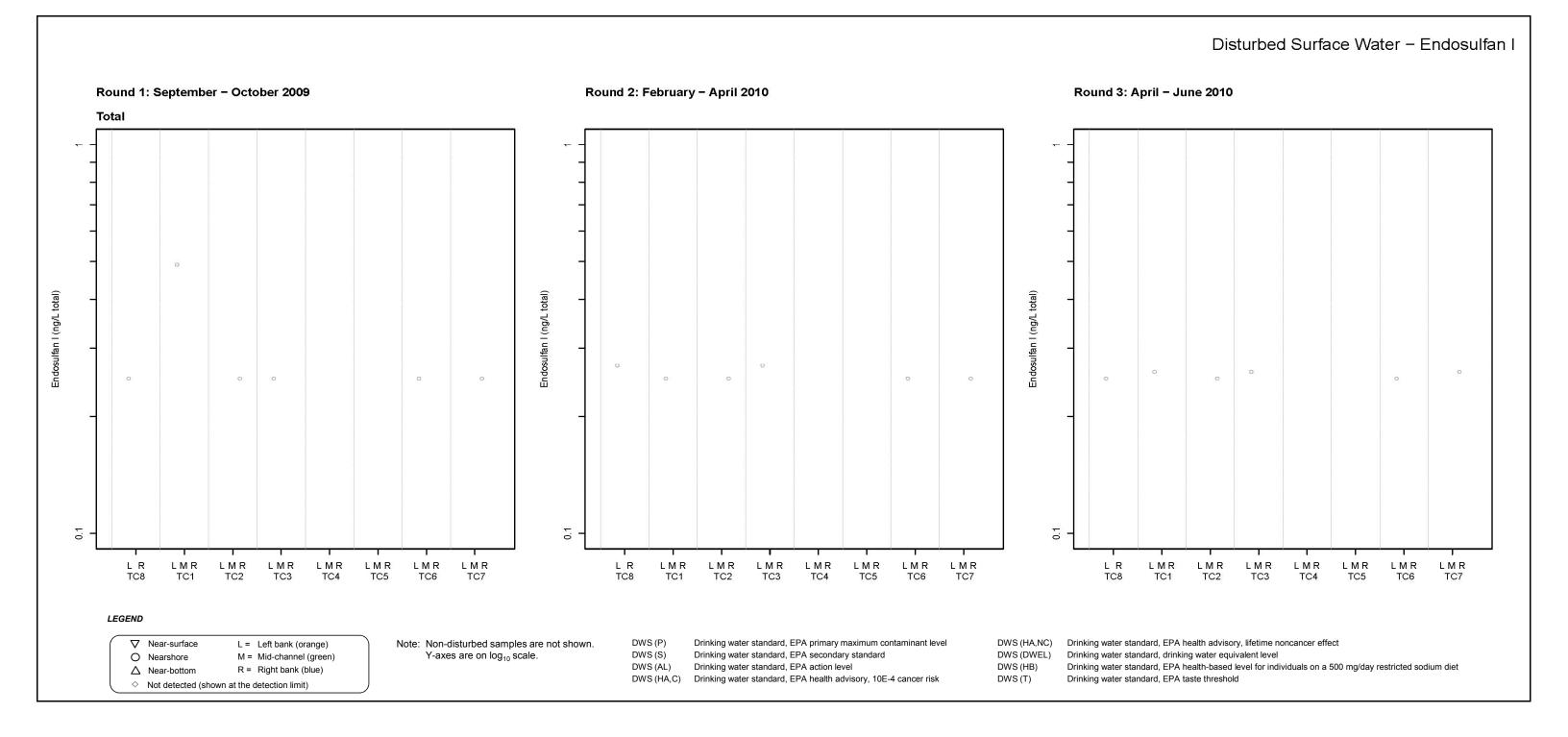



Disturbed Surface Water - alpha-Chlordane

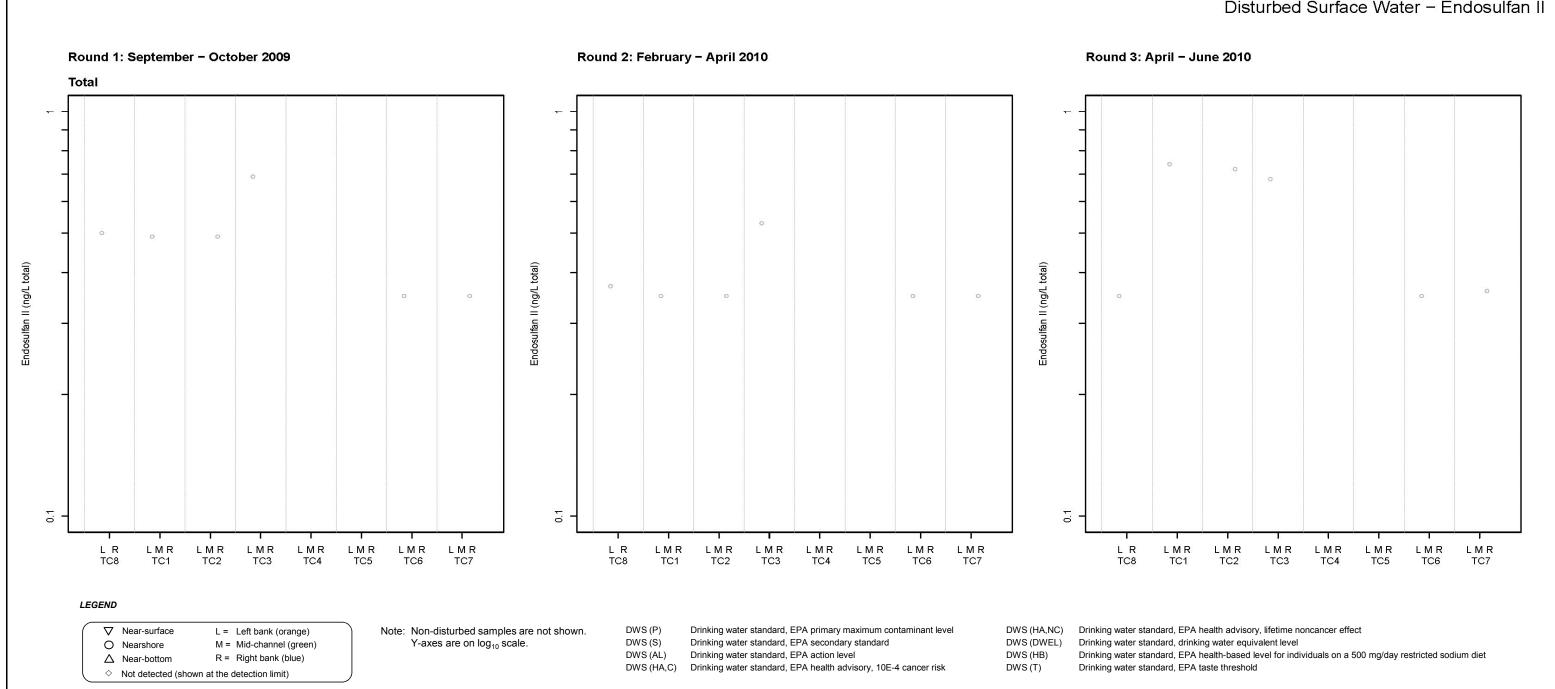

Disturbed Surface Water - beta-BHC

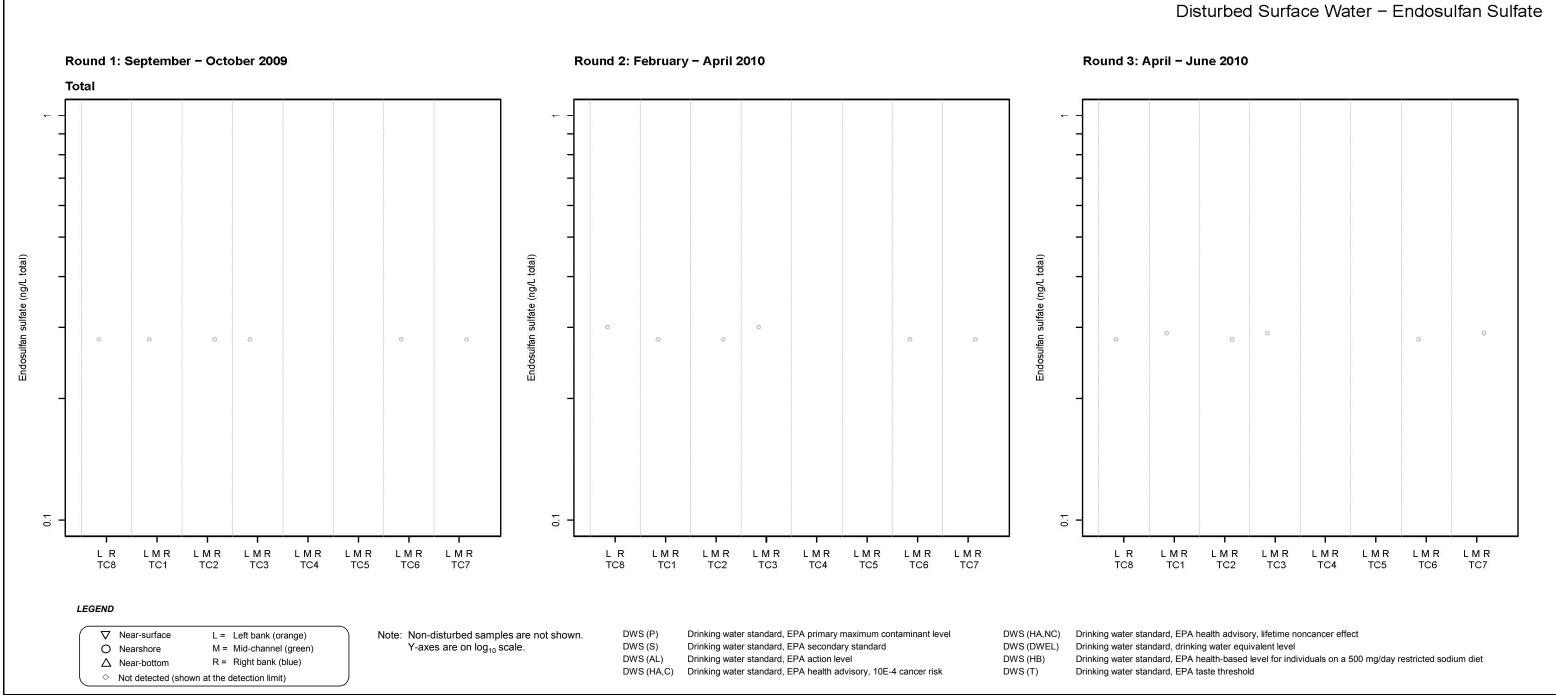


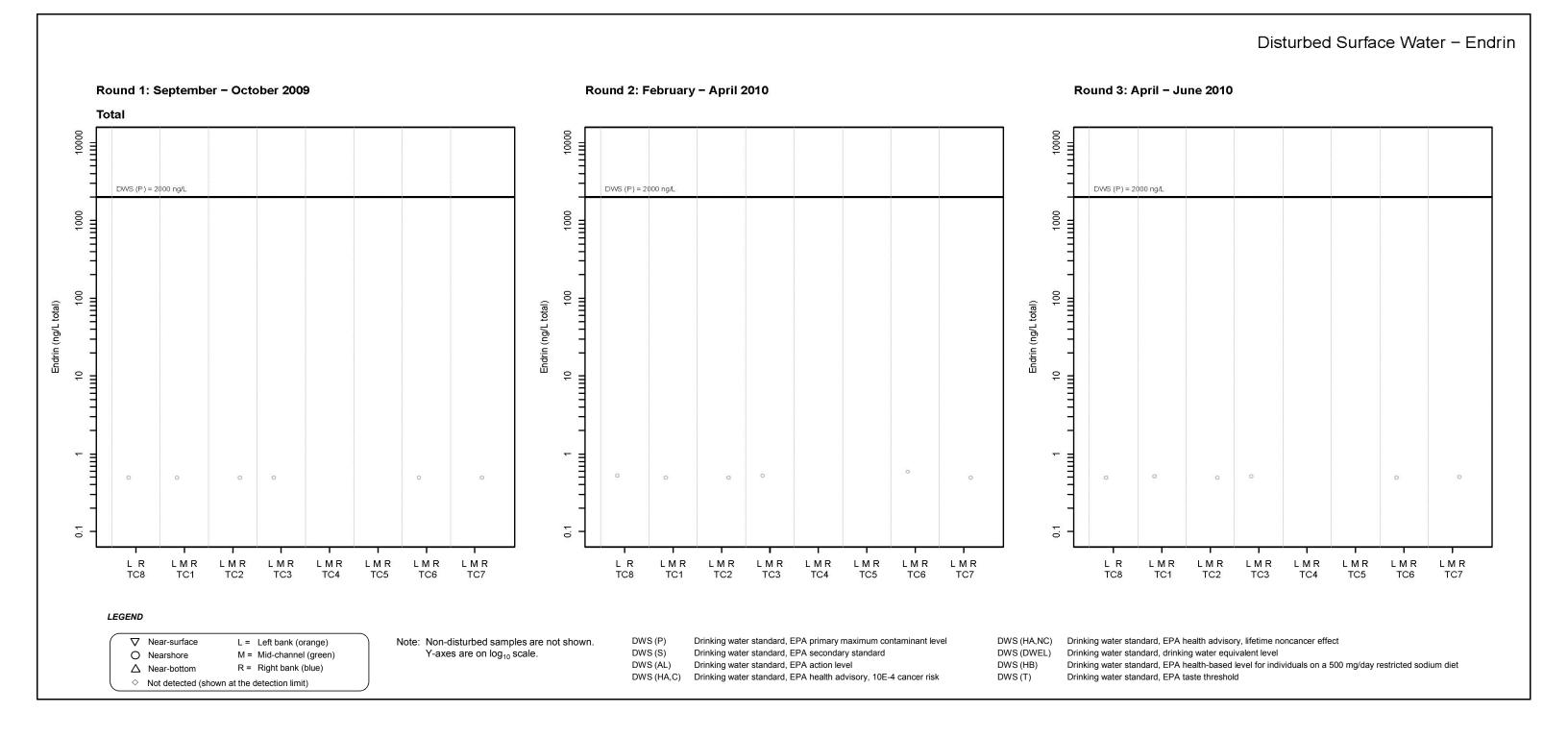

Disturbed Surface Water - Chlordane

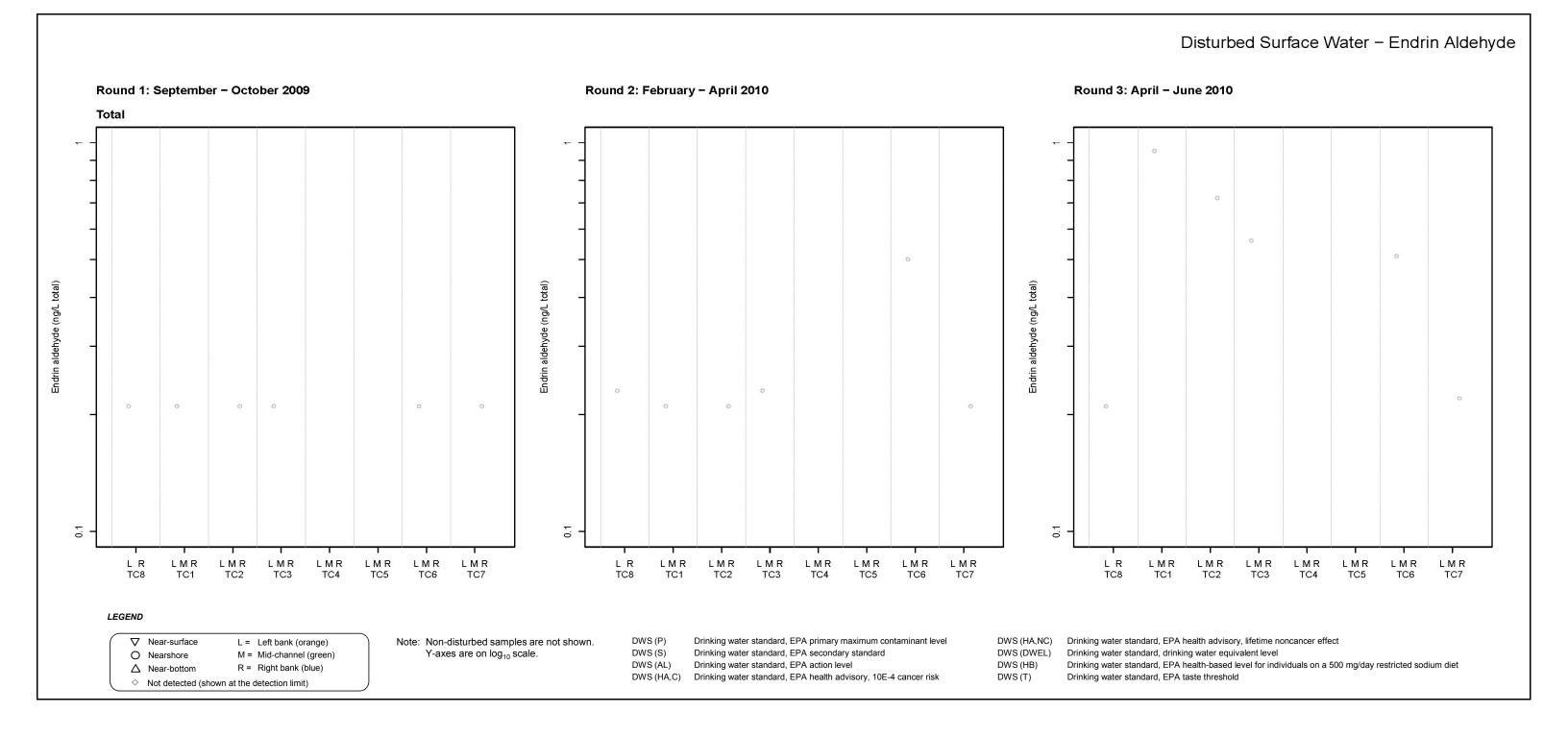


Disturbed Surface Water - cis-Nonachlor

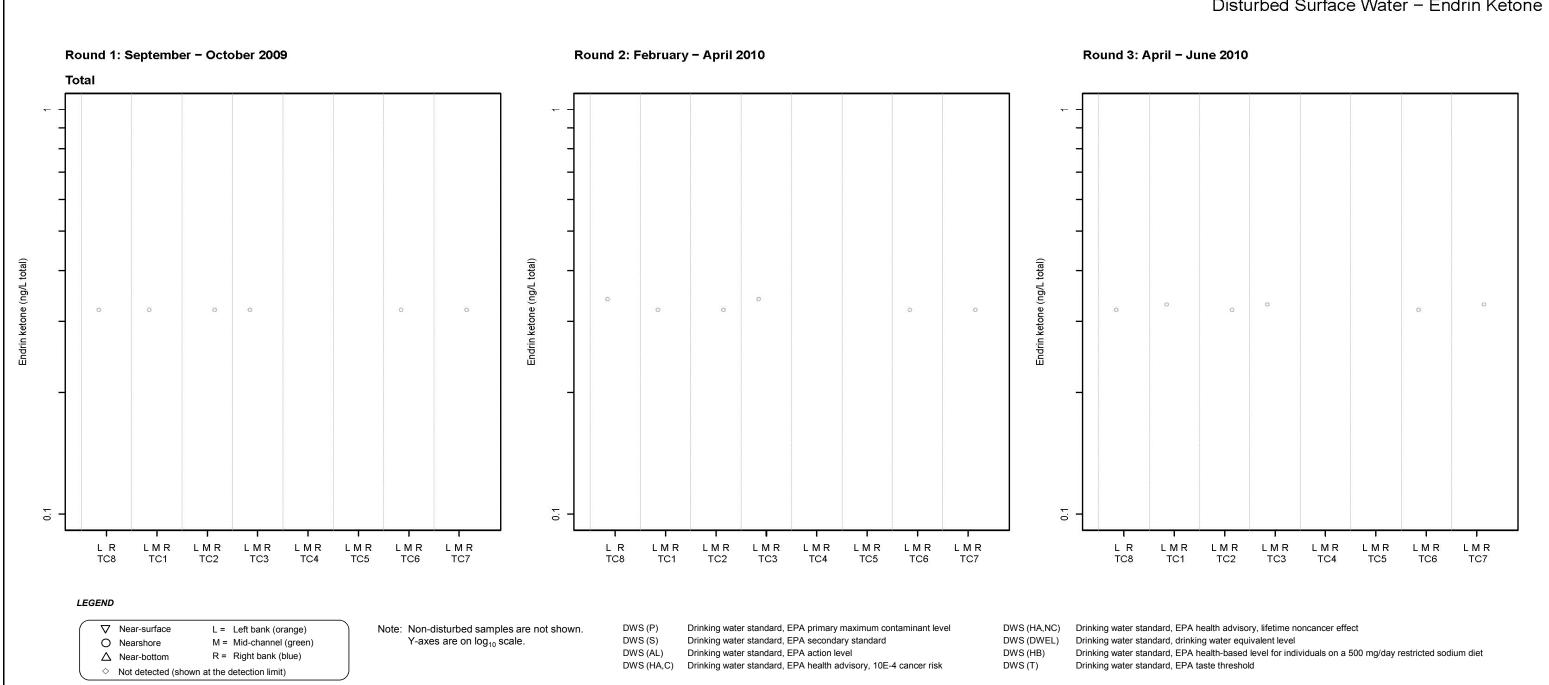


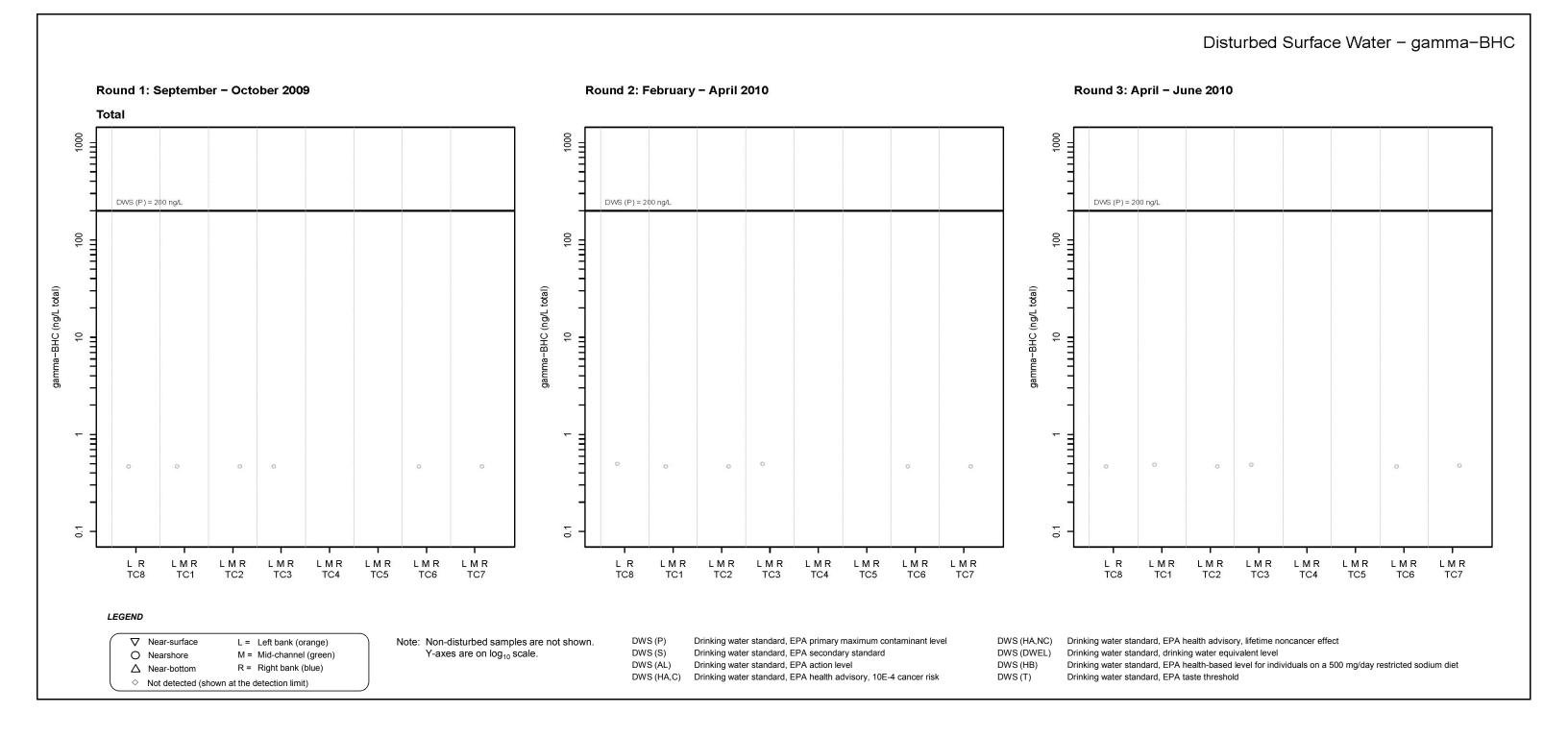


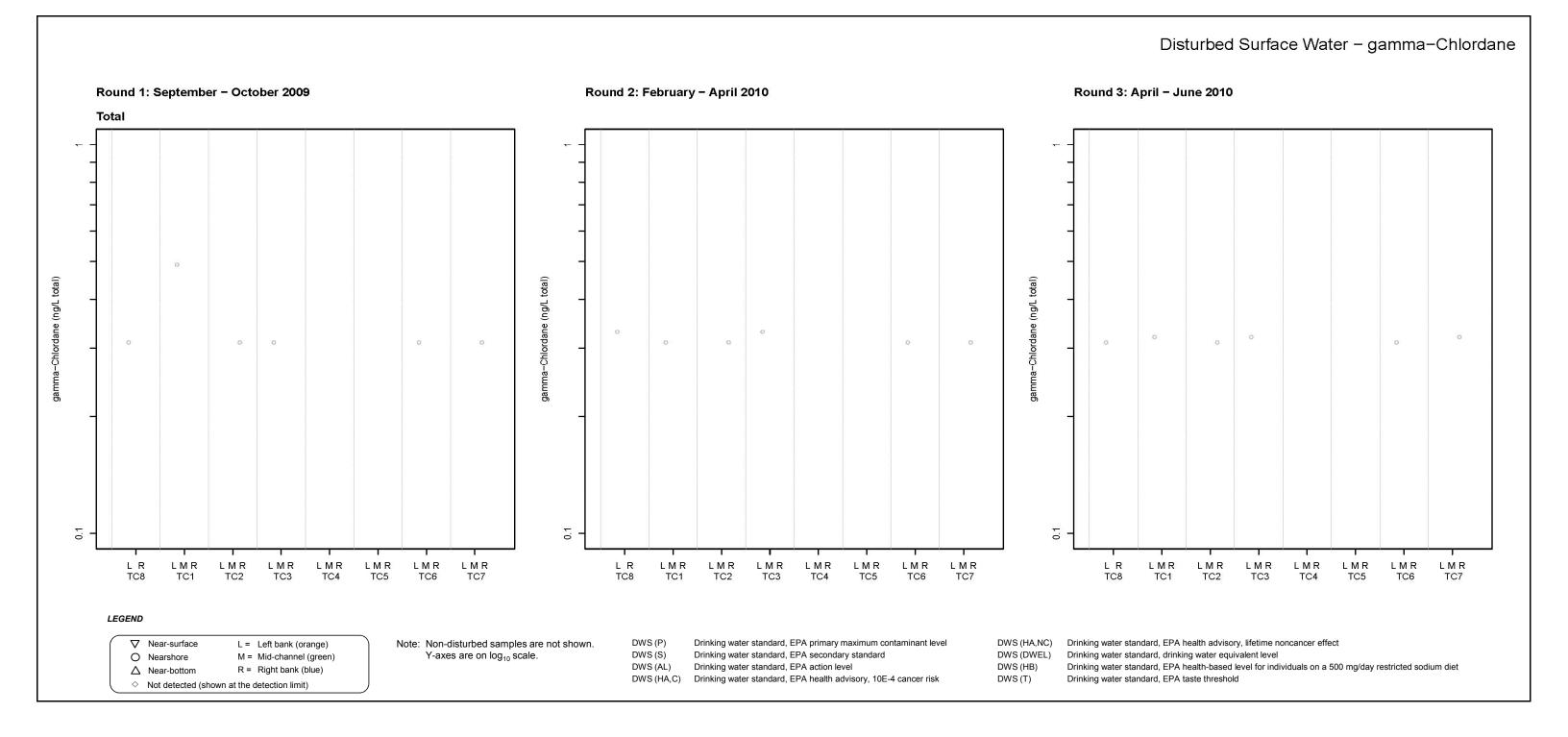


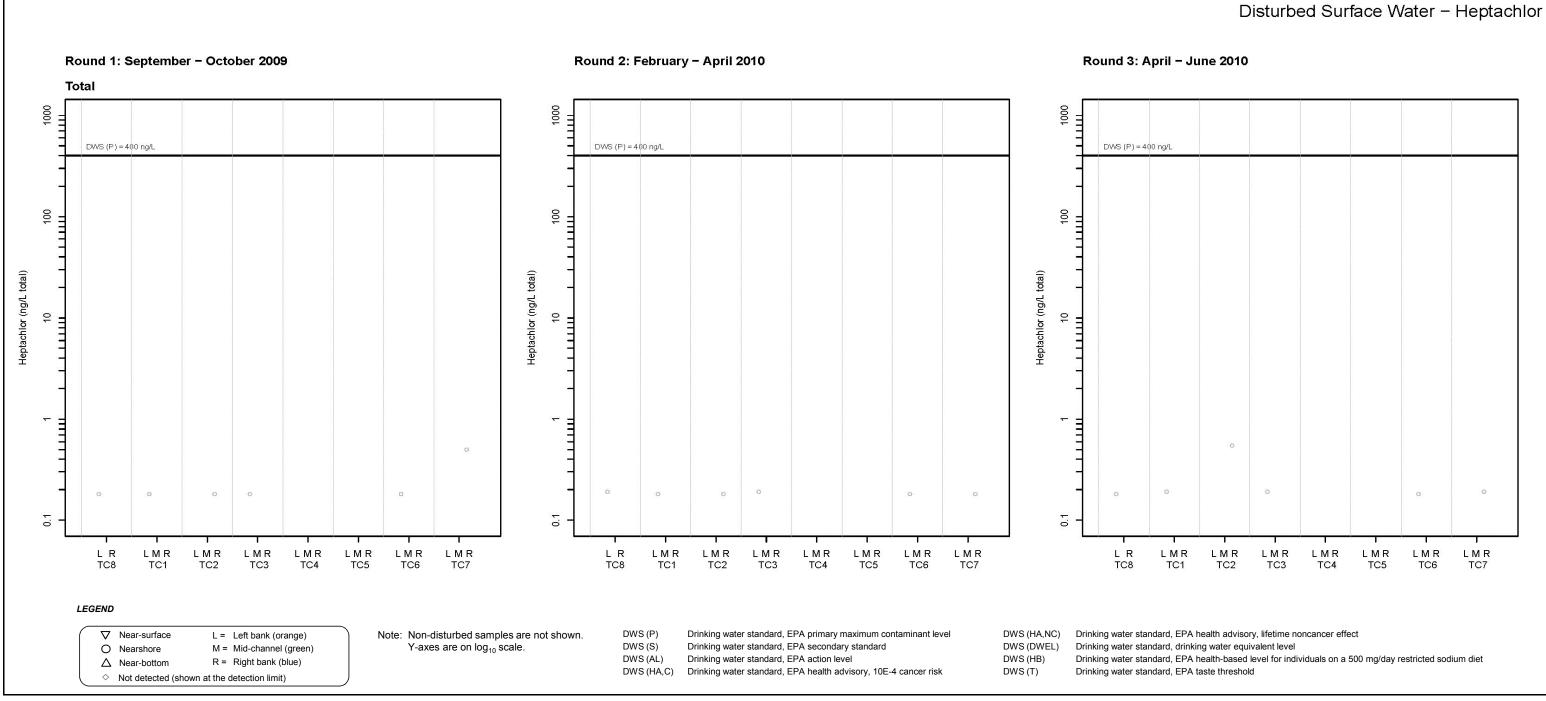


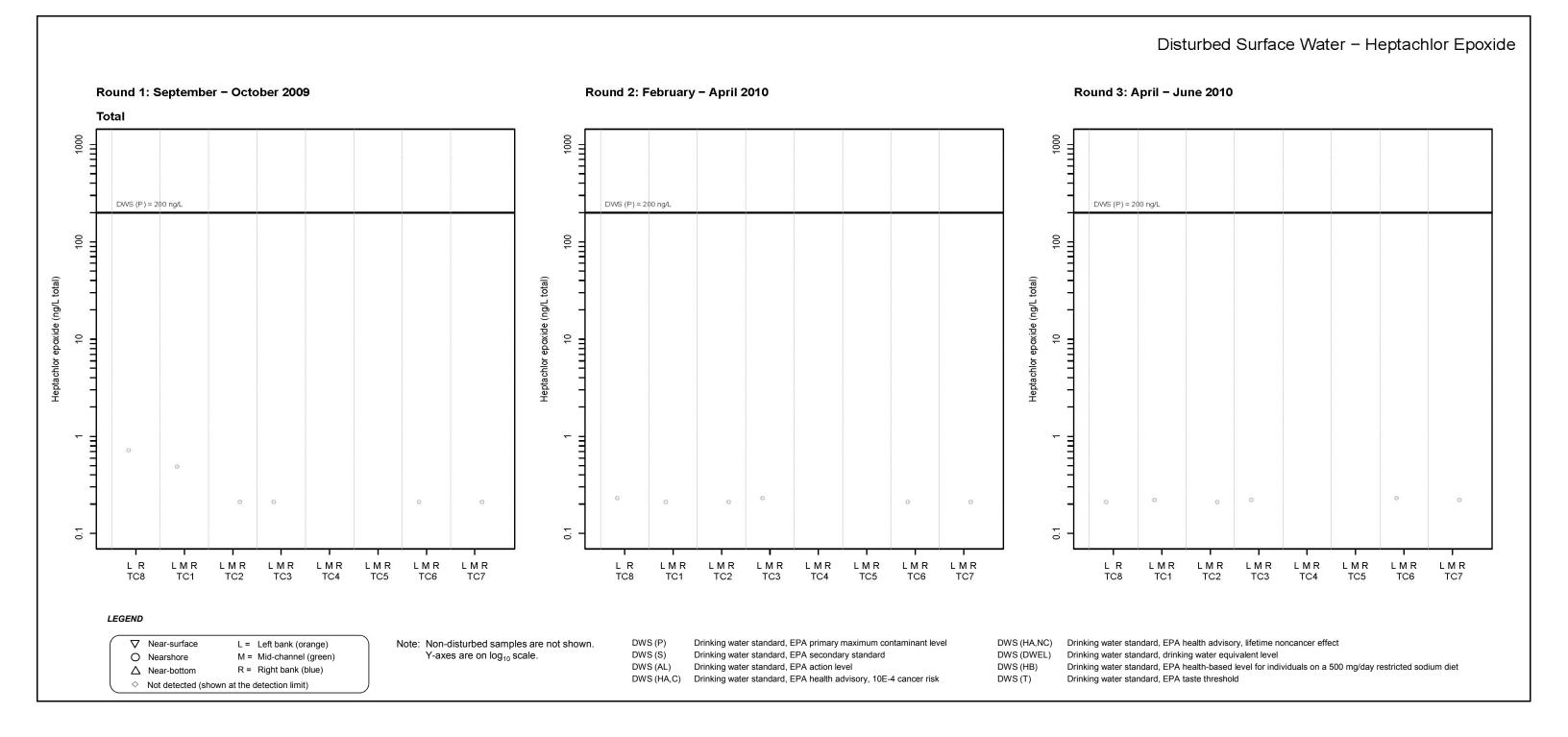
Disturbed Surface Water - Endosulfan II

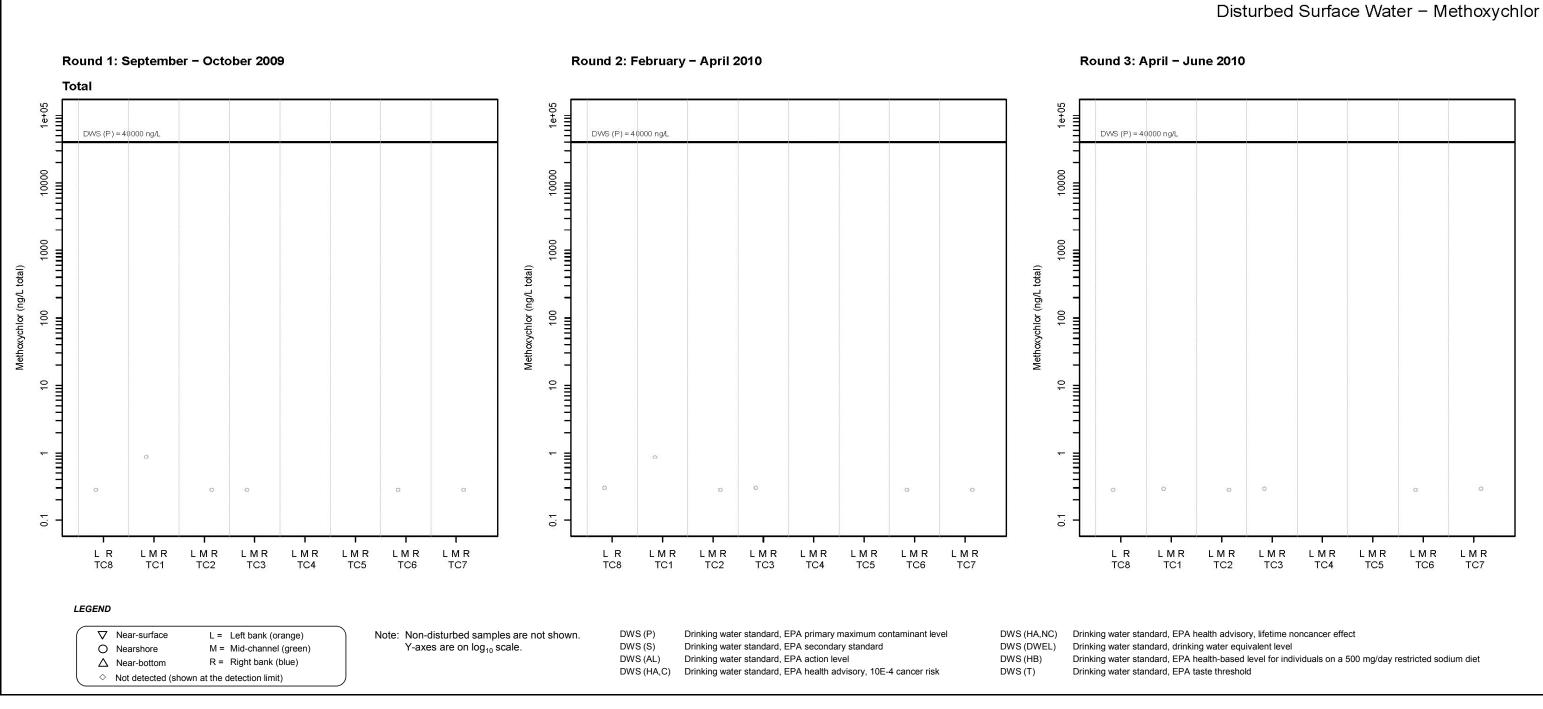


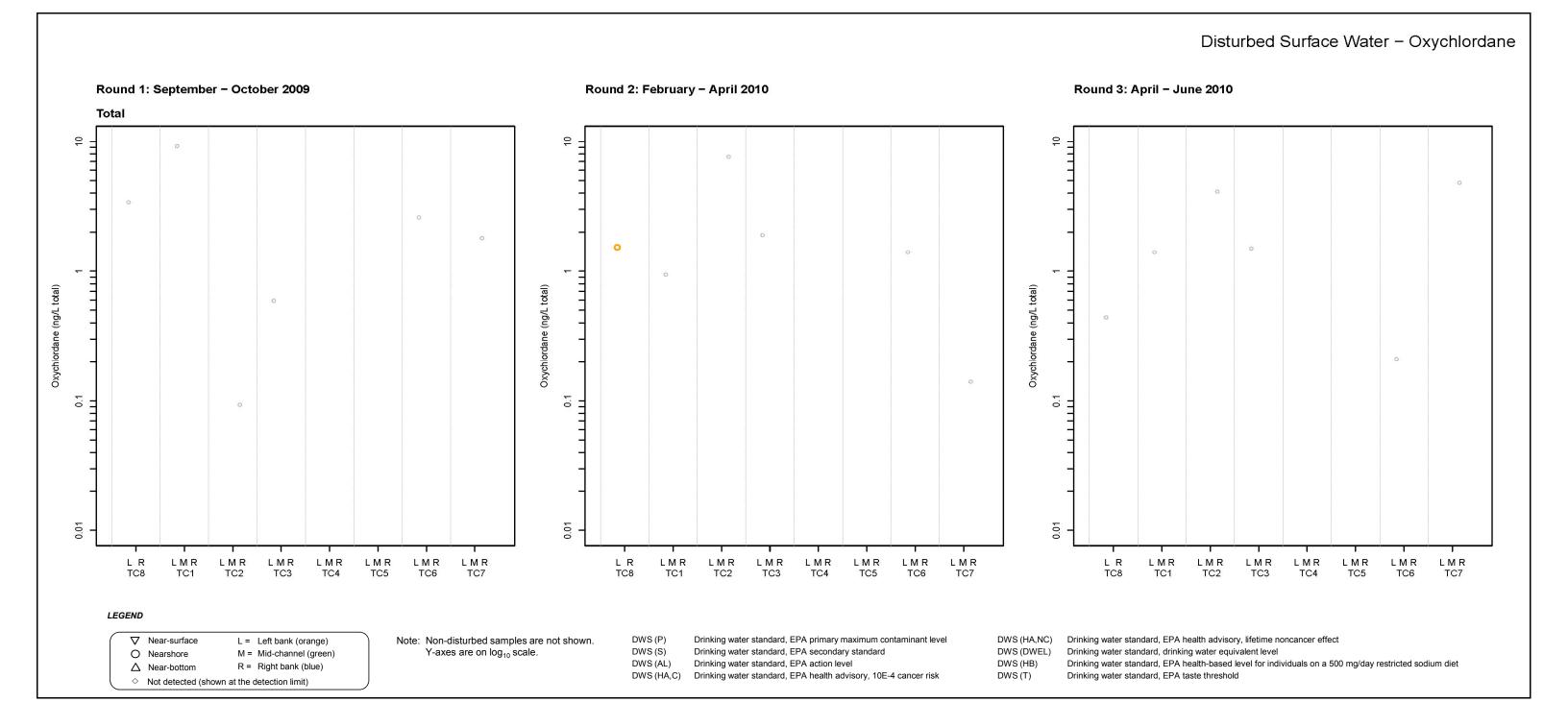


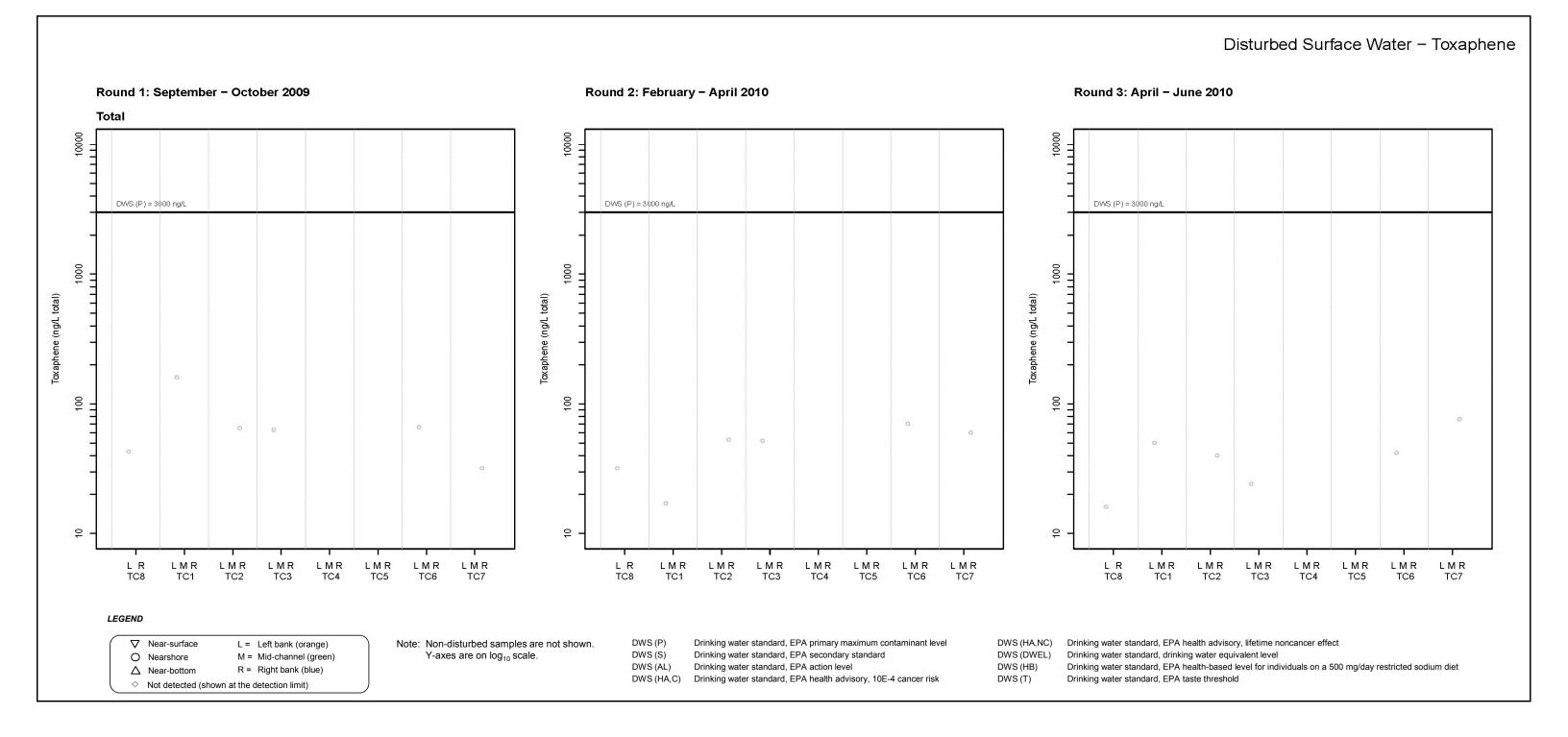


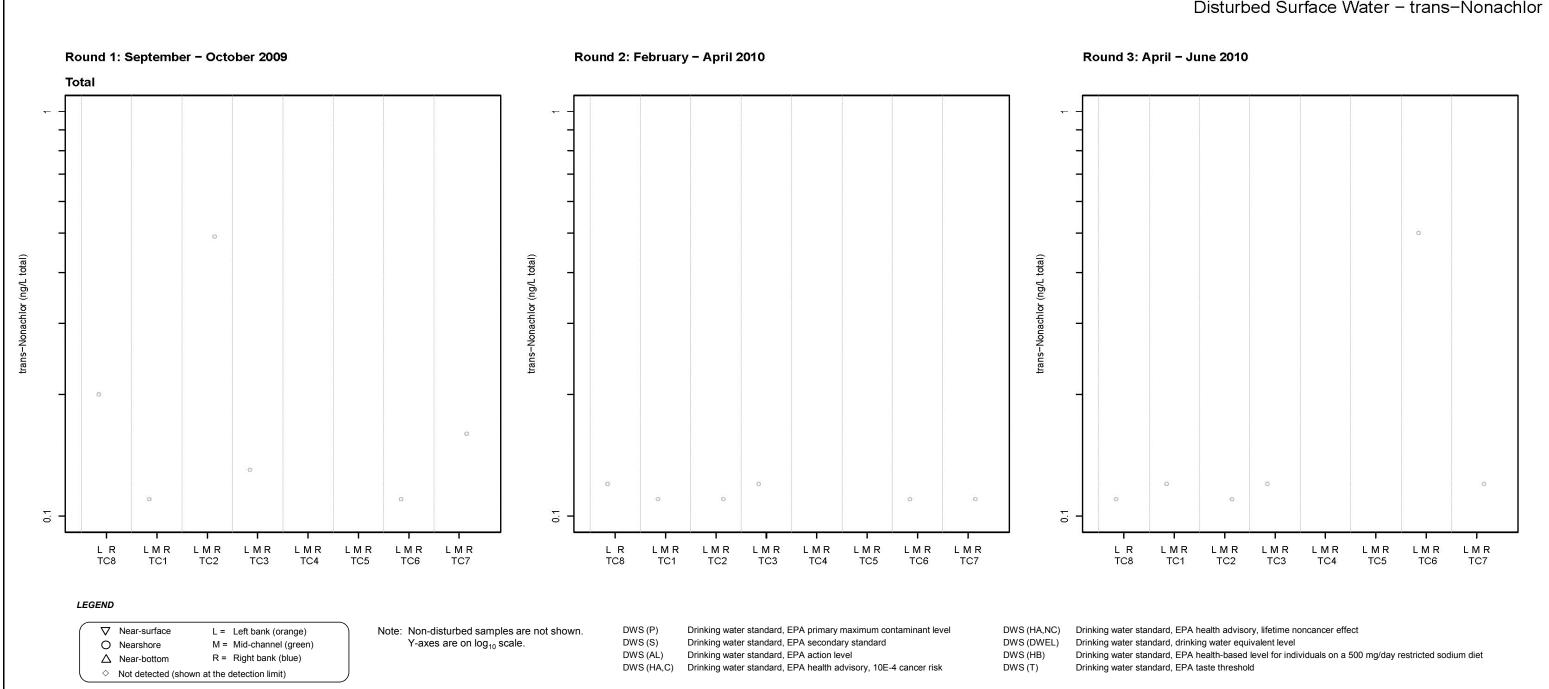


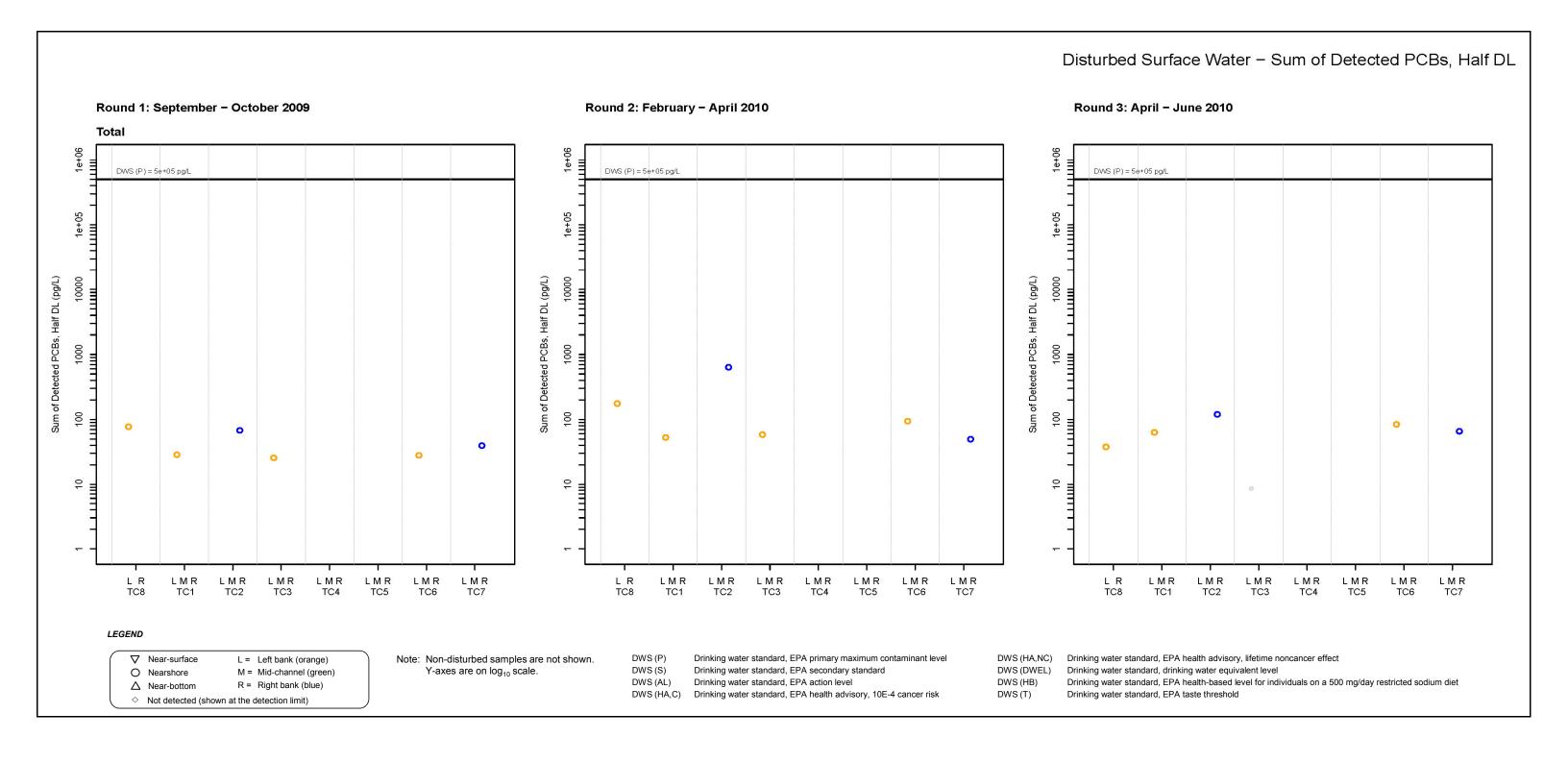

Disturbed Surface Water - Endrin Ketone

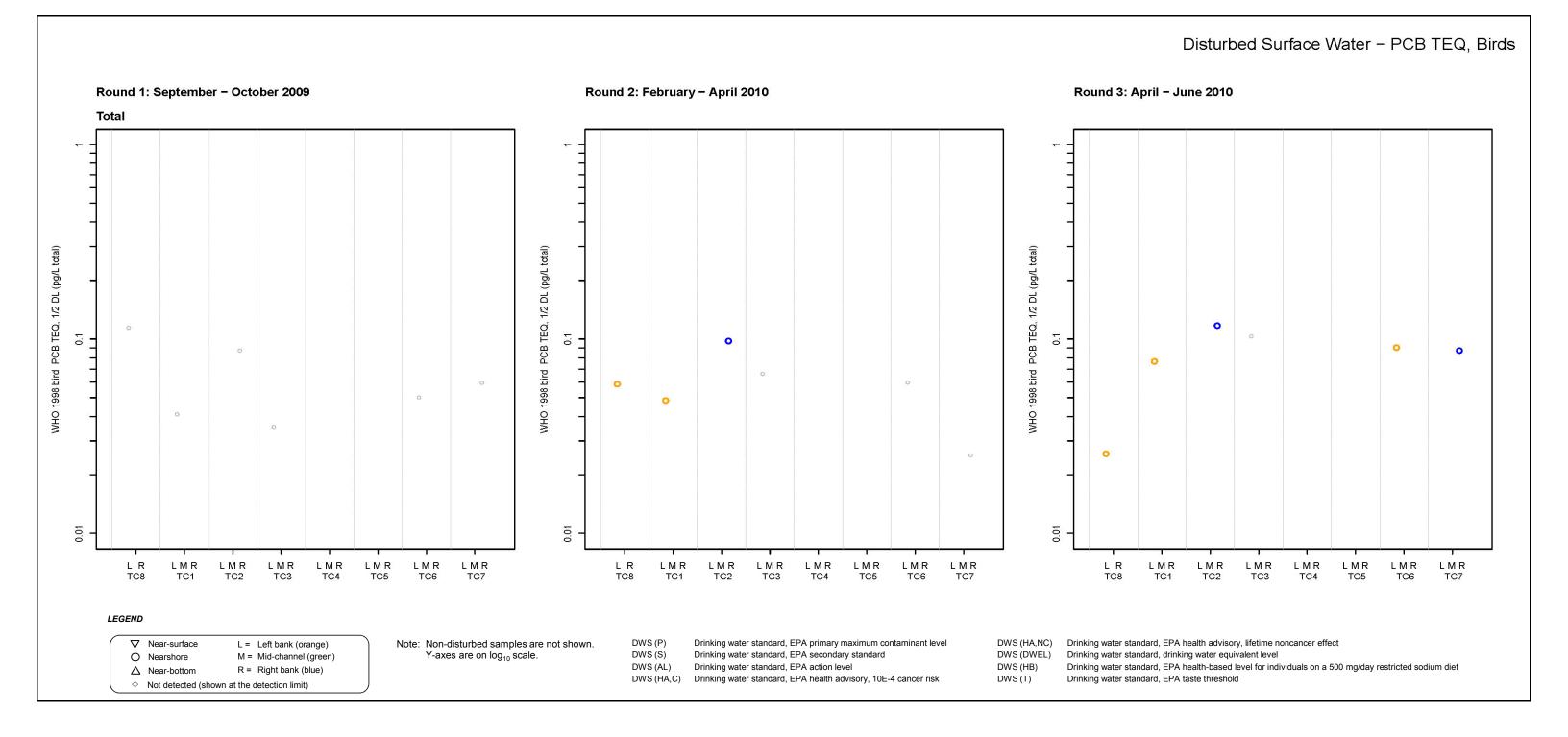


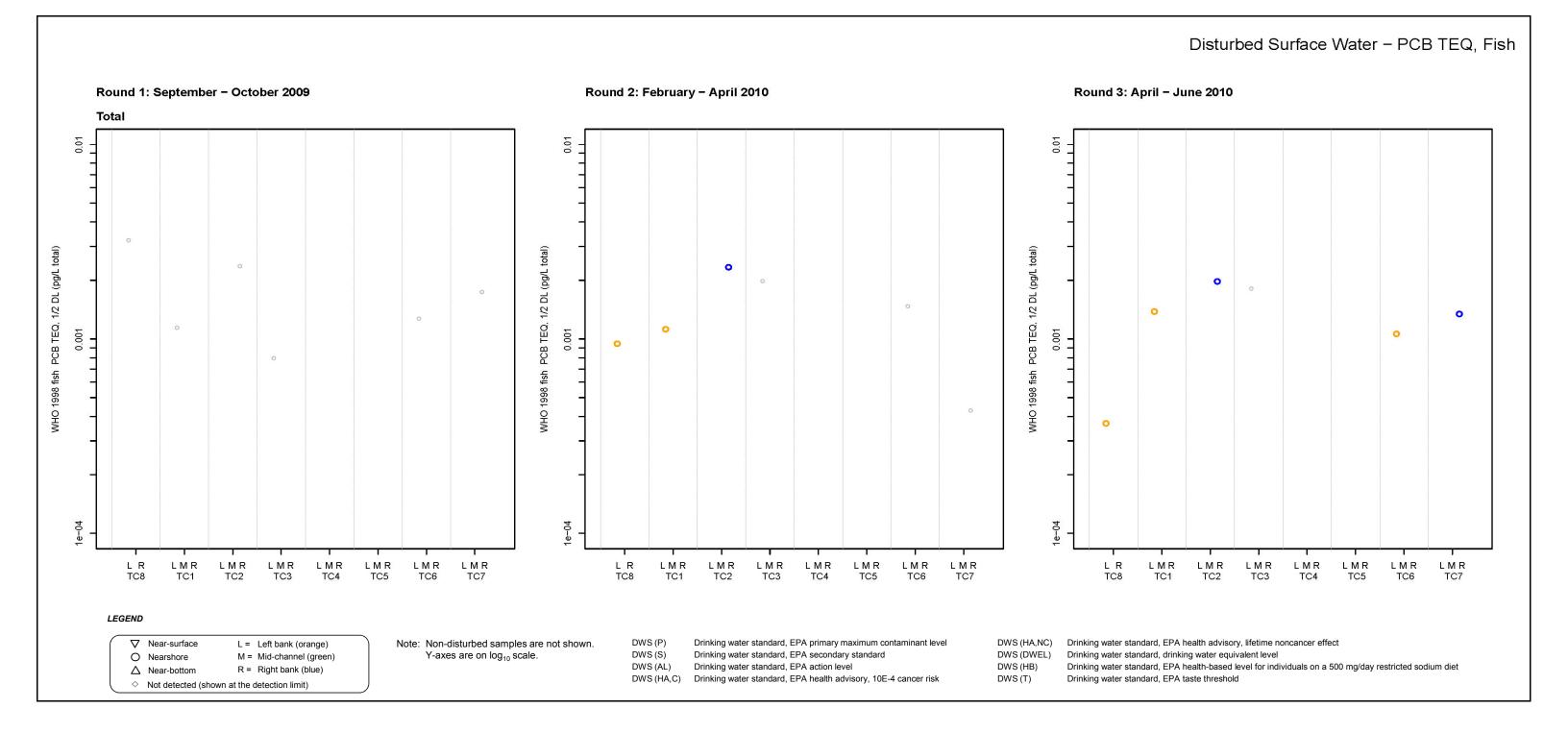


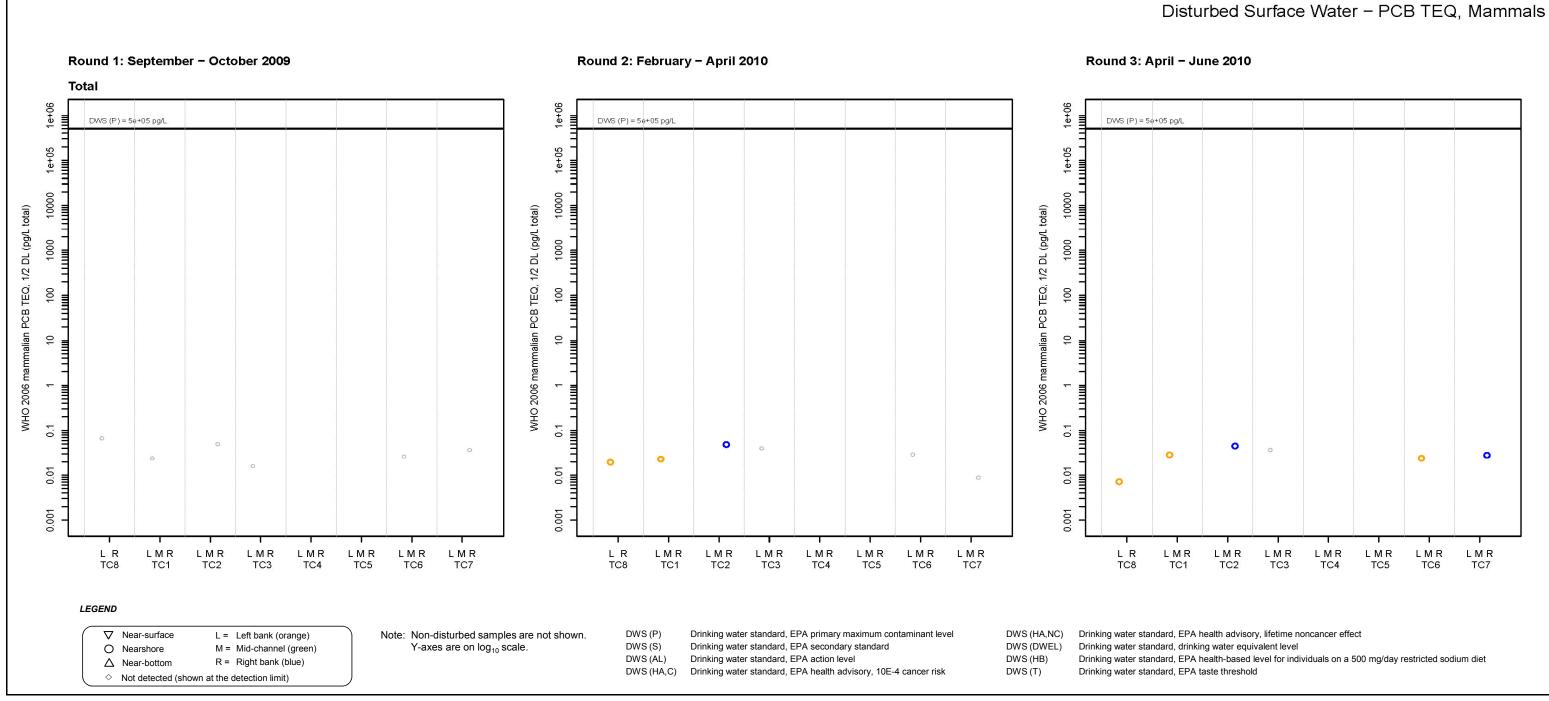


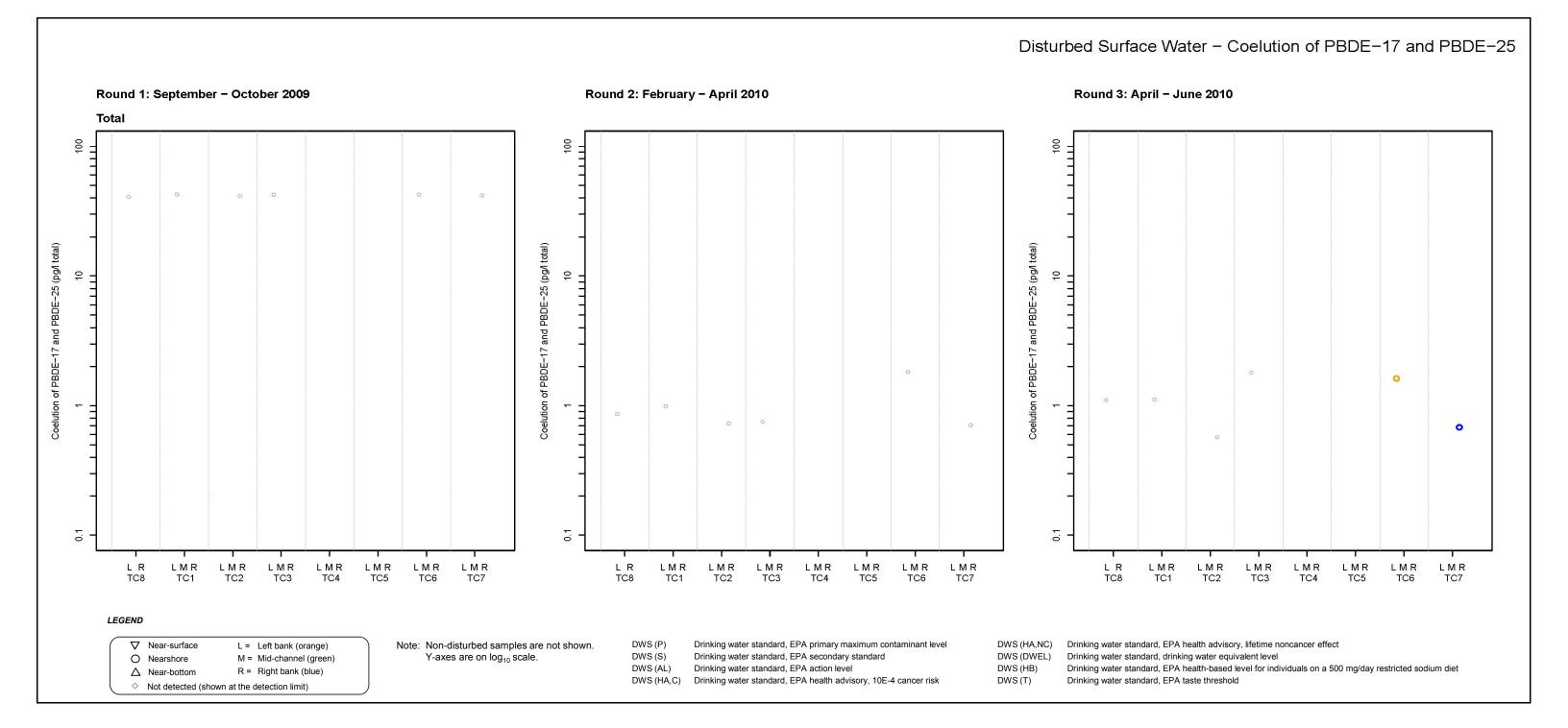


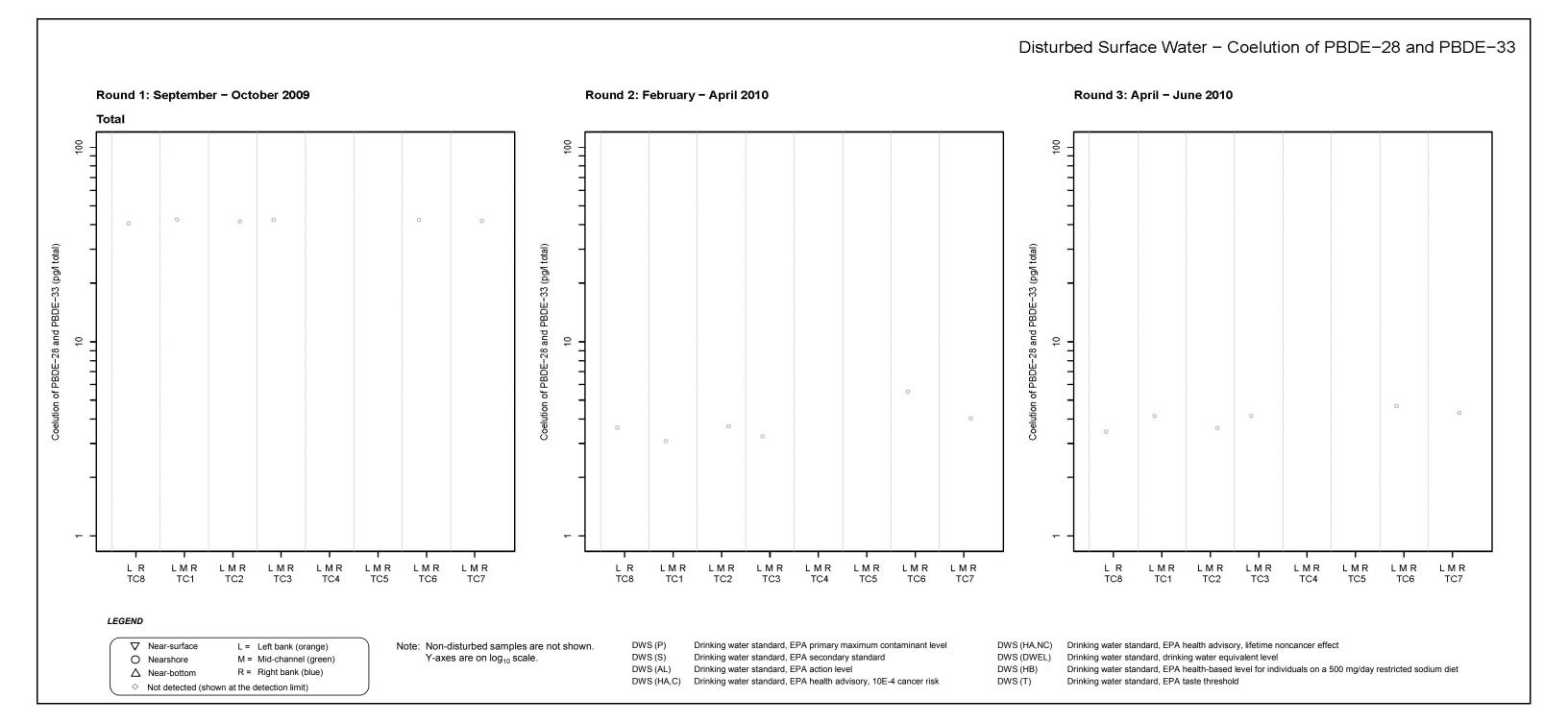







Disturbed Surface Water - trans-Nonachlor



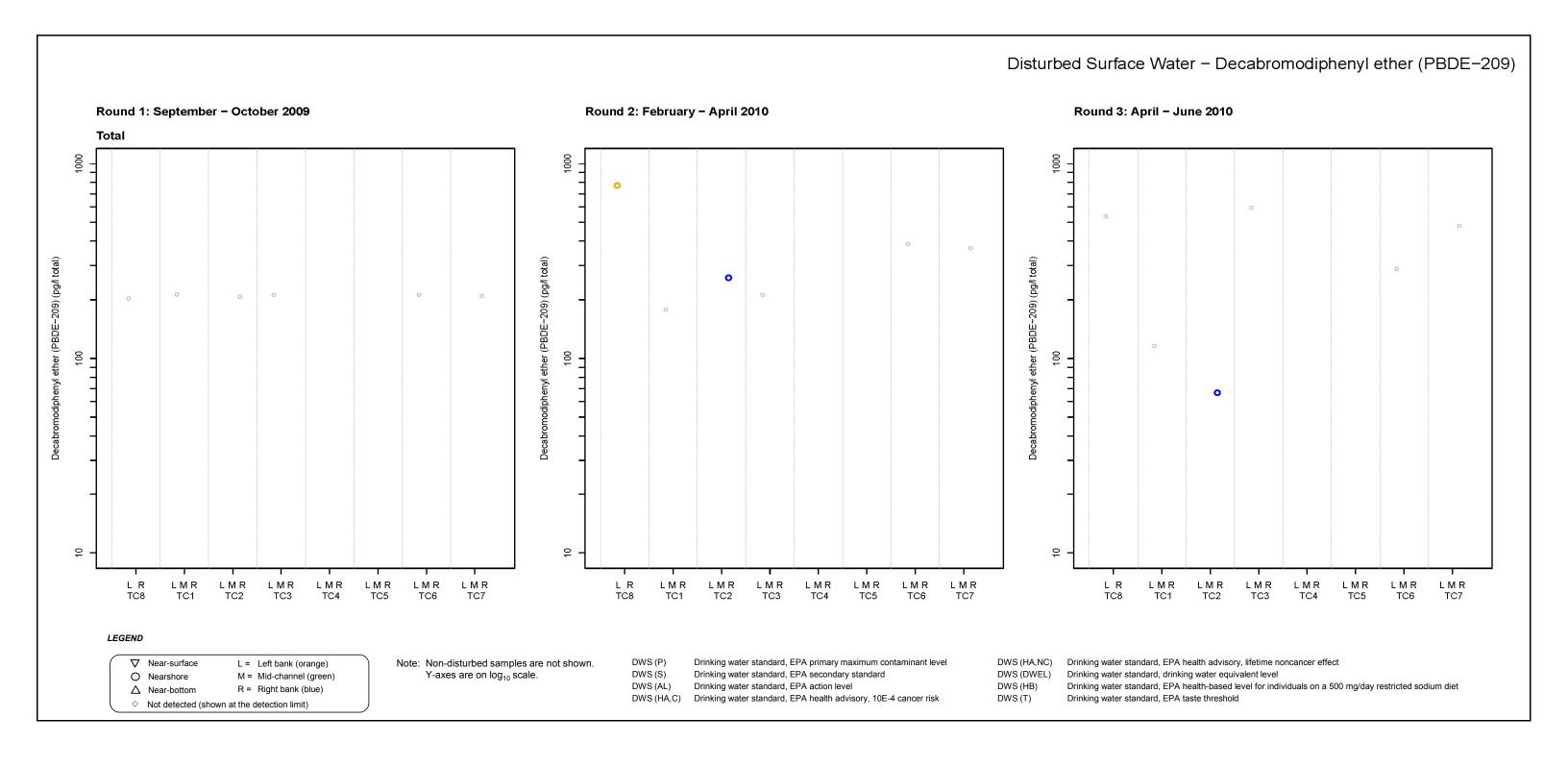


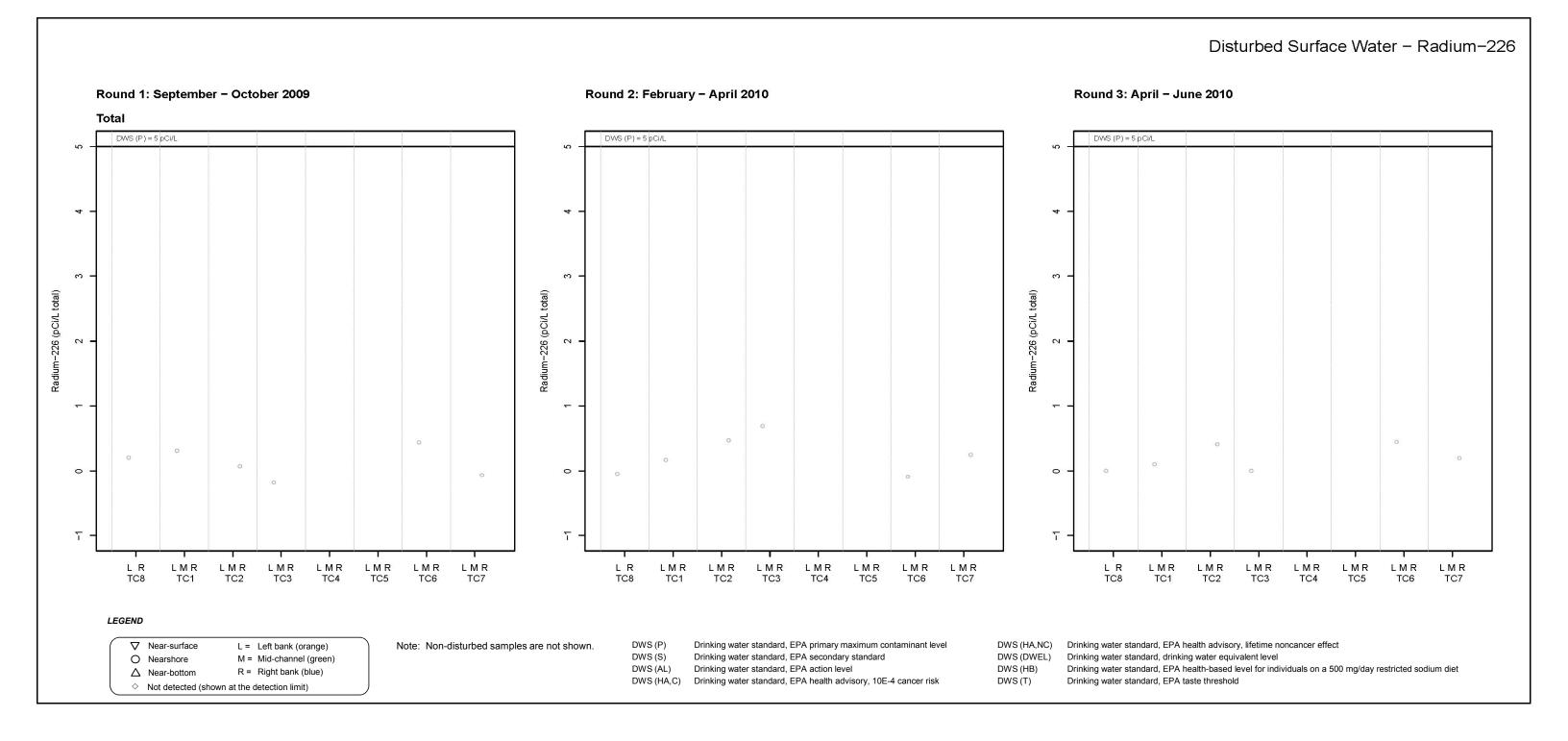
DWS (HA,C) Drinking water standard, EPA health advisory, 10E-4 cancer risk

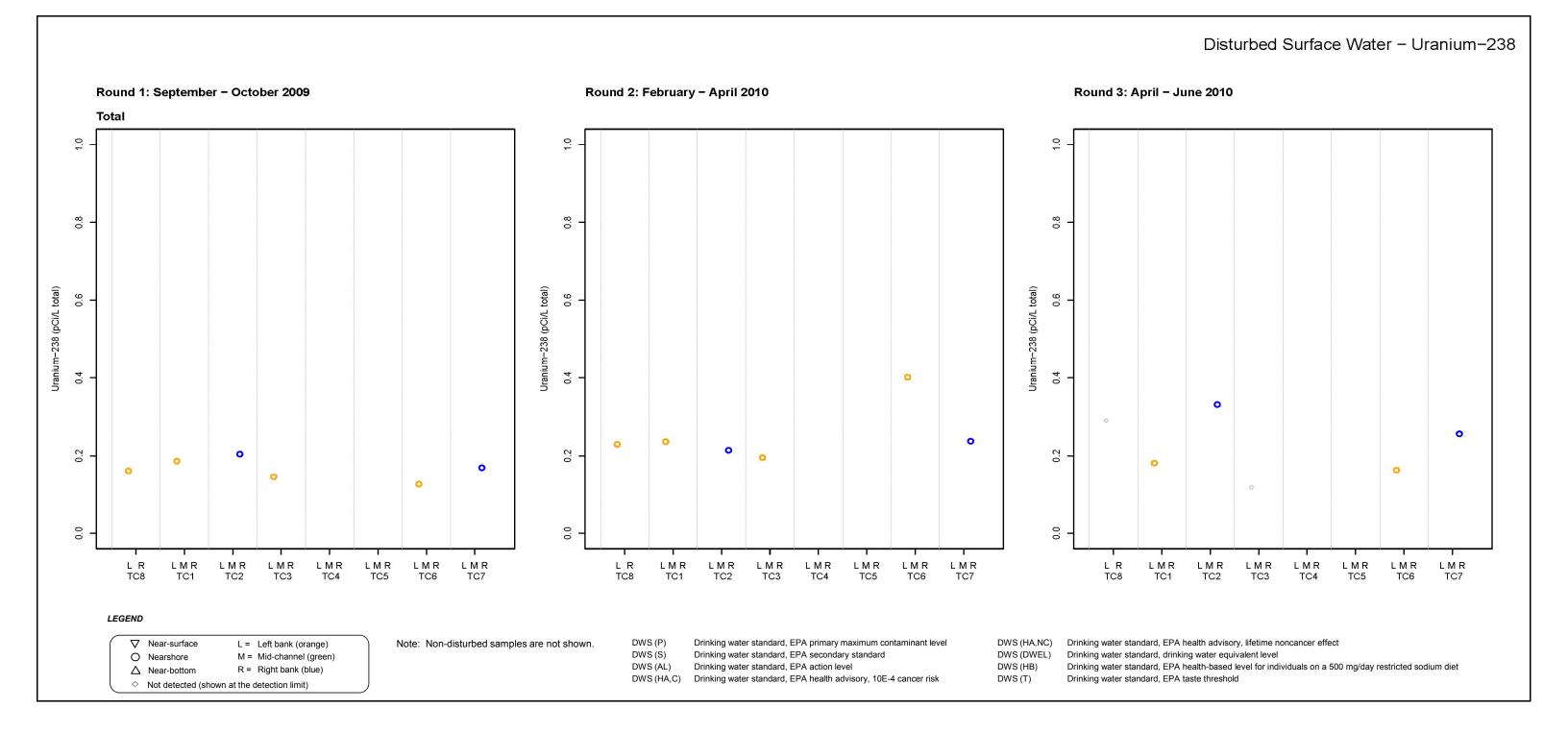
Not detected (shown at the detection limit)

DWS (T)

Drinking water standard, EPA taste threshold


DWS (HA,C) Drinking water standard, EPA health advisory, 10E-4 cancer risk


DWS (T)


Drinking water standard, EPA taste threshold

R = Right bank (blue)

△ Near-bottom

Appendix G – Statistical Approach

This Appendix provides necessary details about how the statistical analysis was conducted to compare sampling transects and the depths and sides sampled within each transect. This approach differs from what was in the Surface Water QAPP (TAI 2009), which specified a stepwise approach using triplicate samples from TC3, TC6, and CAN1 as a measure of variability. During discussions between TAI and EPA (April 5 – April 15, 2010), EPA identified that the currently available field triplicate samples represented an agreed upon level of effort and, therefore, could be used as the residual variability when assessing significant differences between locations and depths within a transect. Appendix D to this Surface Water Data Summary and Data Gap Report provides these communications. Therefore, triplicate sampling in Rounds 2 and 3 was not necessary, and for purposes of evaluating the data in the future, an Analysis of Variance (ANOVA) approach (or equivalent nonparametric statistic, if necessary) with the entire data set (data from Rounds 1, 2, and 3) would be appropriate.

Summary of Approach from the Surface Water QAPP

The comparison approach outlined in Section A7.6 of the QAPP (TAI 2009) systematically compares samples from each transect. First the left bank, mid-channel, and right bank near-surface and nearshore¹ samples are evaluated. If a statistical difference is concluded, then the evaluation is repeated with the nearshore samples excluded. The same evaluation is conducted for the near-bottom samples separately. If both of these evaluations conclude that samples are equivalent (i.e., not statistically significantly different) then the near-surface and near-bottom samples are pooled, and the evaluation repeated. This process is repeated for both dissolved and total results of each chemical of interest (COI), adjusting the significance level to account for the multiple comparisons conducted.

The statistical evaluation performed on each subset of identified samples compares the observed range (maximum minus minimum) to the distribution of ranges likely observed from a normal distribution fit to the data set. The distribution of ranges derives from randomly drawn samples from a normal distribution (i.e., Monte Carlo process) characterized by the average measured concentration of the subset being evaluated and the coefficient of variation (CV) defined by triplicate samples.² The range is calculated for each randomly drawn sample of the same size as the data subset being compared, (i.e., N=3–6 for the initial comparisons of near-surface and near-bottom samples). Significance of the comparison is based on the percentile of

Exponent G-1 Parametrix

¹ Nearshore samples were only collected at the left and right banks, not mid-channel.

² A normal distribution is characterized by a mean and standard deviation. Standard deviation can be calculated by multiplying the coefficient of variation by the mean.

the observed range within the distribution. If the observed range is above the appropriate percentile³ then a significant difference is concluded and samples are not combined for further analysis.

Conclusions from this method rely on the variability of field triplicate samples collected at one of three locations: the riverine segment of the river (TC3), the reservoir segment of the river (TC6), and upriver from Trail, B.C. (CAN1). Each comparison depends upon the CV of the applicable location and sample type, for each COI. It is unclear why the variability at these transects should be expected at other transects. Also, within each of these transects there appears to be a fairly wide range of CV estimates with no guidance for selecting the most appropriate CV for use in the calculations.

Calculated CV estimates of the triplicate samples from TC3, TC6, and CAN1, based on detected concentrations, indicated that within sample type (left, right, and mid-channel near-surface, for example), the CVs for each transect generally do not vary substantially. However, between sample types (near-surface compared to near-bottom, for example) the CVs are more variable. This variability is not surprising, as the CV estimates are based on only three results. This comparison method is further complicated for COIs that were not detected in samples from the three transects with field replicates or not detected in all samples at the transect being compared. Either of these conditions makes statistical comparisons using this approach unreliable because neither the CV nor the observed range can be estimated.

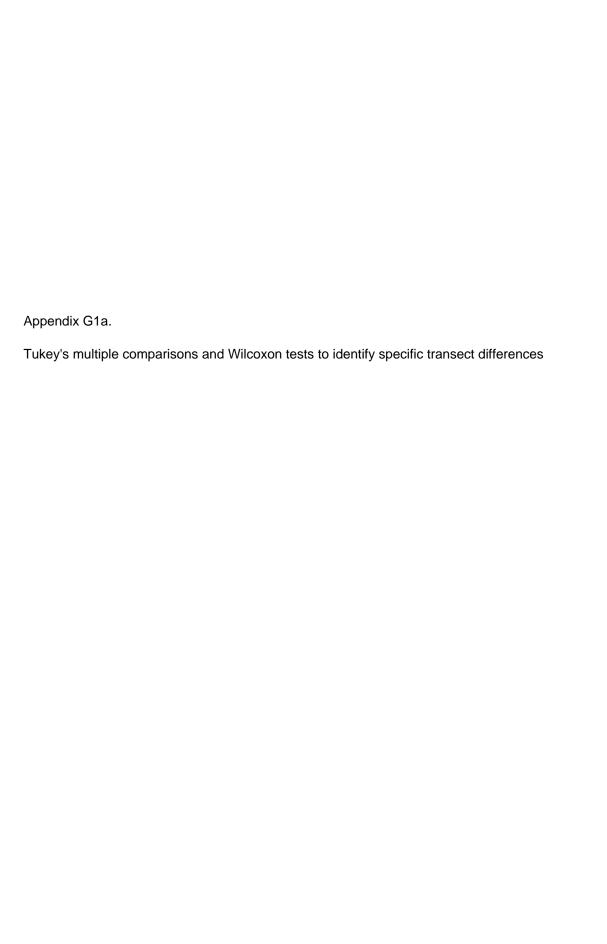
Therefore, the method described in the QAPP does not provide robust conclusions; they are reliant upon the variability observed among three results from a different location (TC3, TC6, or CAN1). The method implies that variability at these locations should be representative of the variability expected at another transect. Further, the CV estimates from these locations vary substantially, yet the determination of significance depends entirely on those estimates.

Methods Used for Data Summary Report

Analysis excluded disturbed water samples, focusing only on the balanced design of the non-disturbed water samples. Most transects provided replicate samples at five depth-side categories, including left, right, and middle for near surface and near bottom, and left and right near shore. CAN1, TC10, and TC9 were not sampled mid-channel and CAN2 was sampled repeatedly only on the left shore. Additional replicate samples were collected at TC3, TC4, TC5,

³ The percentile is selected to achieve the equivalence of an overall 0.05 significance level across all COIs. Using a Bonferonni adjustment for the number of COIs (m) would result in a percentile of (100-0.05/m) for each comparison.

and TC6, in addition to triplicate samples collected during Round 1 and Round 2 at TC3, TC6, and CAN 1. All of the field replicate samples were included in the statistical evaluation.


Because of the large number of analytes for which a majority of results were undetected, analytes were screened based on the overall percentage of detected results as well as the percentage for each round of sampling. Analytes with more than 30% detected results across all rounds of sampling and more than 10% detected results within each of the three sampling rounds were retained for statistical evaluation. The higher percentage of undetected results skews the statistical comparisons as a result of the variability in detection limits, which is generally much lower than the measured variability in detected concentrations. Statistical comparisons included all undetected concentrations at half the detection limit.

ANOVA followed by Tukey's multiple comparison test provided an assessment of differences between transects, as well as between depths and sides within each transect. The fitted model included factors for depth and side and an interaction term nested within each transect in addition to a transect main-effect factor. When the underlying assumptions of ANOVA (normality and homogeneity of variance) could not be met by the data, either as reported or transformed, the non-parametric Kruskal-Wallis test was used followed by Wilcoxon tests to assess the multiple comparisons between transects. Differences between depths or sides within each transect were also evaluated based on Kruskal-Wallis tests. Following standard statistical procedure, only factors significant in the initial overall evaluation (ANOVA or Kruskal-Wallis test) were carried forward for the multiple comparison assessment. Significance was determined after a Bonferroni adjustment for the number of comparisons. All statistical evaluations were conducted at an overall 0.05 significance level, i.e., 95 percent confidence level.

Underlying assumptions to ANOVA were tested using Levene's test for variability between groups and the Shapiro-Wilks test for the assessment of normality. Log10 transformed concentrations were also evaluated. Non-parametric methods were used for conclusions only when the equal variance assumption (homoscedasticity) could not be met because the standard, parametric ANOVA method is quite robust to departures from normality. Parametric methods are generally more powerful for detecting differences than non-parametric methods.

Appendix Materials

Materials in this Appendix include complete output for the initial tests and quantile-to-quantile plots. Boxplots by depth and side and by transect are also included for information. Also provided is the complete statistical output for the multiple comparison assessments of differences between transects and between depths and sides within each transect, where appropriate.

Levene's test by Transect

data: Conc

Test Statistic = 3.194, p-value = 0.0007119

data: log10(Conc)

Test Statistic = 3.4224, p-value = 0.0003264

Levene's test by Depth

data: Conc

Test Statistic = 0.4848, p-value = 0.6164

data: log10(Conc)

Test Statistic = 0.5178, p-value = 0.5965

Levene's test by Side

data: Conc

Test Statistic = 0.3156, p-value = 0.7296

data: log10(Conc)

Test Statistic = 0.2658, p-value = 0.7668

Kruskal-Wallis rank sum test

data: Conc and Transect

Kruskal-Wallis chi-squared = 46.2241, df = 10, p-value = 1.306e-06

Dependent Variable Alkalinity

Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.152

The p-value is 0.927 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 2.000

The p-value is 0.368 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.288

The p-value is 0.866 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 0.235

The p-value is 0.889 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.281

The p-value is 0.869 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 0.072

The p-value is 0.965 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 0.395

The p-value is 0.821 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 0.063

The p-value is 0.969 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 1.339

The p-value is 0.512 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 0.871

The p-value is 0.647 assuming chi-square distribution with 2 df.

P-values reported are not adjusted for multiple comparisons. Adjusted significance level is 0.05 / 10 = 0.005.

Dependent Variable Alkalinity SIDE\$

Grouping Variable

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.002

The p-value is 0.965 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 1.190

The p-value is 0.275 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 7.762

The p-value is 0.021 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 0.463

The p-value is 0.793 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.235

The p-value is 0.889 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 1.002

The p-value is 0.606 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 0.593

The p-value is 0.744 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 0.972

The p-value is 0.615 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 0.202

The p-value is 0.904 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 3.343

The p-value is 0.068 assuming chi-square distribution with 1 df.

P-values reported are not adjusted for multiple comparisons.

Levene's test by Transect

data: Conc

Test Statistic = 1.7421, p-value = 0.07223

data: log10(Conc)

Test Statistic = 2.0339, p-value = 0.03071

Levene's test by Depth

data: Conc

Test Statistic = 0.4571, p-value = 0.6336

data: log10(Conc)

Test Statistic = 0.0196, p-value = 0.9806

Levene's test by Side

data: Conc

Test Statistic = 0.5024, p-value = 0.6057

data: log10(Conc)

Test Statistic = 0.5065, p-value = 0.6032

Kruskal-Wallis rank sum test

data: Conc and Transect

Kruskal-Wallis chi-squared = 29.8026, df = 10, p-value = 0.0009227

Dependent Variable Chloride ion

Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.322

The p-value is 0.851 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 2.500

The p-value is 0.287 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.236

The p-value is 0.889 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 0.409

The p-value is 0.815 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 3.395

The p-value is 0.183 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 0.454

The p-value is 0.797 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 10.807

The p-value is 0.005 assuming chi-square distribution with $2\ \mathrm{df.}$

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 4.838

The p-value is 0.089 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 4.760

The p-value is 0.093 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 0.232

The p-value is 0.890 assuming chi-square distribution with 2 df.

P-values reported are not adjusted for multiple comparisons.

Dependent Variable Chloride ion

Grouping Variable SIDE\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.333

The p-value is 0.564 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 0.000

The p-value is 1.000 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.648

The p-value is 0.723 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 0.142

The p-value is 0.931 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.078

The p-value is 0.962 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 0.292

The p-value is 0.864 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 0.367

The p-value is 0.832 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 0.238

The p-value is 0.888 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 0.091

The p-value is 0.956 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 0.038

The p-value is 0.845 assuming chi-square distribution with 1 df.

P-values reported are not adjusted for multiple comparisons.

Levene's test by Transect data: Conc Test Statistic = 1.353, p-value = 0.2031 data: log10(Conc) Test Statistic = 1.6562, p-value = 0.09183 Levene's test by Depth data: Conc Test Statistic = 0.1437, p-value = 0.8662 data: log10(Conc) Test Statistic = 0.0199, p-value = 0.9803 Levene's test by Side data: Conc Test Statistic = 2.154, p-value = 0.1182 data: log10(Conc) Test Statistic = 2.3639, p-value = 0.09615 Standard ANOVA - full model Sum Sq Mean Sq F value Pr(>F) Df Transect 10 0.004610 4.61e-04 4.923 2.77e-06 *** Transect:Depth 20 0.000756 3.78e-05 0.404 0.990 Transect:Side 17 0.001602 9.43e-05 1.007 0.453 Transect:Depth:Side 27 0.001537 5.69e-05 0.608 0.936 178 0.016667 9.36e-05 Residuals

```
Df Sum Sq Mean Sq F value Pr(>F)
Transect 10 0.004610 4.61e-04 5.191 8.85e-07 ***
Transect:Depth 20 0.000756 3.78e-05 0.426 0.986
Transect:Side 17 0.001602 9.43e-05 1.061 0.394
Residuals 205 0.018204 8.88e-05
```

Levene's test by Transect data: Conc Test Statistic = 2.1554, p-value = 0.02131 data: log10(Conc) Test Statistic = 2.1589, p-value = 0.02108 Levene's test by Depth data: Conc Test Statistic = 0.0841, p-value = 0.9194 data: log10(Conc) Test Statistic = 0.1736, p-value = 0.8407 Levene's test by Side data: Conc Test Statistic = 0.0325, p-value = 0.968 data: log10(Conc) Test Statistic = 0.0364, p-value = 0.9642 Kruskal-Wallis rank sum test data: Conc and Transect

Kruskal-Wallis chi-squared = 34.0145, df = 10, p-value = 0.0001837

Dependent Variable Hardness Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.197

The p-value is 0.906 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 2.571

The p-value is 0.276 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.302

The p-value is 0.860 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 0.359

The p-value is 0.835 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 3.105

The p-value is 0.212 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 0.099

The p-value is 0.952 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 0.508

The p-value is 0.776 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 0.843

The p-value is 0.656 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 2.226

The p-value is 0.329 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 0.716

The p-value is 0.699 assuming chi-square distribution with 2 df.

P-values reported are not adjusted for multiple comparisons. Adjusted significance level is 0.05 / 10 = 0.005.

Dependent Variable Hardness Grouping Variable

SIDE\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.031

The p-value is 0.860 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 0.429

The p-value is 0.513 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.302

The p-value is 0.860 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 0.302

The p-value is 0.860 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.628

The p-value is 0.731 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 0.291

The p-value is 0.864 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 0.217

The p-value is 0.897 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 0.190

The p-value is 0.909 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 0.004

The p-value is 0.998 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 3.177

The p-value is 0.075 assuming chi-square distribution with 1 df.

P-values reported are not adjusted for multiple comparisons.

Levene's test by Transect data: Conc Test Statistic = 1.1448, p-value = 0.3295 data: log10(Conc) Test Statistic = 1.1649, p-value = 0.3153 Levene's test by Depth data: Conc Test Statistic = 0.027, p-value = 0.9733 data: log10(Conc) Test Statistic = 0.0148, p-value = 0.9853 Levene's test by Side data: Conc Test Statistic = 1.3027, p-value = 0.2736 data: log10(Conc) Test Statistic = 1.28, p-value = 0.2799 Standard ANOVA - full model Df Sum Sq Mean Sq F value Pr(>F) Transect 10 0.1877 0.018773 1.061 0.395 Transect:Depth 20 0.3630 0.018149 1.026 0.434 Transect:Side 17 0.1932 0.011365 0.642 0.854 Transect:Depth:Side 27 0.1457 0.005396 0.305 1.000 Residuals 178 3.1488 0.017690 Df Sum Sq Mean Sq F value Pr(>F) 10 0.188 0.01877 1.168 0.314 Transect Transect:Depth 20 0.363 0.01815 1.129 0.322

Transect:Side 17 0.193 0.01137 0.707 0.794
Residuals 205 3.295 0.01607

Levene's test by Transect data: Conc Test Statistic = 2.2526, p-value = 0.01567 data: log10(Conc) Test Statistic = 1.8919, p-value = 0.04689 Levene's test by Depth data: Conc Test Statistic = 2.0351, p-value = 0.1328 data: log10(Conc) Test Statistic = 1.8081, p-value = 0.1661 Levene's test by Side data: Conc Test Statistic = 0.6779, p-value = 0.5086 data: log10(Conc) Test Statistic = 1.3712, p-value = 0.2557 Kruskal-Wallis rank sum test data: Conc and Transect

Kruskal-Wallis chi-squared = 51.4771, df = 10, p-value = 1.426e-07

Dependent Variable Silica Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.082

The p-value is 0.960 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 3.162

The p-value is 0.206 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.181

The p-value is 0.913 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 0.445

The p-value is 0.801 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.356

The p-value is 0.837 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 1.486

The p-value is 0.476 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 0.506

The p-value is 0.776 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 2.633

The p-value is 0.268 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 0.936

The p-value is 0.626 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 1.582

The p-value is 0.453 assuming chi-square distribution with 2 df.

Dependent Variable Silica Grouping Variable SIDE\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.159

The p-value is 0.690 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 0.196

The p-value is 0.658 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 1.196

The p-value is 0.550 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 0.578

The p-value is 0.749 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.374

The p-value is 0.830 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 0.051

The p-value is 0.975 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 1.071

The p-value is 0.585 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 0.870

The p-value is 0.647 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 0.108

The p-value is 0.947 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 4.083

The p-value is 0.043 assuming chi-square distribution with 1 df.

data: Conc

Test Statistic = 5.2391, p-value = 2.248e-05

data: log10(Conc)

Test Statistic = 2.8447, p-value = 0.008139

Levene's test by Depth

data: Conc

Test Statistic = 1.3723, p-value = 0.2565

data: log10(Conc)

Test Statistic = 0.6813, p-value = 0.5074

Levene's test by Side

data: Conc

Test Statistic = 0.3814, p-value = 0.6836

data: log10(Conc)

Test Statistic = 1.1811, p-value = 0.3097

Kruskal-Wallis rank sum test

data: Conc and Transect

Kruskal-Wallis chi-squared = 36.2453, df = 7, p-value = 6.516e-06

Dependent Variable Silicon, dissolved

Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.232

The p-value is 0.890 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 3.429

The p-value is 0.180 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.008

The p-value is 0.996 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 1.800

The p-value is 0.407 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.408

The p-value is 0.816 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 1.175

The p-value is 0.556 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 2.779

The p-value is 0.249 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 1.165

The p-value is 0.559 assuming chi-square distribution with 2 df.

Dependent Variable Silicon, dissolved

Grouping Variable SIDE\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.000

The p-value is 1.000 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 0.429

The p-value is 0.513 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 1.757

The p-value is 0.415 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 0.200

The p-value is 0.655 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.419

The p-value is 0.811 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 0.709

The p-value is 0.702 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 0.427

The p-value is 0.808 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 4.481

The p-value is 0.034 assuming chi-square distribution with 1 df.

P-values reported are not adjusted for multiple comparisons.

data: Conc

Test Statistic = 5.2054, p-value = 2.442e-05

data: log10(Conc)

Test Statistic = 2.6799, p-value = 0.01208

Levene's test by Depth

data: Conc

Test Statistic = 2.3037, p-value = 0.1033

data: log10(Conc)

Test Statistic = 0.98, p-value = 0.3776

Levene's test by Side

data: Conc

Test Statistic = 0.387, p-value = 0.6798

data: log10(Conc)

Test Statistic = 1.1371, p-value = 0.3234

Kruskal-Wallis rank sum test

data: Conc and Transect

Kruskal-Wallis chi-squared = 35.5506, df = 7, p-value = 8.811e-06

Dependent Variable Silicon, total

Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.114

The p-value is 0.944 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 0.286

The p-value is 0.867 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.472

The p-value is 0.790 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 2.250

The p-value is 0.325 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.485

The p-value is 0.785 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 0.754

The p-value is 0.686 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 3.644

The p-value is 0.162 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 2.613

The p-value is 0.271 assuming chi-square distribution with 2 df.

Dependent Variable Silicon, total

Grouping Variable SIDE\$

- -

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.002

The p-value is 0.965 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 0.048

The p-value is 0.827 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 1.533

The p-value is 0.465 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 0.222

The p-value is 0.637 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.096

The p-value is 0.953 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 1.072

The p-value is 0.585 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 0.688

The p-value is 0.709 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 4.083

The p-value is 0.043 assuming chi-square distribution with 1 df.

P-values reported are not adjusted for multiple comparisons.

Levene's test by Transect

data: Conc

Test Statistic = 2.0834, p-value = 0.02644

data: log10(Conc)

Test Statistic = 2.2279, p-value = 0.01693

Levene's test by Depth

data: Conc

Test Statistic = 1.6923, p-value = 0.1862

data: log10(Conc)

Test Statistic = 1.4325, p-value = 0.2407

Levene's test by Side

data: Conc

Test Statistic = 2.4978, p-value = 0.08431

data: log10(Conc)

Test Statistic = 2.2509, p-value = 0.1074

Kruskal-Wallis rank sum test
data: Conc and Transect
Kruskal-Wallis chi-squared = 38.5247, df = 10, p-value = 3.074e-05

Dependent Variable Sulfate Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.570

The p-value is 0.752 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 1.250

The p-value is 0.535 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.758

The p-value is 0.684 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 0.139

The p-value is 0.933 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.130

The p-value is 0.937 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 0.125

The p-value is 0.939 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 0.173

The p-value is 0.917 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 1.508

The p-value is 0.470 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 2.182

The p-value is 0.336 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 1.452

The p-value is 0.484 assuming chi-square distribution with 2 df.

Dependent Variable Sulfate Grouping Variable SIDE\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.018

The p-value is 0.894 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 0.000

The p-value is 1.000 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 3.737

The p-value is 0.154 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 0.032

The p-value is 0.984 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 1.249

The p-value is 0.536 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 0.286

The p-value is 0.867 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 0.249

The p-value is 0.883 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 0.069

The p-value is 0.966 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 0.295

The p-value is 0.863 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 4.498

The p-value is 0.034 assuming chi-square distribution with 1 df.

data: Conc

Test Statistic = 0.702, p-value = 0.7222

data: log10(Conc)

Test Statistic = 2.0021, p-value = 0.0338

Levene's test by Depth

data: Conc

Test Statistic = 0.9837, p-value = 0.3754

data: log10(Conc)

Test Statistic = 0.0483, p-value = 0.9529

Levene's test by Side

data: Conc

Test Statistic = 0.7114, p-value = 0.4919

data: log10(Conc)

Test Statistic = 0.9312, p-value = 0.3955

Kruskal-Wallis rank sum test

data: Conc and Transect

Kruskal-Wallis chi-squared = 14.1943, df = 10, p-value = 0.1643

Dependent Variable TDS, lab Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 1.696

The p-value is 0.428 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 0.074

The p-value is 0.964 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 2.715

The p-value is 0.257 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 4.076

The p-value is 0.130 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 1.358

The p-value is 0.507 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 0.649

The p-value is 0.723 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 2.395

The p-value is 0.302 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 0.643

The p-value is 0.725 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 0.090

The p-value is 0.956 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 2.814

The p-value is 0.245 assuming chi-square distribution with 2 df.

Dependent Variable TDS, Lab Grouping Variable SIDE\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 3.456

The p-value is 0.063 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 3.971

The p-value is 0.046 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 1.879

The p-value is 0.391 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 0.665

The p-value is 0.717 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.338

The p-value is 0.844 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 0.229

The p-value is 0.892 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 1.007

The p-value is 0.604 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 8.125

The p-value is 0.017 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 3.150

The p-value is 0.207 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 0.232

The p-value is 0.630 assuming chi-square distribution with 1 df.

P-values reported are not adjusted for multiple comparisons.

data: Conc

Test Statistic = 0.5022, p-value = 0.8877

data: log10(Conc)

Test Statistic = 0.7762, p-value = 0.6517

Levene's test by Depth

data: Conc

Test Statistic = 8.4033, p-value = 0.000294

data: log10(Conc)

Test Statistic = 5.0243, p-value = 0.007259

Levene's test by Side

data: Conc

Test Statistic = 1.0168, p-value = 0.3633

data: log10(Conc)

Test Statistic = 3.4432, p-value = 0.03349

Kruskal-Wallis rank sum test

data: Conc and Transect

Kruskal-Wallis chi-squared = 39.7647, df = 10, p-value = 1.864e-05

Dependent Variable Aluminum, total

Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.079

The p-value is 0.961 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 4.571

The p-value is 0.102 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.378

The p-value is 0.828 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 1.509

The p-value is 0.470 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 7.574

The p-value is 0.023 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 4.339

The p-value is 0.114 assuming chi-square distribution with 2 df.

Results for TRANSECTS = TC5

Kruskal-Wallis Test Statistic: 13.498

The p-value is 0.001 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 8.277

The p-value is 0.016 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 6.846

The p-value is 0.033 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 1.309

The p-value is 0.520 assuming chi-square distribution with 2 df.

P-values reported are not adjusted for multiple comparisons.

Dependent Variable Aluminum, total

Grouping Variable

SIDE\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.383

The p-value is 0.536 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 0.429

The p-value is 0.513 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.698

The p-value is 0.705 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 0.591

The p-value is 0.744 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 1.305

The p-value is 0.521 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 2.482

The p-value is 0.289 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 2.862

The p-value is 0.239 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 0.375

The p-value is 0.829 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 0.979

The p-value is 0.613 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 1.235

The p-value is 0.266 assuming chi-square distribution with 1 df.

 $\ensuremath{\text{P-values}}$ reported are not adjusted for multiple comparisons.

data: Conc

Test Statistic = 6.2886, p-value = 1.506e-08

data: log10(Conc)

Test Statistic = 5.4309, p-value = 3.001e-07

Levene's test by Depth

data: Conc

Test Statistic = 2.5816, p-value = 0.0777

data: log10(Conc)

Test Statistic = 1.5362, p-value = 0.2173

Levene's test by Side

data: Conc

Test Statistic = 2.7715, p-value = 0.06453

data: log10(Conc)

Test Statistic = 2.5077, p-value = 0.08354

Kruskal-Wallis rank sum test

data: Conc and Transect

Kruskal-Wallis chi-squared = 76.4125, df = 10, p-value = 2.525e-12

Dependent Variable Antimony, dissolved

Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.234

The p-value is 0.889 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 3.429

The p-value is 0.180 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.756

The p-value is 0.685 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 0.202

The p-value is 0.904 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.570

The p-value is 0.752 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 3.627

The p-value is 0.163 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 5.143

The p-value is 0.076 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 12.253

The p-value is 0.002 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 0.969

The p-value is 0.616 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 0.518

The p-value is 0.772 assuming chi-square distribution with 2 df.

P-values reported are not adjusted for multiple comparisons.

Dependent Variable Antimony, dissolved SIDE\$

Grouping Variable

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.025

The p-value is 0.874 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 0.048

The p-value is 0.827 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 2.156

The p-value is 0.340 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 0.363

The p-value is 0.834 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.460

The p-value is 0.794 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 0.820

The p-value is 0.664 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 0.528

The p-value is 0.768 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 1.383

The p-value is 0.501 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 0.860

The p-value is 0.651 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 0.454

The p-value is 0.501 assuming chi-square distribution with 1 df.

P-values reported are not adjusted for multiple comparisons.

data: Conc

Test Statistic = 5.2381, p-value = 5.893e-07

data: log10(Conc)

Test Statistic = 5.2771, p-value = 5.141e-07

Levene's test by Depth

data: Conc

Test Statistic = 0.936, p-value = 0.3936

data: log10(Conc)

Test Statistic = 0.2866, p-value = 0.7511

Levene's test by Side

data: Conc

Test Statistic = 3.2817, p-value = 0.03922

data: log10(Conc)

Test Statistic = 2.5337, p-value = 0.08144

Kruskal-Wallis rank sum test

data: Conc and Transect

Kruskal-Wallis chi-squared = 76.4365, df = 10, p-value = 2.498e-12

Dependent Variable Antimony, total

Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.492

The p-value is 0.782 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 1.838

The p-value is 0.399 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.116

The p-value is 0.944 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 0.323

The p-value is 0.851 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.856

The p-value is 0.652 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 1.634

The p-value is 0.442 assuming chi-square distribution with 2 df.

Results for TRANSECTS = TC5

Kruskal-Wallis Test Statistic: 4.761

The p-value is 0.093 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 13.205

The p-value is 0.001 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 3.253

The p-value is 0.197 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 1.522

The p-value is 0.467 assuming chi-square distribution with 2 df.

P-values reported are not adjusted for multiple comparisons.

Dependent Variable Antimony, total

Grouping Variable

SIDE\$
Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.011

The p-value is 0.916 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 0.441

The p-value is 0.507 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 2.608

The p-value is 0.271 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 0.479

The p-value is 0.787 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.097

The p-value is 0.953 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 2.007

The p-value is 0.367 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 1.054

The p-value is 0.590 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 3.167

The p-value is 0.205 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 2.091

The p-value is 0.352 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 2.373

The p-value is 0.123 assuming chi-square distribution with 1 df.

P-values reported are not adjusted for multiple comparisons.

data: Conc

Test Statistic = 3.8535, p-value = 7.359e-05

data: log10(Conc)

Test Statistic = 5.9824, p-value = 4.224e-08

Levene's test by Depth

data: Conc

Test Statistic = 3.0427, p-value = 0.04948

data: log10(Conc)

Test Statistic = 3.2855, p-value = 0.03904

Levene's test by Side

data: Conc

Test Statistic = 1.3326, p-value = 0.2657

data: log10(Conc)

Test Statistic = 1.4994, p-value = 0.2253

Kruskal-Wallis rank sum test

data: Conc and Transect

Kruskal-Wallis chi-squared = 118.5655, df = 10, p-value < 2.2e-16

Dependent Variable Arsenic, dissolved

Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.038

The p-value is 0.981 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 2.000

The p-value is 0.368 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 1.970

The p-value is 0.373 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 1.275

The p-value is 0.529 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.105

The p-value is 0.949 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 0.808

The p-value is 0.668 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 3.009

The p-value is 0.222 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 8.820

The p-value is 0.012 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 1.543

The p-value is 0.462 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 0.816

The p-value is 0.665 assuming chi-square distribution with 2 df.

Dependent Variable Arsenic, dissolved

Grouping Variable

SIDE\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.002

The p-value is 0.964 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 1.000

The p-value is 0.317 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.752

The p-value is 0.687 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 0.368

The p-value is 0.832 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 4.009

The p-value is 0.135 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 3.339

The p-value is 0.188 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 1.622

The p-value is 0.444 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 3.889

The p-value is 0.143 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 0.258

The p-value is 0.879 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 7.993

The p-value is 0.005 assuming chi-square distribution with 1 df.

P-values reported are not adjusted for multiple comparisons.

```
Levene's test by Transect
```

data: Conc

Test Statistic = 3.8326, p-value = 7.937e-05

data: log10(Conc)

Test Statistic = 4.9891, p-value = 1.386e-06

Levene's test by Depth

data: Conc

Test Statistic = 8.7198, p-value = 0.0002187

data: log10(Conc)

Test Statistic = 8.7769, p-value = 0.0002073

Levene's test by Side

data: Conc

Test Statistic = 3.1578, p-value = 0.04423

data: log10(Conc)

Test Statistic = 6.0033, p-value = 0.002842

Kruskal-Wallis rank sum test

data: Conc and Transect

Kruskal-Wallis chi-squared = 122.0399, df = 10, p-value < 2.2e-16

Dependent Variable Inorganic arsenic, dissolved Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 1.133

The p-value is 0.568 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 3.714

The p-value is 0.156 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 1.869

The p-value is 0.393 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 0.151

The p-value is 0.927 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.492

The p-value is 0.782 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 0.615

The p-value is 0.735 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 6.271

The p-value is 0.043 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 15.497

The p-value is 0.000 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 3.487

The p-value is 0.175 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 3.069

The p-value is 0.216 assuming chi-square distribution with 2 df.

Dependent Variable Inorganic arsenic, dissolved Grouping Variable SIDE\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.564

The p-value is 0.453 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 0.048

The p-value is 0.827 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 5.993

The p-value is 0.050 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 0.182

The p-value is 0.913 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.011

The p-value is 0.995 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 0.436

The p-value is 0.804 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 4.800

The p-value is 0.091 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 1.330

The p-value is 0.514 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 0.579

The p-value is 0.748 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 9.199

The p-value is 0.002 assuming chi-square distribution with 1 df.

P-values reported are not adjusted for multiple comparisons.

data: Conc

Test Statistic = 5.7172, p-value = 1.077e-07

data: log10(Conc)

Test Statistic = 4.4464, p-value = 9.311e-06

Levene's test by Depth

data: Conc

Test Statistic = 9.1822, p-value = 0.000142

data: log10(Conc)

Test Statistic = 9.3232, p-value = 0.0001246

Levene's test by Side

data: Conc

Test Statistic = 2.7919, p-value = 0.06323

data: log10(Conc)

Test Statistic = 5.2764, p-value = 0.005698

Kruskal-Wallis rank sum test

data: Conc and Transect

Kruskal-Wallis chi-squared = 110.5829, df = 10, p-value < 2.2e-16

Dependent Variable Inorganic arsenic, total Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.495

The p-value is 0.781 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 0.000

The p-value is 1.000 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 1.016

The p-value is 0.602 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 1.356

The p-value is 0.508 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.320

The p-value is 0.852 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 2.554

The p-value is 0.279 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 4.916

The p-value is 0.086 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 10.030

The p-value is 0.007 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 4.006

The p-value is 0.135 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 4.970

The p-value is 0.083 assuming chi-square distribution with 2 df.

Dependent Variable Inorganic arsenic, total

Grouping Variable SIDE\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 1.643

The p-value is 0.200 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 0.048

The p-value is 0.827 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 3.705

The p-value is 0.157 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 0.219

The p-value is 0.896 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.450

The p-value is 0.799 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 0.630

The p-value is 0.730 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 3.796

The p-value is 0.150 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 0.736

The p-value is 0.692 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 0.135

The p-value is 0.935 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 5.340

The p-value is 0.021 assuming chi-square distribution with 1 df.

P-values reported are not adjusted for multiple comparisons.

data: Conc

Test Statistic = 7.8753, p-value = 6.118e-11

data: log10(Conc)

Test Statistic = 7.2534, p-value = 5.135e-10

Levene's test by Depth

data: Conc

Test Statistic = 6.663, p-value = 0.001516

data: log10(Conc)

Test Statistic = 10.632, p-value = 3.702e-05

Levene's test by Side

data: Conc

Test Statistic = 2.0147, p-value = 0.1355

data: log10(Conc)

Test Statistic = 3.6318, p-value = 0.02788

Kruskal-Wallis rank sum test

data: Conc and Transect

Kruskal-Wallis chi-squared = 141.3335, df = 10, p-value < 2.2e-16

Dependent Variable Barium, dissolved

Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 1.256

The p-value is 0.534 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 3.603

The p-value is 0.165 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.653

The p-value is 0.721 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 0.222

The p-value is 0.895 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.114

The p-value is 0.945 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 2.310

The p-value is 0.315 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 4.109

The p-value is 0.128 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 8.874

The p-value is 0.012 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 4.122

The p-value is 0.127 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 0.903

The p-value is 0.637 assuming chi-square distribution with 2 df.

Dependent Variable Barium, dissolved

Grouping Variable

SIDE\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.018

The p-value is 0.894 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 0.441

The p-value is 0.507 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 6.322

The p-value is 0.042 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 0.175

The p-value is 0.916 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.190

The p-value is 0.909 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 5.003

The p-value is 0.082 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 0.209

The p-value is 0.901 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 2.845

The p-value is 0.241 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 0.160

The p-value is 0.923 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 10.704

The p-value is 0.001 assuming chi-square distribution with 1 df.

P-values reported are not adjusted for multiple comparisons.

Levene's test by Transect
data: Conc
Test Statistic = 9.0002, p-value = 1.385e-12

data: log10(Conc)
Test Statistic = 8.5633, p-value = 5.973e-12

Levene's test by Depth
data: Conc
Test Statistic = 7.4886, p-value = 0.0006942

data: log10(Conc)
Test Statistic = 11.2542, p-value = 2.089e-05

Levene's test by Side
data: Conc
Test Statistic = 1.6631, p-value = 0.1916

data: log10(Conc)
Test Statistic = 3.0486, p-value = 0.04919

Kruskal-Wallis rank sum test
data: Conc and Transect
Kruskal-Wallis chi-squared = 139.3329, df = 10, p-value < 2.2e-16</pre>

Dependent Variable Barium, total Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.091

The p-value is 0.955 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 2.721

The p-value is 0.257 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.471

The p-value is 0.790 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 0.182

The p-value is 0.913 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.295

The p-value is 0.863 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 2.563

The p-value is 0.278 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 3.584

The p-value is 0.167 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 7.925

The p-value is 0.019 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 3.122

The p-value is 0.210 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 1.348

The p-value is 0.510 assuming chi-square distribution with 2 df.

P-values reported are not adjusted for multiple comparisons. Adjusted significance level is 0.05 / 10 = 0.005.

Dependent Variable Barium, total

SIDE\$

Grouping Variable

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.951

The p-value is 0.329 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 1.765

The p-value is 0.184 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 5.900

The p-value is 0.052 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 0.237

The p-value is 0.888 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.338

The p-value is 0.844 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 7.133

The p-value is 0.028 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 0.912

The p-value is 0.634 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 1.189

The p-value is 0.552 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 0.108

The p-value is 0.947 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 12.000

The p-value is 0.001 assuming chi-square distribution with 1 df.

P-values reported are not adjusted for multiple comparisons.

Adjusted significance level is 0.05 / 10 = 0.005.

data: Conc

Test Statistic = 4.647, p-value = 4.584e-06

data: log10(Conc)

Test Statistic = 1.8463, p-value = 0.05357

Levene's test by Depth

data: Conc

Test Statistic = 4.3202, p-value = 0.0143

data: log10(Conc)

Test Statistic = 2.7802, p-value = 0.06395

Levene's test by Side

data: Conc

Test Statistic = 0.596, p-value = 0.5518

data: log10(Conc)

Test Statistic = 0.8329, p-value = 0.436

Standard ANOVA-log10 - full model

Df Sum Sq Mean Sq F value Pr(>F)
Transect 10 3.176 0.3176 7.895 1.86e-10 ***
Transect:Depth 20 1.031 0.0515 1.281 0.197
Transect:Side 17 0.311 0.0183 0.455 0.969
Transect:Depth:Side 27 0.652 0.0241 0.600 0.941
Residuals 178 7.161 0.0402

Df Sum Sq Mean Sq F value Pr(>F)
Transect 10 3.176 0.3176 8.334 2.54e-11 ***
Transect:Depth 20 1.031 0.0515 1.353 0.15
Transect:Side 17 0.311 0.0183 0.481 0.96
Residuals 205 7.812 0.0381

Levene's test by Transect
data: Conc
Test Statistic = 1.8261, p-value = 0.0568

data: log10(Conc)
Test Statistic = 1.9093, p-value = 0.04455

Levene's test by Depth
data: Conc
Test Statistic = 5.6294, p-value = 0.004061

data: log10(Conc)
Test Statistic = 4.6889, p-value = 0.01002

Levene's test by Side

data: Conc

Test Statistic = 1.7534, p-value = 0.1753

data: log10(Conc)

Test Statistic = 2.7055, p-value = 0.0688

Kruskal-Wallis rank sum test

data: Conc and Transect

Kruskal-Wallis chi-squared = 72.5487, df = 10, p-value = 1.424e-11

Dependent Variable Cadmium, total

Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.047

The p-value is 0.977 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 1.397

The p-value is 0.497 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 1.010

The p-value is 0.603 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 0.492

The p-value is 0.782 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 2.879

The p-value is 0.237 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 1.352

The p-value is 0.509 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 5.102

The p-value is 0.078 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 7.600

The p-value is 0.022 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 0.478

The p-value is 0.787 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 1.203

The p-value is 0.548 assuming chi-square distribution with 2 df.

P-values reported are not adjusted for multiple comparisons. Adjusted significance level is 0.05 / 10 = 0.005.

Dependent Variable Cadmium, total

Grouping Variable

SIDE\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.008

The p-value is 0.929 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 3.137

The p-value is 0.077 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.886

The p-value is 0.642 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 1.806

The p-value is 0.405 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.562

The p-value is 0.755 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 1.223

The p-value is 0.543 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 0.738

The p-value is 0.692 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 0.218

The p-value is 0.897 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 0.902

The p-value is 0.637 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 4.119

The p-value is 0.042 assuming chi-square distribution with 1 df.

 $\ensuremath{\text{P-values}}$ reported are not adjusted for multiple comparisons.

Adjusted significance level is 0.05 / 10 = 0.005.

data: Conc

Test Statistic = 1.6364, p-value = 0.09699

data: log10(Conc)

Test Statistic = 1.5707, p-value = 0.1159

Levene's test by Depth

data: Conc

Test Statistic = 0.253, p-value = 0.7766

data: log10(Conc)

Test Statistic = 0.3889, p-value = 0.6782

Levene's test by Side

data: Conc

Test Statistic = 0.1434, p-value = 0.8664

data: log10(Conc)

Test Statistic = 0.1624, p-value = 0.8502

Standard ANOVA - full model

Df Sum Sq Mean Sq F value Pr(>F)
Transect
10 102277583 10227758 3.523 0.000288 ***
Transect:Depth 20 14979626 748981 0.258 0.999539
Transect:Side 17 10203050 600179 0.207 0.999736
Transect:Depth:Side 27 9021357 334124 0.115 1.000000
Residuals 178 516754273 2903114

Df Sum Sq Mean Sq F value Pr(>F)
Transect 10 102277583 10227758 3.988 5.36e-05 ***
Transect:Depth 20 14979626 748981 0.292 0.999
Transect:Side 17 10203050 600179 0.234 0.999
Residuals 205 525775630 2564759

data: Conc

Test Statistic = 1.9156, p-value = 0.04374

data: log10(Conc)

Test Statistic = 1.8997, p-value = 0.04582

Levene's test by Depth

data: Conc

Test Statistic = 0.4707, p-value = 0.6251

data: log10(Conc)

Test Statistic = 0.7059, p-value = 0.4946

Levene's test by Side

data: Conc

Test Statistic = 0.1751, p-value = 0.8395

data: log10(Conc)

Test Statistic = 0.1844, p-value = 0.8317

Kruskal-Wallis rank sum test

data: Conc and Transect

Kruskal-Wallis chi-squared = 34.0358, df = 10, p-value = 0.0001821

Dependent Variable Calcium, total

Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.225

The p-value is 0.893 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 2.803

The p-value is 0.246 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.839

The p-value is 0.657 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 0.202

The p-value is 0.904 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.686

The p-value is 0.710 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 0.174

The p-value is 0.917 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 1.007

The p-value is 0.604 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 1.884

The p-value is 0.390 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 2.012

The p-value is 0.366 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 0.483

The p-value is 0.785 assuming chi-square distribution with 2 df.

P-values reported are not adjusted for multiple comparisons. Adjusted significance level is 0.05 / 10 = 0.005.

Dependent Variable Calcium, total

Grouping Variable

SIDE\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.097

The p-value is 0.756 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 1.263

The p-value is 0.261 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.823

The p-value is 0.663 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 0.245

The p-value is 0.885 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 1.160

The p-value is 0.560 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 0.231

The p-value is 0.891 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 0.768

The p-value is 0.681 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 0.870

The p-value is 0.647 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 0.081

The p-value is 0.960 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 1.822

The p-value is 0.177 assuming chi-square distribution with 1 df.

P-values reported are not adjusted for multiple comparisons.

Adjusted significance level is 0.05 / 10 = 0.005.

data: Conc

Test Statistic = 0.5706, p-value = 0.779

data: log10(Conc)

Test Statistic = 0.9811, p-value = 0.4471

Levene's test by Depth

data: Conc

Test Statistic = 8.4278, p-value = 0.0003337

data: log10(Conc)

Test Statistic = 10.7039, p-value = 4.387e-05

Levene's test by Side

data: Conc

Test Statistic = 0.5319, p-value = 0.5885

data: log10(Conc)

Test Statistic = 2.3533, p-value = 0.0984

Kruskal-Wallis rank sum test

data: Conc and Transect

Kruskal-Wallis chi-squared = 30.766, df = 7, p-value = 6.867e-05

Dependent Variable Cerium, total

Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.115

The p-value is 0.944 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 4.333

The p-value is 0.115 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.979

The p-value is 0.613 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 1.800

The p-value is 0.407 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 6.753

The p-value is 0.034 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 7.636

The p-value is 0.022 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 9.529

The p-value is 0.009 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 1.196

The p-value is 0.550 assuming chi-square distribution with 2 df.

P-values reported are not adjusted for multiple comparisons. Adjusted significance level is 0.05 / 8 = 0.00625.

Dependent Variable Cerium, total

Grouping Variable SIDE\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.566

The p-value is 0.452 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 0.222

The p-value is 0.637 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 1.697

The p-value is 0.428 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 1.800

The p-value is 0.180 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.973

The p-value is 0.615 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 2.003

The p-value is 0.367 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 0.641

The p-value is 0.726 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 2.527

The p-value is 0.112 assuming chi-square distribution with 1 df.

P-values reported are not adjusted for multiple comparisons.

Adjusted significance level is 0.05 / 8 = 0.00625.

data: Conc

Test Statistic = 4.6963, p-value = 8.58e-05

data: log10(Conc)

Test Statistic = 2.6413, p-value = 0.01324

Levene's test by Depth

data: Conc

Test Statistic = 0.0579, p-value = 0.9438

data: log10(Conc)

Test Statistic = 0.4482, p-value = 0.6396

Levene's test by Side

data: Conc

Test Statistic = 0.3778, p-value = 0.686

data: log10(Conc)

Test Statistic = 0.7658, p-value = 0.4667

Kruskal-Wallis rank sum test

data: Conc and Transect

Kruskal-Wallis chi-squared = 34.9843, df = 7, p-value = 1.126e-05

Dependent Variable Cesium, dissolved

Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 1.417

The p-value is 0.492 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 0.000

The p-value is 1.000 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.618

The p-value is 0.734 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 0.000

The p-value is 1.000 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.412

The p-value is 0.814 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 0.520

The p-value is 0.771 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 6.562

The p-value is 0.038 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 3.279

The p-value is 0.194 assuming chi-square distribution with 2 df.

P-values reported are not adjusted for multiple comparisons. Adjusted significance level is 0.05 / 8 = 0.00625.

Dependent Variable Cesium, dissolved

Grouping Variable SIDE\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.944

The p-value is 0.331 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 0.000

The p-value is 1.000 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 2.070

The p-value is 0.355 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 0.000

The p-value is 1.000 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.279

The p-value is 0.870 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 0.529

The p-value is 0.767 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 3.263

The p-value is 0.196 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 1.445

The p-value is 0.229 assuming chi-square distribution with 1 df.

P-values reported are not adjusted for multiple comparisons.

Adjusted significance level is 0.05 / 8 = 0.00625.

data: Conc

Test Statistic = 0.7079, p-value = 0.6654

data: log10(Conc)

Test Statistic = 1.9455, p-value = 0.06614

Levene's test by Depth

data: Conc

Test Statistic = 3.4255, p-value = 0.03498

data: log10(Conc)

Test Statistic = 2.3371, p-value = 0.09996

Levene's test by Side

data: Conc

Test Statistic = 0.2665, p-value = 0.7664

data: log10(Conc)

Test Statistic = 0.0085, p-value = 0.9916

Standard ANOVA-log10 - full model

Df Sum Sq Mean Sq F value Pr(>F)
Transect 7 0.8943 0.12775 6.040 6.12e-06 ***
Transect:Depth 16 0.6314 0.03946 1.866 0.0318 *
Transect:Side 12 0.3320 0.02767 1.308 0.2247
Transect:Depth:Side 18 0.4147 0.02304 1.089 0.3730
Residuals 106 2.2420 0.02115

Df Sum Sq Mean Sq F value Pr(>F)
Transect 7 0.8943 0.12775 5.963 5.39e-06 ***
Transect:Depth 16 0.6314 0.03946 1.842 0.0326 *
Transect:Side 12 0.3320 0.02767 1.291 0.2317

Residuals 124 2.6567 0.02142

data: Conc

Test Statistic = 0.6353, p-value = 0.7825

data: log10(Conc)

Test Statistic = 1.5247, p-value = 0.1326

Levene's test by Depth

data: Conc

Test Statistic = 9.0586, p-value = 0.0001684

data: log10(Conc)

Test Statistic = 8.9161, p-value = 0.0001921

Levene's test by Side

data: Conc

Test Statistic = 1.3427, p-value = 0.2634

data: log10(Conc)

Test Statistic = 1.9724, p-value = 0.1417

Kruskal-Wallis rank sum test

data: Conc and Transect

Kruskal-Wallis chi-squared = 48.5875, df = 10, p-value = 4.847e-07

Dependent Variable Cobalt, total

Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 1.136

The p-value is 0.567 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 1.397

The p-value is 0.497 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.230

The p-value is 0.891 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 2.451

The p-value is 0.294 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 5.951

The p-value is 0.051 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 6.660

The p-value is 0.036 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 4.995

The p-value is 0.082 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 5.887

The p-value is 0.053 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 0.041

The p-value is 0.980 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 0.386

The p-value is 0.824 assuming chi-square distribution with 2 df.

P-values reported are not adjusted for multiple comparisons. Adjusted significance level is 0.05 / 10 = 0.005.

Dependent Variable Cobalt, total

SIDE\$

Grouping Variable

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 1.559

The p-value is 0.212 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 1.225

The p-value is 0.268 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 1.804

The p-value is 0.406 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 2.851

The p-value is 0.240 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.913

The p-value is 0.634 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 1.551

The p-value is 0.460 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 0.584

The p-value is 0.747 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 1.046

The p-value is 0.593 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 4.103

The p-value is 0.129 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 2.700

The p-value is 0.100 assuming chi-square distribution with 1 df.

 $\ensuremath{\text{P-values}}$ reported are not adjusted for multiple comparisons.

Adjusted significance level is 0.05 / 10 = 0.005.

Levene's test by Transect data: Conc Test Statistic = 1.0059, p-value = 0.439 data: log10(Conc) Test Statistic = 2.2361, p-value = 0.01652 Levene's test by Depth data: Conc Test Statistic = 2.7936, p-value = 0.06312 data: log10(Conc) Test Statistic = 2.975, p-value = 0.05287 Levene's test by Side data: Conc Test Statistic = 1.2084, p-value = 0.3004 data: log10(Conc) Test Statistic = 1.8871, p-value = 0.1537 Kruskal-Wallis rank sum test data: Conc and Transect

Kruskal-Wallis chi-squared = 62.9599, df = 10, p-value = 9.937e-10

Dependent Variable Copper, total

Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 2.878

The p-value is 0.237 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 0.515

The p-value is 0.773 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.406

The p-value is 0.816 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 6.598

The p-value is 0.037 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 4.128

The p-value is 0.127 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 5.565

The p-value is 0.062 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 8.642

The p-value is 0.013 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 3.207

The p-value is 0.201 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 1.757

The p-value is 0.415 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 2.338

The p-value is 0.311 assuming chi-square distribution with 2 df.

P-values reported are not adjusted for multiple comparisons. Adjusted significance level is 0.05 / 10 = 0.005.

Dependent Variable Copper, total SIDE\$

Grouping Variable

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.199

The p-value is 0.655 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 3.971

The p-value is 0.046 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 2.018

The p-value is 0.365 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 1.695

The p-value is 0.428 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.586

The p-value is 0.746 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 3.044

The p-value is 0.218 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 0.177

The p-value is 0.915 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 1.478

The p-value is 0.478 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 1.306

The p-value is 0.521 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 7.268

The p-value is 0.007 assuming chi-square distribution with 1 df.

P-values reported are not adjusted for multiple comparisons.

Adjusted significance level is 0.05 / 10 = 0.005.

Test Statistic = 4.5679, p-value = 0.0001179

data: log10(Conc)

Test Statistic = 3.9274, p-value = 0.000575

Levene's test by Depth

data: Conc

Test Statistic = 0.5093, p-value = 0.6019

data: log10(Conc)

Test Statistic = 0.348, p-value = 0.7067

Levene's test by Side

data: Conc

Test Statistic = 0.8797, p-value = 0.417

data: log10(Conc)

Test Statistic = 1.1245, p-value = 0.3274

Kruskal-Wallis rank sum test

data: Conc and Transect

Kruskal-Wallis chi-squared = 30.4217, df = 7, p-value = 7.945e-05

Dependent Variable Europium, dissolved

Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 2.000

The p-value is 0.368 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 2.000

The p-value is 0.368 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 3.275

The p-value is 0.194 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 2.700

The p-value is 0.259 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.585

The p-value is 0.747 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 0.828

The p-value is 0.661 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 4.078

The p-value is 0.130 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 1.406

The p-value is 0.495 assuming chi-square distribution with 2 df.

P-values reported are not adjusted for multiple comparisons. Adjusted significance level is 0.05 / 8 = 0.00625.

Dependent Variable Europium, dissolved

Grouping Variable SIDE\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 1.000

The p-value is 0.317 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 1.000

The p-value is 0.317 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 1.969

The p-value is 0.374 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 0.200

The p-value is 0.655 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 1.657

The p-value is 0.437 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 0.603

The p-value is 0.740 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 0.069

The p-value is 0.966 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 7.299

The p-value is 0.007 assuming chi-square distribution with 1 df.

P-values reported are not adjusted for multiple comparisons.

Adjusted significance level is 0.05 / 8 = 0.00625.

Levene's test by Transect data: Conc

Test Statistic = 2.5785, p-value = 0.01537

data: log10(Conc)

Test Statistic = 3.9494, p-value = 0.0005445

Levene's test by Depth

data: Conc

Test Statistic = 2.7297, p-value = 0.06833

data: log10(Conc)

Test Statistic = 0.3742, p-value = 0.6884

Levene's test by Side

data: Conc

Test Statistic = 0.456, p-value = 0.6346

data: log10(Conc)

Test Statistic = 0.901, p-value = 0.4083

Kruskal-Wallis rank sum test

data: Conc and Transect

Kruskal-Wallis chi-squared = 32.5567, df = 7, p-value = 3.201e-05

Dependent Variable Europium, total

Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 1.429

The p-value is 0.490 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 2.000

The p-value is 0.368 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.001

The p-value is 0.999 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 3.000

The p-value is 0.223 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 1.985

The p-value is 0.371 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 2.270

The p-value is 0.321 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 3.978

The p-value is 0.137 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 3.497

The p-value is 0.174 assuming chi-square distribution with 2 df.

P-values reported are not adjusted for multiple comparisons. Adjusted significance level is 0.05 / 8 = 0.00625.

Dependent Variable Europium, total

Grouping Variable SIDE\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.905

The p-value is 0.341 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 1.000

The p-value is 0.317 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.945

The p-value is 0.623 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 0.000

The p-value is 1.000 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.498

The p-value is 0.780 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 1.168

The p-value is 0.558 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 0.070

The p-value is 0.965 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 6.499

The p-value is 0.011 assuming chi-square distribution with 1 df.

P-values reported are not adjusted for multiple comparisons.

Adjusted significance level is 0.05 / 8 = 0.00625.

Levene's test by Transect
data: Conc
Test Statistic = 0.626, p-value = 0.7911

data: log10(Conc)
Test Statistic = 0.5394, p-value = 0.8612

Levene's test by Depth
data: Conc
Test Statistic = 11.6668, p-value = 1.435e-05

data: log10(Conc)
Test Statistic = 12.0159, p-value = 1.043e-05

Levene's test by Side
data: Conc
Test Statistic = 1.0453, p-value = 0.3531

data: log10(Conc)
Test Statistic = 3.4471, p-value = 0.03336

Kruskal-Wallis rank sum test
data: Conc and Transect
Kruskal-Wallis chi-squared = 58.1955, df = 10, p-value = 7.942e-09

Dependent Variable Iron, total Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.292

The p-value is 0.864 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 4.191

The p-value is 0.123 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.364

The p-value is 0.833 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 4.074

The p-value is 0.130 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 5.514

The p-value is 0.063 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 6.855

The p-value is 0.032 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 20.670

The p-value is 0.000 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 8.329

The p-value is 0.016 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 9.592

The p-value is 0.008 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 2.170

The p-value is 0.338 assuming chi-square distribution with 2 df.

P-values reported are not adjusted for multiple comparisons.

Adjusted significance level is 0.05 / 10 = 0.005.

Dependent Variable Iron, total SIDE\$

Grouping Variable

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.236

The p-value is 0.627 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 0.196

The p-value is 0.658 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.791

The p-value is 0.673 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 0.591

The p-value is 0.744 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.269

The p-value is 0.874 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 7.680

The p-value is 0.021 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 1.821

The p-value is 0.402 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 1.345

The p-value is 0.510 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 1.444

The p-value is 0.486 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 7.259

The p-value is 0.007 assuming chi-square distribution with 1 df.

P-values reported are not adjusted for multiple comparisons.

Adjusted significance level is 0.05 / 10 = 0.005.

data: Conc

Test Statistic = 0.6844, p-value = 0.6851

data: log10(Conc)

Test Statistic = 1.0706, p-value = 0.3851

Levene's test by Depth

data: Conc

Test Statistic = 7.2497, p-value = 0.0009739

data: log10(Conc)

Test Statistic = 6.7345, p-value = 0.001563

Levene's test by Side

data: Conc

Test Statistic = 0.5384, p-value = 0.5848

data: log10(Conc)

Test Statistic = 1.5385, p-value = 0.2179

Kruskal-Wallis rank sum test

data: Conc and Transect

Kruskal-Wallis chi-squared = 26.8334, df = 7, p-value = 0.0003571

Dependent Variable Lanthanum, total

Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.153

The p-value is 0.926 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 2.903

The p-value is 0.234 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.415

The p-value is 0.813 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 0.917

The p-value is 0.632 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 4.151

The p-value is 0.125 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 5.893

The p-value is 0.053 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 6.152

The p-value is 0.046 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 0.953

The p-value is 0.621 assuming chi-square distribution with 2 df.

P-values reported are not adjusted for multiple comparisons. Adjusted significance level is 0.05 / 8 = 0.00625.

Dependent Variable Lanthanum, total

Grouping Variable SIDE\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.708

The p-value is 0.400 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 1.344

The p-value is 0.246 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 1.505

The p-value is 0.471 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 2.000

The p-value is 0.157 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 1.209

The p-value is 0.546 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 2.313

The p-value is 0.315 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 0.307

The p-value is 0.858 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 1.708

The p-value is 0.191 assuming chi-square distribution with 1 df.

P-values reported are not adjusted for multiple comparisons.

Adjusted significance level is 0.05 / 8 = 0.00625.

data: Conc

Test Statistic = 1.352, p-value = 0.2036

data: log10(Conc)

Test Statistic = 0.7231, p-value = 0.7025

Levene's test by Depth

data: Conc

Test Statistic = 5.2394, p-value = 0.005902

data: log10(Conc)

Test Statistic = 4.7841, p-value = 0.009142

Levene's test by Side

data: Conc

Test Statistic = 0.5608, p-value = 0.5715

data: log10(Conc)

Test Statistic = 1.5893, p-value = 0.2061

Kruskal-Wallis rank sum test

data: Conc and Transect

Kruskal-Wallis chi-squared = 143.2217, df = 10, p-value < 2.2e-16

Dependent Variable Lead, total

Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.114

The p-value is 0.944 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 0.000

The p-value is 1.000 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 1.325

The p-value is 0.516 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 3.401

The p-value is 0.183 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 5.309

The p-value is 0.070 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 1.837

The p-value is 0.399 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 5.449

The p-value is 0.066 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 5.087

The p-value is 0.079 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 9.262

The p-value is 0.010 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 1.459

The p-value is 0.482 assuming chi-square distribution with 2 df.

P-values reported are not adjusted for multiple comparisons. Adjusted significance level is 0.05 / 10 = 0.005.

Dependent Variable Lead, total SIDE\$

Grouping Variable

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.565

The p-value is 0.452 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 2.333

The p-value is 0.127 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.255

The p-value is 0.880 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 1.916

The p-value is 0.384 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.207

The p-value is 0.902 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 6.096

The p-value is 0.047 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 0.142

The p-value is 0.931 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 0.709

The p-value is 0.701 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 1.612

The p-value is 0.447 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 0.148

The p-value is 0.700 assuming chi-square distribution with 1 df.

P-values reported are not adjusted for multiple comparisons.

data: Conc

Test Statistic = 3.2946, p-value = 0.0005055

data: log10(Conc)

Test Statistic = 3.2804, p-value = 0.0005307

Levene's test by Depth

data: Conc

Test Statistic = 0.3491, p-value = 0.7057

data: log10(Conc)

Test Statistic = 0.3754, p-value = 0.6874

Levene's test by Side

data: Conc

Test Statistic = 0.351, p-value = 0.7043

data: log10(Conc)

Test Statistic = 0.4557, p-value = 0.6345

Kruskal-Wallis rank sum test

data: Conc and Transect

Kruskal-Wallis chi-squared = 61.9755, df = 10, p-value = 1.53e-09

Dependent Variable Magnesium, dissolved

Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.504

The p-value is 0.777 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 2.721

The p-value is 0.257 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.736

The p-value is 0.692 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 1.057

The p-value is 0.589 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.744

The p-value is 0.689 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 0.205

The p-value is 0.902 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 0.798

The p-value is 0.671 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 0.228

The p-value is 0.892 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 0.269

The p-value is 0.874 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 0.505

The p-value is 0.777 assuming chi-square distribution with 2 df.

P-values reported are not adjusted for multiple comparisons.

Dependent Variable Magnesium, dissolved

Grouping Variable

SIDE\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.008

The p-value is 0.930 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 0.784

The p-value is 0.376 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 6.566

The p-value is 0.038 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 0.091

The p-value is 0.956 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 2.410

The p-value is 0.300 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 1.828

The p-value is 0.401 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 0.058

The p-value is 0.971 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 0.152

The p-value is 0.927 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 0.126

The p-value is 0.939 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 6.750

The p-value is 0.009 assuming chi-square distribution with 1 df.

P-values reported are not adjusted for multiple comparisons.

data: Conc

Test Statistic = 2.676, p-value = 0.004025

data: log10(Conc)

Test Statistic = 2.5056, p-value = 0.00701

Levene's test by Depth

data: Conc

Test Statistic = 0.3286, p-value = 0.7203

data: log10(Conc)

Test Statistic = 0.307, p-value = 0.7359

Levene's test by Side

data: Conc

Test Statistic = 0.4292, p-value = 0.6515

data: log10(Conc)

Test Statistic = 0.5345, p-value = 0.5866

Kruskal-Wallis rank sum test

data: Conc and Transect

Kruskal-Wallis chi-squared = 61.5134, df = 10, p-value = 1.872e-09

Dependent Variable Magnesium, total

Grouping Variable DEPTH\$

- 1: 6 --

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.319

The p-value is 0.853 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 0.000

The p-value is 1.000 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.135

The p-value is 0.935 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 0.576

The p-value is 0.750 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 3.518

The p-value is 0.172 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 0.907

The p-value is 0.635 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 1.522

The p-value is 0.467 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 0.022

The p-value is 0.989 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 1.968

The p-value is 0.374 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 1.652

The p-value is 0.438 assuming chi-square distribution with 2 df.

P-values reported are not adjusted for multiple comparisons.

Dependent Variable Magnesium, total

Grouping Variable

SIDE\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.096

The p-value is 0.757 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 0.051

The p-value is 0.822 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 6.031

The p-value is 0.049 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 0.193

The p-value is 0.908 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 1.285

The p-value is 0.526 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 1.052

The p-value is 0.591 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 0.017

The p-value is 0.992 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 0.078

The p-value is 0.962 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 0.104

The p-value is 0.949 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 8.898

The p-value is 0.003 assuming chi-square distribution with 1 df.

P-values reported are not adjusted for multiple comparisons.

Levene's test by Transect data: Conc

Test Statistic = 0.9701, p-value = 0.4701

data: log10(Conc)

Test Statistic = 3.7576, p-value = 0.0001033

Levene's test by Depth

data: Conc

Test Statistic = 9.4836, p-value = 0.0001075

data: log10(Conc)

Test Statistic = 5.0952, p-value = 0.006783

Levene's test by Side

data: Conc

Test Statistic = 0.4719, p-value = 0.6244

data: log10(Conc)

Test Statistic = 0.9687, p-value = 0.381

Kruskal-Wallis rank sum test

data: Conc and Transect

Kruskal-Wallis chi-squared = 69.2262, df = 10, p-value = 6.253e-11

Dependent Variable Manganese, total

Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 1.116

The p-value is 0.572 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 0.857

The p-value is 0.651 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.215

The p-value is 0.898 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 4.740

The p-value is 0.093 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 7.078

The p-value is 0.029 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 3.686

The p-value is 0.158 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 18.287

The p-value is 0.000 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 6.179

The p-value is 0.046 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 5.200

The p-value is 0.074 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 1.607

The p-value is 0.448 assuming chi-square distribution with 2 df.

P-values reported are not adjusted for multiple comparisons.

Dependent Variable Manganese, total

Grouping Variable

SIDE\$
Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.330

The p-value is 0.566 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 3.857

The p-value is 0.050 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 2.149

The p-value is 0.342 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 2.396

The p-value is 0.302 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.269

The p-value is 0.874 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 5.228

The p-value is 0.073 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 0.238

The p-value is 0.888 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 0.430

The p-value is 0.807 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 1.004

The p-value is 0.605 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 8.920

The p-value is 0.003 assuming chi-square distribution with 1 df.

P-values reported are not adjusted for multiple comparisons.

data: Conc

Test Statistic = 2.0142, p-value = 0.0326

data: log10(Conc)

Test Statistic = 2.0794, p-value = 0.02676

Levene's test by Depth

data: Conc

Test Statistic = 0.9446, p-value = 0.3902

data: log10(Conc)

Test Statistic = 1.2517, p-value = 0.2878

Levene's test by Side

data: Conc

Test Statistic = 0.9327, p-value = 0.3949

data: log10(Conc)

Test Statistic = 0.8928, p-value = 0.4108

Kruskal-Wallis rank sum test

data: Conc and Transect

Kruskal-Wallis chi-squared = 31.7257, df = 10, p-value = 0.0004448

Dependent Variable Molybdenum, dissolved

Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.856

The p-value is 0.652 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 3.529

The p-value is 0.171 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 1.228

The p-value is 0.541 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 0.610

The p-value is 0.737 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.029

The p-value is 0.986 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 0.081

The p-value is 0.960 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 0.551

The p-value is 0.759 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 0.123

The p-value is 0.940 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 0.895

The p-value is 0.639 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 2.264

The p-value is 0.322 assuming chi-square distribution with 2 df.

P-values reported are not adjusted for multiple comparisons. Adjusted significance level is 0.05 / 10 = 0.005.

Dependent Variable Molybdenum, dissolved

Grouping Variable

SIDE\$
Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.008

The p-value is 0.930 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 0.784

The p-value is 0.376 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.258

The p-value is 0.879 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 1.538

The p-value is 0.463 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 5.596

The p-value is 0.061 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 0.254

The p-value is 0.881 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 2.025

The p-value is 0.363 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 0.505

The p-value is 0.777 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 0.609

The p-value is 0.737 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 3.004

The p-value is 0.083 assuming chi-square distribution with 1 df.

 $\ensuremath{\text{P-values}}$ reported are not adjusted for multiple comparisons.

data: Conc

Test Statistic = 3.27, p-value = 0.0005497

data: log10(Conc)

Test Statistic = 3.3696, p-value = 0.0003911

Levene's test by Depth

data: Conc

Test Statistic = 0.2382, p-value = 0.7882

data: log10(Conc)

Test Statistic = 0.7616, p-value = 0.468

Levene's test by Side

data: Conc

Test Statistic = 3.6866, p-value = 0.02643

data: log10(Conc)

Test Statistic = 3.2464, p-value = 0.04056

Kruskal-Wallis rank sum test

data: Conc and Transect

Kruskal-Wallis chi-squared = 30.0912, df = 10, p-value = 0.0008277

Dependent Variable Molybdenum, total

Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 3.287

The p-value is 0.193 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 0.857

The p-value is 0.651 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.899

The p-value is 0.638 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 0.490

The p-value is 0.783 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.174

The p-value is 0.917 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 5.000

The p-value is 0.082 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 0.115

The p-value is 0.944 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 1.178

The p-value is 0.555 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 0.822

The p-value is 0.663 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 0.921

The p-value is 0.631 assuming chi-square distribution with 2 df.

P-values reported are not adjusted for multiple comparisons. Adjusted significance level is 0.05 / 10 = 0.005.

Dependent Variable Molybdenum, total

SIDE\$

Grouping Variable

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.049

The p-value is 0.825 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 0.429

The p-value is 0.513 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 1.640

The p-value is 0.440 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 0.983

The p-value is 0.612 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 12.667

The p-value is 0.002 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 0.081

The p-value is 0.960 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 0.685

The p-value is 0.710 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 0.171

The p-value is 0.918 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 0.046

The p-value is 0.977 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 3.525

The p-value is 0.060 assuming chi-square distribution with 1 df.

 $\ensuremath{\text{P-values}}$ reported are not adjusted for multiple comparisons.

Levene's test by Transect

data: Conc

Test Statistic = 0.7127, p-value = 0.6613

data: log10(Conc)

Test Statistic = 1.8013, p-value = 0.09081

Levene's test by Depth

data: Conc

Test Statistic = 6.4761, p-value = 0.001984

data: log10(Conc)

Test Statistic = 2.9714, p-value = 0.05412

Levene's test by Side

data: Conc

data: log10(Conc)

Test Statistic = 0.9543, p-value = 0.3873

Test Statistic = 0.3416, p-value = 0.7111

Standard ANOVA-log10 - full model

Df Sum Sq Mean Sq F value Pr(>F)
Transect
7 2.081 0.29732 1.912 0.0747 .
Transect:Depth
16 3.052 0.19076 1.227 0.2602
Transect:Side
12 0.835 0.06962 0.448 0.9398
Transect:Depth:Side 18 1.546 0.08591 0.552 0.9249
Residuals
106 16.484 0.15551

Df Sum Sq Mean Sq F value Pr(>F)
Transect 7 2.081 0.29732 2.045 0.0546 .
Transect:Depth 16 3.052 0.19076 1.312 0.2002
Transect:Side 12 0.835 0.06962 0.479 0.9239
Residuals 124 18.030 0.14540

data: Conc

Test Statistic = 2.1427, p-value = 0.02207

data: log10(Conc)

Test Statistic = 2.8734, p-value = 0.002102

Levene's test by Depth

data: Conc

Test Statistic = 0.4483, p-value = 0.6392

data: log10(Conc)

Test Statistic = 0.5554, p-value = 0.5745

Levene's test by Side

data: Conc

Test Statistic = 2.4358, p-value = 0.08962

data: log10(Conc)

Test Statistic = 1.9166, p-value = 0.1493

Kruskal-Wallis rank sum test

data: Conc and Transect

Kruskal-Wallis chi-squared = 69.7947, df = 10, p-value = 4.857e-11

Dependent Variable Nickel, dissolved

Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.380

The p-value is 0.827 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 4.571

The p-value is 0.102 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.971

The p-value is 0.616 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 1.079

The p-value is 0.583 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 2.282

The p-value is 0.320 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 3.600

The p-value is 0.165 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 7.583

The p-value is 0.023 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 11.809

The p-value is 0.003 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 10.081

The p-value is 0.006 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 1.367

The p-value is 0.505 assuming chi-square distribution with 2 df.

P-values reported are not adjusted for multiple comparisons.

Dependent Variable Nickel, dissolved

Grouping Variable

SIDE\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.710

The p-value is 0.400 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 0.048

The p-value is 0.827 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.165

The p-value is 0.921 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 1.483

The p-value is 0.476 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 1.914

The p-value is 0.384 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 4.563

The p-value is 0.102 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 0.433

The p-value is 0.805 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 0.075

The p-value is 0.963 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 0.526

The p-value is 0.769 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 4.740

The p-value is 0.029 assuming chi-square distribution with 1 df.

P-values reported are not adjusted for multiple comparisons.

data: Conc

Test Statistic = 1.121, p-value = 0.3469

data: log10(Conc)

Test Statistic = 3.7424, p-value = 0.0001089

Levene's test by Depth

data: Conc

Test Statistic = 3.2396, p-value = 0.04084

data: log10(Conc)

Test Statistic = 0.1517, p-value = 0.8593

Levene's test by Side

data: Conc

Test Statistic = 2.0148, p-value = 0.1355

data: log10(Conc)

Test Statistic = 1.4356, p-value = 0.2399

Kruskal-Wallis rank sum test

data: Conc and Transect

Kruskal-Wallis chi-squared = 62.5542, df = 10, p-value = 1.187e-09

Dependent Variable Nickel, total

Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.432

The p-value is 0.806 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 1.591

The p-value is 0.451 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.495

The p-value is 0.781 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 1.498

The p-value is 0.473 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 5.001

The p-value is 0.082 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 8.898

The p-value is 0.012 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 8.168

The p-value is 0.017 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 11.163

The p-value is 0.004 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 9.298

The p-value is 0.010 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 1.964

The p-value is 0.375 assuming chi-square distribution with 2 df.

P-values reported are not adjusted for multiple comparisons.

Dependent Variable Nickel, total SIDE\$

Grouping Variable

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.635

The p-value is 0.426 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 0.808

The p-value is 0.369 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.373

The p-value is 0.830 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 1.360

The p-value is 0.506 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.075

The p-value is 0.963 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 6.975

The p-value is 0.031 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 0.615

The p-value is 0.735 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 0.011

The p-value is 0.994 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 1.030

The p-value is 0.598 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 6.518

The p-value is 0.011 assuming chi-square distribution with 1 df.

P-values reported are not adjusted for multiple comparisons.

Levene's test by Transect

data: Conc

Test Statistic = 8.4403, p-value = 9.035e-12

data: log10(Conc)

Test Statistic = 8.4994, p-value = 7.407e-12

Levene's test by Depth

data: Conc

Test Statistic = 3.9485, p-value = 0.0205

data: log10(Conc)

Test Statistic = 4.0286, p-value = 0.01897

Levene's test by Side

data: Conc

Test Statistic = 0.148, p-value = 0.8625

data: log10(Conc)

Test Statistic = 0.0533, p-value = 0.9481

Kruskal-Wallis rank sum test
data: Conc and Transect
Kruskal-Wallis chi-squared = 82.75, df = 10, p-value = 1.448e-13

Dependent Variable Potassium, dissolved Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.799

The p-value is 0.671 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 0.857

The p-value is 0.651 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.658

The p-value is 0.720 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 1.273

The p-value is 0.529 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.131

The p-value is 0.936 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 3.157

The p-value is 0.206 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 2.711

The p-value is 0.258 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 4.367

The p-value is 0.113 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 2.057

The p-value is 0.358 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 1.099

The p-value is 0.577 assuming chi-square distribution with 2 df.

P-values reported are not adjusted for multiple comparisons. Adjusted significance level is 0.05 / 10 = 0.005.

Dependent Variable Potassium, dissolved

Grouping Variable

SIDE\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.008

The p-value is 0.930 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 3.857

The p-value is 0.050 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.076

The p-value is 0.963 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 1.802

The p-value is 0.406 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.431

The p-value is 0.806 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 0.738

The p-value is 0.692 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 0.759

The p-value is 0.684 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 0.759

The p-value is 0.684 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 0.111

The p-value is 0.946 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 7.797

The p-value is 0.005 assuming chi-square distribution with 1 df.

P-values reported are not adjusted for multiple comparisons.

Levene's test by Transect
data: Conc
Test Statistic = 8.5946, p-value = 5.379e-12

data: log10(Conc)
Test Statistic = 8.6019, p-value = 5.248e-12

Levene's test by Depth
data: Conc
Test Statistic = 1.0131, p-value = 0.3646

data: log10(Conc)
Test Statistic = 0.2024, p-value = 0.8169

Levene's test by Side
data: Conc
Test Statistic = 0.6456, p-value = 0.5252

data: log10(Conc)

Test Statistic = 0.5764, p-value = 0.5626

Kruskal-Wallis rank sum test
data: Conc and Transect
Kruskal-Wallis chi-squared = 66.2862, df = 10, p-value = 2.299e-10

Dependent Variable Potassium, total Grouping Variable DEPTH\$

. . .

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 1.731

The p-value is 0.421 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 3.429

The p-value is 0.180 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.659

The p-value is 0.719 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 0.606

The p-value is 0.739 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 4.990

The p-value is 0.082 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 0.919

The p-value is 0.631 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 5.258

The p-value is 0.072 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 5.757

The p-value is 0.056 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 1.338

The p-value is 0.512 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 6.214

The p-value is 0.045 assuming chi-square distribution with 2 df.

P-values reported are not adjusted for multiple comparisons. Adjusted significance level is 0.05 / 10 = 0.005.

Dependent Variable Potassium, total

SIDE\$

Grouping Variable

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 3.947

The p-value is 0.047 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 0.429

The p-value is 0.513 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 2.938

The p-value is 0.230 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 3.234

The p-value is 0.199 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.201

The p-value is 0.904 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 2.529

The p-value is 0.282 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 0.338

The p-value is 0.845 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 0.364

The p-value is 0.834 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 0.111

The p-value is 0.946 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 4.083

The p-value is 0.043 assuming chi-square distribution with 1 df.

P-values reported are not adjusted for multiple comparisons.

data: Conc

Test Statistic = 0.7624, p-value = 0.6197

data: log10(Conc)

Test Statistic = 1.8551, p-value = 0.08076

Levene's test by Depth

data: Conc

Test Statistic = 6.2853, p-value = 0.002366

data: log10(Conc)

Test Statistic = 2.4229, p-value = 0.09197

Levene's test by Side

data: Conc

Test Statistic = 0.3214, p-value = 0.7256

data: log10(Conc)

Test Statistic = 0.3365, p-value = 0.7148

Standard ANOVA-log10 - full model

	Df	Sum Sq	Mean Sq F	value	Pr(>F)
Transect	7	1.600	0.22851	1.622	0.137
Transect:Depth	16	3.012	0.18827	1.337	0.189
Transect:Side	12	0.520	0.04333	0.308	0.987
Transect:Depth:Side	18	1.646	0.09146	0.649	0.852
Residuals	106	14.929	0.14084		

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Transect	7	1.600	0.22851	1.709	0.113
Transect:Depth	16	3.012	0.18827	1.408	0.148
Transect:Side	12	0.520	0.04333	0.324	0.984
Residuals	124	16.575	0.13367		

data: Conc

Test Statistic = 3.3101, p-value = 0.002628

data: log10(Conc)

Test Statistic = 2.9164, p-value = 0.006847

Levene's test by Depth

data: Conc

Test Statistic = 2.4839, p-value = 0.08669

data: log10(Conc)

Test Statistic = 2.5829, p-value = 0.07876

Levene's test by Side

data: Conc

Test Statistic = 1.0763, p-value = 0.3434

data: log10(Conc)

Test Statistic = 0.7023, p-value = 0.497

Kruskal-Wallis rank sum test

data: Conc and Transect

Kruskal-Wallis chi-squared = 34.7627, df = 7, p-value = 1.239e-05

Dependent Variable Rubidium, dissolved

Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.806

The p-value is 0.668 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 0.968

The p-value is 0.616 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.077

The p-value is 0.962 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 1.800

The p-value is 0.407 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 2.044

The p-value is 0.360 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 0.217

The p-value is 0.897 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 3.389

The p-value is 0.184 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 1.825

The p-value is 0.402 assuming chi-square distribution with 2 df.

P-values reported are not adjusted for multiple comparisons. Adjusted significance level is 0.05 / 8 = 0.00625.

Dependent Variable Rubidium, dissolved

Grouping Variable SIDE\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.642

The p-value is 0.423 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 0.054

The p-value is 0.817 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.852

The p-value is 0.653 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 0.200

The p-value is 0.655 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 2.979

The p-value is 0.225 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 0.565

The p-value is 0.754 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 0.630

The p-value is 0.730 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 5.126

The p-value is 0.024 assuming chi-square distribution with 1 df.

 $\ensuremath{\text{P-values}}$ reported are not adjusted for multiple comparisons.

data: Conc

Test Statistic = 1.3918, p-value = 0.2126

data: log10(Conc)

Test Statistic = 1.5828, p-value = 0.1445

Levene's test by Depth

data: Conc

Test Statistic = 5.309, p-value = 0.005874

data: log10(Conc)

Test Statistic = 4.1174, p-value = 0.01808

Levene's test by Side

data: Conc

Test Statistic = 1.0547, p-value = 0.3508

data: log10(Conc)

Test Statistic = 0.7872, p-value = 0.4569

Kruskal-Wallis rank sum test

data: Conc and Transect

Kruskal-Wallis chi-squared = 33.3425, df = 7, p-value = 2.286e-05

Dependent Variable Rubidium, total

Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.603

The p-value is 0.740 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 3.333

The p-value is 0.189 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.223

The p-value is 0.895 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 1.800

The p-value is 0.407 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 2.572

The p-value is 0.276 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 3.989

The p-value is 0.136 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 5.698

The p-value is 0.058 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 3.103

The p-value is 0.212 assuming chi-square distribution with 2 df.

P-values reported are not adjusted for multiple comparisons. Adjusted significance level is 0.05 / 8 = 0.00625.

Dependent Variable Rubidium, total

Grouping Variable SIDE\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.512

The p-value is 0.474 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 0.556

The p-value is 0.456 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 1.244

The p-value is 0.537 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 0.200

The p-value is 0.655 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 2.657

The p-value is 0.265 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 1.801

The p-value is 0.406 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 1.241

The p-value is 0.538 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 7.349

The p-value is 0.007 assuming chi-square distribution with 1 df.

P-values reported are not adjusted for multiple comparisons.

Adjusted significance level is 0.05 / 8 = 0.00625.

data: Conc

Test Statistic = 2.2543, p-value = 0.03284

data: log10(Conc)

Test Statistic = 2.8735, p-value = 0.007595

Levene's test by Depth

data: Conc

Test Statistic = 0.2765, p-value = 0.7588

data: log10(Conc)

Test Statistic = 0.2035, p-value = 0.8161

Levene's test by Side

data: Conc

Test Statistic = 0.3138, p-value = 0.7312

data: log10(Conc)

Test Statistic = 0.6073, p-value = 0.5461

Kruskal-Wallis rank sum test

data: Conc and Transect

Kruskal-Wallis chi-squared = 30.4754, df = 7, p-value = 7.767e-05

Dependent Variable Scandium, dissolved

Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.105

The p-value is 0.949 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 3.603

The p-value is 0.165 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.431

The p-value is 0.806 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 1.800

The p-value is 0.407 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.044

The p-value is 0.978 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 0.866

The p-value is 0.649 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 5.362

The p-value is 0.069 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 0.479

The p-value is 0.787 assuming chi-square distribution with 2 df.

P-values reported are not adjusted for multiple comparisons. Adjusted significance level is 0.05 / 8 = 0.00625.

Dependent Variable Scandium, dissolved

Grouping Variable SIDE\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.096

The p-value is 0.757 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 0.441

The p-value is 0.507 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 1.073

The p-value is 0.585 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 0.200

The p-value is 0.655 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.105

The p-value is 0.949 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 0.264

The p-value is 0.876 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 3.268

The p-value is 0.195 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 0.753

The p-value is 0.386 assuming chi-square distribution with 1 df.

P-values reported are not adjusted for multiple comparisons.

Adjusted significance level is 0.05 / 8 = 0.00625.

data: Conc

Test Statistic = 2.3377, p-value = 0.02707

data: log10(Conc)

Test Statistic = 2.7703, p-value = 0.009732

Levene's test by Depth

data: Conc

Test Statistic = 1.5582, p-value = 0.2137

data: log10(Conc)

Test Statistic = 0.6394, p-value = 0.529

Levene's test by Side

data: Conc

Test Statistic = 1.0768, p-value = 0.3432

data: log10(Conc)

Test Statistic = 0.9823, p-value = 0.3767

Kruskal-Wallis rank sum test

data: Conc and Transect

Kruskal-Wallis chi-squared = 30.231, df = 7, p-value = 8.613e-05

Dependent Variable Scandium, total

Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.179

The p-value is 0.915 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 2.258

The p-value is 0.323 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.215

The p-value is 0.898 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 2.700

The p-value is 0.259 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.387

The p-value is 0.824 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 0.400

The p-value is 0.819 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 2.629

The p-value is 0.269 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 0.763

The p-value is 0.683 assuming chi-square distribution with 2 df.

P-values reported are not adjusted for multiple comparisons. Adjusted significance level is 0.05 / 8 = 0.00625.

Dependent Variable Scandium, total

Grouping Variable SIDE\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.049

The p-value is 0.825 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 2.634

The p-value is 0.105 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.353

The p-value is 0.838 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 0.200

The p-value is 0.655 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.194

The p-value is 0.908 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 0.025

The p-value is 0.988 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 0.961

The p-value is 0.618 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 0.926

The p-value is 0.336 assuming chi-square distribution with 1 df.

P-values reported are not adjusted for multiple comparisons.

Adjusted significance level is 0.05 / 8 = 0.00625.

Levene's test by Transect
data: Conc
Test Statistic = 9.4415, p-value = 3.207e-13

data: log10(Conc)
Test Statistic = 9.367, p-value = 4.101e-13

Levene's test by Depth
data: Conc
Test Statistic = 5.3879, p-value = 0.005118

data: log10(Conc)
Test Statistic = 5.4918, p-value = 0.004633

Levene's test by Side
data: Conc
Test Statistic = 1.7133, p-value = 0.1824

data: log10(Conc)
Test Statistic = 2.7297, p-value = 0.06719

Kruskal-Wallis rank sum test
data: Conc and Transect
Kruskal-Wallis chi-squared = 93.2655, df = 10, p-value = 1.203e-15

Dependent Variable Sodium, dissolved

Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.495

The p-value is 0.781 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 2.000

The p-value is 0.368 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.030

The p-value is 0.985 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 3.370

The p-value is 0.185 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.133

The p-value is 0.936 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 0.162

The p-value is 0.922 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 2.759

The p-value is 0.252 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 2.519

The p-value is 0.284 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 0.522

The p-value is 0.770 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 0.365

The p-value is 0.833 assuming chi-square distribution with 2 df.

P-values reported are not adjusted for multiple comparisons. Adjusted significance level is 0.05 / 10 = 0.005.

Dependent Variable Sodium, dissolved

SIDE\$

Grouping Variable

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.070

The p-value is 0.791 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 0.048

The p-value is 0.827 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 3.445

The p-value is 0.179 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 1.089

The p-value is 0.580 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.636

The p-value is 0.728 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 2.278

The p-value is 0.320 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 1.716

The p-value is 0.424 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 1.079

The p-value is 0.583 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 0.232

The p-value is 0.890 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 5.333

The p-value is 0.021 assuming chi-square distribution with 1 df.

P-values reported are not adjusted for multiple comparisons.

Adjusted significance level is 0.05 / 10 = 0.005.

data: Conc

Test Statistic = 7.6455, p-value = 1.339e-10

data: log10(Conc)

Test Statistic = 7.3484, p-value = 3.705e-10

Levene's test by Depth

data: Conc

Test Statistic = 5.7206, p-value = 0.003722

data: log10(Conc)

Test Statistic = 5.7361, p-value = 0.003667

Levene's test by Side

data: Conc

Test Statistic = 1.2041, p-value = 0.3017

data: log10(Conc)

Test Statistic = 2.1329, p-value = 0.1206

Kruskal-Wallis rank sum test

data: Conc and Transect

Kruskal-Wallis chi-squared = 85.5031, df = 10, p-value = 4.153e-14

Dependent Variable Sodium, total

Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.372

The p-value is 0.830 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 3.714

The p-value is 0.156 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.050

The p-value is 0.975 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 3.635

The p-value is 0.162 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 1.009

The p-value is 0.604 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 0.130

The p-value is 0.937 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 2.213

The p-value is 0.331 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 2.837

The p-value is 0.242 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 0.649

The p-value is 0.723 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 0.475

The p-value is 0.789 assuming chi-square distribution with 2 df.

P-values reported are not adjusted for multiple comparisons. Adjusted significance level is 0.05 / 10 = 0.005.

Dependent Variable Sodium, total SIDE\$

Grouping Variable

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.018

The p-value is 0.894 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 0.048

The p-value is 0.827 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 3.017

The p-value is 0.221 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 0.191

The p-value is 0.909 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 1.465

The p-value is 0.481 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 1.537

The p-value is 0.464 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 2.652

The p-value is 0.266 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 1.682

The p-value is 0.431 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 0.231

The p-value is 0.891 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 5.340

The p-value is 0.021 assuming chi-square distribution with 1 df.

P-values reported are not adjusted for multiple comparisons.

Adjusted significance level is 0.05 / 10 = 0.005.

data: Conc

Test Statistic = 2.1625, p-value = 0.04055

data: log10(Conc)

Test Statistic = 2.1952, p-value = 0.03762

Levene's test by Depth

data: Conc

Test Statistic = 1.398, p-value = 0.2502

data: log10(Conc)

Test Statistic = 1.7379, p-value = 0.1793

Levene's test by Side

data: Conc

Test Statistic = 0.2605, p-value = 0.771

data: log10(Conc)

Test Statistic = 0.4212, p-value = 0.657

Kruskal-Wallis rank sum test

data: Conc and Transect

Kruskal-Wallis chi-squared = 31.8534, df = 7, p-value = 4.324e-05

Dependent Variable Strontium, dissolved

Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.106

The p-value is 0.948 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 2.258

The p-value is 0.323 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.191

The p-value is 0.909 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 1.800

The p-value is 0.407 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.105

The p-value is 0.949 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 0.794

The p-value is 0.672 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 4.776

The p-value is 0.092 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 1.072

The p-value is 0.585 assuming chi-square distribution with 2 df.

P-values reported are not adjusted for multiple comparisons. Adjusted significance level is 0.05 / 8 = 0.00625.

Dependent Variable Strontium, dissolved

Grouping Variable SIDE\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.283

The p-value is 0.595 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 0.484

The p-value is 0.487 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 3.055

The p-value is 0.217 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 0.200

The p-value is 0.655 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.343

The p-value is 0.843 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 0.406

The p-value is 0.816 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 2.150

The p-value is 0.341 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 5.801

The p-value is 0.016 assuming chi-square distribution with 1 df.

P-values reported are not adjusted for multiple comparisons.

Adjusted significance level is 0.05 / 8 = 0.00625.

data: Conc

Test Statistic = 2.1164, p-value = 0.04504

data: log10(Conc)

Test Statistic = 2.1935, p-value = 0.03777

Levene's test by Depth

data: Conc

Test Statistic = 1.4438, p-value = 0.2391

data: log10(Conc)

Test Statistic = 1.7189, p-value = 0.1826

Levene's test by Side

data: Conc

Test Statistic = 0.058, p-value = 0.9437

data: log10(Conc)

Test Statistic = 0.2494, p-value = 0.7796

Kruskal-Wallis rank sum test

data: Conc and Transect

Kruskal-Wallis chi-squared = 33.3259, df = 7, p-value = 2.302e-05

Dependent Variable Strontium, total

Grouping Variable DEPTH\$

DEFIRS

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.021

The p-value is 0.990 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 2.250

The p-value is 0.325 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.068

The p-value is 0.966 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 1.800

The p-value is 0.407 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 1.152

The p-value is 0.562 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 0.250

The p-value is 0.883 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 4.420

The p-value is 0.110 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 1.935

The p-value is 0.380 assuming chi-square distribution with 2 df.

P-values reported are not adjusted for multiple comparisons. Adjusted significance level is 0.05 / 8 = 0.00625.

Dependent Variable Strontium, total

Grouping Variable SIDE\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.008

The p-value is 0.929 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 2.722

The p-value is 0.099 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 3.602

The p-value is 0.165 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 0.200

The p-value is 0.655 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.035

The p-value is 0.983 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 0.499

The p-value is 0.779 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 1.624

The p-value is 0.444 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 7.806

The p-value is 0.005 assuming chi-square distribution with 1 df.

P-values reported are not adjusted for multiple comparisons.

Adjusted significance level is 0.05 / 8 = 0.00625.

data: Conc

Test Statistic = 0.4698, p-value = 0.8553

data: log10(Conc)

Test Statistic = 2.0495, p-value = 0.0524

Levene's test by Depth

data: Conc

Test Statistic = 5.0728, p-value = 0.007331

data: log10(Conc)

Test Statistic = 5.5692, p-value = 0.004605

Levene's test by Side

data: Conc

Test Statistic = 0.3357, p-value = 0.7154

data: log10(Conc)

Test Statistic = 0.093, p-value = 0.9112

Kruskal-Wallis rank sum test

data: Conc and Transect

Kruskal-Wallis chi-squared = 20.3474, df = 7, p-value = 0.004866

Dependent Variable Thorium, total

Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.606

The p-value is 0.739 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 0.000

The p-value is 1.000 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.035

The p-value is 0.983 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 0.000

The p-value is 1.000 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 5.797

The p-value is 0.055 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 6.706

The p-value is 0.035 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 2.035

The p-value is 0.361 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 0.311

The p-value is 0.856 assuming chi-square distribution with 2 df.

P-values reported are not adjusted for multiple comparisons. Adjusted significance level is 0.05 / 8 = 0.00625.

Dependent Variable Thorium, total

Grouping Variable SIDE\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.008

The p-value is 0.928 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 0.000

The p-value is 1.000 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.274

The p-value is 0.872 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 0.000

The p-value is 1.000 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 1.111

The p-value is 0.574 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 1.999

The p-value is 0.368 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 3.006

The p-value is 0.222 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 0.010

The p-value is 0.919 assuming chi-square distribution with 1 df.

 $\ensuremath{\text{P-values}}$ reported are not adjusted for multiple comparisons.

Adjusted significance level is 0.05 / 8 = 0.00625.

Levene's test by Transect
data: Conc
Test Statistic = 4.2202, p-value = 2.048e-05

data: log10(Conc)
Test Statistic = 4.26, p-value = 1.781e-05

Levene's test by Depth
data: Conc
Test Statistic = 1.4628, p-value = 0.2336

data: log10(Conc)
Test Statistic = 1.4312, p-value = 0.241

Levene's test by Side
data: Conc
Test Statistic = 0.0196, p-value = 0.9806

data: log10(Conc)
Test Statistic = 0.0467, p-value = 0.9544

Kruskal-Wallis rank sum test
data: Conc and Transect
Kruskal-Wallis chi-squared = 68.1121, df = 10, p-value = 1.025e-10

Dependent Variable Uranium, dissolved

Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.012

The p-value is 0.994 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 3.603

The p-value is 0.165 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.297

The p-value is 0.862 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 1.874

The p-value is 0.392 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.114

The p-value is 0.945 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 1.308

The p-value is 0.520 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 0.872

The p-value is 0.647 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 0.124

The p-value is 0.940 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 0.080

The p-value is 0.961 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 0.203

The p-value is 0.904 assuming chi-square distribution with 2 df.

P-values reported are not adjusted for multiple comparisons.

Adjusted significance level is 0.05 / 10 = 0.005.

Dependent Variable Uranium, dissolved

Grouping Variable

SIDE\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.031

The p-value is 0.859 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 1.225

The p-value is 0.268 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.396

The p-value is 0.820 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 0.162

The p-value is 0.922 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 1.509

The p-value is 0.470 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 0.308

The p-value is 0.857 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 0.768

The p-value is 0.681 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 0.355

The p-value is 0.837 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 0.606

The p-value is 0.739 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 1.692

The p-value is 0.193 assuming chi-square distribution with 1 df.

 $\ensuremath{\text{P-values}}$ reported are not adjusted for multiple comparisons.

Adjusted significance level is 0.05 / 10 = 0.005.

data: Conc

Test Statistic = 3.4541, p-value = 0.0002927

data: log10(Conc)

Test Statistic = 3.3679, p-value = 0.0003935

Levene's test by Depth

data: Conc

Test Statistic = 1.8225, p-value = 0.1638

data: log10(Conc)

Test Statistic = 1.8171, p-value = 0.1646

Levene's test by Side

data: Conc

Test Statistic = 0.1323, p-value = 0.8761

data: log10(Conc)

Test Statistic = 0.2445, p-value = 0.7833

Kruskal-Wallis rank sum test

data: Conc and Transect

Kruskal-Wallis chi-squared = 66.3203, df = 10, p-value = 2.264e-10

Dependent Variable Uranium, total

Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.127

The p-value is 0.939 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 4.706

The p-value is 0.095 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.076

The p-value is 0.963 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 0.041

The p-value is 0.979 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 1.196

The p-value is 0.550 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 1.568

The p-value is 0.457 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 1.025

The p-value is 0.599 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 0.133

The p-value is 0.935 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 0.473

The p-value is 0.790 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 1.652

The p-value is 0.438 assuming chi-square distribution with 2 df.

P-values reported are not adjusted for multiple comparisons. Adjusted significance level is 0.05 / 10 = 0.005.

Dependent Variable Uranium, total

Grouping Variable

SIDE\$
Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.636

The p-value is 0.425 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 0.000

The p-value is 1.000 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.632

The p-value is 0.729 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 0.004

The p-value is 0.998 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 2.234

The p-value is 0.327 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 1.624

The p-value is 0.444 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 1.252

The p-value is 0.535 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 0.240

The p-value is 0.887 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 0.116

The p-value is 0.944 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 3.704

The p-value is 0.054 assuming chi-square distribution with 1 df.

P-values reported are not adjusted for multiple comparisons.

Adjusted significance level is 0.05 / 10 = 0.005.

Levene's test by Transect
data: Conc
Test Statistic = 2.4996, p-value = 0.007146
data: log10(Conc)
Test Statistic = 3.2812, p-value = 0.0005291

Levene's test by Depth

data: Conc

Test Statistic = 0.5931, p-value = 0.5534

data: log10(Conc)

Test Statistic = 1.6758, p-value = 0.1893

Levene's test by Side

data: Conc

Test Statistic = 1.2724, p-value = 0.282

data: log10(Conc)

Test Statistic = 2.5055, p-value = 0.08368

Kruskal-Wallis rank sum test

data: Conc and Transect

Kruskal-Wallis chi-squared = 65.0645, df = 10, p-value = 3.94e-10

Dependent Variable Vanadium, dissolved

Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.749

The p-value is 0.688 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 2.250

The p-value is 0.325 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.867

The p-value is 0.648 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 0.131

The p-value is 0.936 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 1.680

The p-value is 0.432 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 0.239

The p-value is 0.887 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 4.185

The p-value is 0.123 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 0.870

The p-value is 0.647 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 1.498

The p-value is 0.473 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 2.189

The p-value is 0.335 assuming chi-square distribution with 2 df.

Page G1a - 150

P-values reported are not adjusted for multiple comparisons. Adjusted significance level is 0.05 / 10 = 0.005.

Dependent Variable Vanadium, dissolved

Grouping Variable

SIDE\$
Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.097

The p-value is 0.755 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 2.722

The p-value is 0.099 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 1.610

The p-value is 0.447 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 0.019

The p-value is 0.990 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.955

The p-value is 0.620 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 1.275

The p-value is 0.529 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 1.155

The p-value is 0.561 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 3.272

The p-value is 0.195 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 0.781

The p-value is 0.677 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 8.374

The p-value is 0.004 assuming chi-square distribution with 1 df.

P-values reported are not adjusted for multiple comparisons.

Adjusted significance level is 0.05 / 10 = 0.005.

data: Conc

Test Statistic = 2.6626, p-value = 0.01259

data: log10(Conc)

Test Statistic = 2.0539, p-value = 0.05189

Levene's test by Depth

data: Conc

Test Statistic = 0.6094, p-value = 0.545

data: log10(Conc)

Test Statistic = 0.2291, p-value = 0.7955

Levene's test by Side

data: Conc

Test Statistic = 0.2084, p-value = 0.8121

data: log10(Conc)

Test Statistic = 0.0093, p-value = 0.9907

Standard ANOVA-log10 - full model

Df Sum Sq Mean Sq F value Pr(>F)
Transect 7 2.501 0.3572 3.507 0.00201 **
Transect:Depth 16 0.162 0.0101 0.099 1.00000
Transect:Side 12 0.432 0.0360 0.353 0.97622
Transect:Depth:Side 18 0.279 0.0155 0.152 0.99998
Residuals 106 10.796 0.1019

Df Sum Sq Mean Sq F value Pr(>F)

Transect 7 2.501 0.3572 4.000 0.00056 ***

Transect:Depth 16 0.162 0.0101 0.113 0.99999 Transect:Side 12 0.432 0.0360 0.403 0.96018

Residuals 124 11.076 0.0893

data: Conc

Test Statistic = 0.8274, p-value = 0.566

data: log10(Conc)

Test Statistic = 0.7953, p-value = 0.5924

Levene's test by Depth

data: Conc

Test Statistic = 6.1765, p-value = 0.002617

data: log10(Conc)

Test Statistic = 4.1645, p-value = 0.01729

Levene's test by Side

data: Conc

Test Statistic = 0.3465, p-value = 0.7077

data: log10(Conc)

Test Statistic = 1.3822, p-value = 0.2541

Kruskal-Wallis rank sum test

data: Conc and Transect

Kruskal-Wallis chi-squared = 24.0641, df = 7, p-value = 0.00111

Dependent Variable Yttrium, total

Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.038

The p-value is 0.981 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 1.250

The p-value is 0.535 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.465

The p-value is 0.793 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 1.500

The p-value is 0.472 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 3.781

The p-value is 0.151 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 5.061

The p-value is 0.080 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 5.416

The p-value is 0.067 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 1.600

The p-value is 0.449 assuming chi-square distribution with 2 df.

P-values reported are not adjusted for multiple comparisons. Adjusted significance level is 0.05 / 8 = 0.00625.

Dependent Variable Yttrium, total

Grouping Variable SIDE\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.169

The p-value is 0.681 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 2.500

The p-value is 0.114 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.964

The p-value is 0.617 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 1.000

The p-value is 0.317 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.227

The p-value is 0.893 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 1.714

The p-value is 0.424 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 0.646

The p-value is 0.724 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 1.445

The p-value is 0.229 assuming chi-square distribution with 1 df.

P-values reported are not adjusted for multiple comparisons.

Adjusted significance level is 0.05 / 8 = 0.00625.

```
Levene's test by Transect
Test Statistic = 0.5295, p-value = 0.8496
data: log10(Conc)
Test Statistic = 1.8936, p-value = 0.06267
  Levene's test by Depth
data: Conc
Test Statistic = 0.3398, p-value = 0.7127
data: log10(Conc)
Test Statistic = 0.0821, p-value = 0.9213
  Levene's test by Side
data: Conc
Test Statistic = 0.3918, p-value = 0.6769
data: log10(Conc)
Test Statistic = 0.8717, p-value = 0.4215
 Standard ANOVA-log10 - full model
                   Df Sum Sq Mean Sq F value Pr(>F)
Transect
                   9 3.126 0.3473 2.932 0.00574 **
Transect:Depth
                   20 2.717 0.1358
                                      1.147 0.32948
                   3 0.028 0.0094
Transect:Side
                                      0.079 0.97115
Transect:Depth:Side 5 0.446 0.0892
                                      0.753 0.58692
Residuals
                   63 7.464 0.1185
              Df Sum Sq Mean Sq F value Pr(>F)
               9 3.126 0.3473 2.986 0.00469 **
Transect
Transect: Depth 20 2.717 0.1358 1.168 0.30864
Transect:Side 3 0.028 0.0094
                                0.080 0.97040
Residuals 68 7.910 0.1163
```

Levene's test by Transect

data: Conc

Test Statistic = 1.6931, p-value = 0.102

data: log10(Conc)

Test Statistic = 0.5478, p-value = 0.8358

Levene's test by Depth

data: Conc

Test Statistic = 0.7234, p-value = 0.4877

data: log10(Conc)

Test Statistic = 1.3832, p-value = 0.2556

Levene's test by Side

data: Conc

Test Statistic = 0.2308, p-value = 0.7944

data: log10(Conc)

Test Statistic = 0.5895, p-value = 0.5566

Standard ANOVA - full model

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Transect	9	15700	1744.4	1.651	0.120
Transect:Depth	20	14072	703.6	0.666	0.844
Transect:Side	3	616	205.3	0.194	0.900
Transect:Depth:Side	5	1220	243.9	0.231	0.948
Residuals	63	66578	1056.8		

Df Sum Sq Mean Sq F value Pr(>F)
Transect 9 15700 1744.4 1.750 0.0946 .
Transect:Depth 20 14072 703.6 0.706 0.8067
Transect:Side 3 616 205.3 0.206 0.8919
Residuals 68 67797 997.0

Levene's test by Transect data: Conc Test Statistic = 0.7433, p-value = 0.6684 data: log10(Conc) Test Statistic = 1.3235, p-value = 0.2359 Levene's test by Depth data: Conc Test Statistic = 0.9544, p-value = 0.3886 data: log10(Conc) Test Statistic = 1.0269, p-value = 0.3619 Levene's test by Side data: Conc Test Statistic = 3.0709, p-value = 0.05087 data: log10(Conc) Test Statistic = 0.3101, p-value = 0.7341 Standard ANOVA-log10 - full model Df Sum Sq Mean Sq F value Pr(>F) Transect 9 1.318 0.14646 1.369 0.221 0.382 0.990 Transect:Depth 20 0.816 0.04082 Transect:Side 3 0.045 0.01486 0.139 0.936 Transect:Depth:Side 5 0.157 0.03135 0.293 0.915 63 6.739 0.10696 Residuals Df Sum Sq Mean Sq F value Pr(>F) 9 1.318 0.14646 1.444 0.187 Transect Transect:Depth 20 0.816 0.04082 0.403 0.987 Transect:Side 3 0.045 0.01486 0.147 0.932 Residuals 68 6.895 0.10140

```
Levene's test by Transect
data: Conc
Test Statistic = 0.3457, p-value = 0.9569
data: log10(Conc)
Test Statistic = 1.6629, p-value = 0.1095
  Levene's test by Depth
data: Conc
Test Statistic = 0.7973, p-value = 0.4534
data: log10(Conc)
Test Statistic = 0.7712, p-value = 0.4653
  Levene's test by Side
data: Conc
Test Statistic = 0.2902, p-value = 0.7488
data: log10(Conc)
Test Statistic = 1.6584, p-value = 0.1957
 Standard ANOVA-log10 - full model
                   Df Sum Sq Mean Sq F value Pr(>F)
Transect
                   9 2.350 0.26111 1.934 0.063 .
Transect:Depth
                  20 0.796 0.03982
                                      0.295 0.998
Transect:Side
                   3 0.001 0.00019 0.001 1.000
Transect:Depth:Side 5 0.097 0.01931
                                    0.143 0.981
Residuals
                  63 8.506 0.13502
              Df Sum Sq Mean Sq F value Pr(>F)
               9 2.350 0.26111 2.064 0.0451 *
Transect
Transect:Depth 20 0.796 0.03982 0.315 0.9973
Transect:Side 3 0.001 0.00019
                                0.001 0.9999
Residuals 68 8.603 0.12651
```

```
Levene's test by Transect
data: Conc
Test Statistic = 0.3664, p-value = 0.9482
data: log10(Conc)
Test Statistic = 1.687, p-value = 0.1035
  Levene's test by Depth
data: Conc
Test Statistic = 0.7102, p-value = 0.4941
data: log10(Conc)
Test Statistic = 0.748, p-value = 0.476
  Levene's test by Side
data: Conc
Test Statistic = 0.1918, p-value = 0.8258
data: log10(Conc)
Test Statistic = 2.0472, p-value = 0.1346
 Standard ANOVA-log10 - full model
                   Df Sum Sq Mean Sq F value Pr(>F)
Transect
                   9 2.599 0.28875 2.004 0.0534 .
Transect:Depth
                  20 0.788 0.03942
                                      0.274 0.9989
Transect:Side
                   3 0.001 0.00033 0.002 0.9998
Transect:Depth:Side 5 0.061 0.01224 0.085 0.9944
                  63 9.076 0.14406
Residuals
              Df Sum Sq Mean Sq F value Pr(>F)
               9 2.599 0.28875 2.149 0.0367 *
Transect
Transect:Depth 20 0.788 0.03942 0.293 0.9983
Transect:Side 3 0.001 0.00033
                                0.002 0.9998
Residuals 68 9.137 0.13437
```

Levene's test by Transect

data: Conc

Test Statistic = 3.2961, p-value = 0.0008539

Levene's test by Depth

data: Conc

Test Statistic = 4.5462, p-value = 0.01157

Levene's test by Side

data: Conc

Test Statistic = 1.1777, p-value = 0.3098

Kruskal-Wallis rank sum test

data: Conc and Transect

Kruskal-Wallis chi-squared = 65.3896, df = 9, p-value = 1.212e-10

Dependent Variable SIR, oxygen

Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.012

The p-value is 0.994 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 1.143

The p-value is 0.565 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.868

The p-value is 0.648 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 0.010

The p-value is 0.995 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.017

The p-value is 0.992 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 0.392

The p-value is 0.822 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 1.442

The p-value is 0.486 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 2.539

The p-value is 0.281 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 0.969

The p-value is 0.616 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 1.548

The p-value is 0.461 assuming chi-square distribution with 2 df.

P-values reported are not adjusted for multiple comparisons.

Adjusted significance level is 0.05 / 10 = 0.005.

Dependent Variable SIR, oxygen

SIDE\$

Grouping Variable

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.002

The p-value is 0.965 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 1.190

The p-value is 0.275 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 2.545

The p-value is 0.280 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 0.659

The p-value is 0.719 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.101

The p-value is 0.951 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 1.565

The p-value is 0.457 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 2.359

The p-value is 0.307 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 0.944

The p-value is 0.624 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 0.236

The p-value is 0.889 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 6.259

The p-value is 0.012 assuming chi-square distribution with 1 df.

 $\ensuremath{\text{P-values}}$ reported are not adjusted for multiple comparisons.

Adjusted significance level is 0.05 / 10 = 0.005.

Levene's test by Transect

data: Conc

Test Statistic = 4.1978, p-value = 4.964e-05

Levene's test by Depth

data: Conc

Test Statistic = 4.1275, p-value = 0.01733

Levene's test by Side

data: Conc

Test Statistic = 0.7356, p-value = 0.4804

Kruskal-Wallis rank sum test

data: Conc and Transect

Kruskal-Wallis chi-squared = 61.4016, df = 9, p-value = 7.192e-10

Dependent Variable SIR, hydrogen

Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.294

The p-value is 0.863 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 2.000

The p-value is 0.368 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.351

The p-value is 0.839 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 0.077

The p-value is 0.962 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.147

The p-value is 0.929 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 0.899

The p-value is 0.638 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 1.580

The p-value is 0.454 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 3.645

The p-value is 0.162 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 1.980

The p-value is 0.372 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 1.897

The p-value is 0.387 assuming chi-square distribution with 2 df.

P-values reported are not adjusted for multiple comparisons. Adjusted significance level is 0.05 / 10 = 0.005.

Dependent Variable SIR, hydrogen

Grouping Variable SIDE\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.096

The p-value is 0.757 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 0.048

The p-value is 0.827 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 2.742

The p-value is 0.254 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 0.090

The p-value is 0.956 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.385

The p-value is 0.825 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 3.146

The p-value is 0.207 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 2.814

The p-value is 0.245 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 1.150

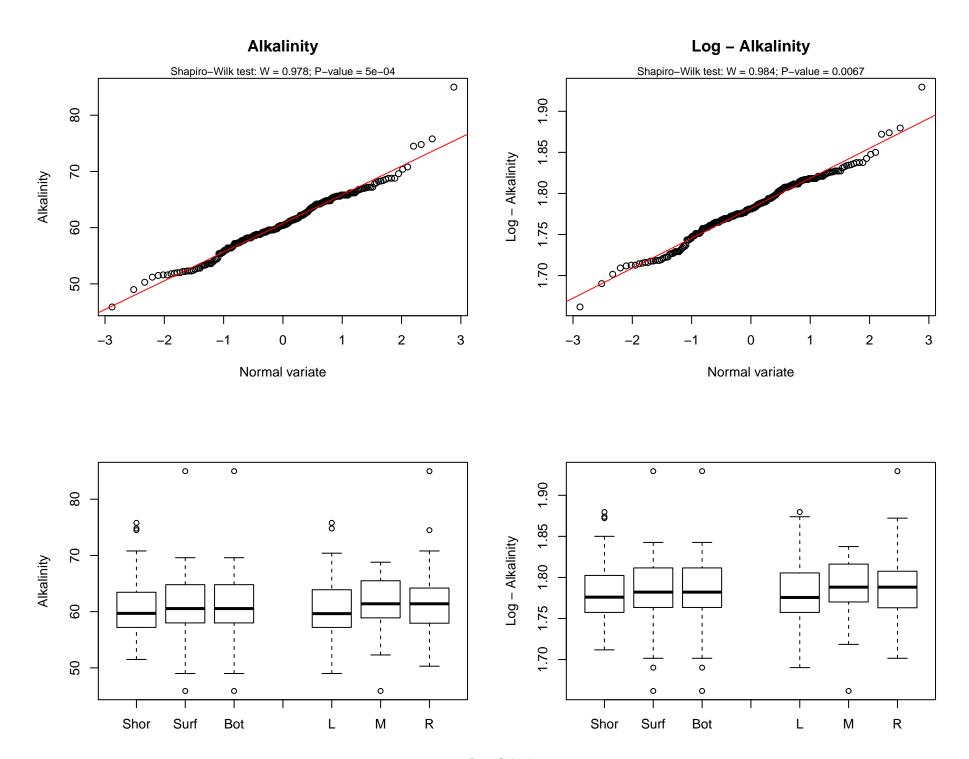
The p-value is 0.563 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

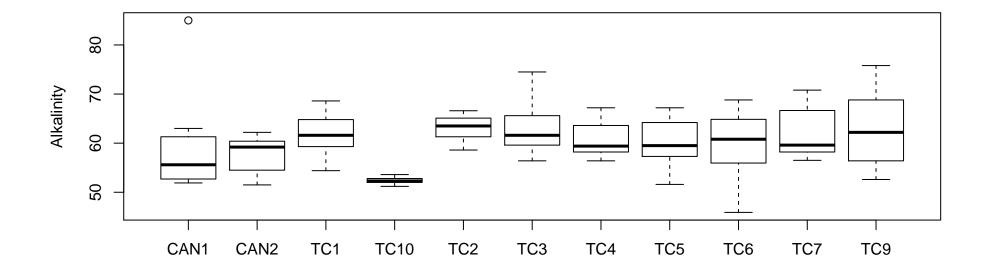
Kruskal-Wallis Test Statistic: 0.017

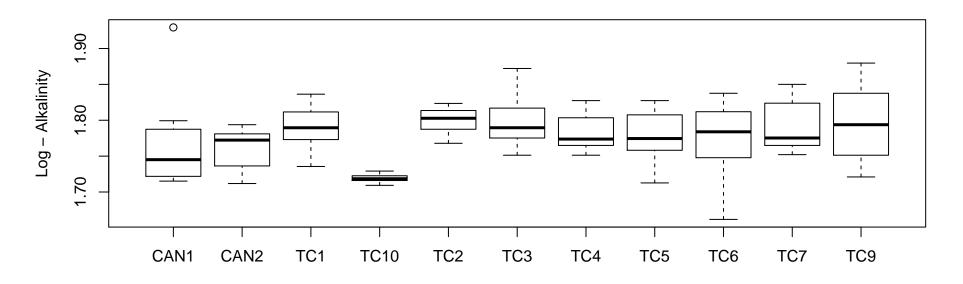
The p-value is 0.992 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

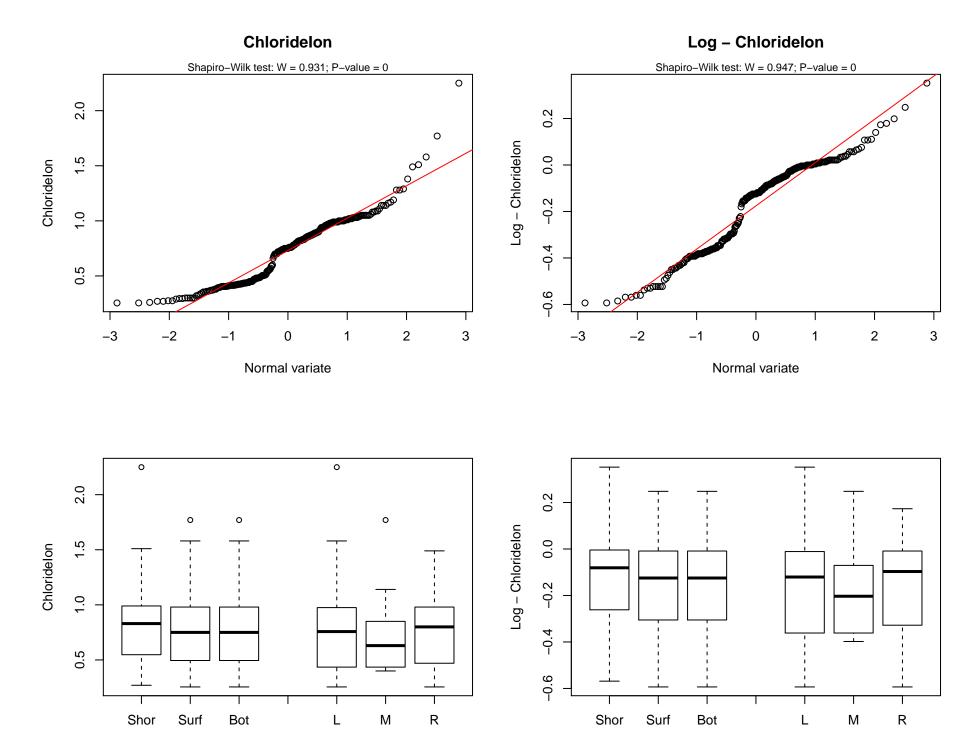

Kruskal-Wallis Test Statistic: 5.346

The p-value is 0.021 assuming chi-square distribution with 1 df.

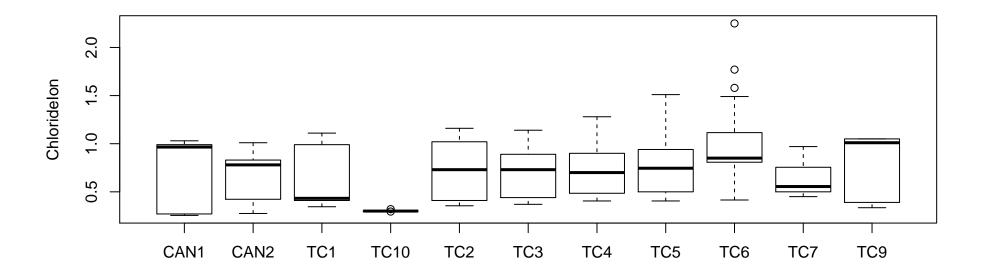

 $\ensuremath{\text{P-values}}$ reported are not adjusted for multiple comparisons.

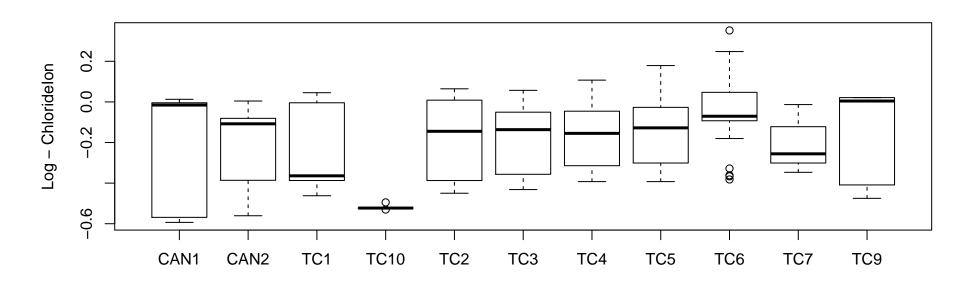

Adjusted significance level is 0.05 / 10 = 0.005.

Appendix G1b.
Distribution probability plots and Shapiro-Wilks distribution tests and boxplots by transect, depth, and side

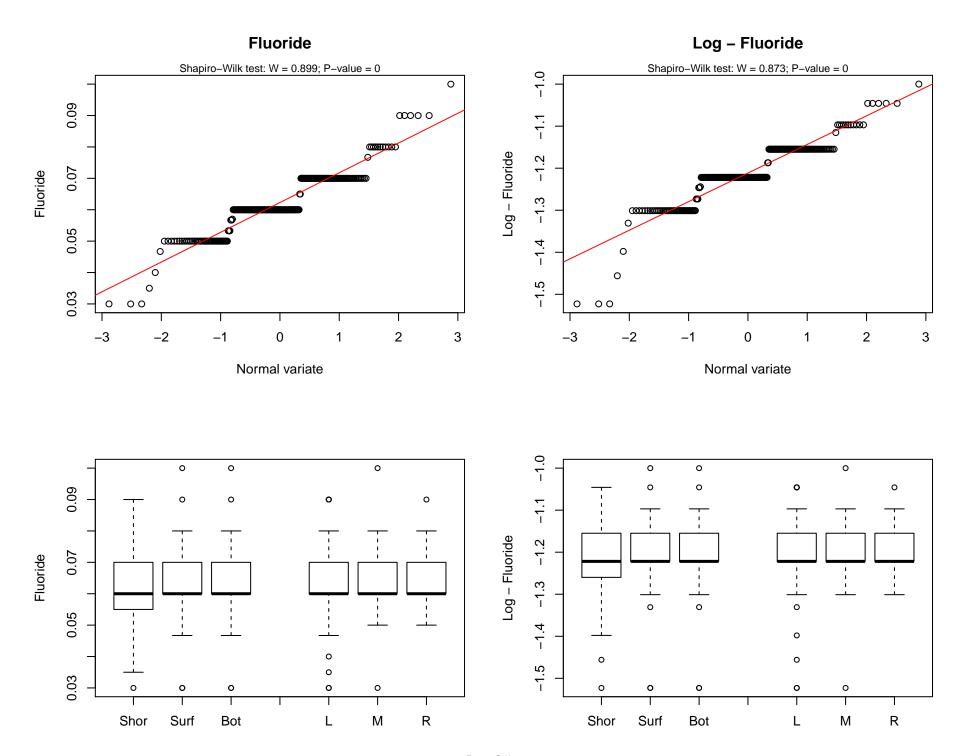


Page G1b - 1

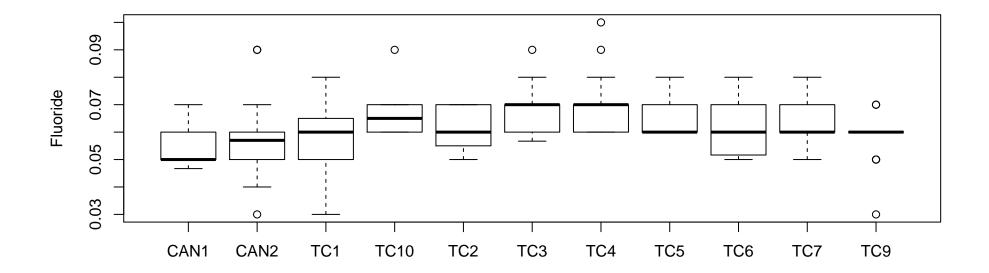


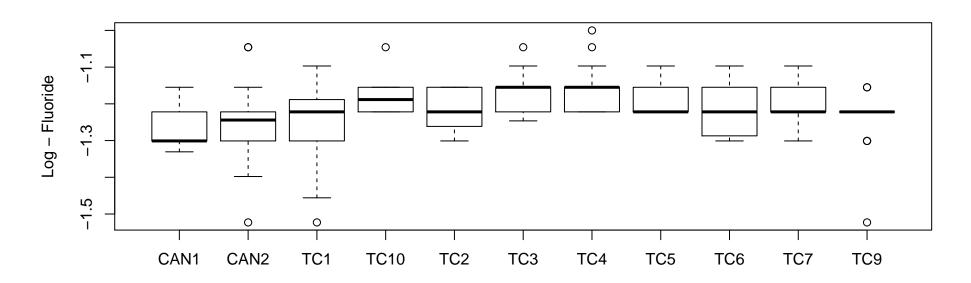


Page G1b - 2

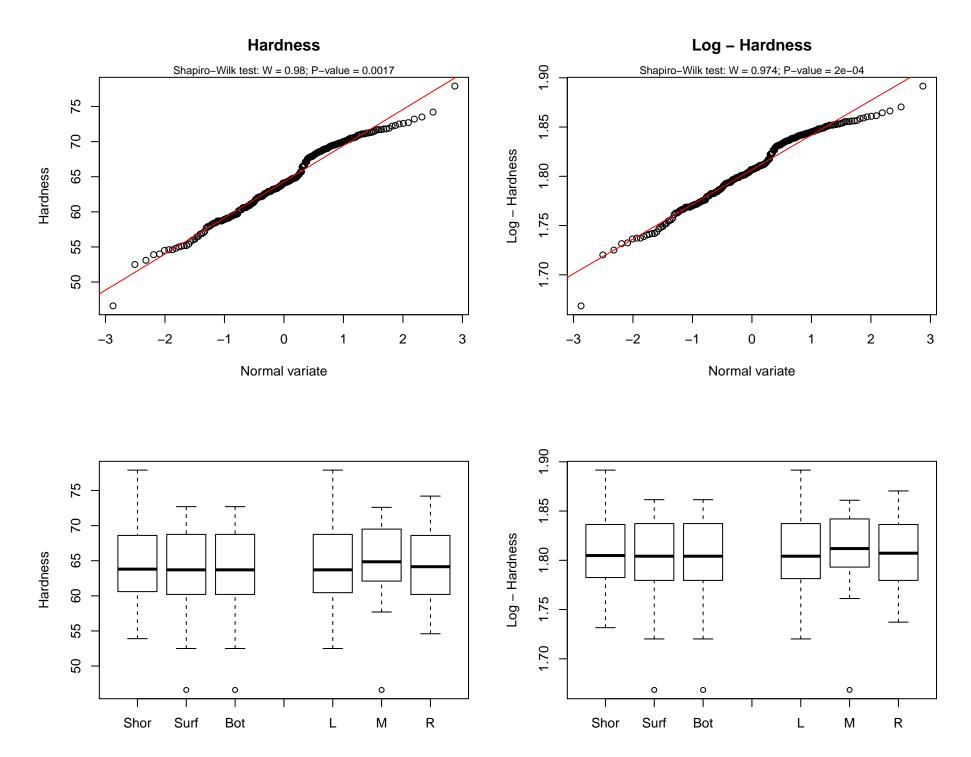


Page G1b - 3

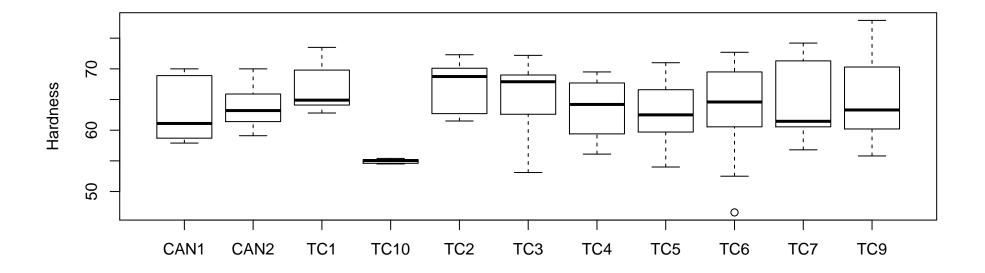


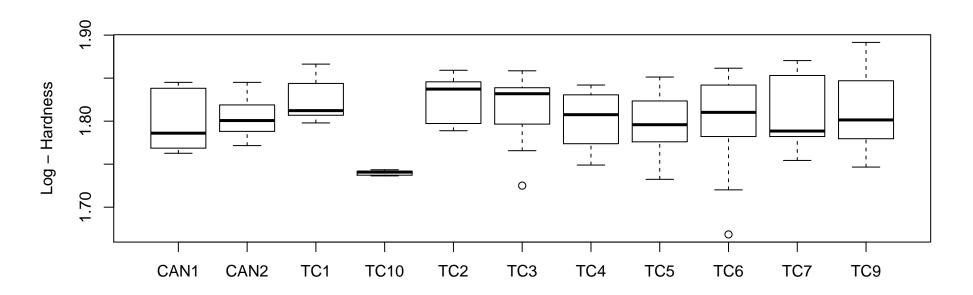


Page G1b - 4

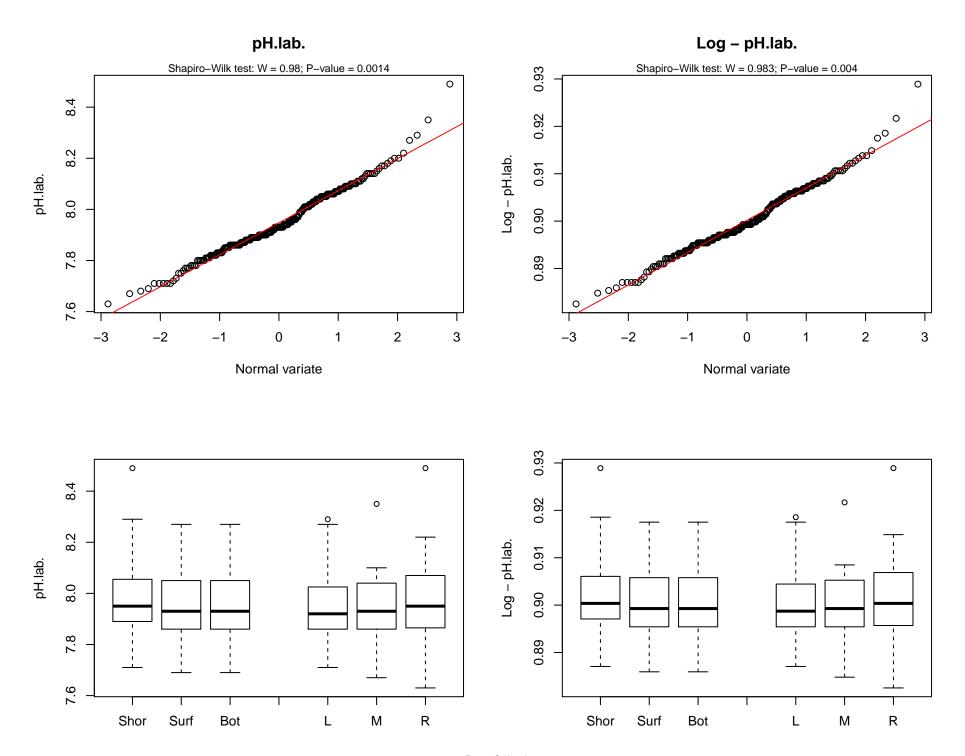


Page G1b - 5

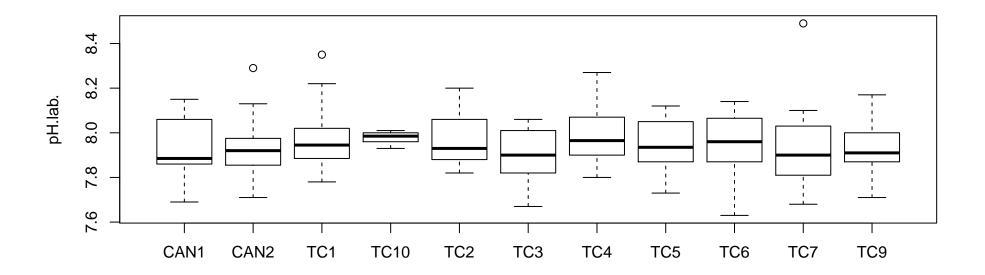


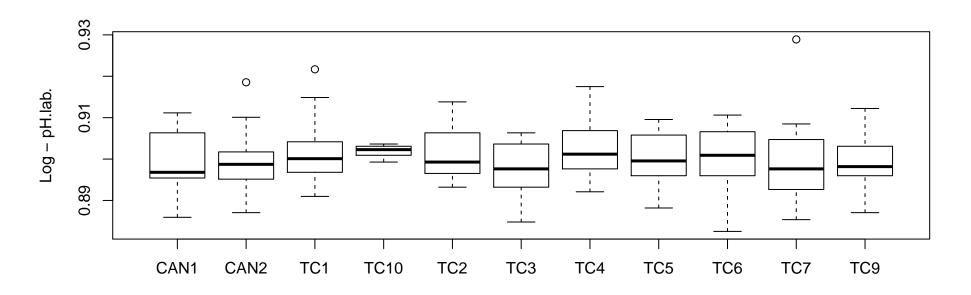


Page G1b - 6

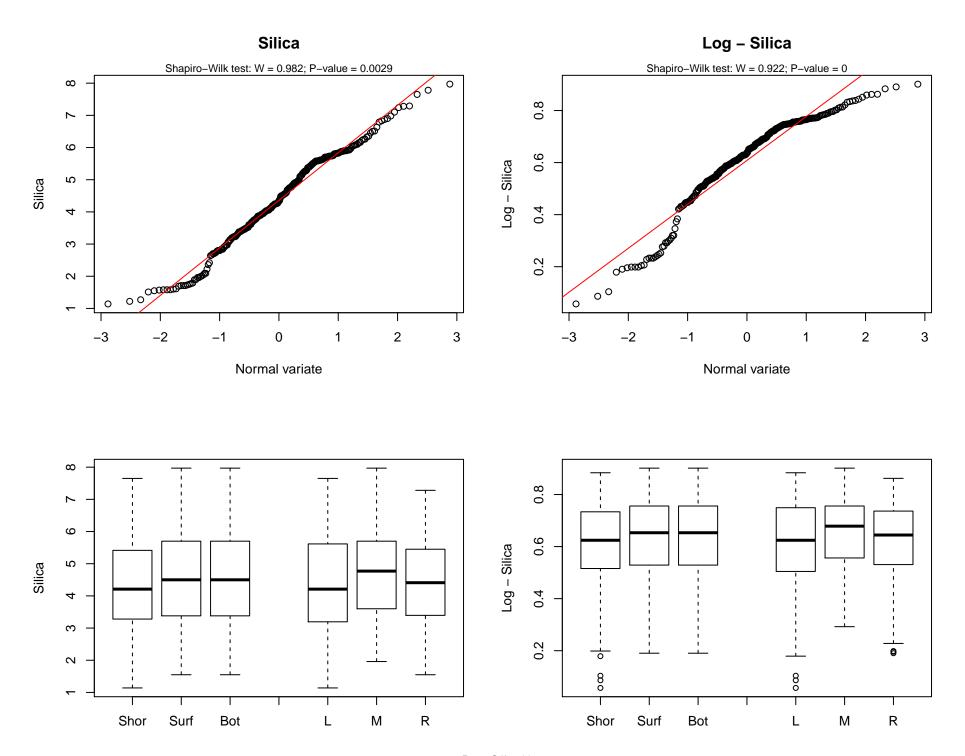


Page G1b - 7

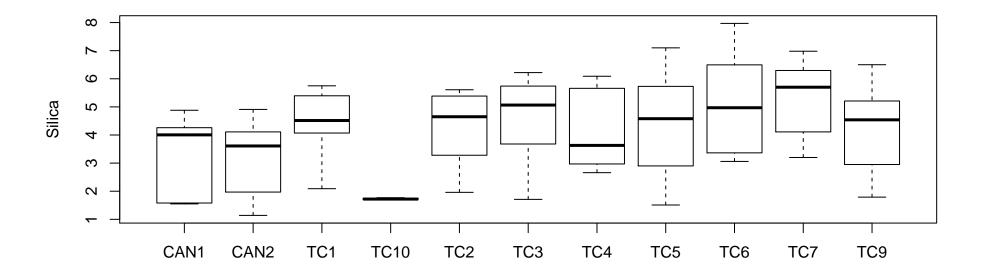


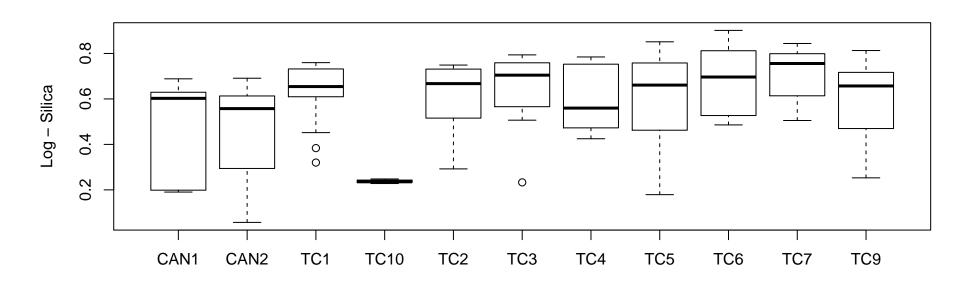


Page G1b - 8

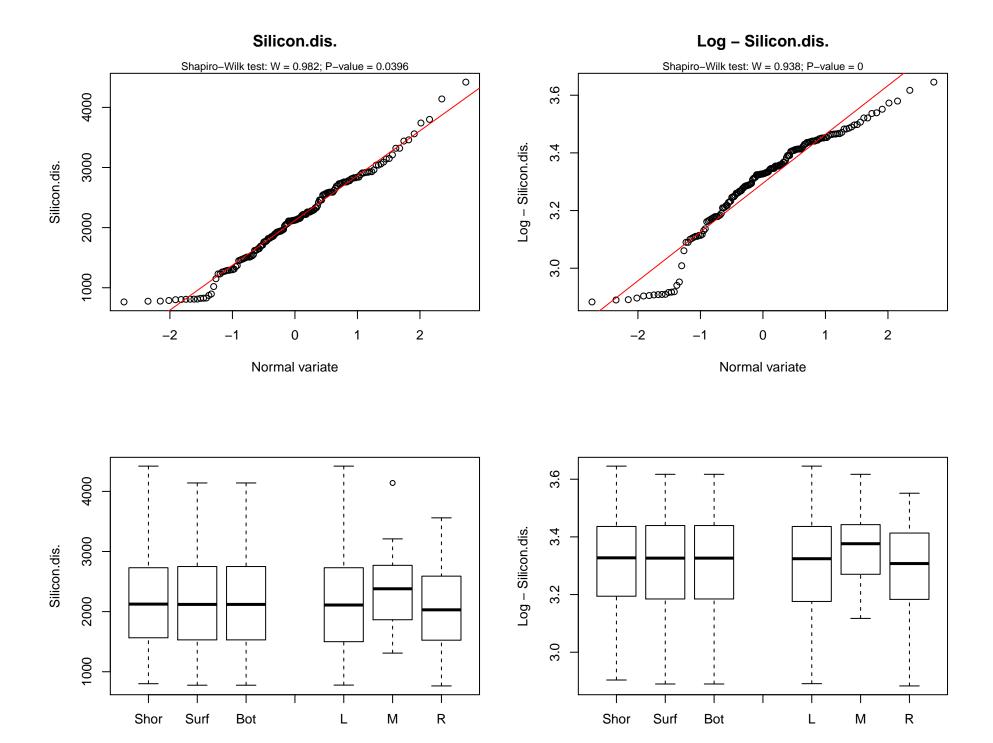


Page G1b - 9

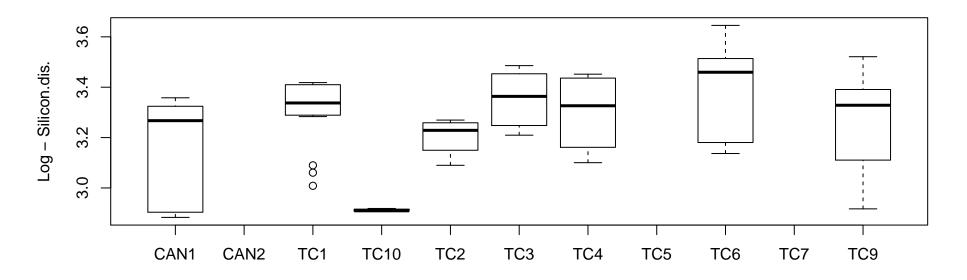




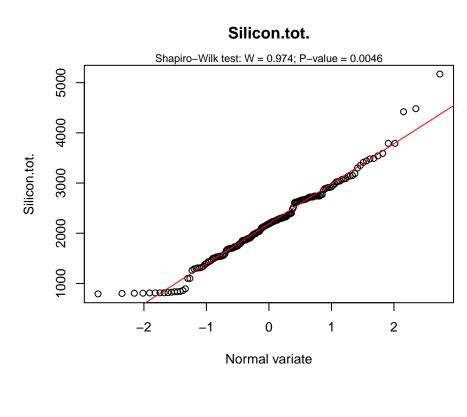
Page G1b - 10

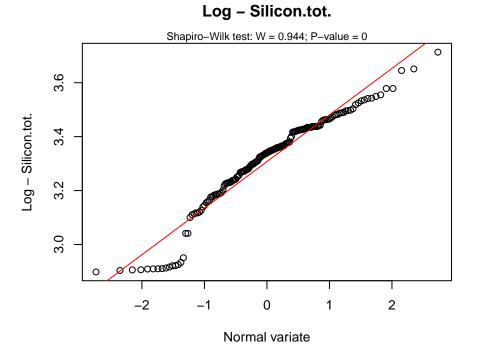


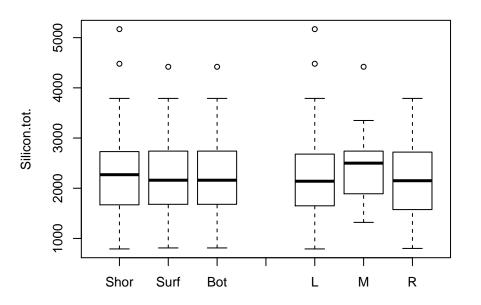
Page G1b - 11

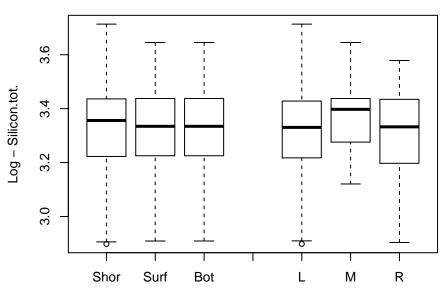


Page G1b - 12

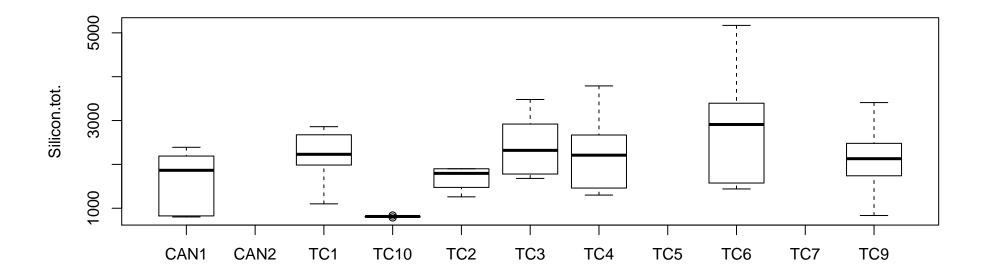


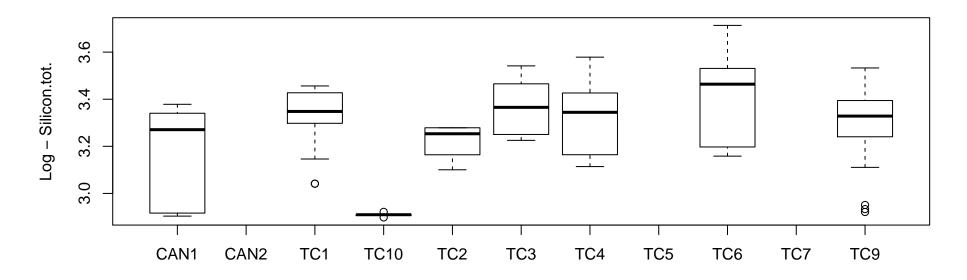

Page G1b - 13

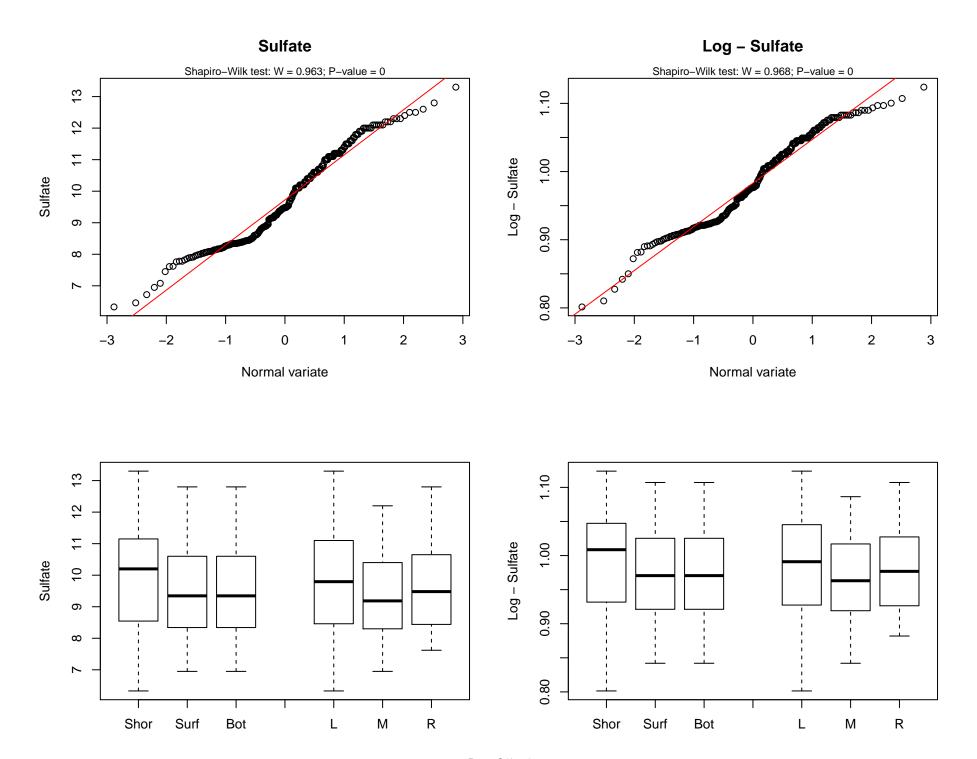




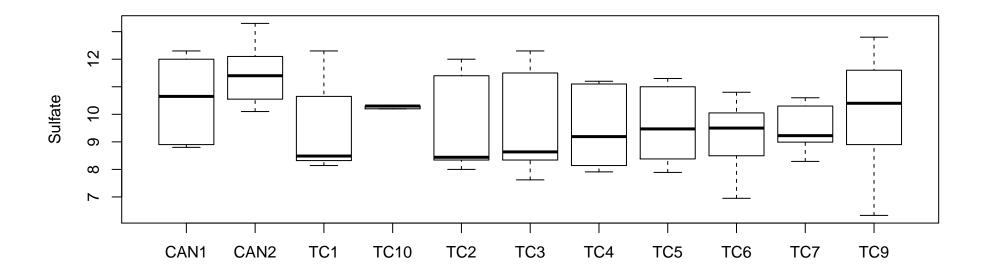
Page G1b - 14

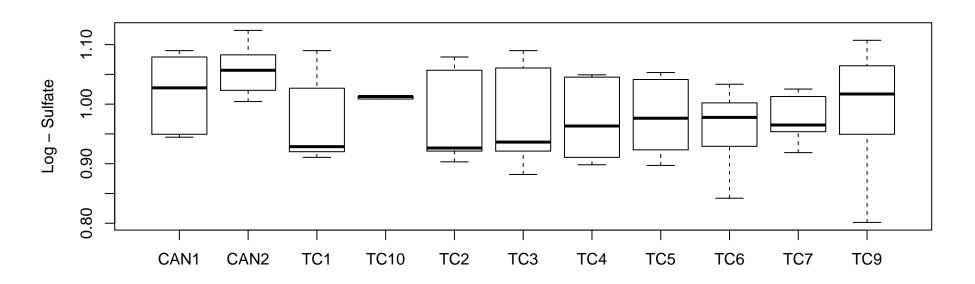




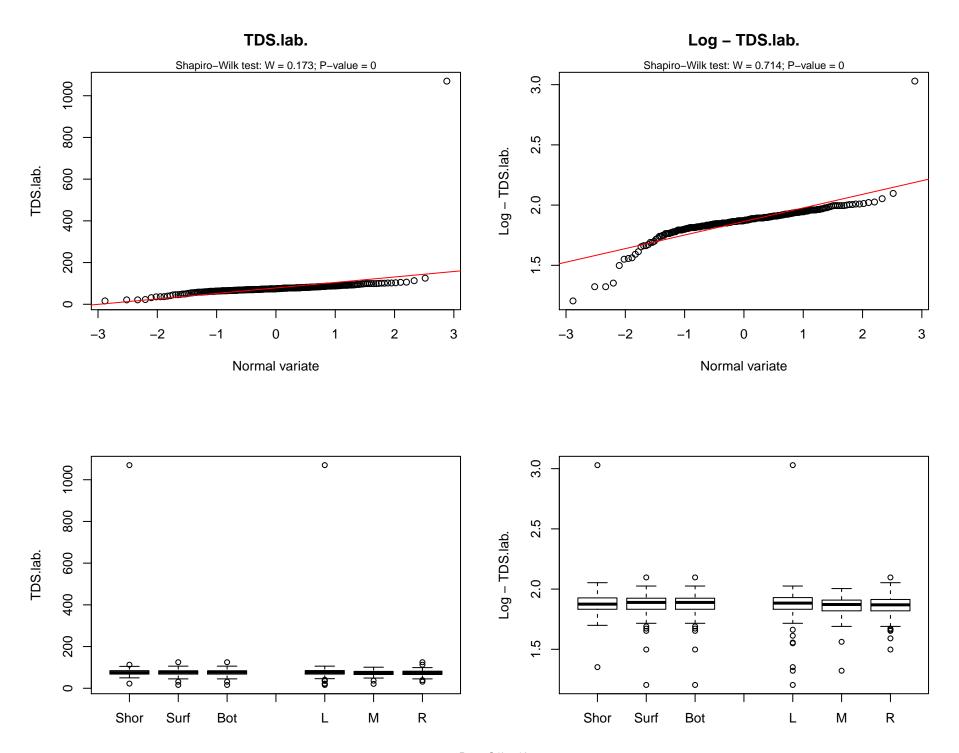


Page G1b - 15

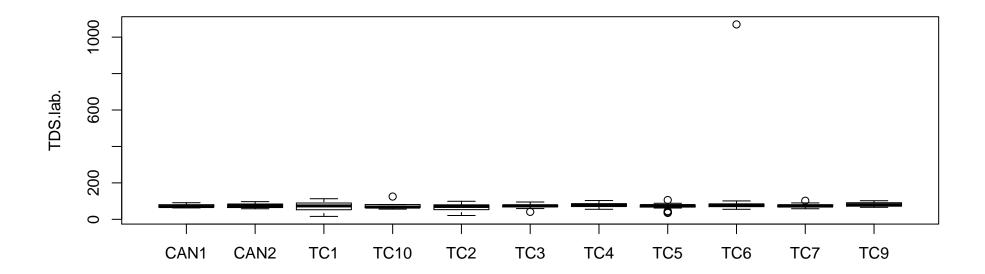


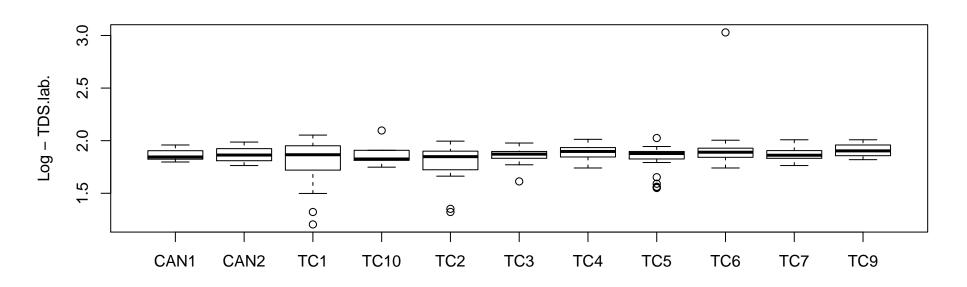


Page G1b - 16

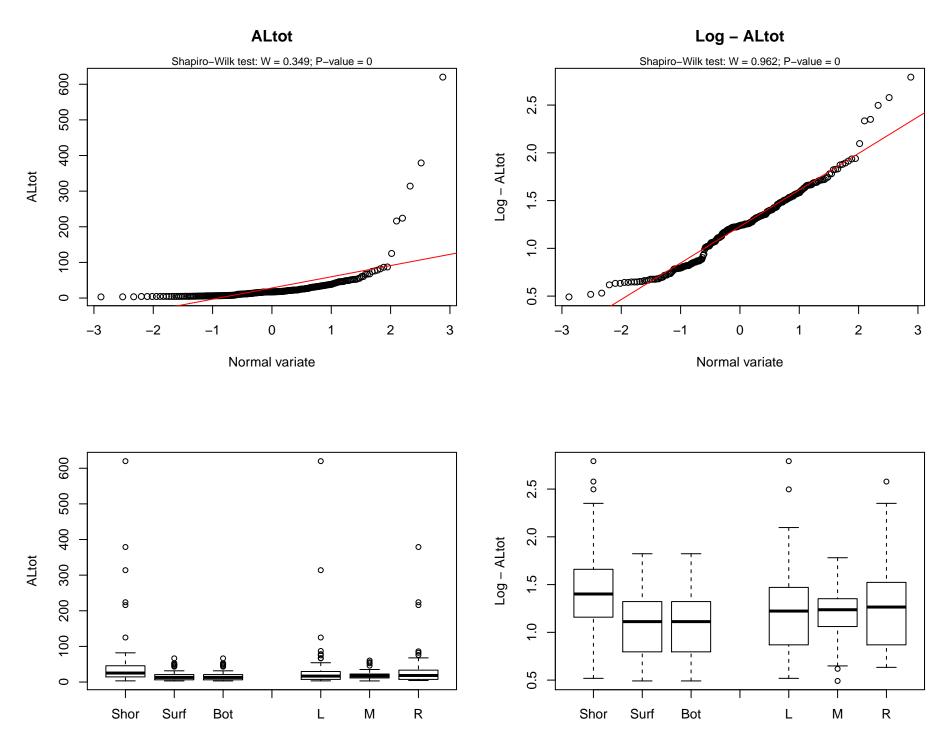


Page G1b - 17

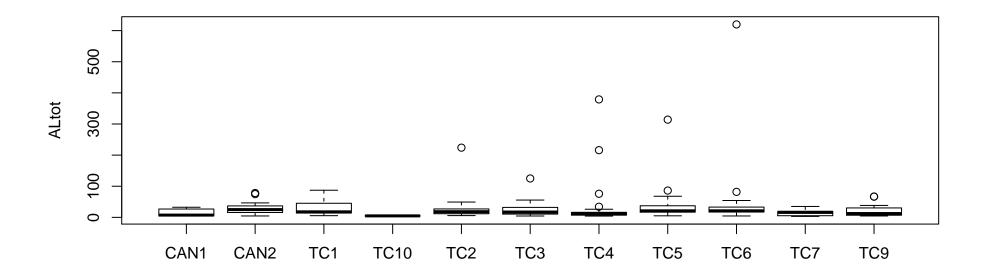


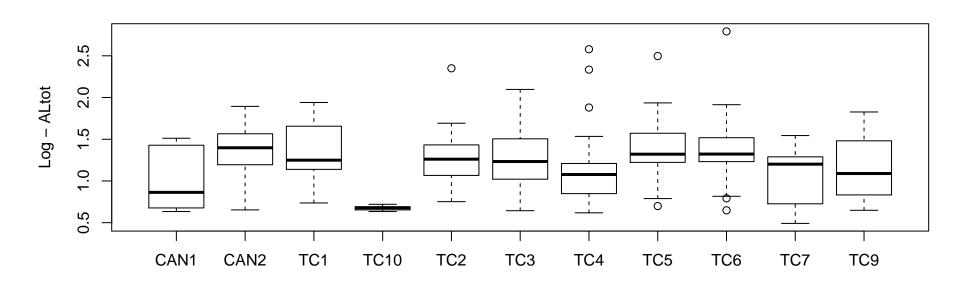


Page G1b - 18

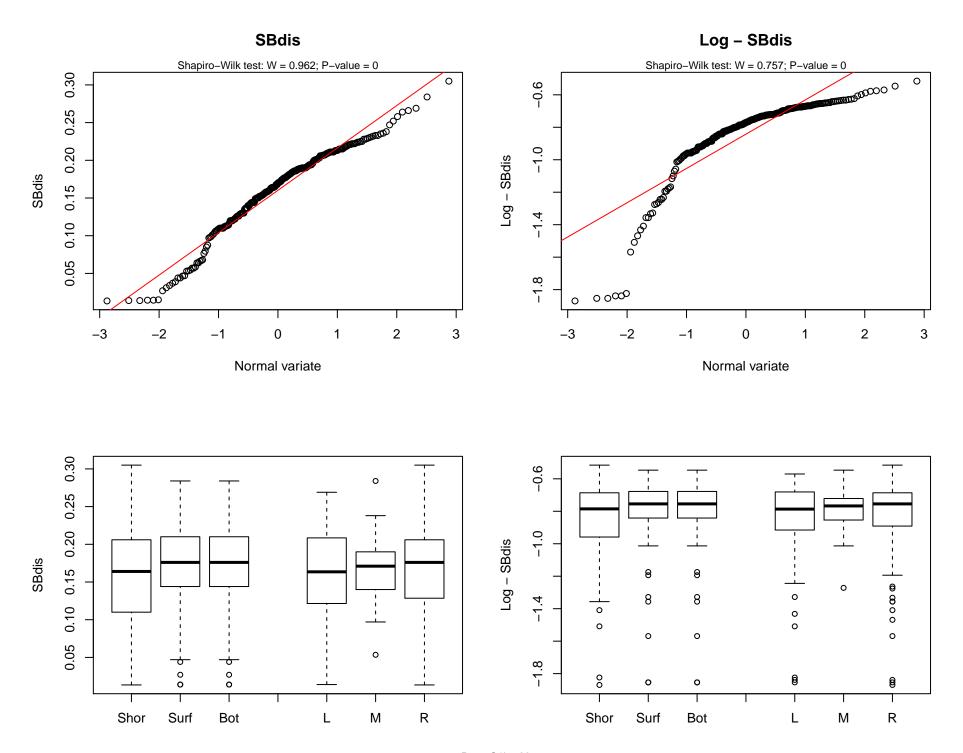


Page G1b - 19

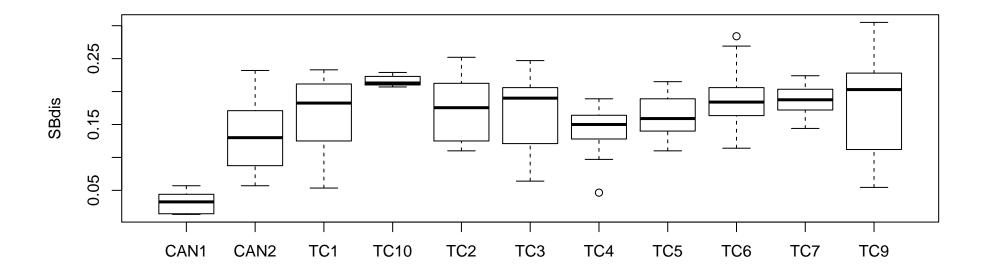


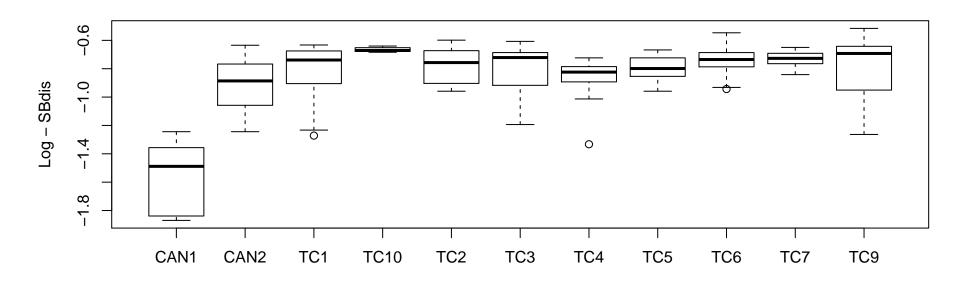


Page G1b - 20

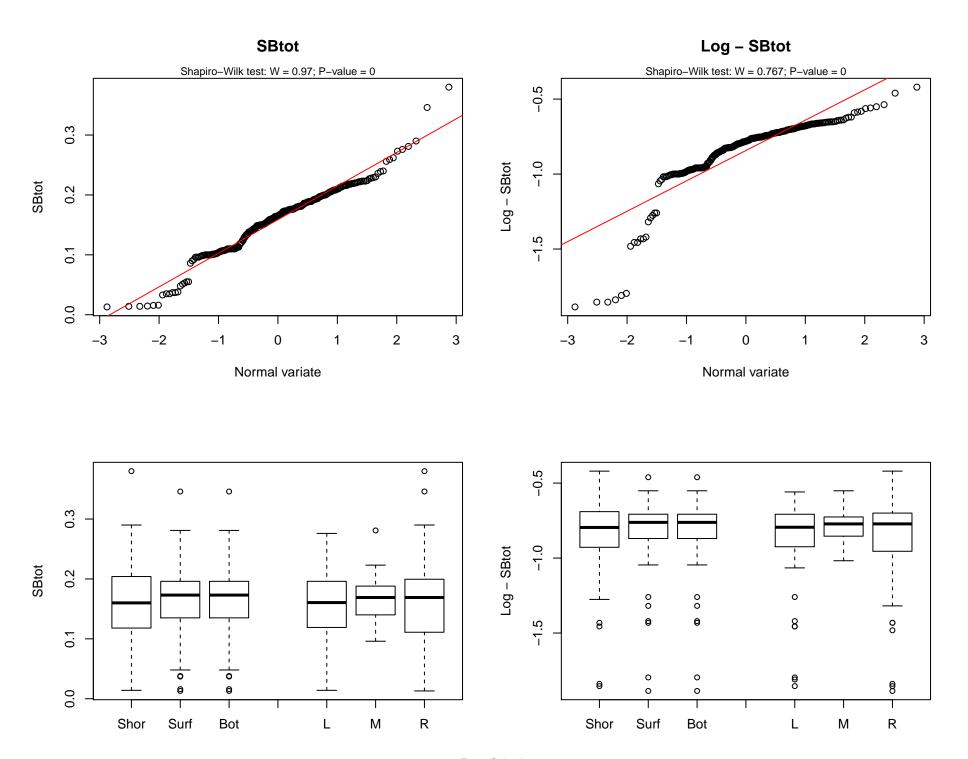


Page G1b - 21

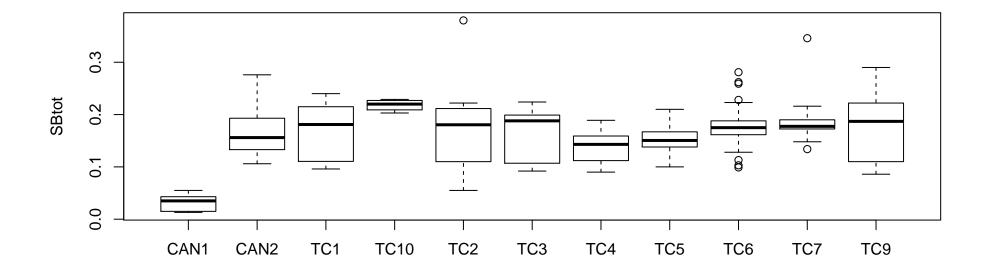


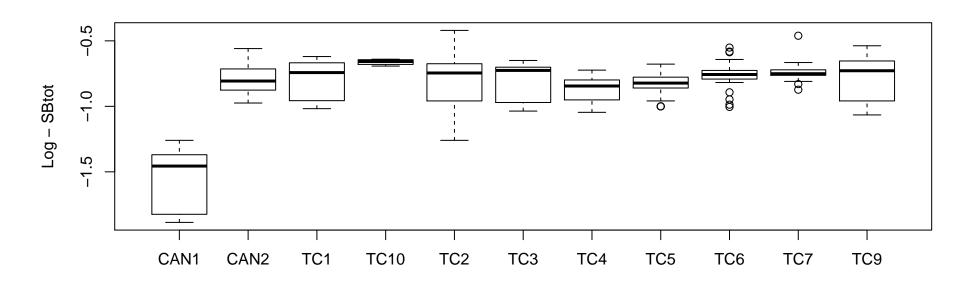


Page G1b - 22

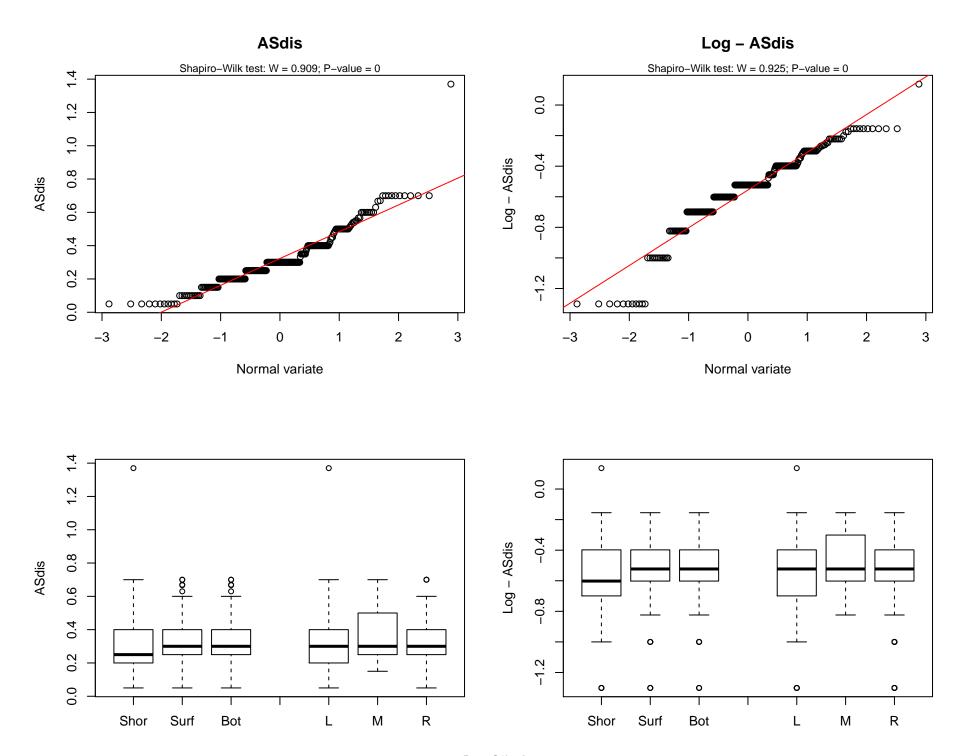


Page G1b - 23

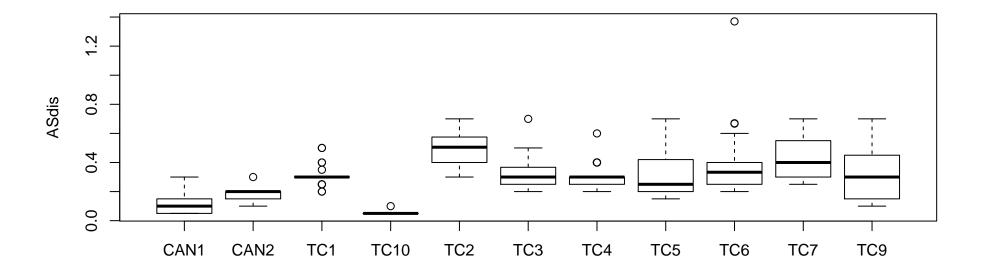


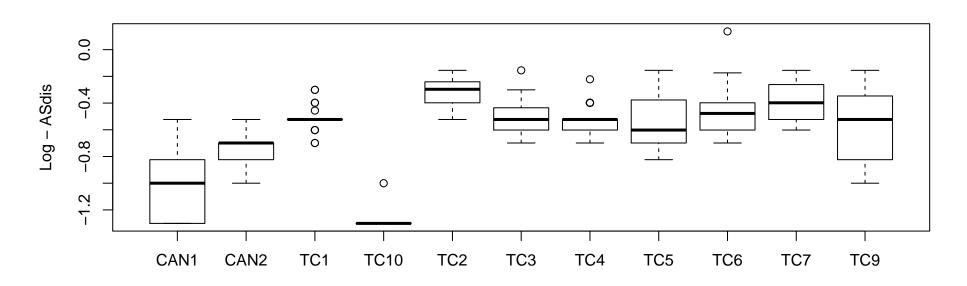


Page G1b - 24

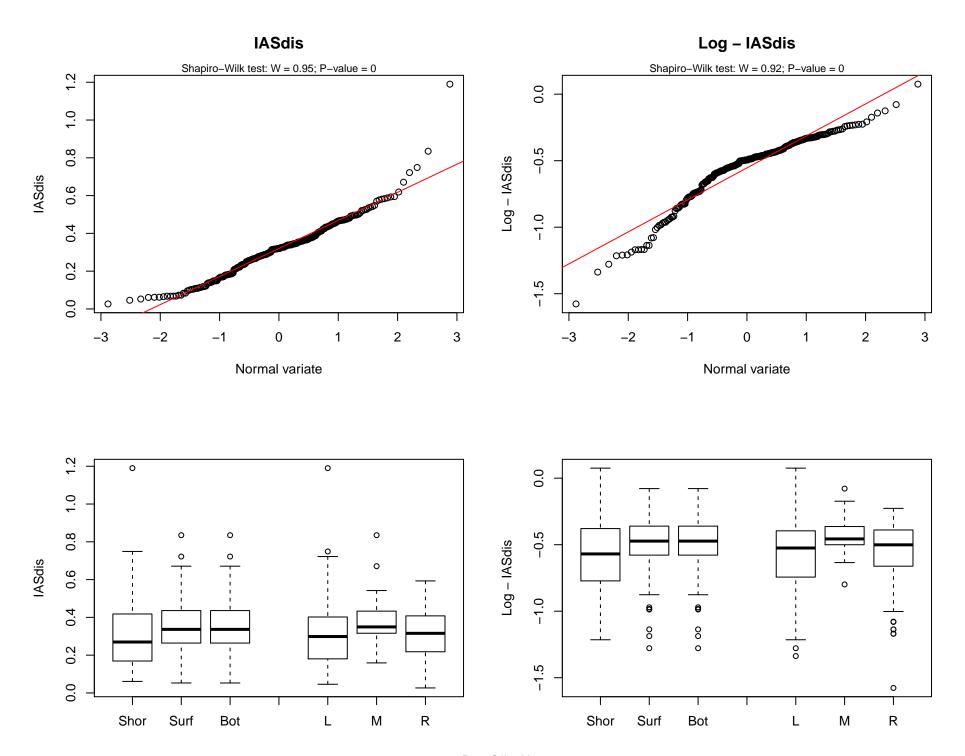


Page G1b - 25

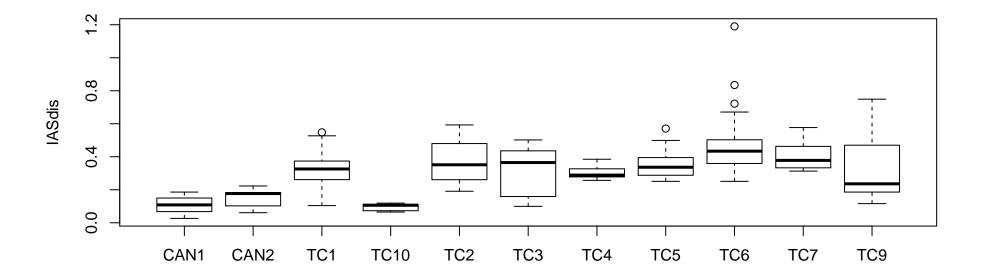


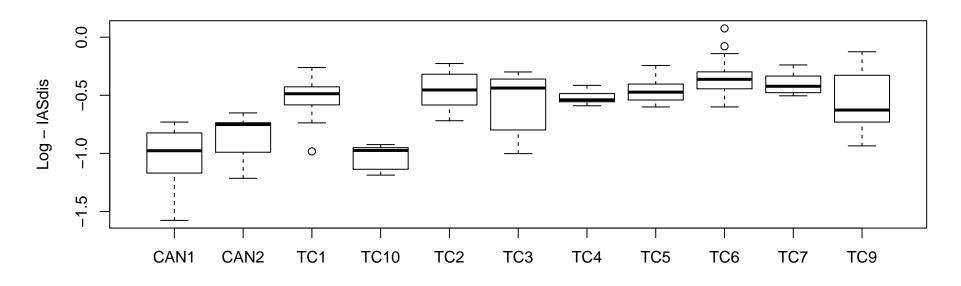


Page G1b - 26

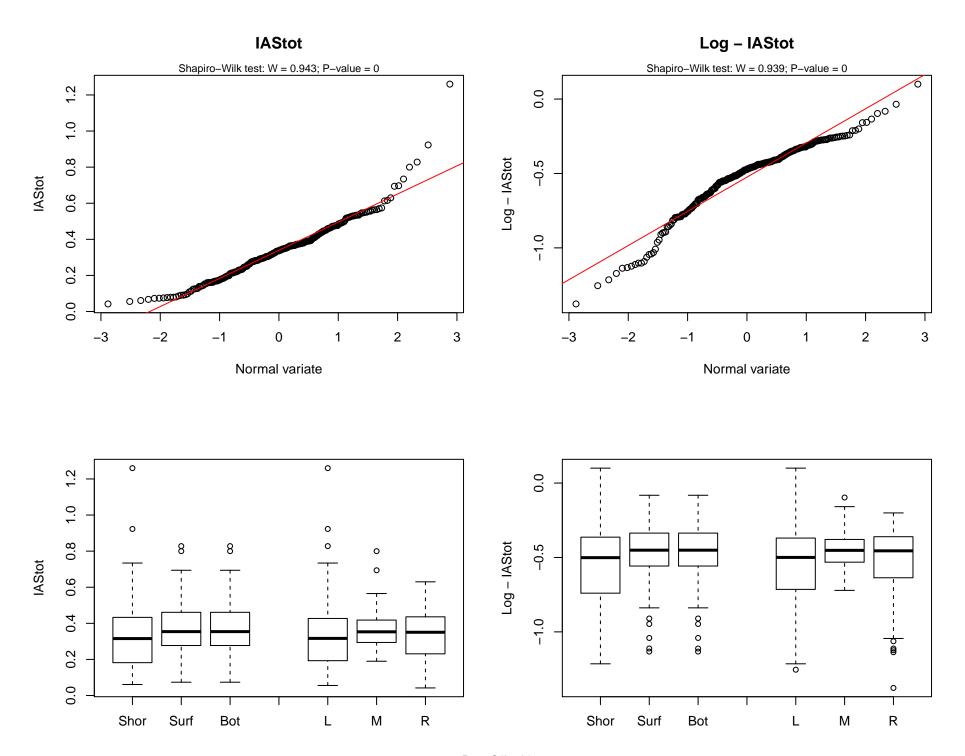


Page G1b - 27

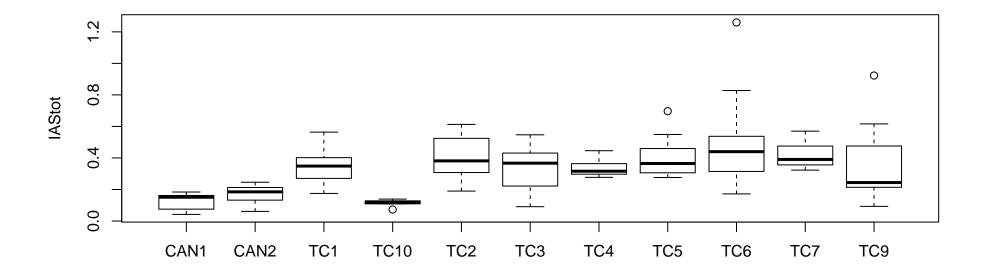


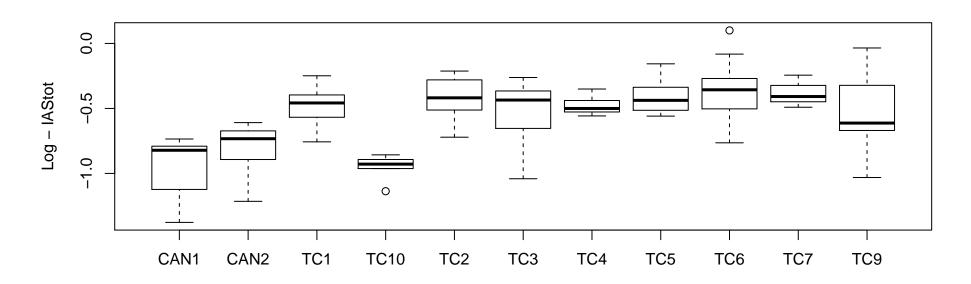


Page G1b - 28

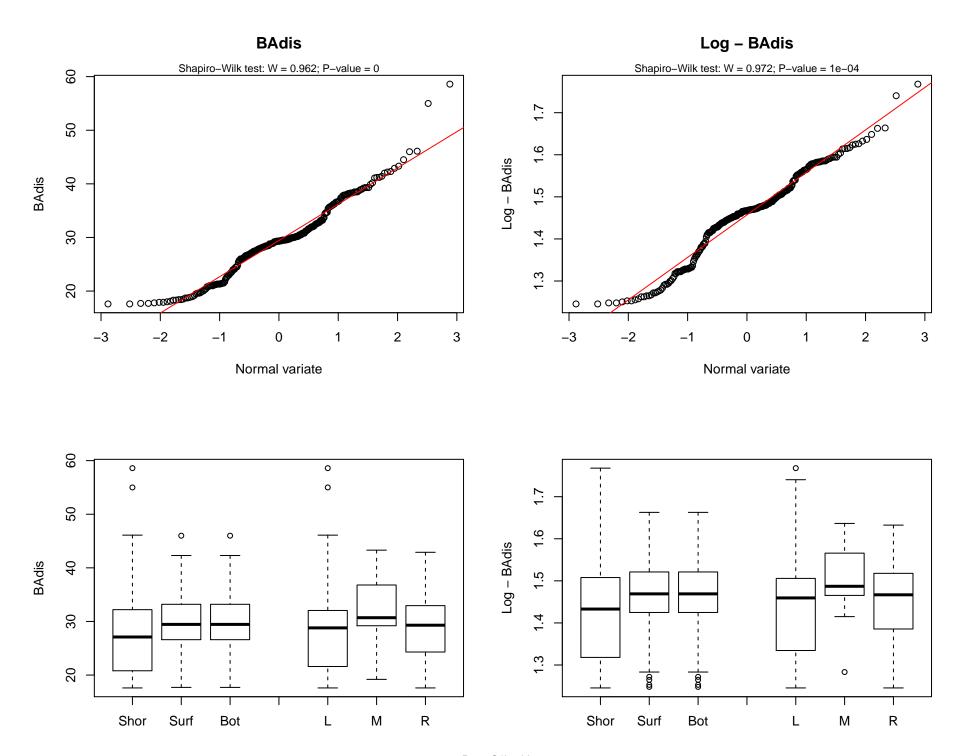


Page G1b - 29

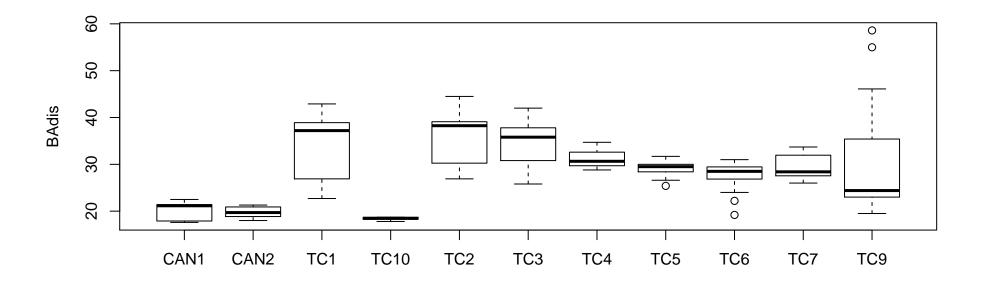


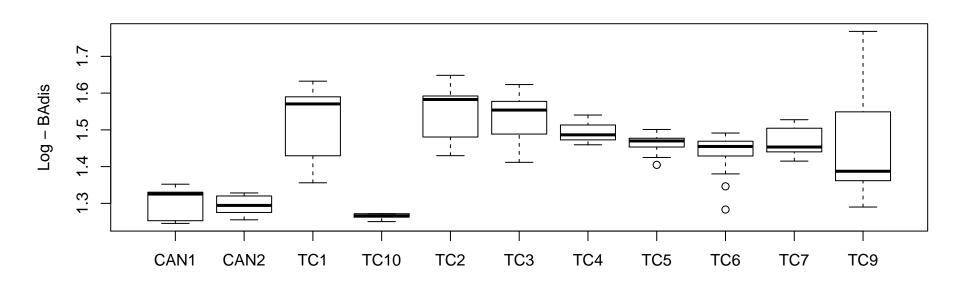


Page G1b - 30

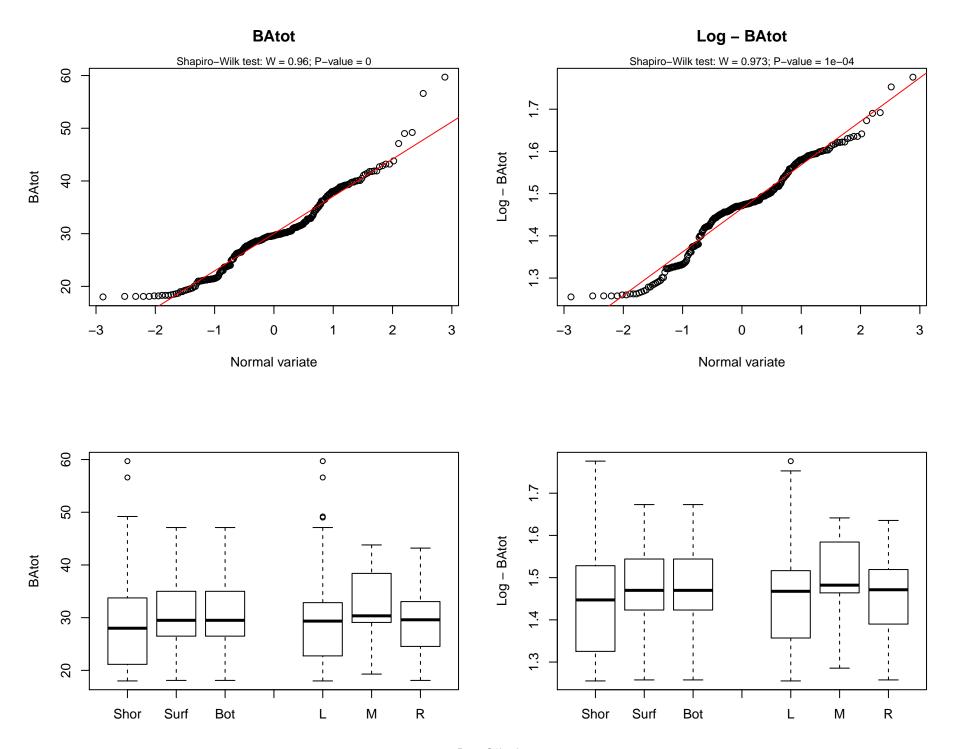


Page G1b - 31

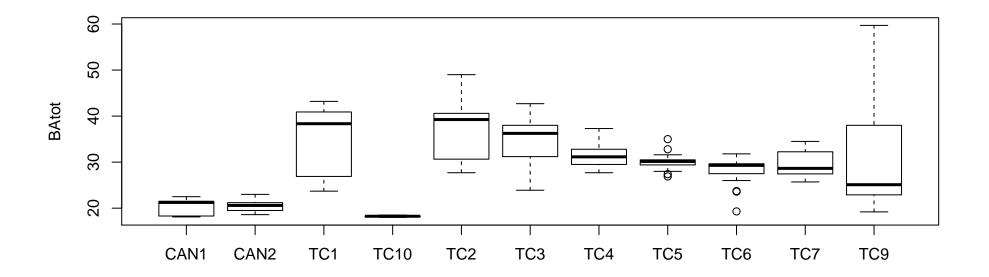


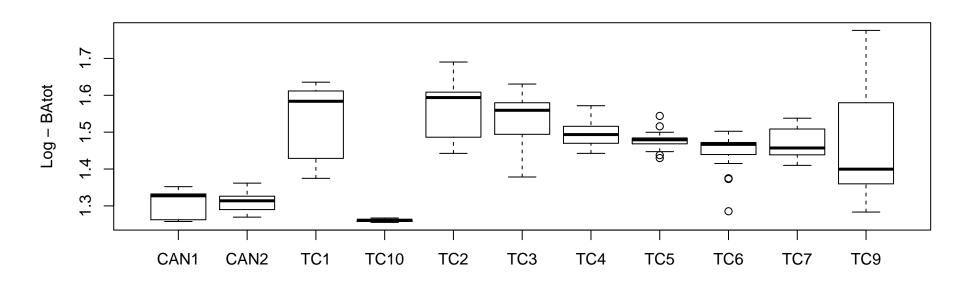


Page G1b - 32

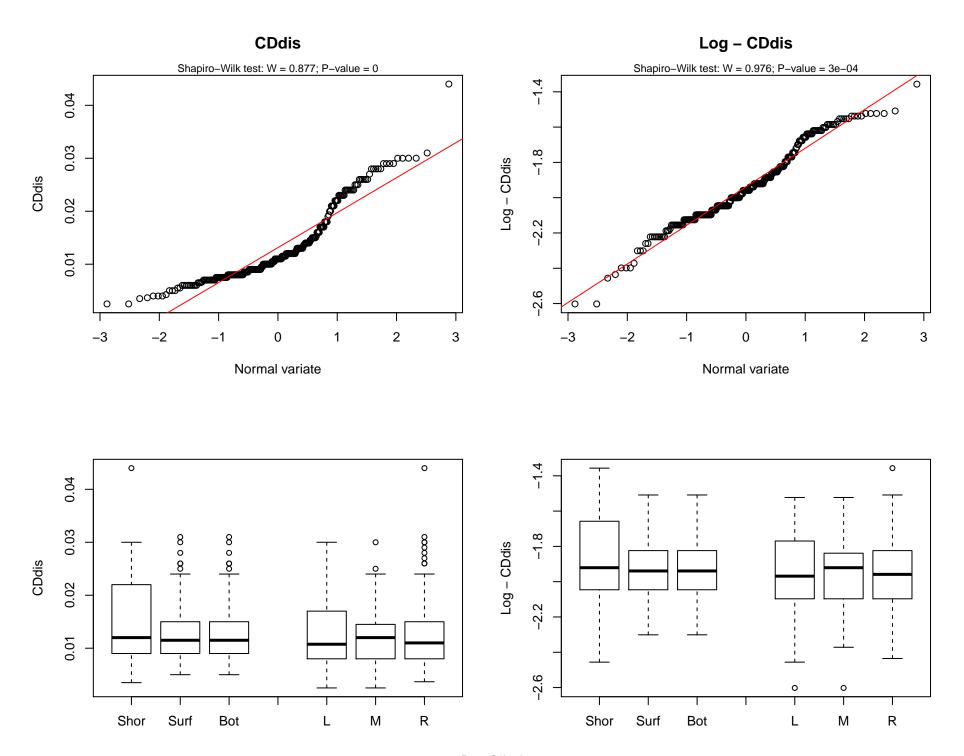


Page G1b - 33

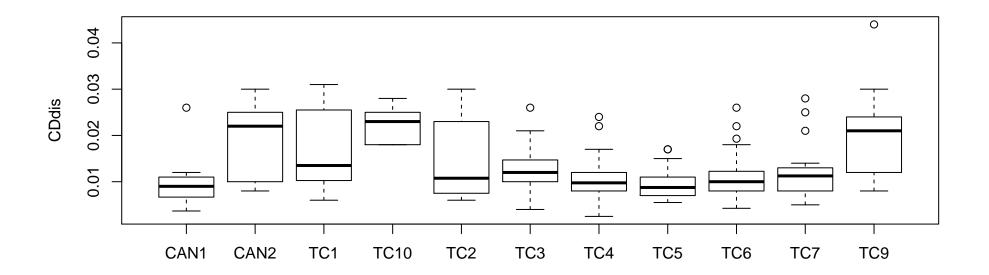


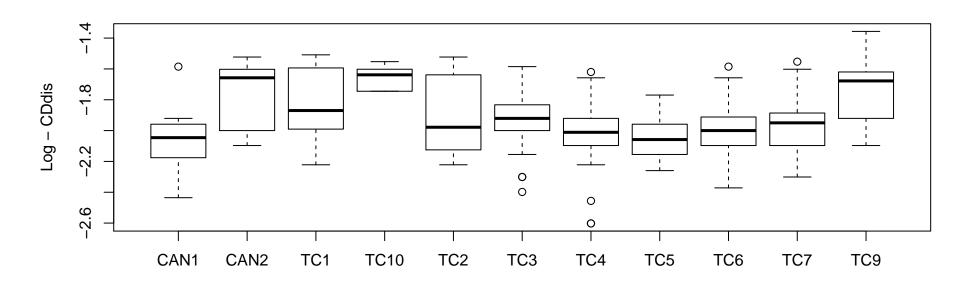


Page G1b - 34

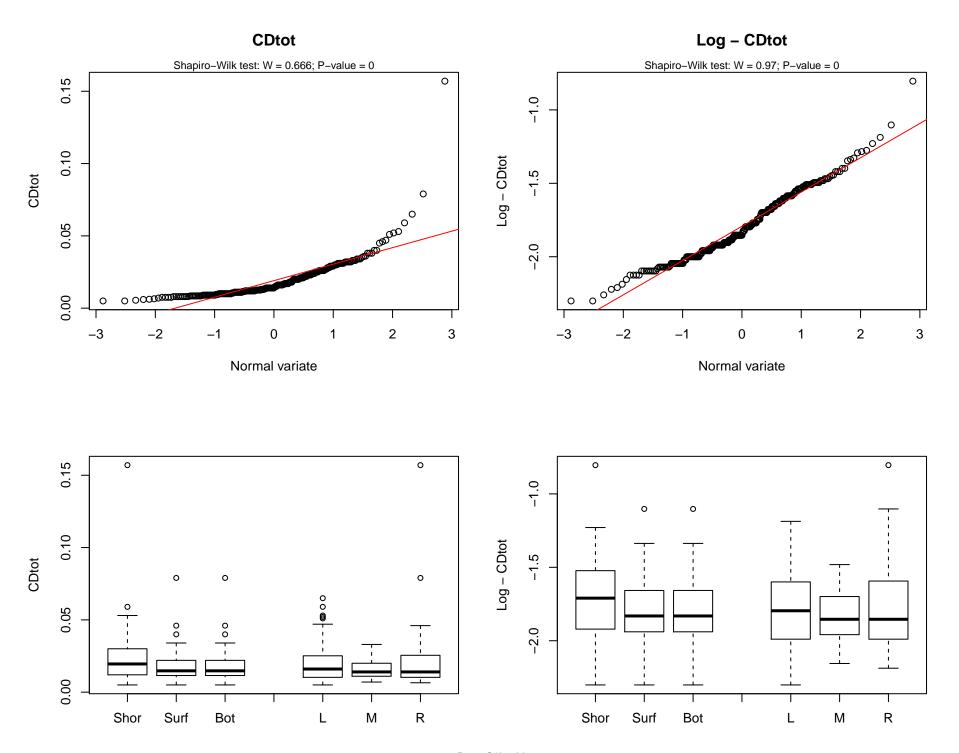


Page G1b - 35

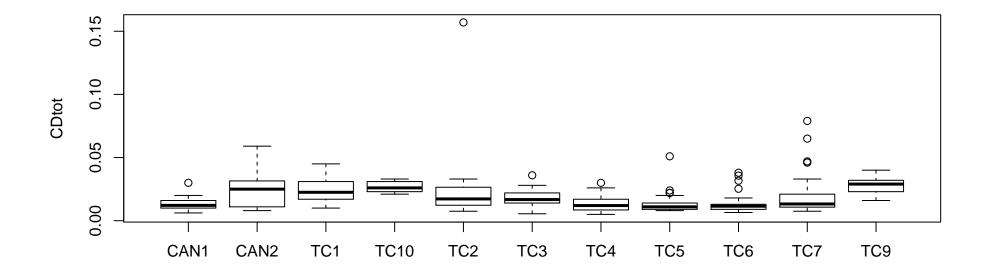


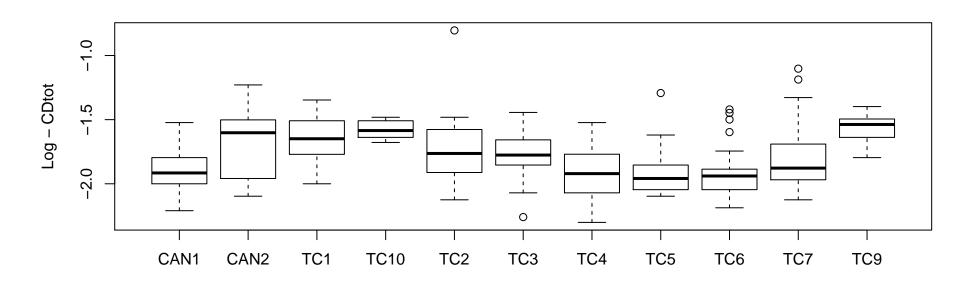


Page G1b - 36

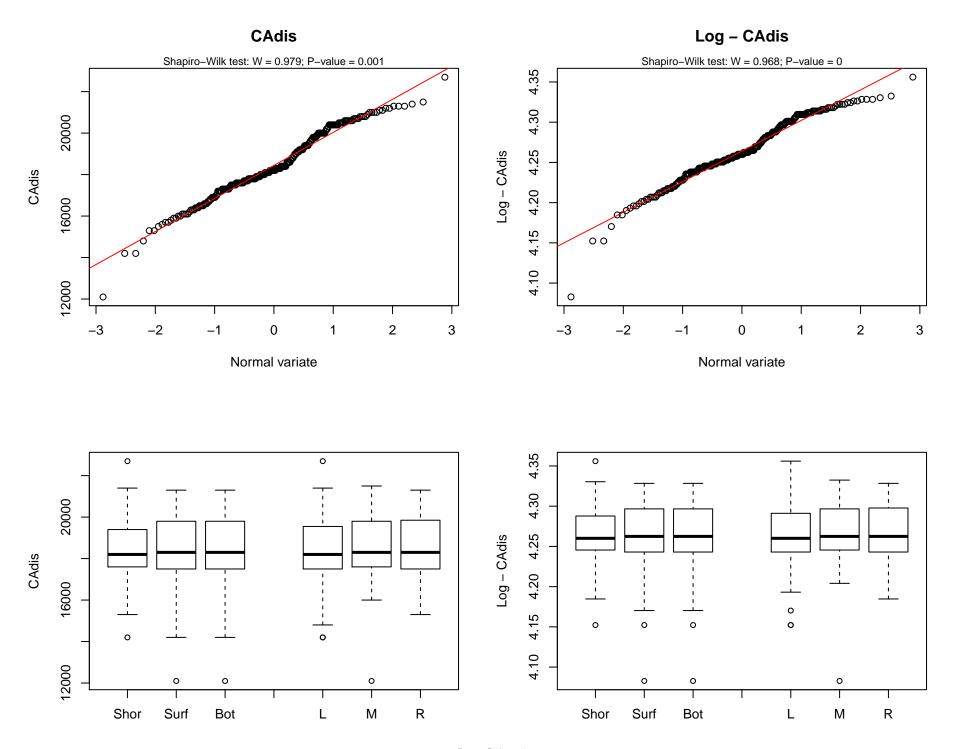


Page G1b - 37

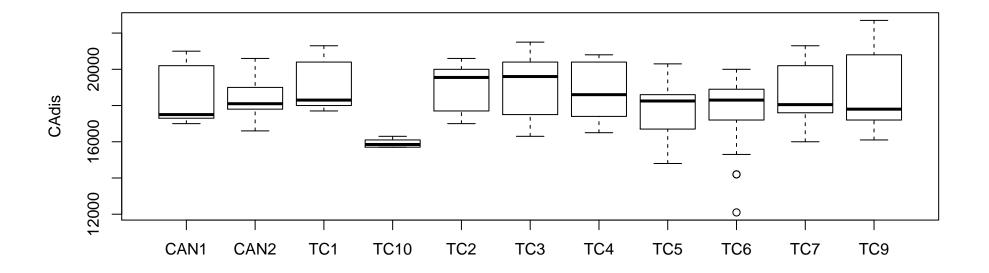


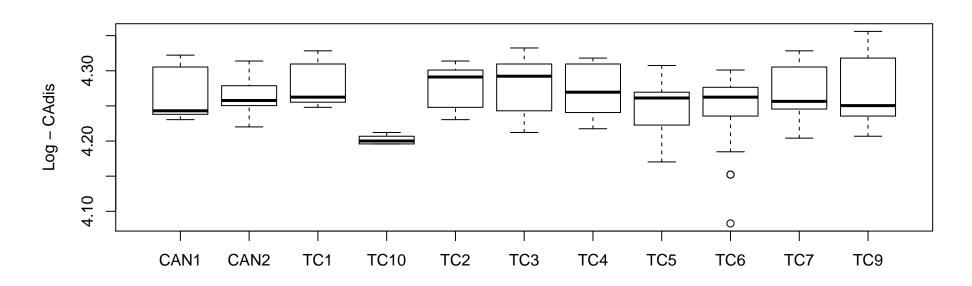


Page G1b - 38

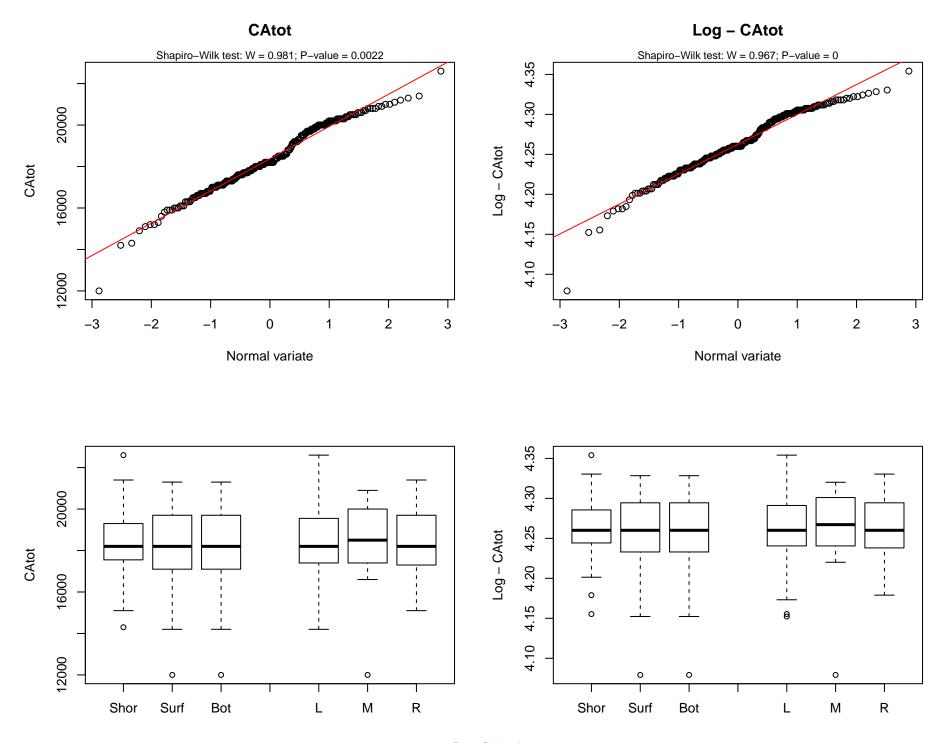


Page G1b - 39

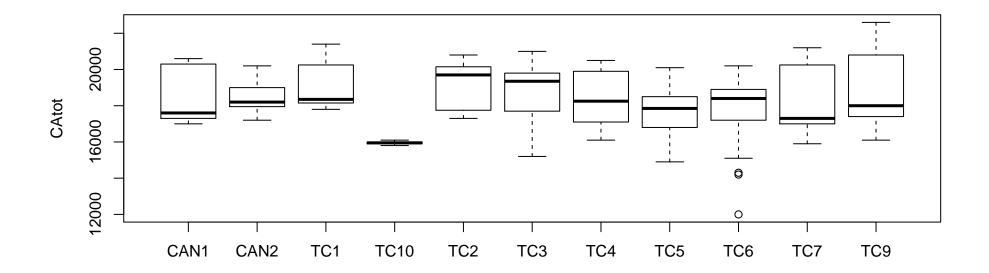


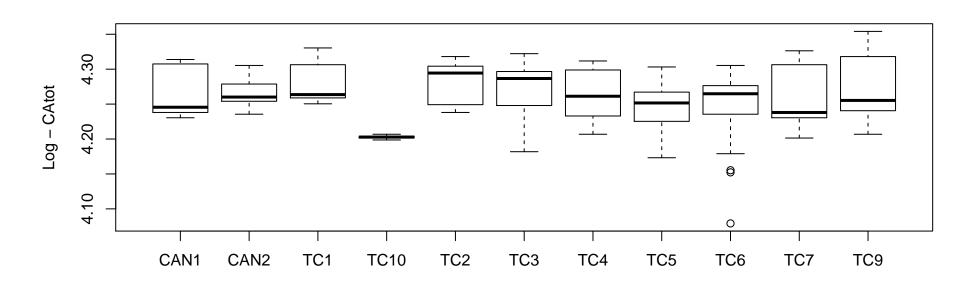


Page G1b - 40

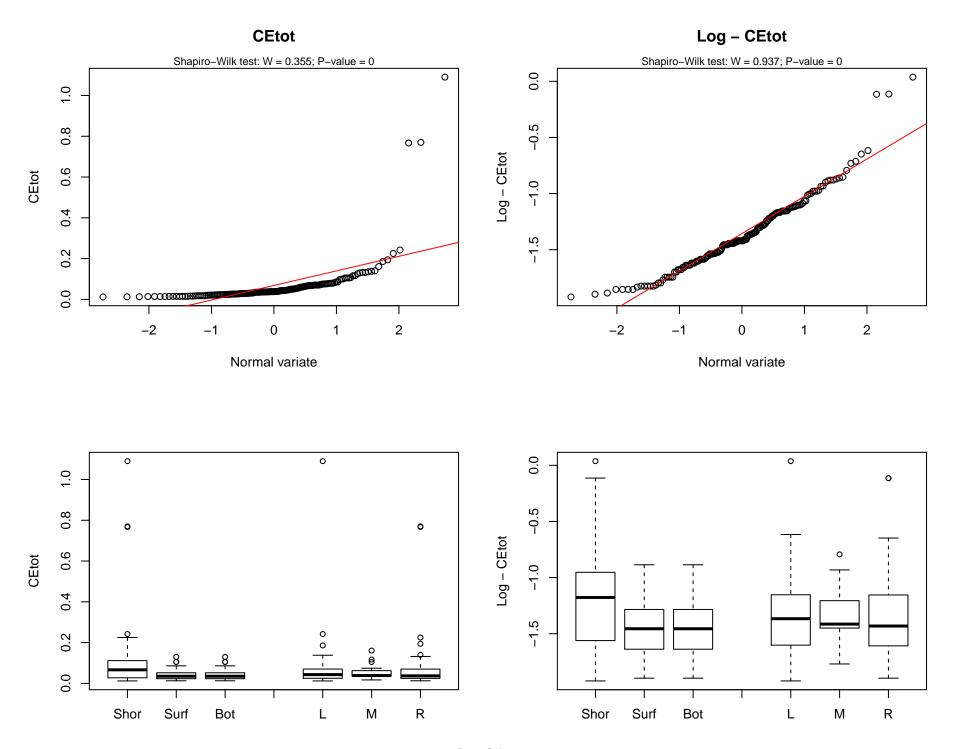


Page G1b - 41

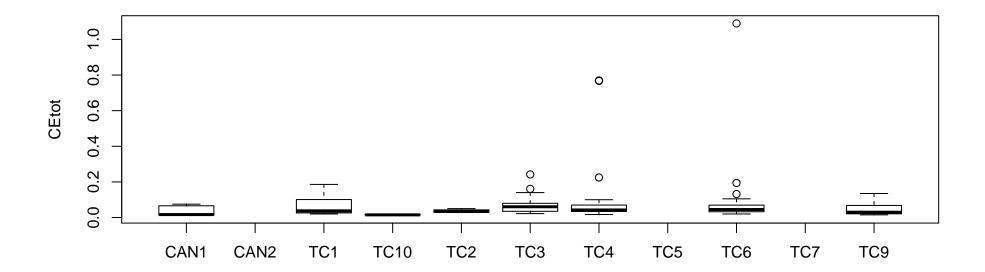


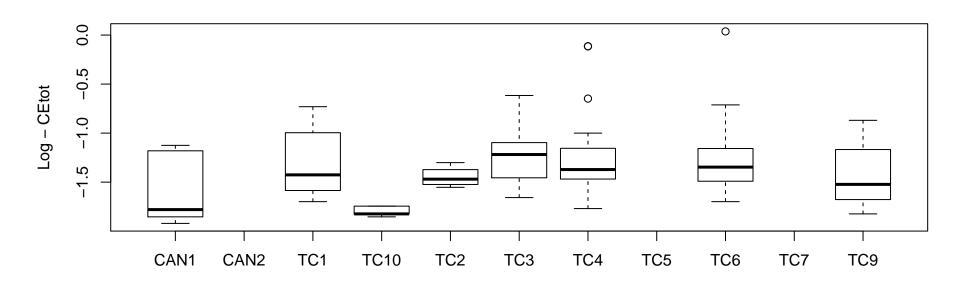


Page G1b - 42

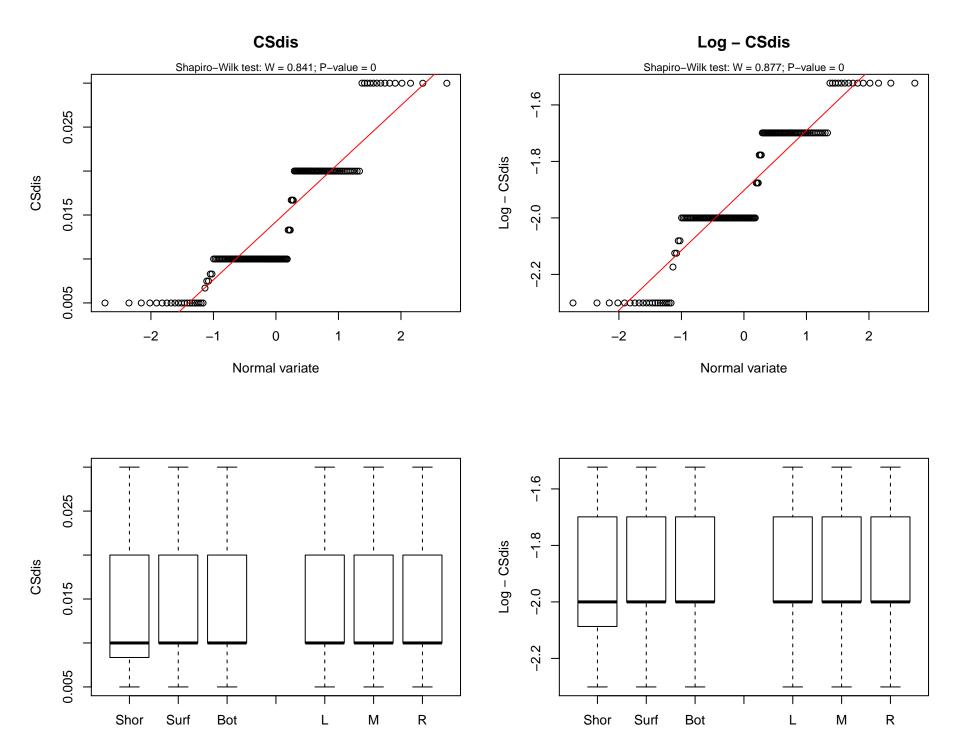


Page G1b - 43

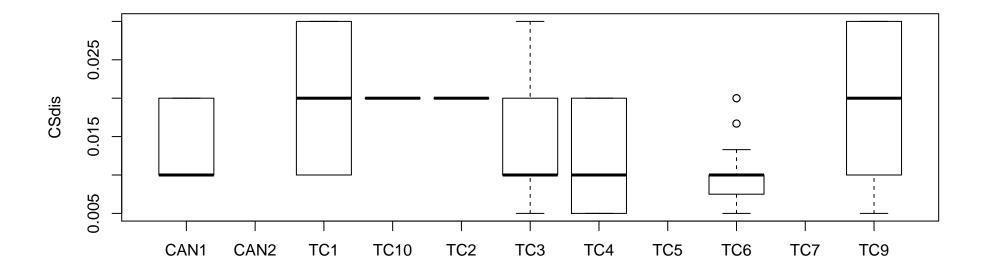


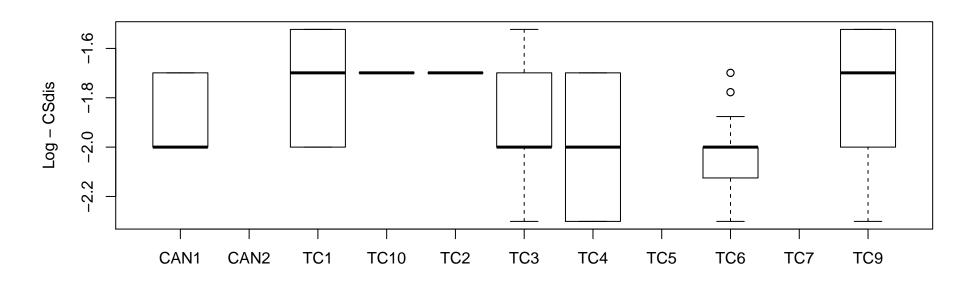


Page G1b - 44

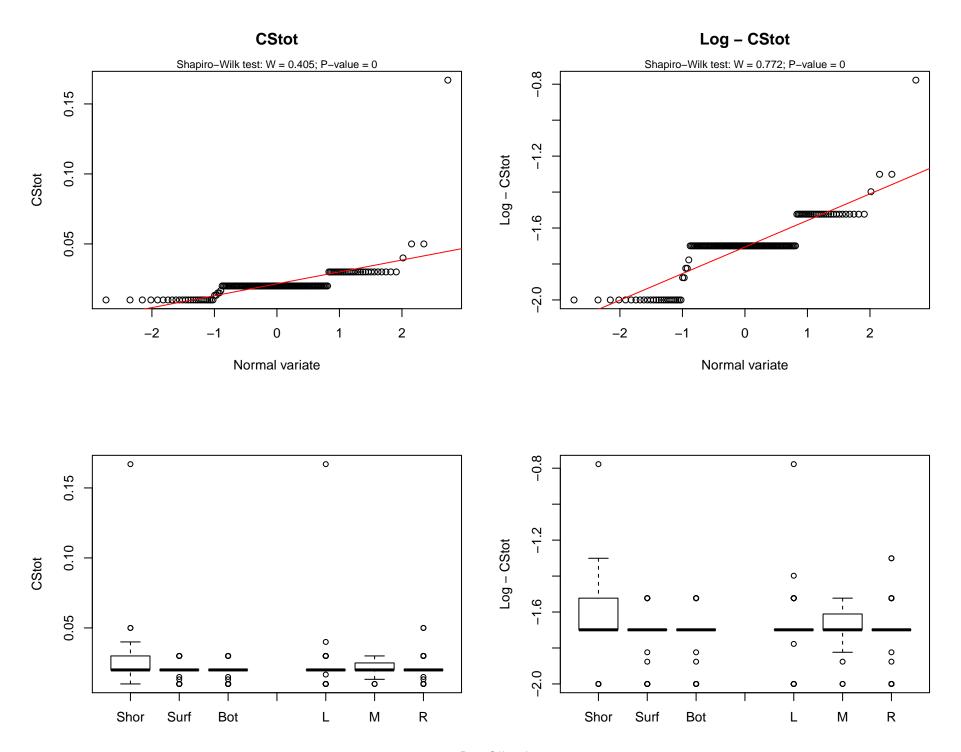


Page G1b - 45

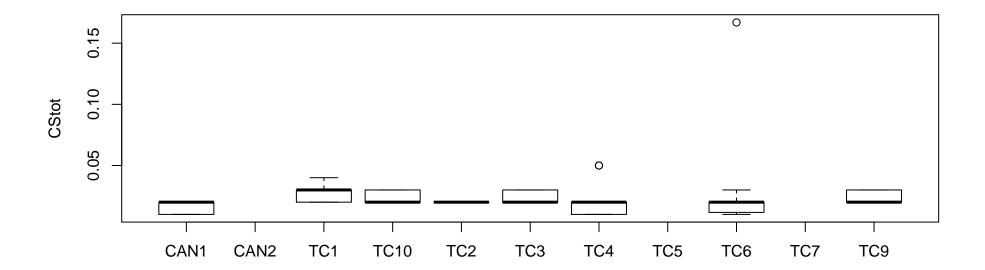


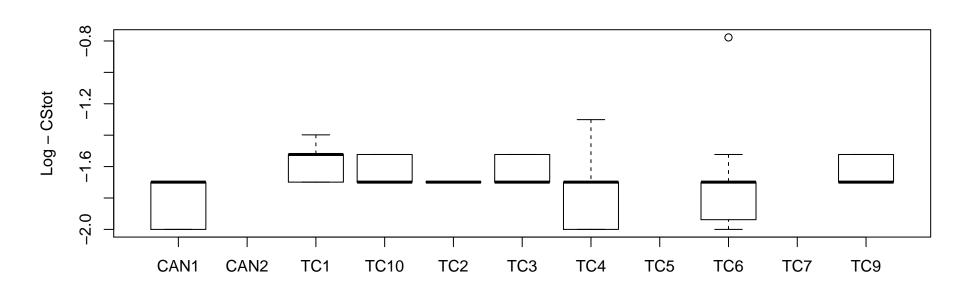


Page G1b - 46

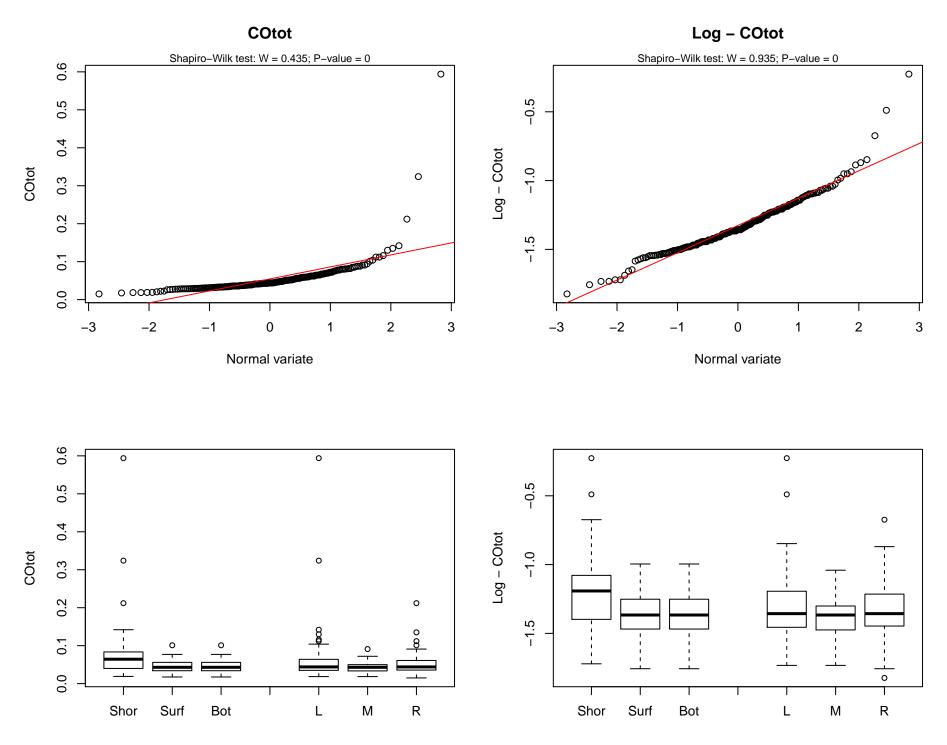


Page G1b - 47

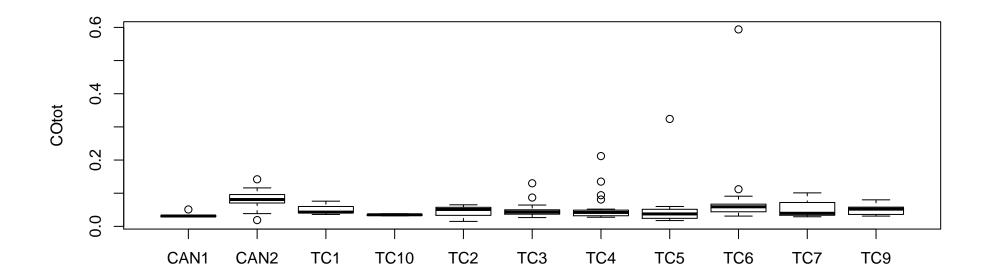


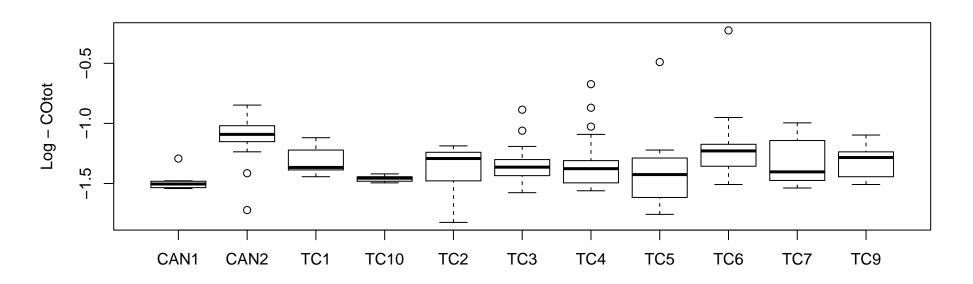


Page G1b - 48

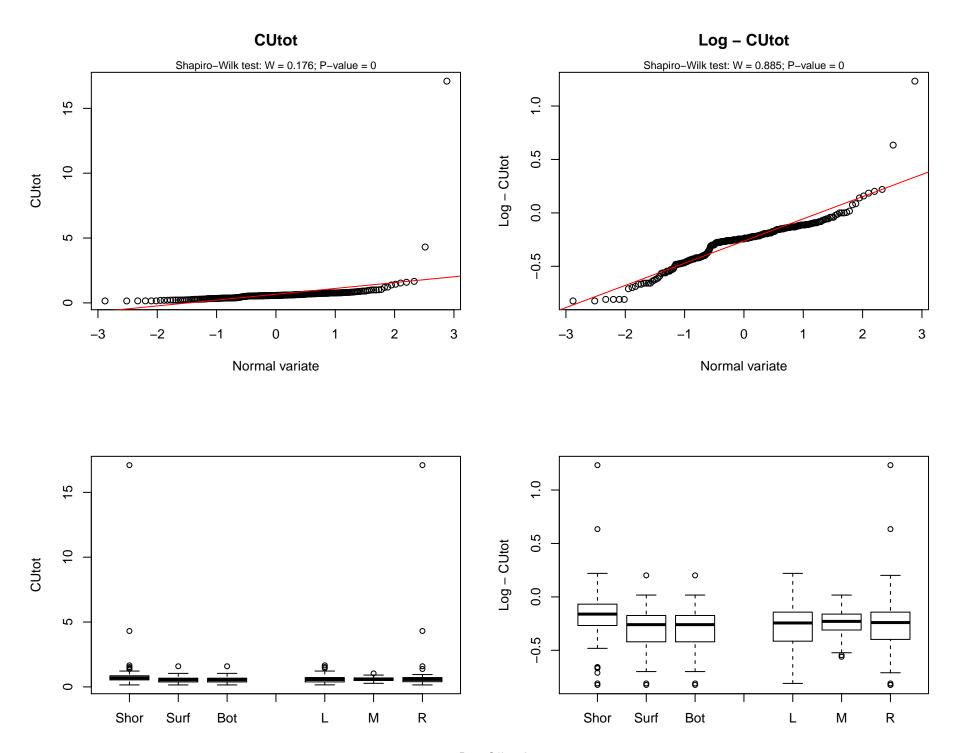


Page G1b - 49

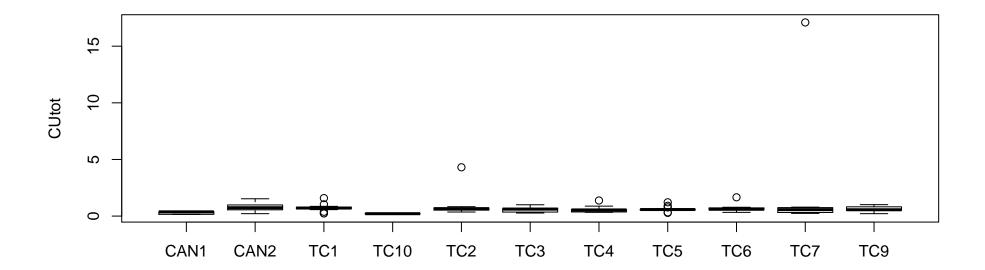


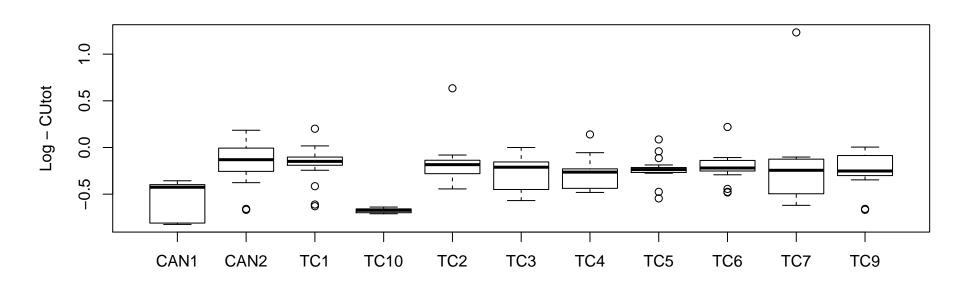


Page G1b - 50

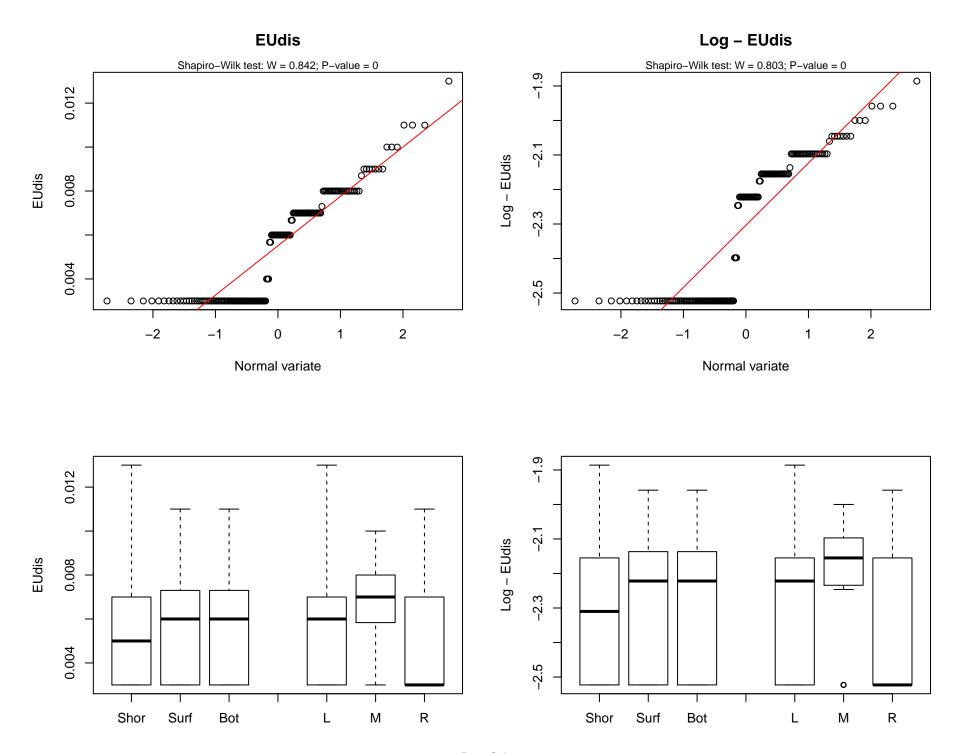


Page G1b - 51

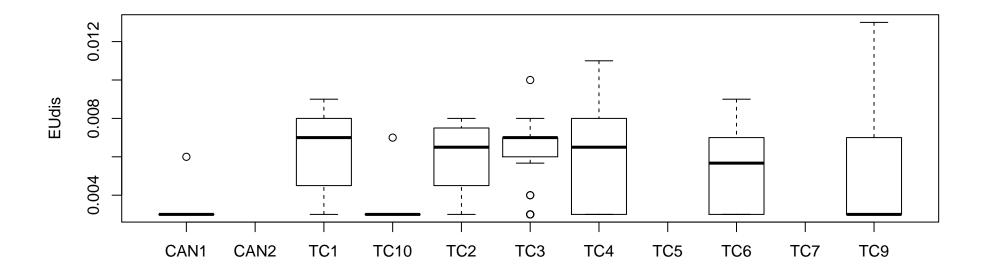


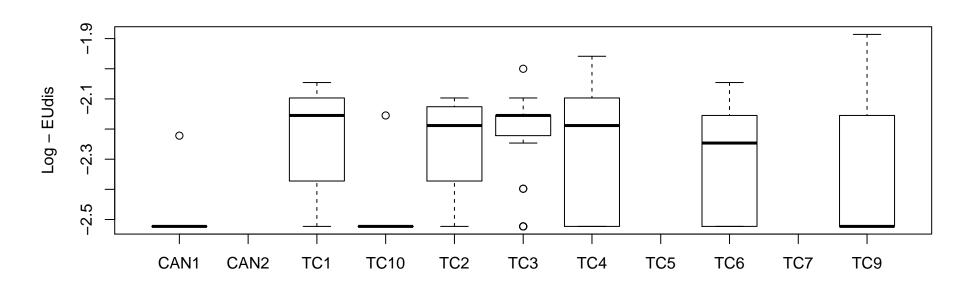


Page G1b - 52

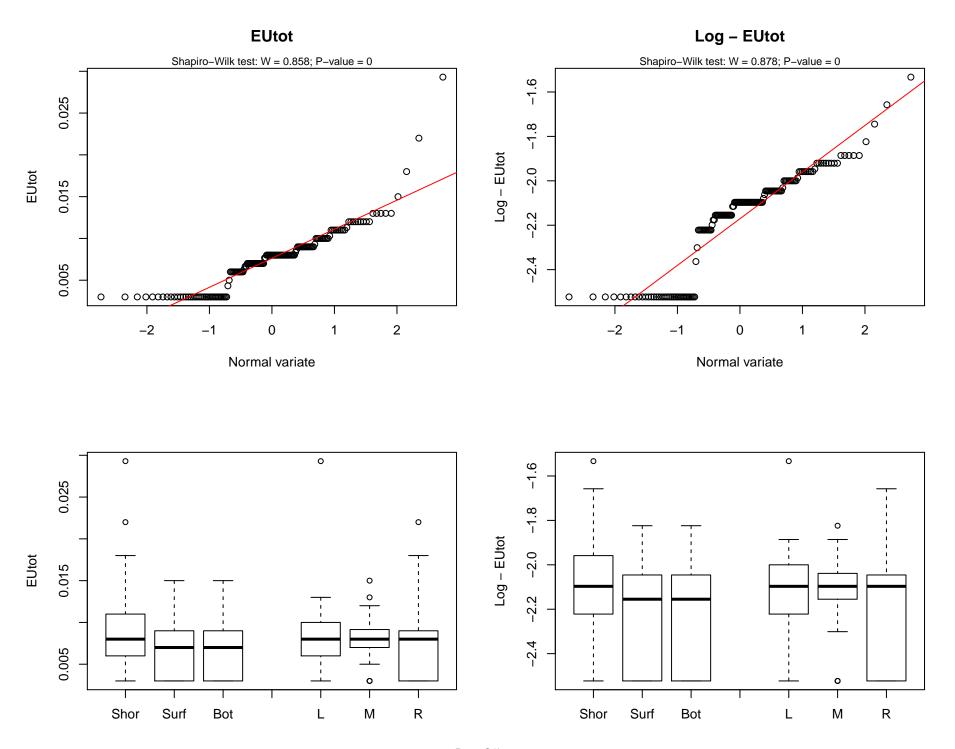


Page G1b - 53

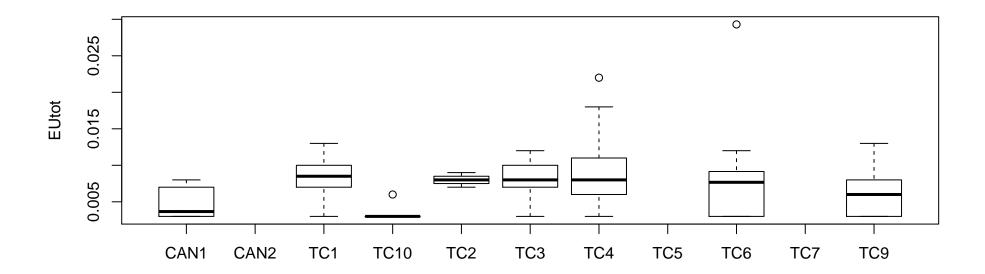


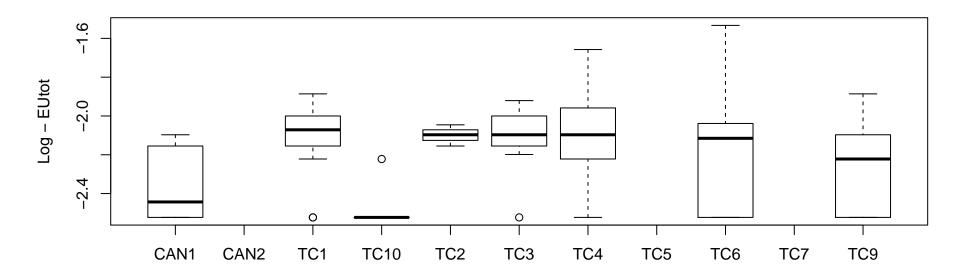


Page G1b - 54

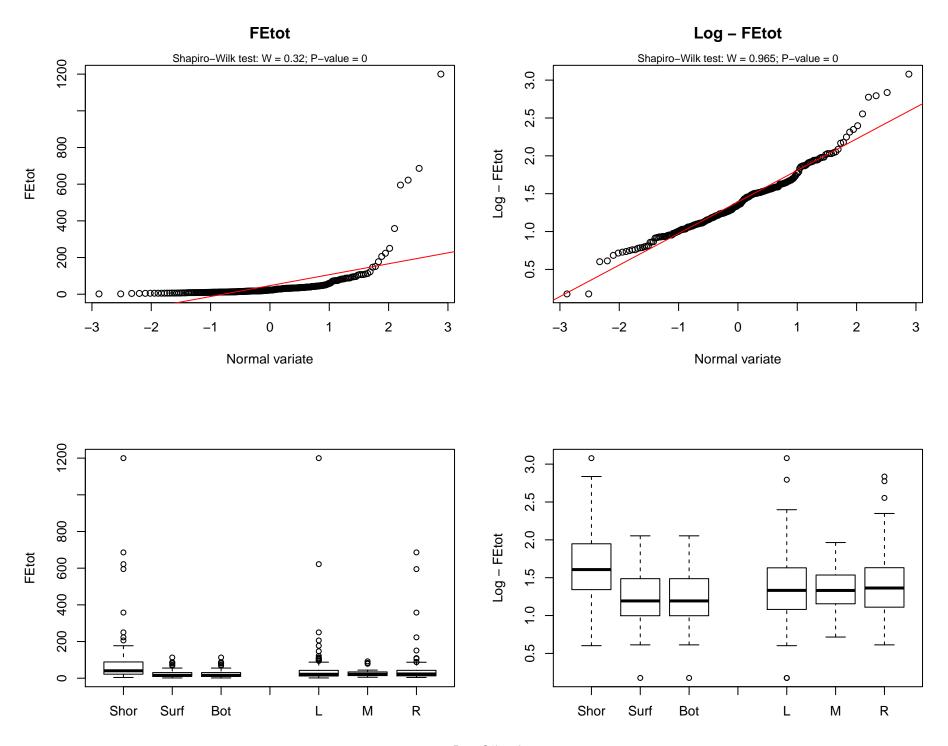


Page G1b - 55

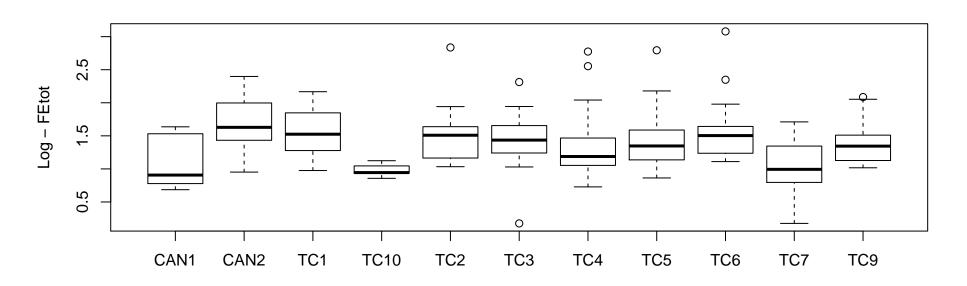




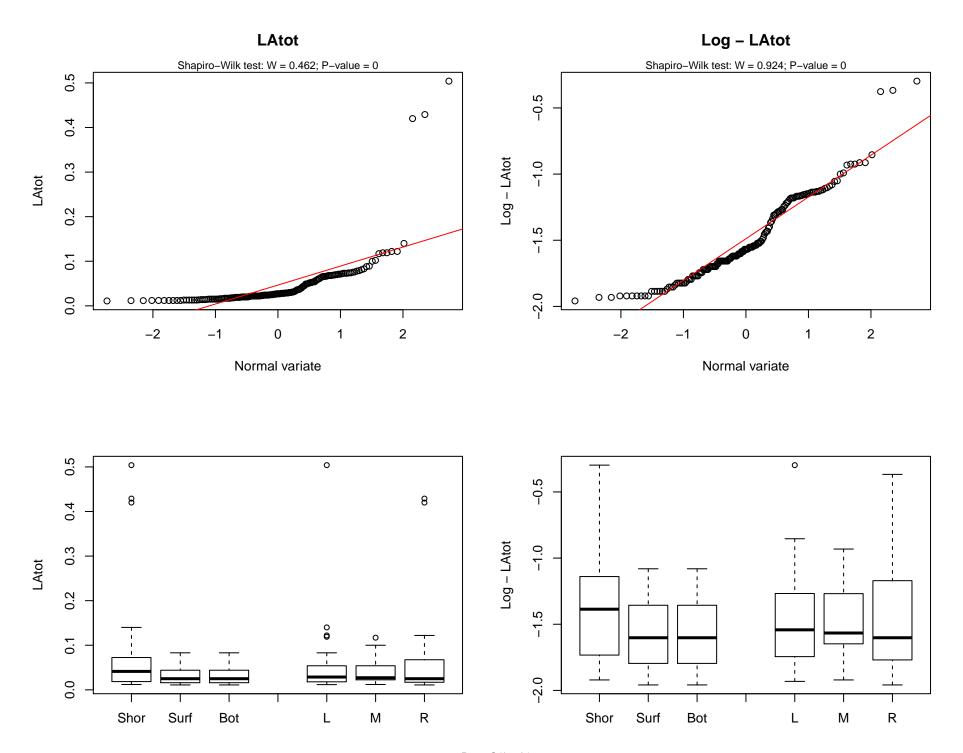
Page G1b - 56



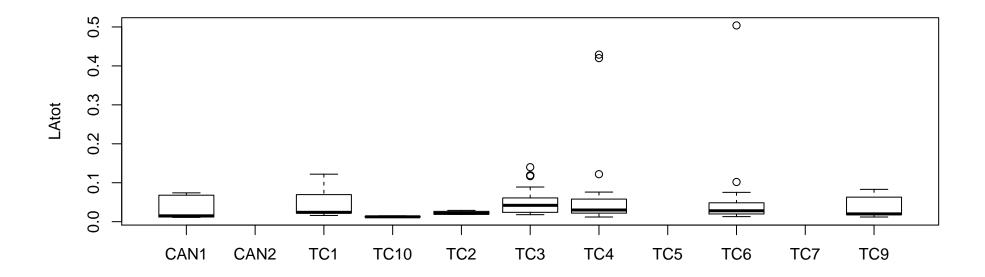
Page G1b - 57



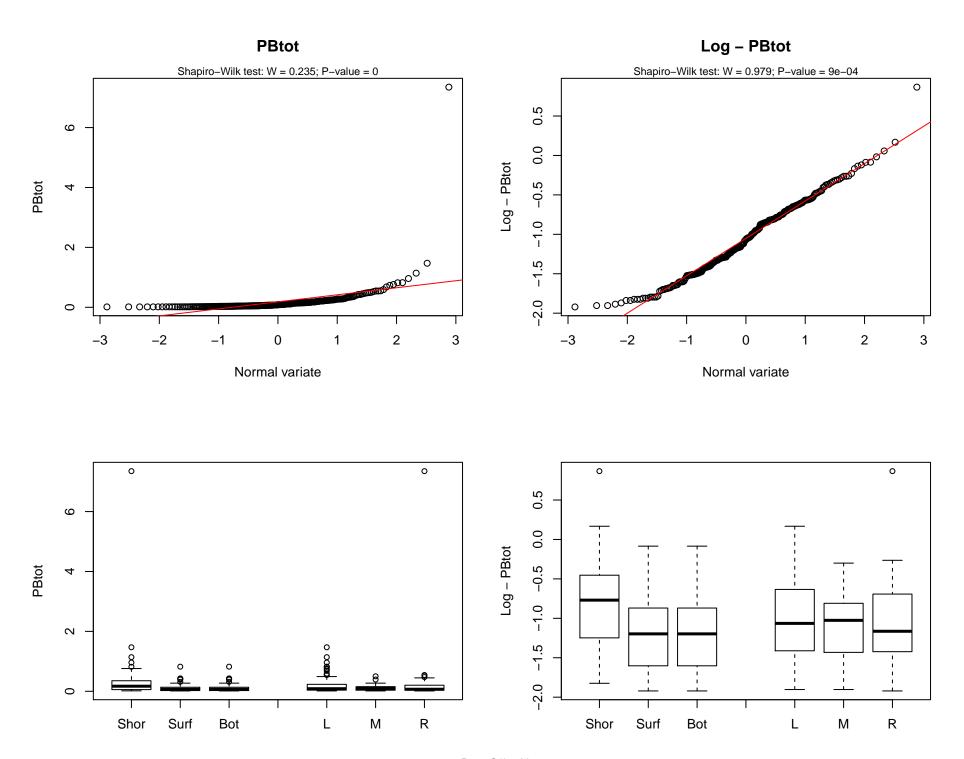
Page G1b - 58



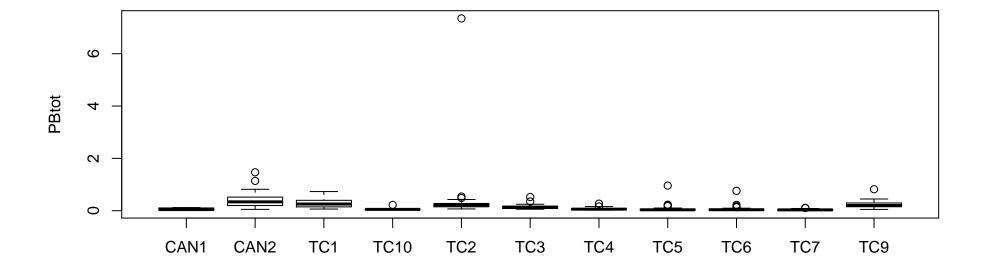
Page G1b - 59

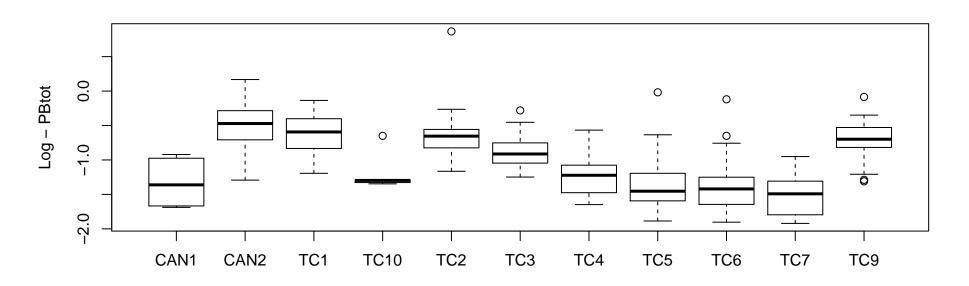


Page G1b - 60

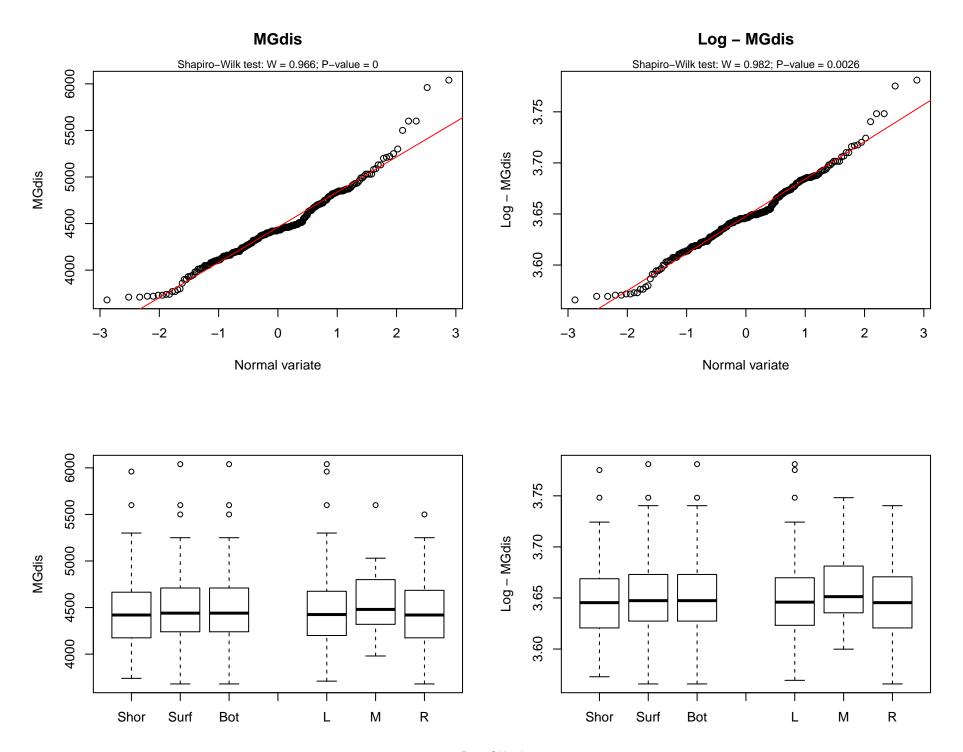


Page G1b - 61

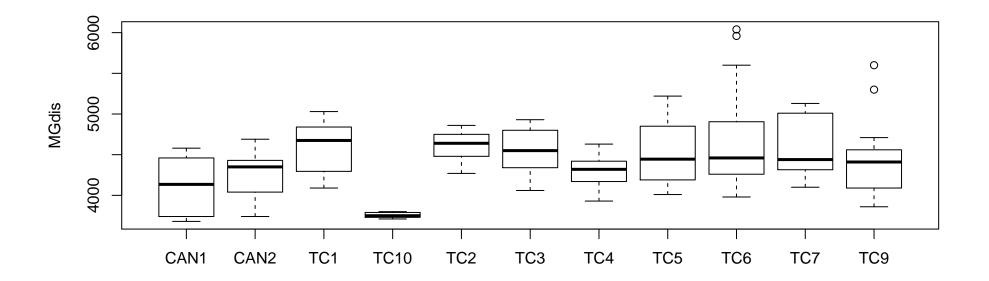


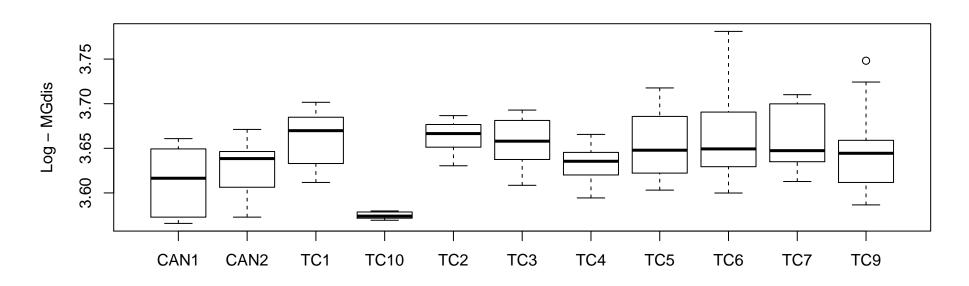


Page G1b - 62

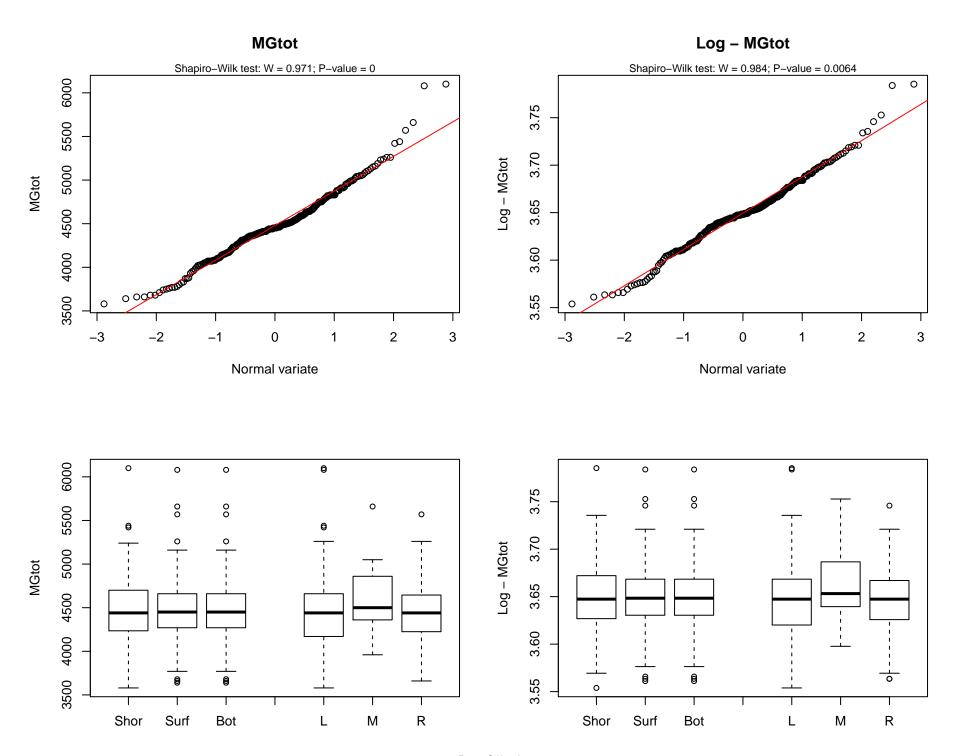


Page G1b - 63

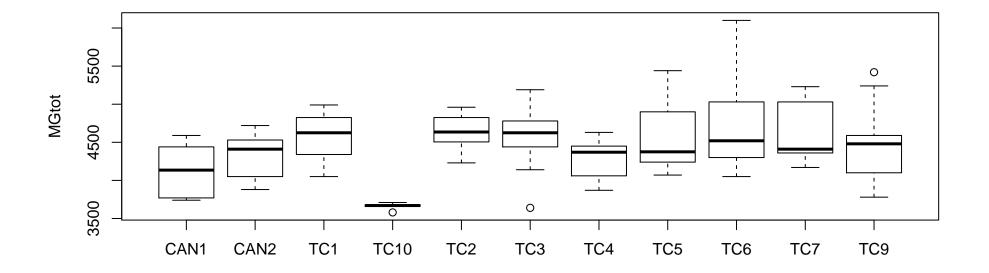


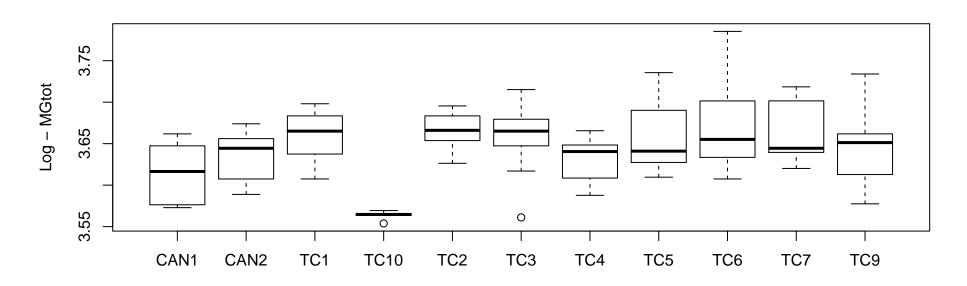


Page G1b - 64

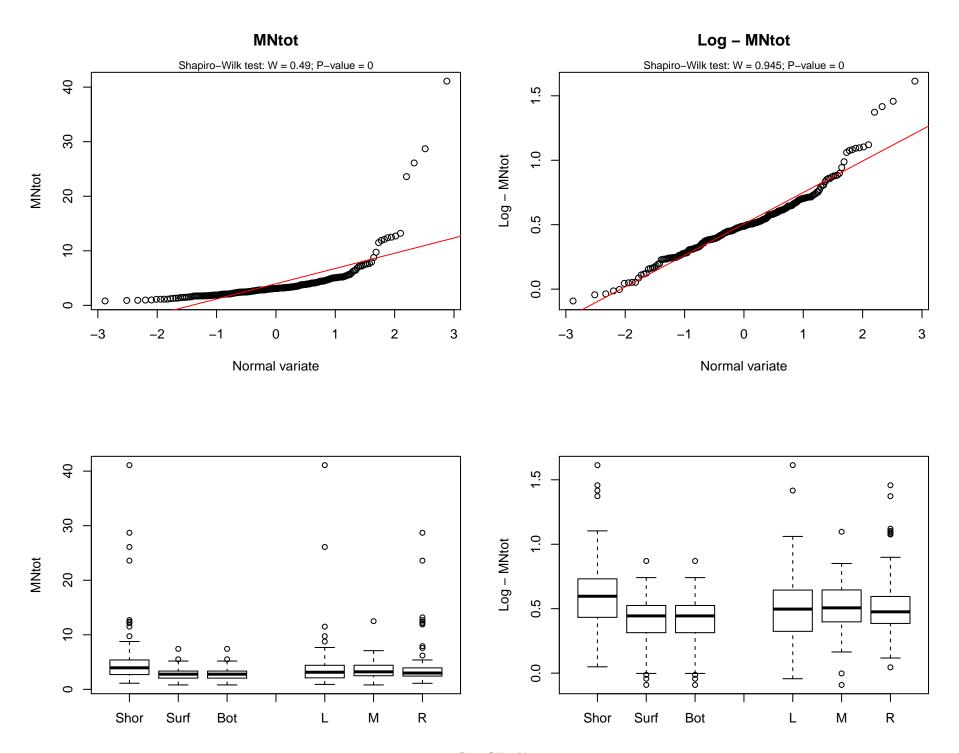


Page G1b - 65

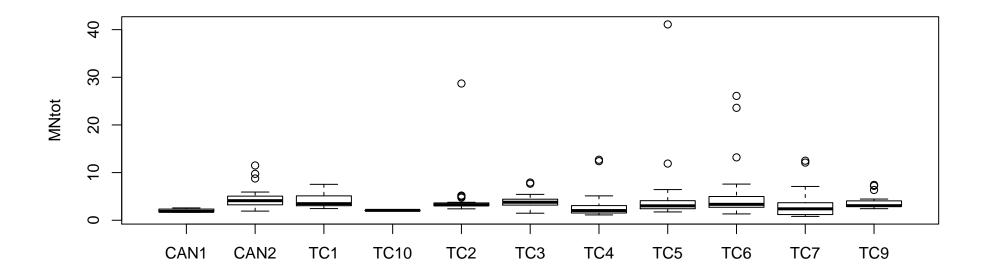


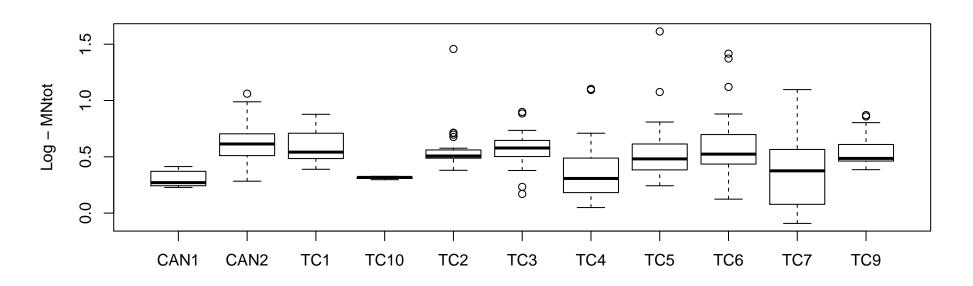


Page G1b - 66

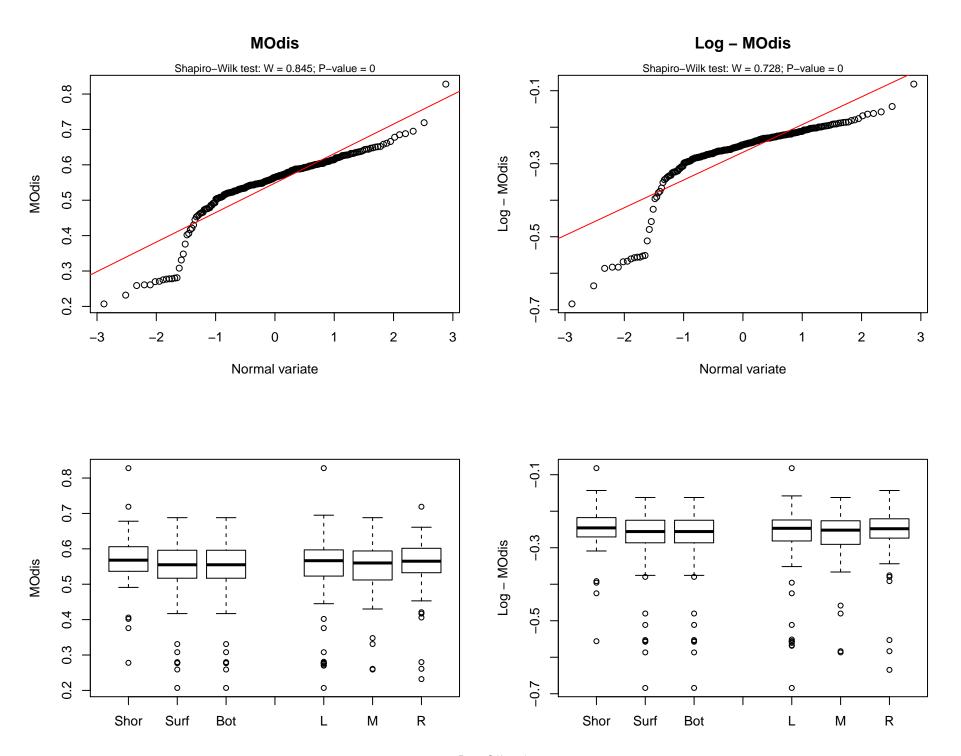


Page G1b - 67

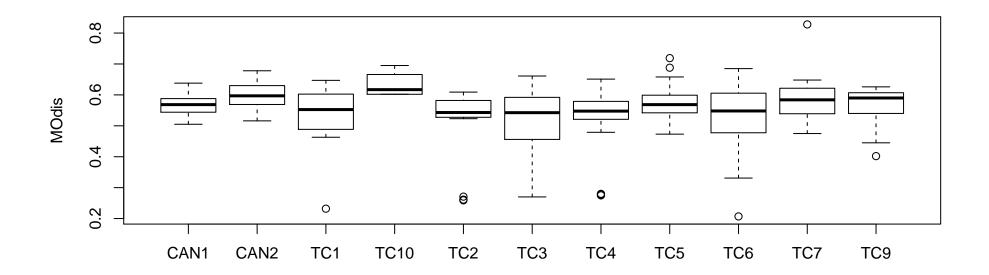


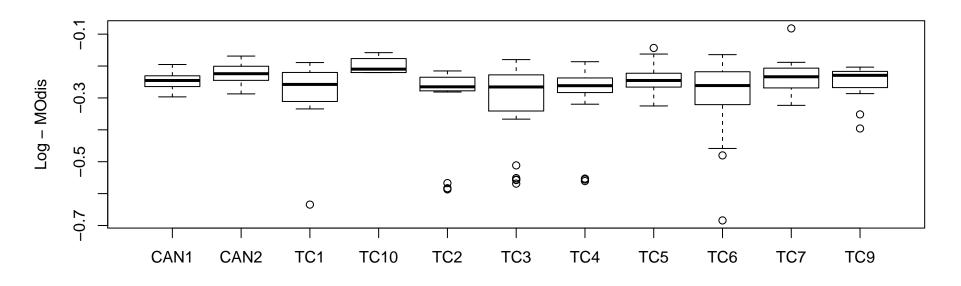


Page G1b - 68



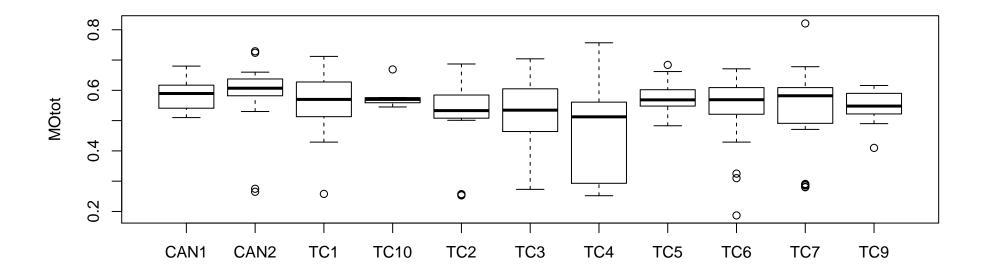
Page G1b - 69

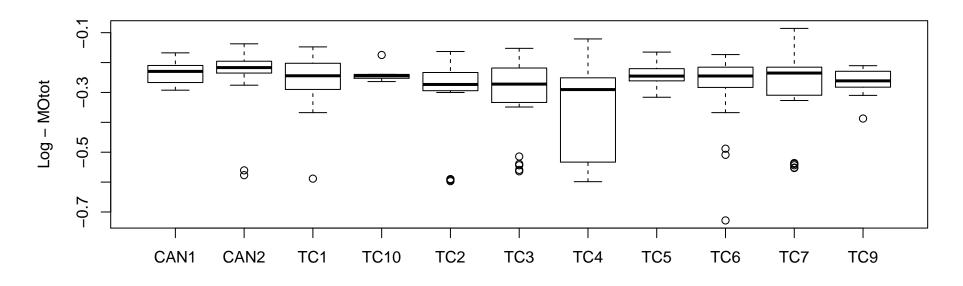




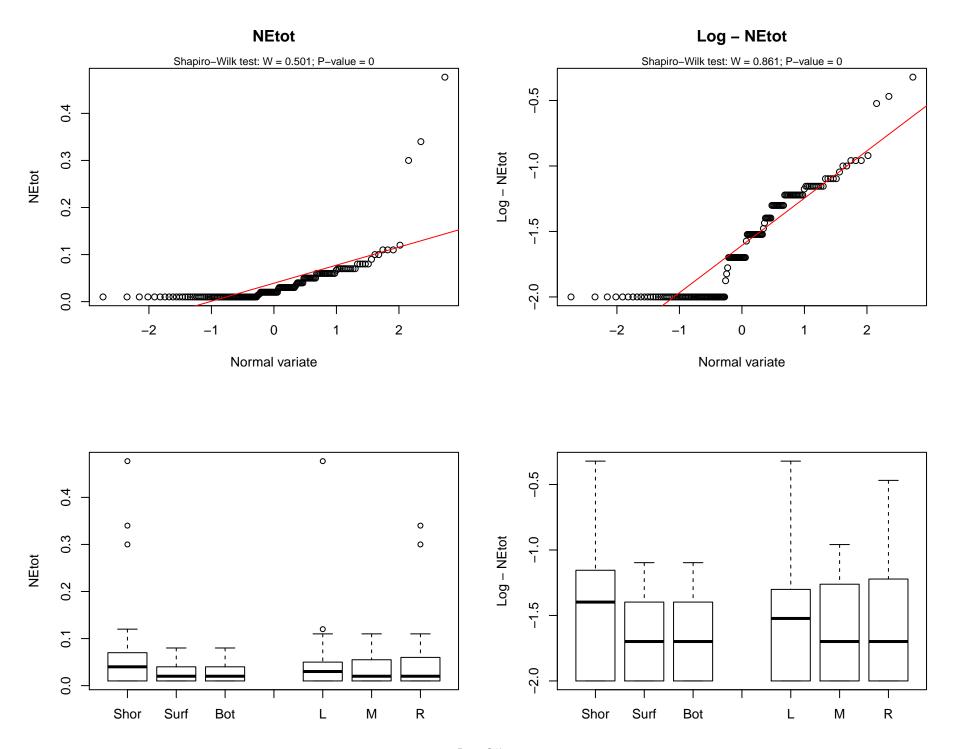
Page G1b - 70

Page G1b - 71

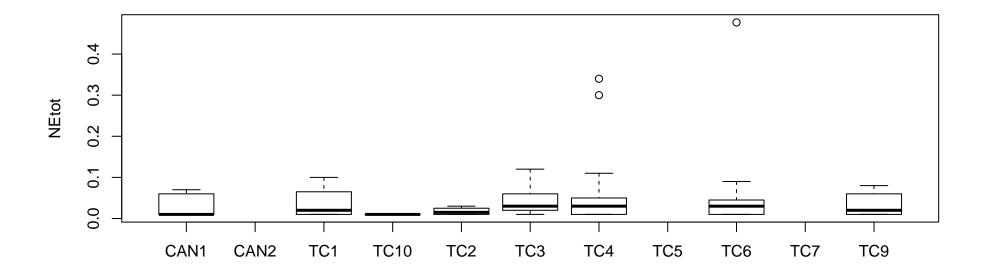


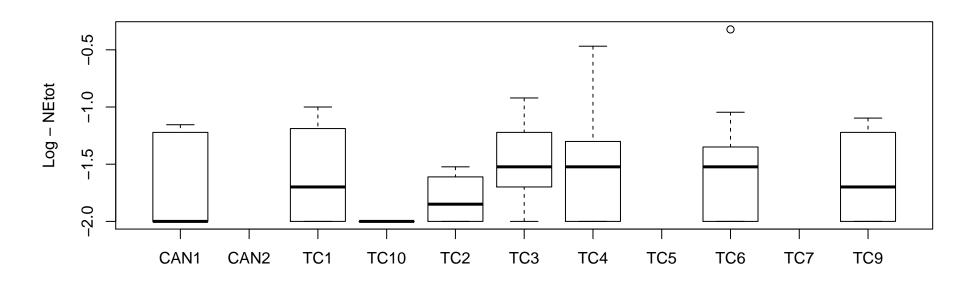


Page G1b - 72

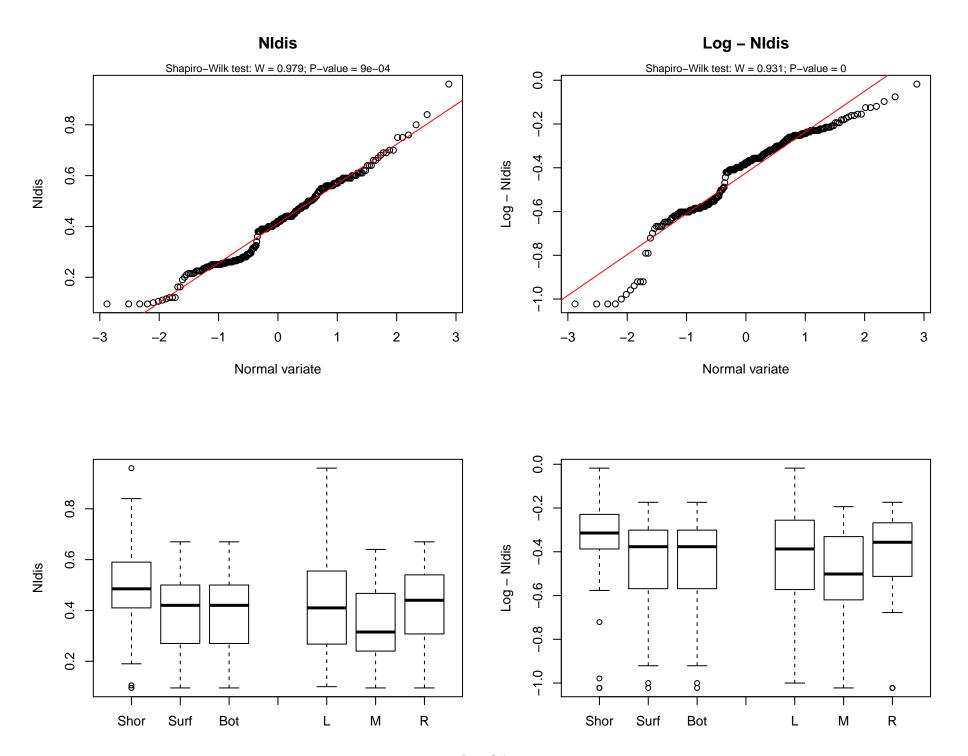


Page G1b - 73

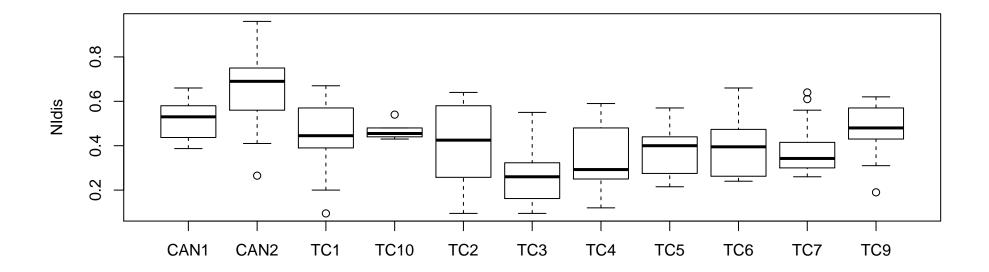


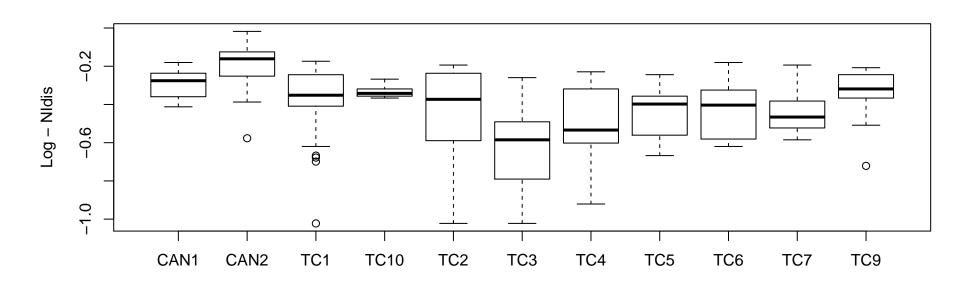


Page G1b - 74

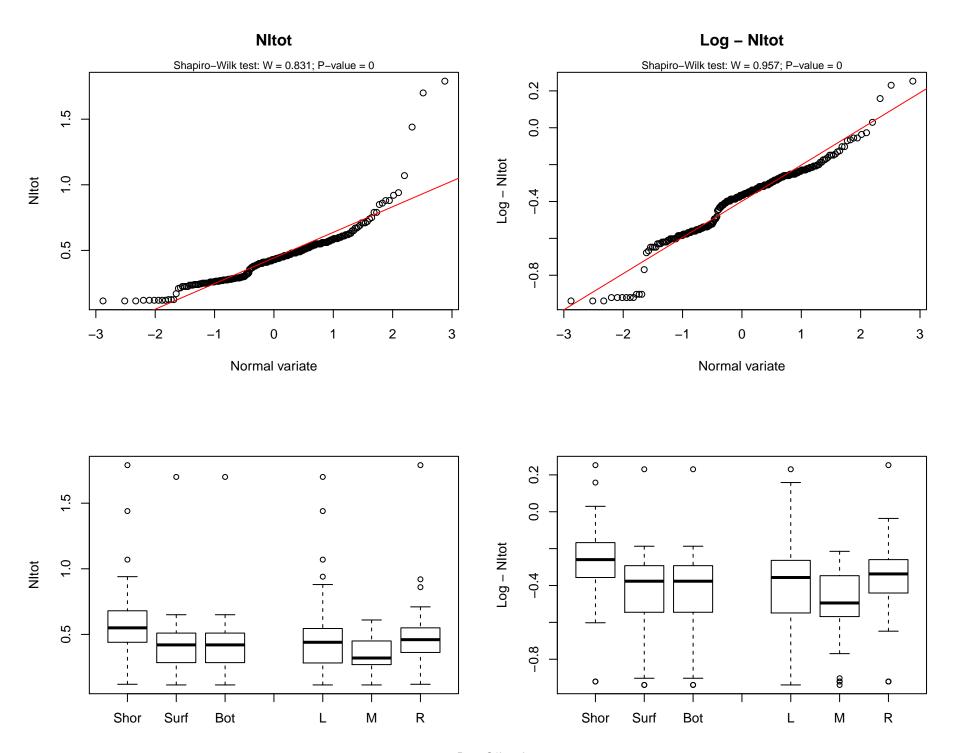


Page G1b - 75

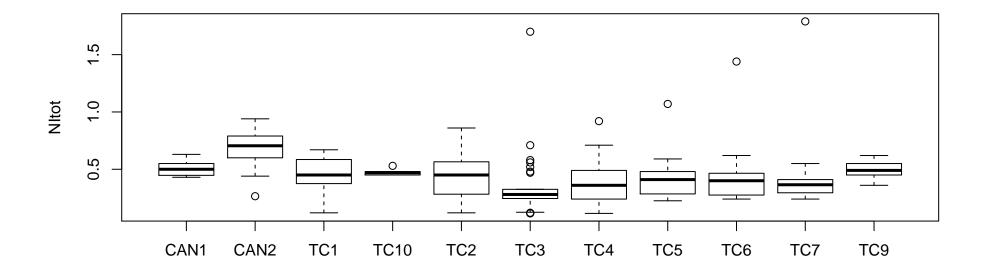


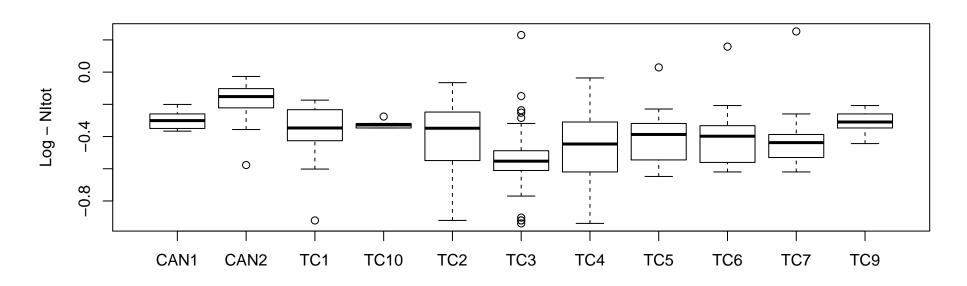


Page G1b - 76

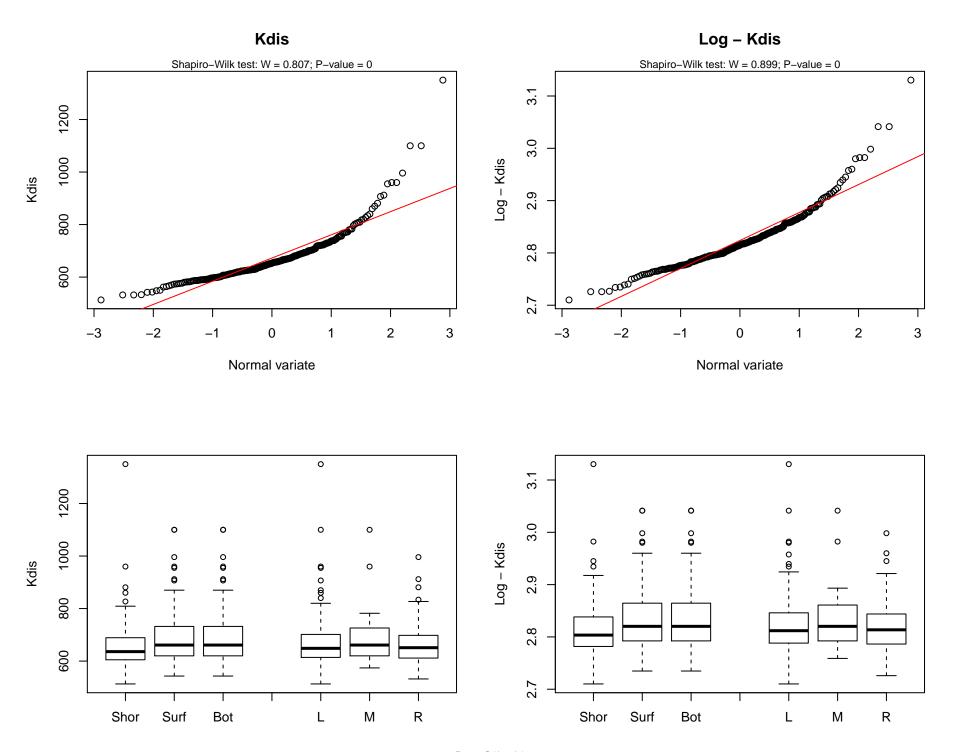


Page G1b - 77

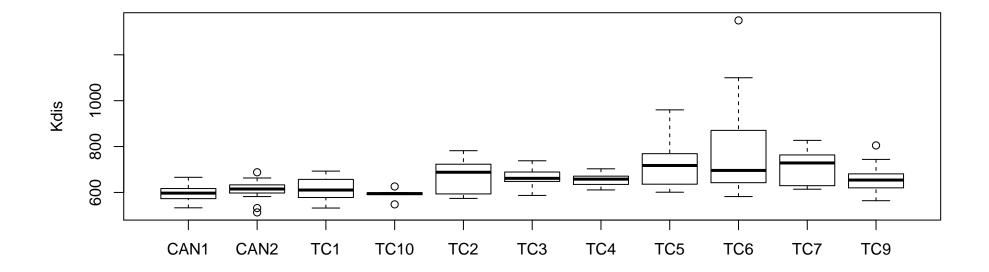


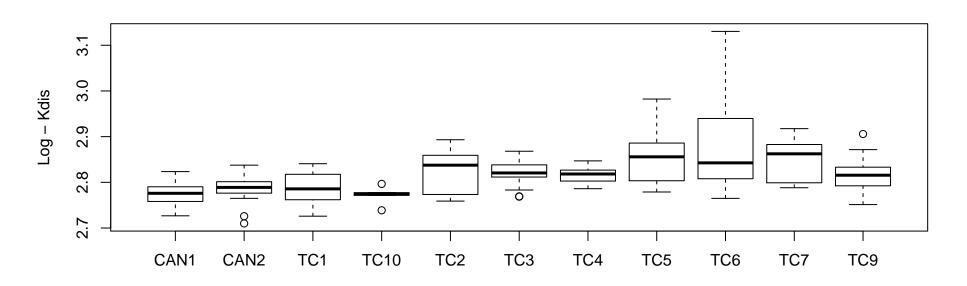


Page G1b - 78

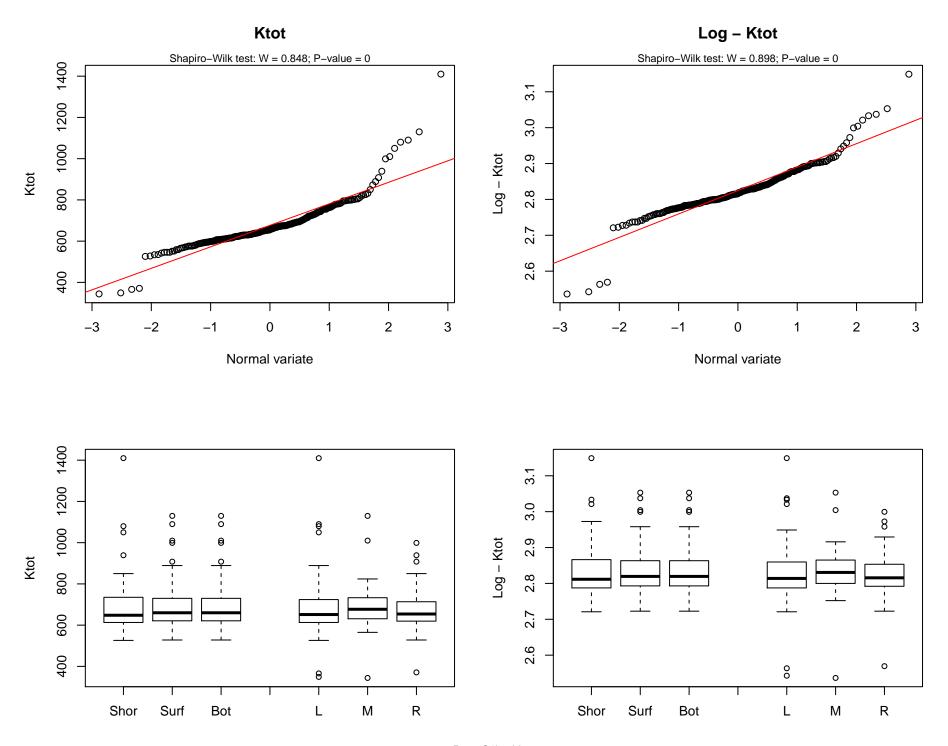


Page G1b - 79

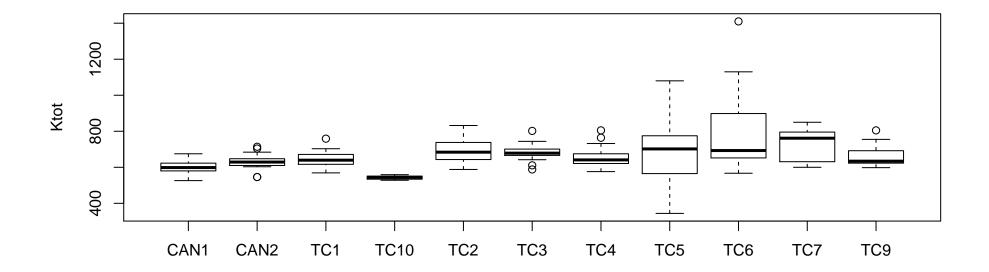


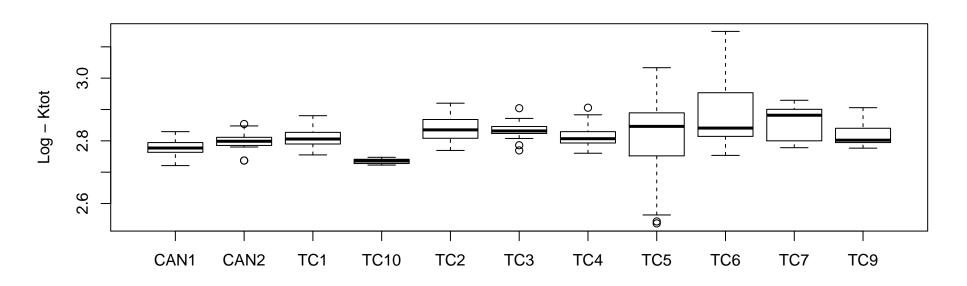


Page G1b - 80

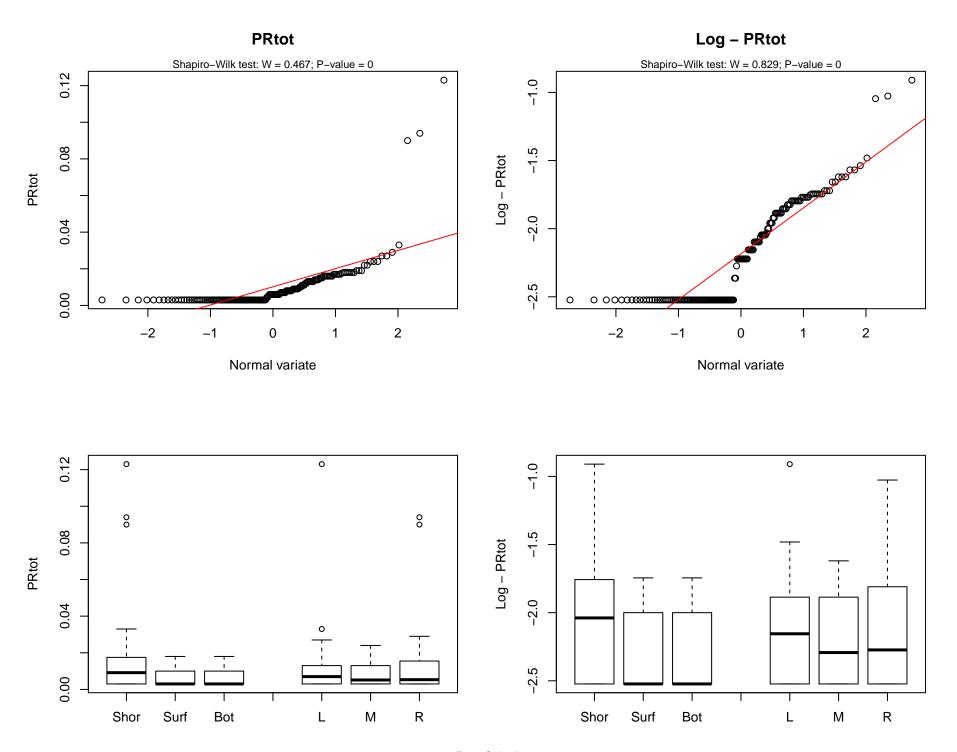


Page G1b - 81

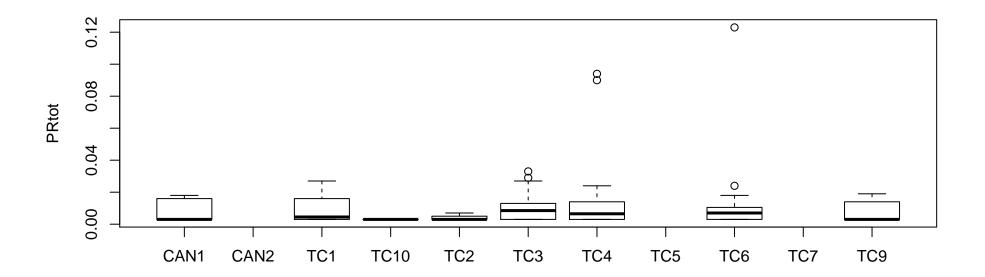


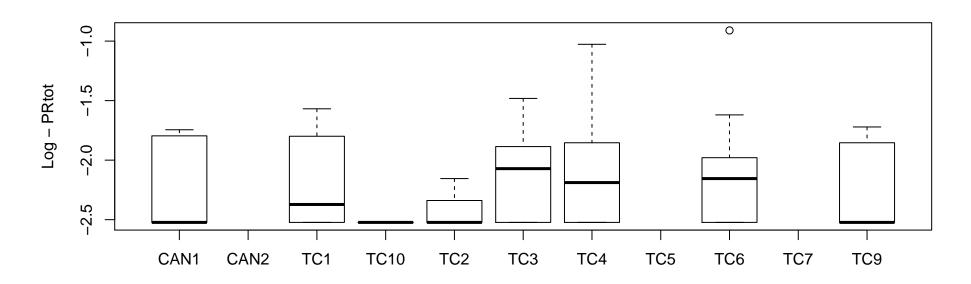


Page G1b - 82

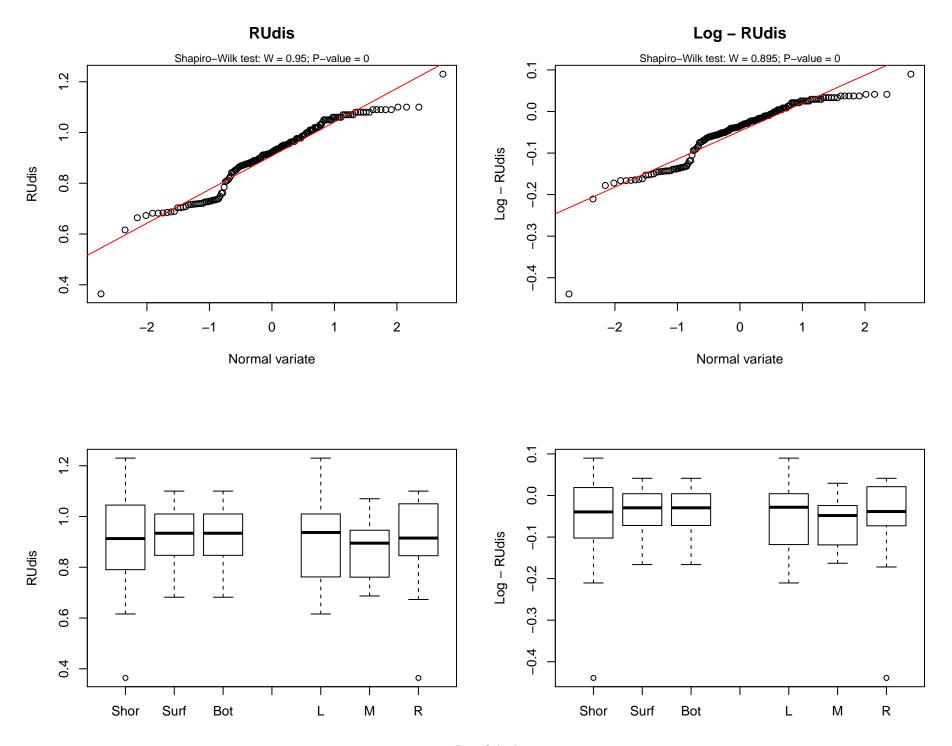


Page G1b - 83

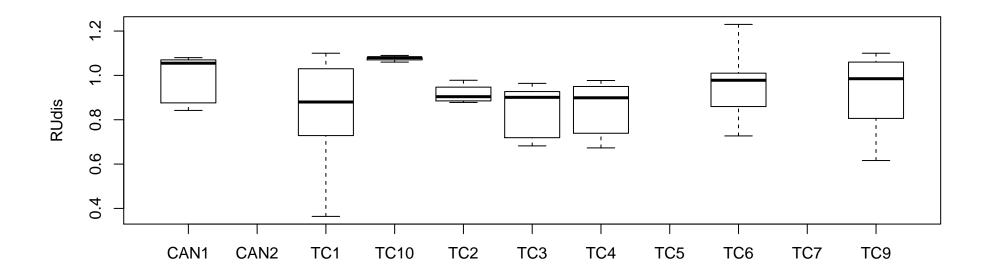


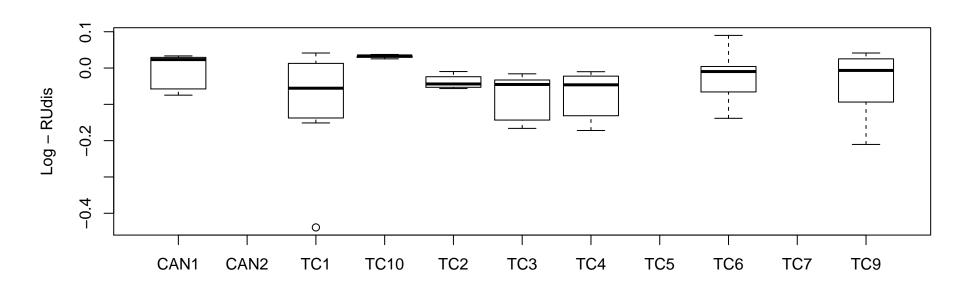


Page G1b - 84

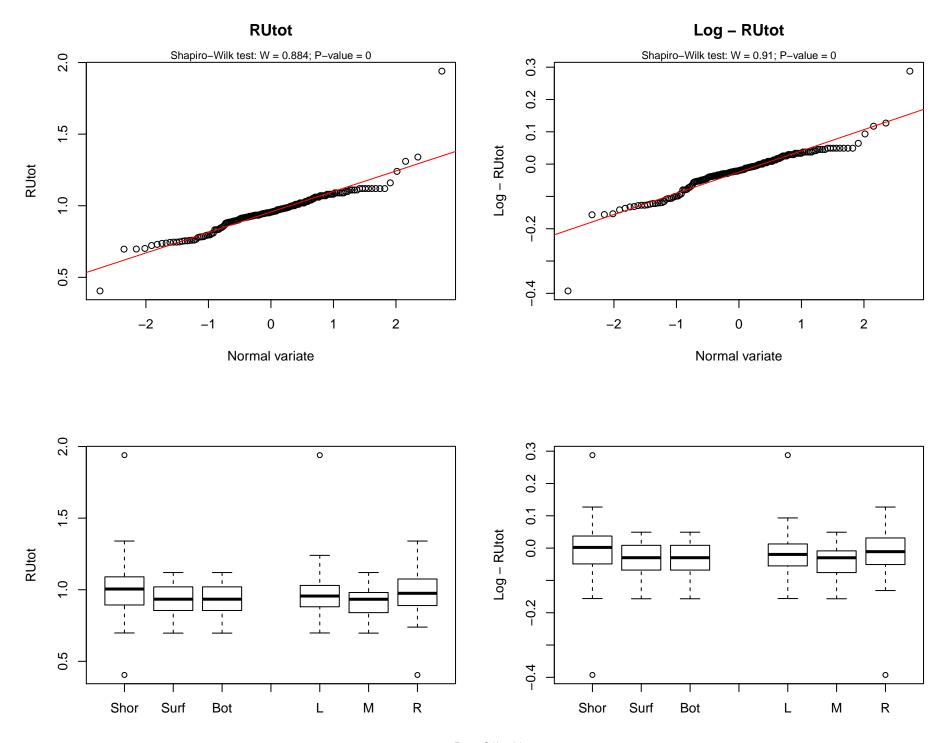


Page G1b - 85

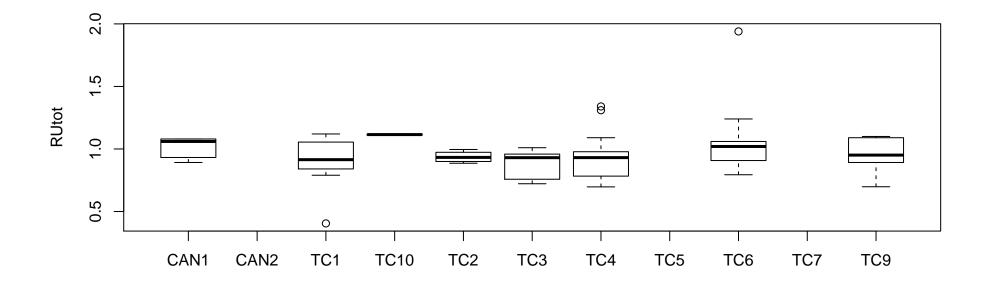


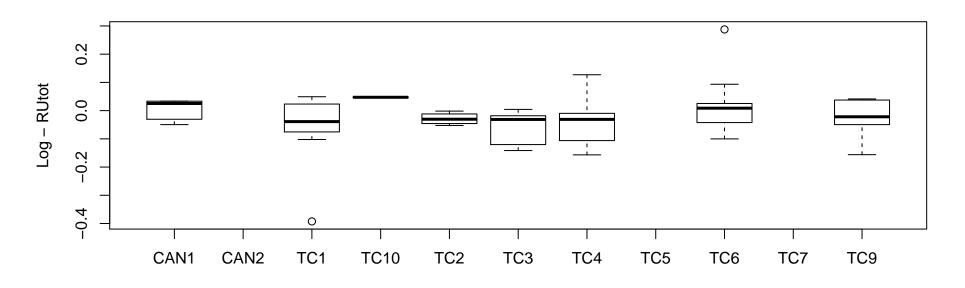


Page G1b - 86

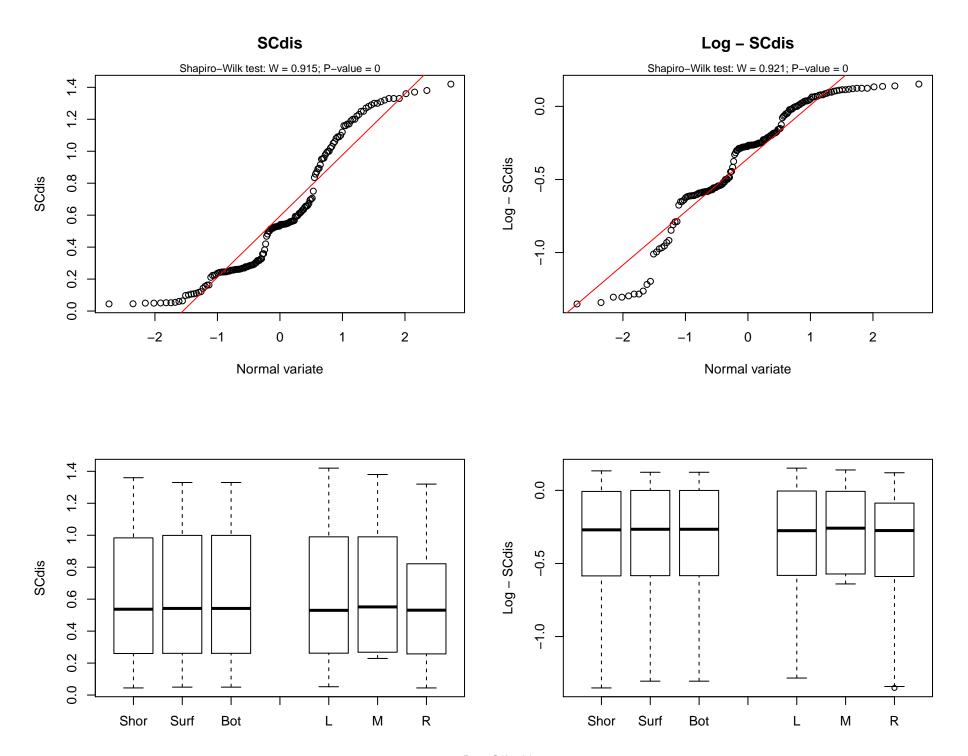


Page G1b - 87

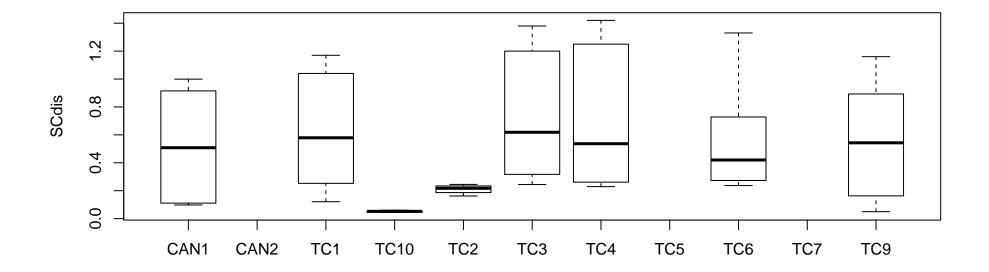


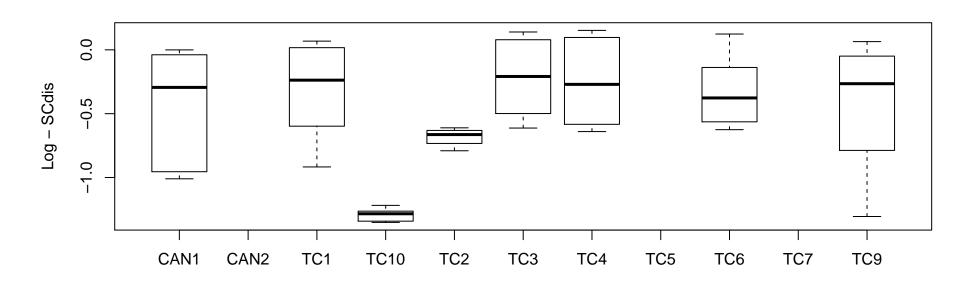


Page G1b - 88

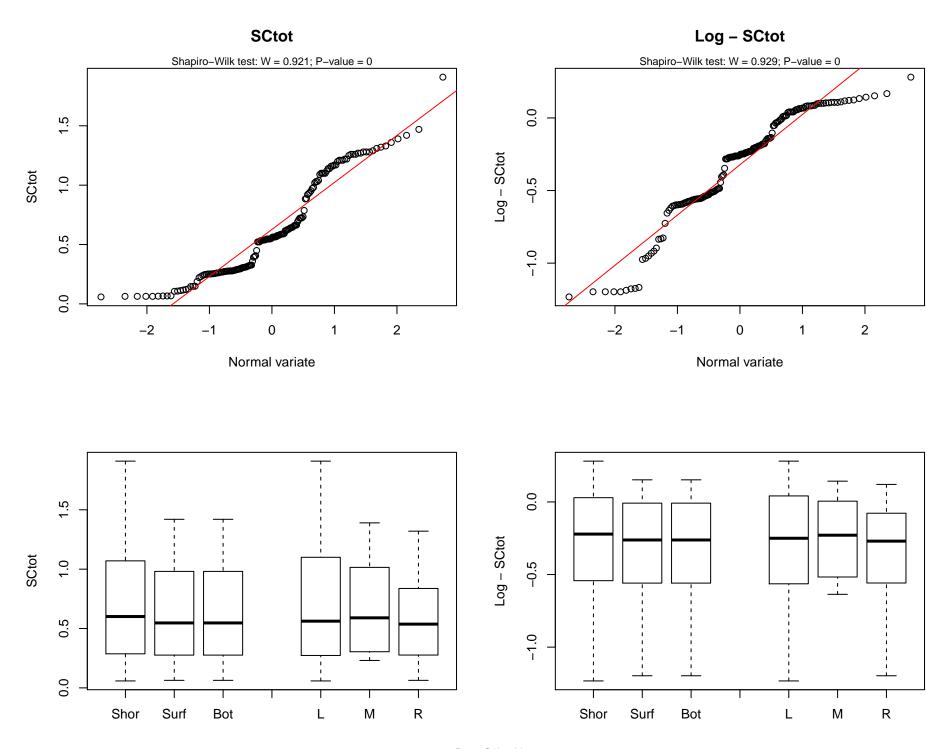


Page G1b - 89

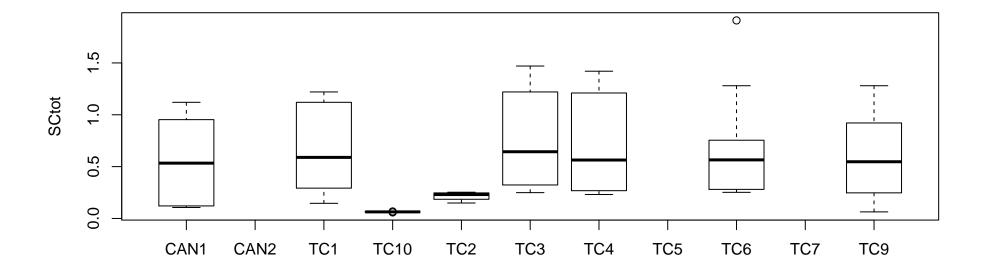


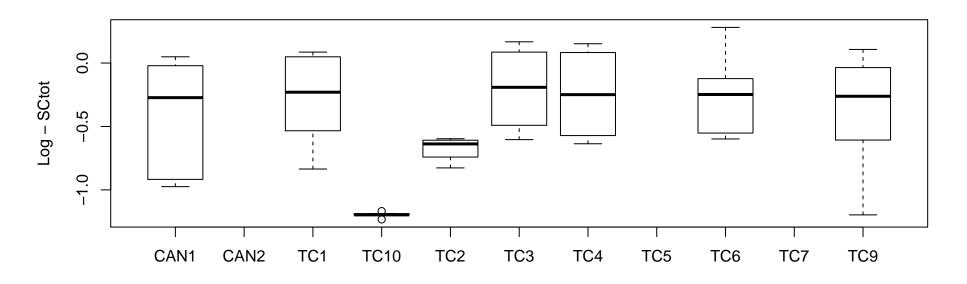


Page G1b - 90

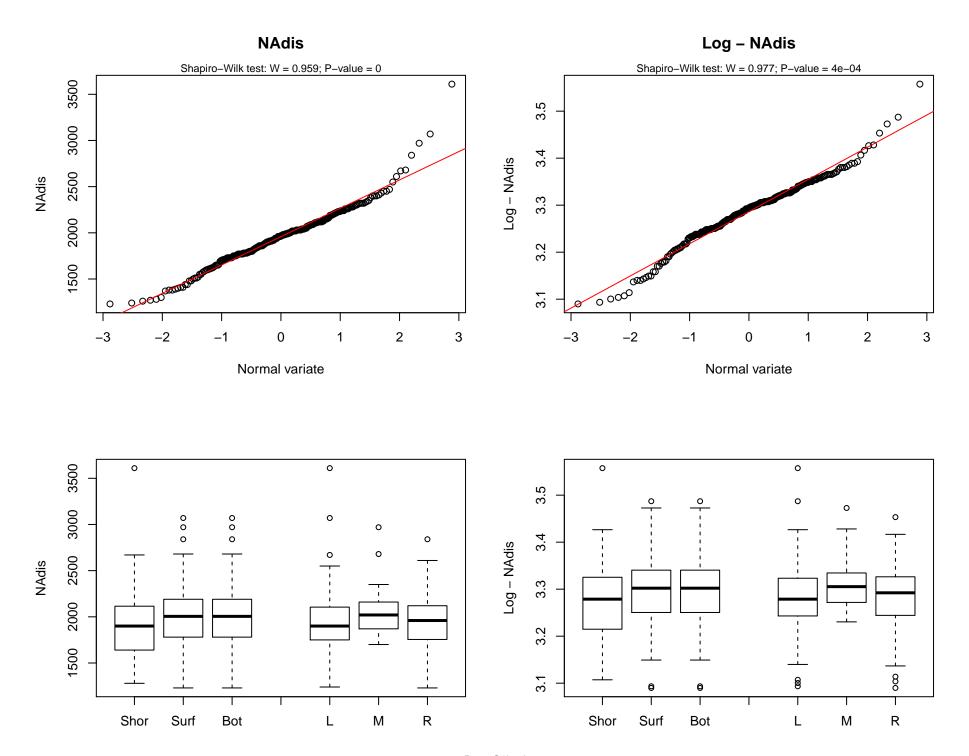


Page G1b - 91

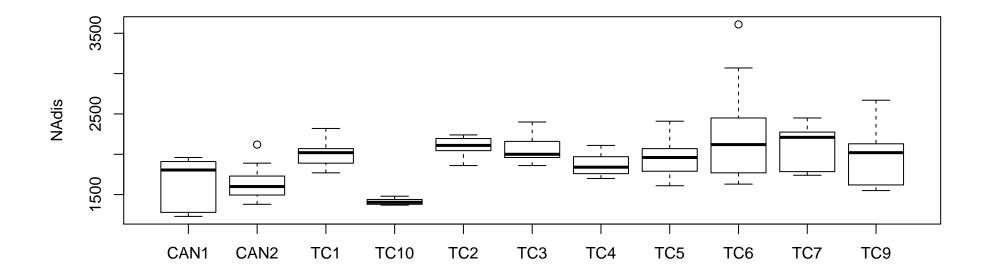


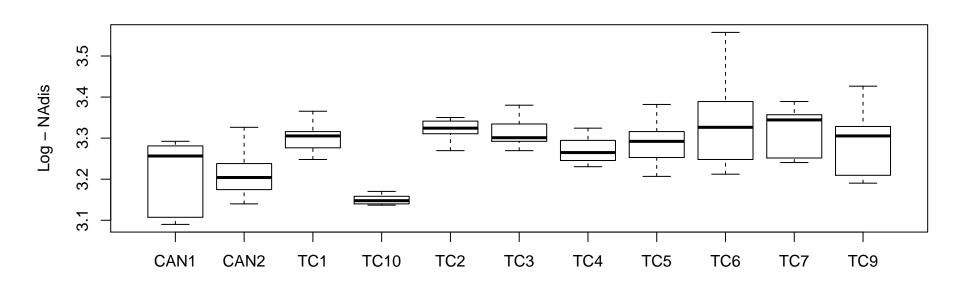


Page G1b - 92

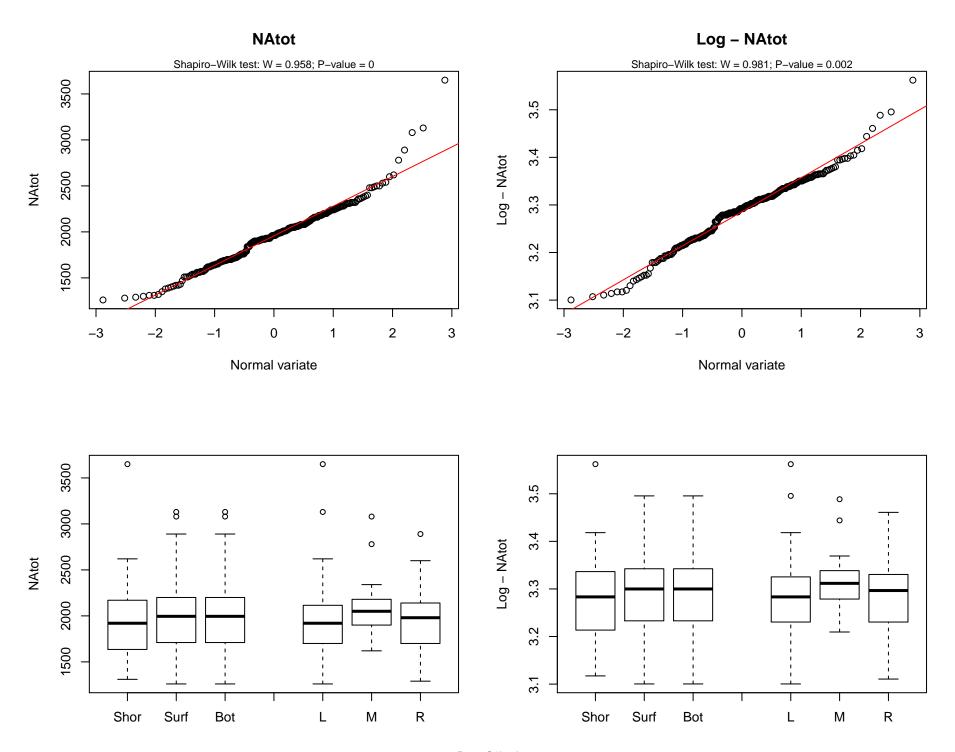


Page G1b - 93

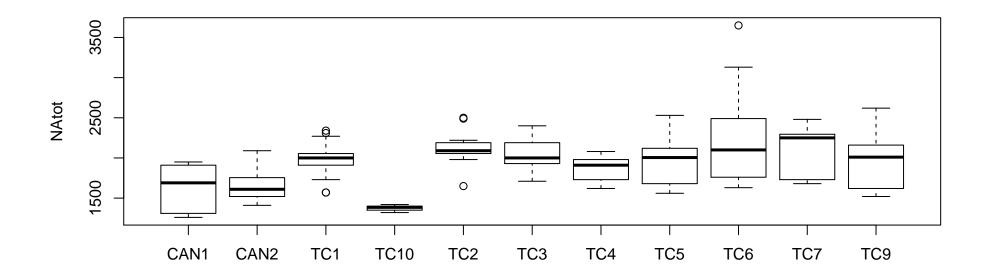


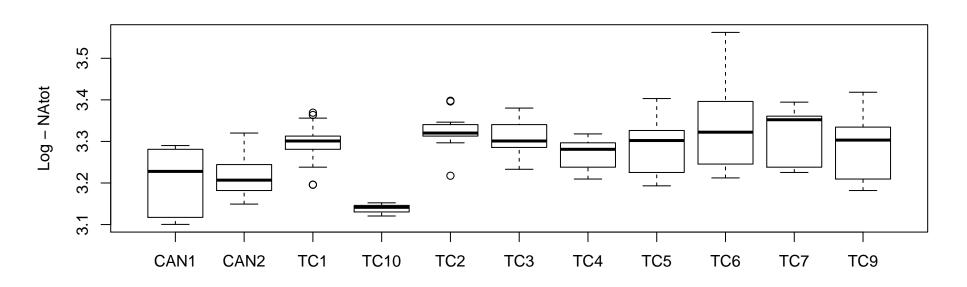


Page G1b - 94

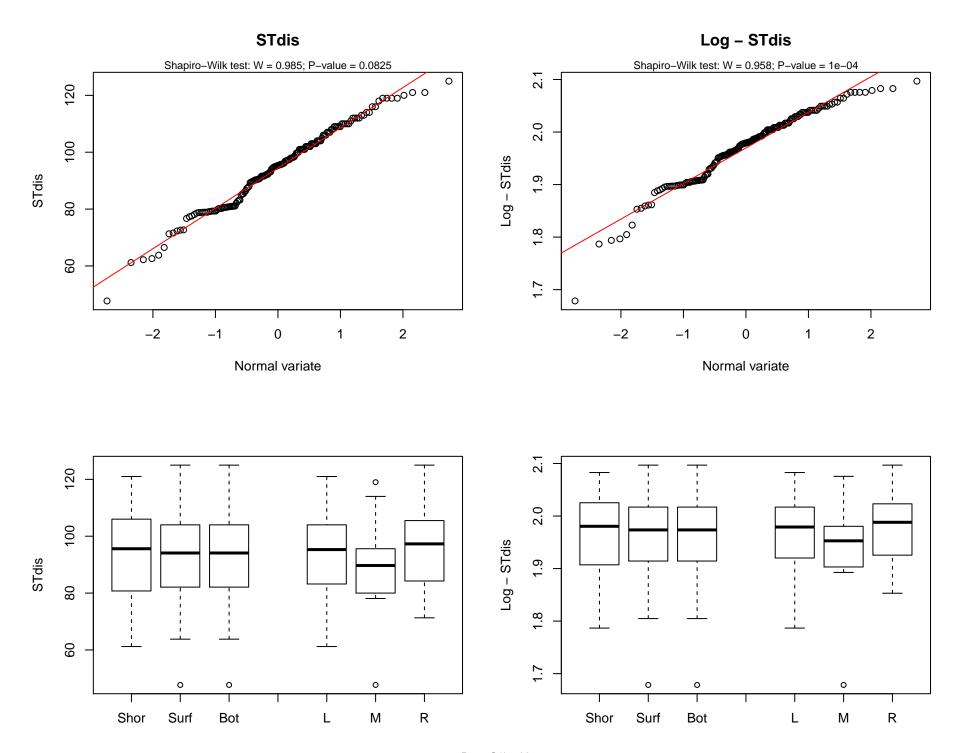


Page G1b - 95

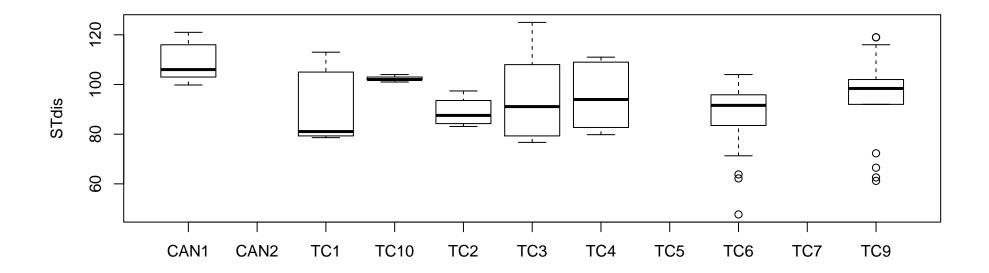


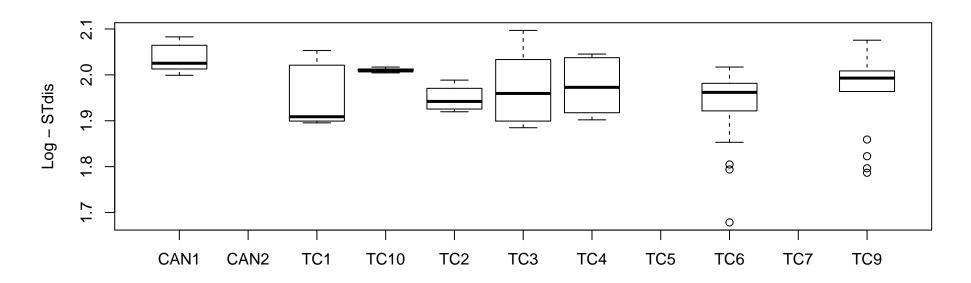


Page G1b - 96

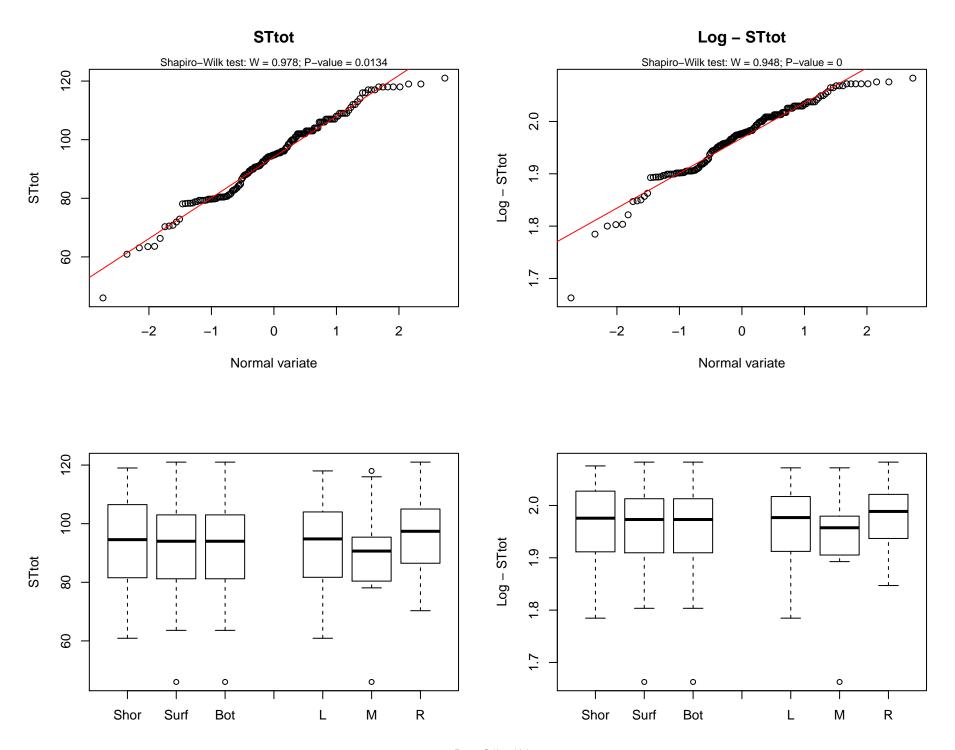


Page G1b - 97

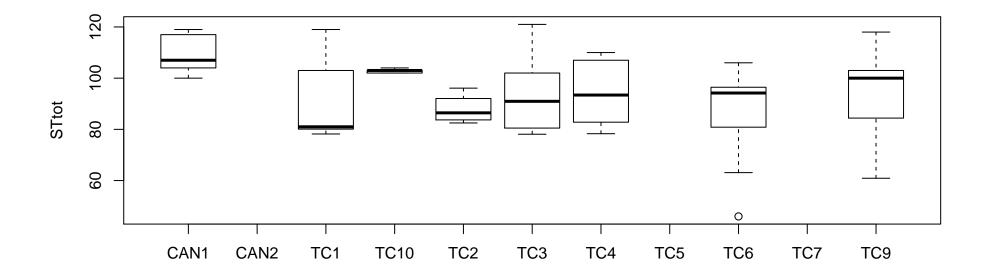


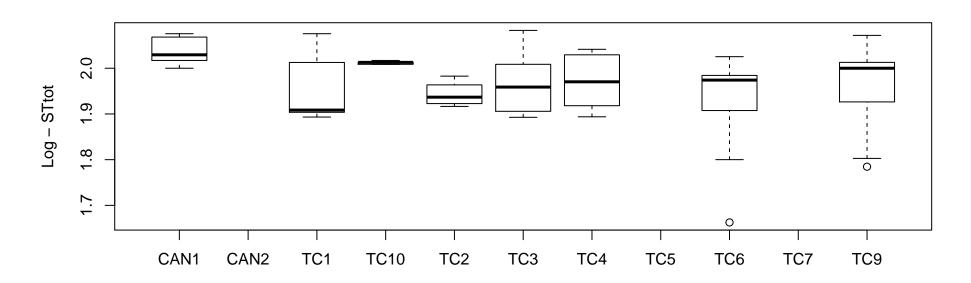


Page G1b - 98

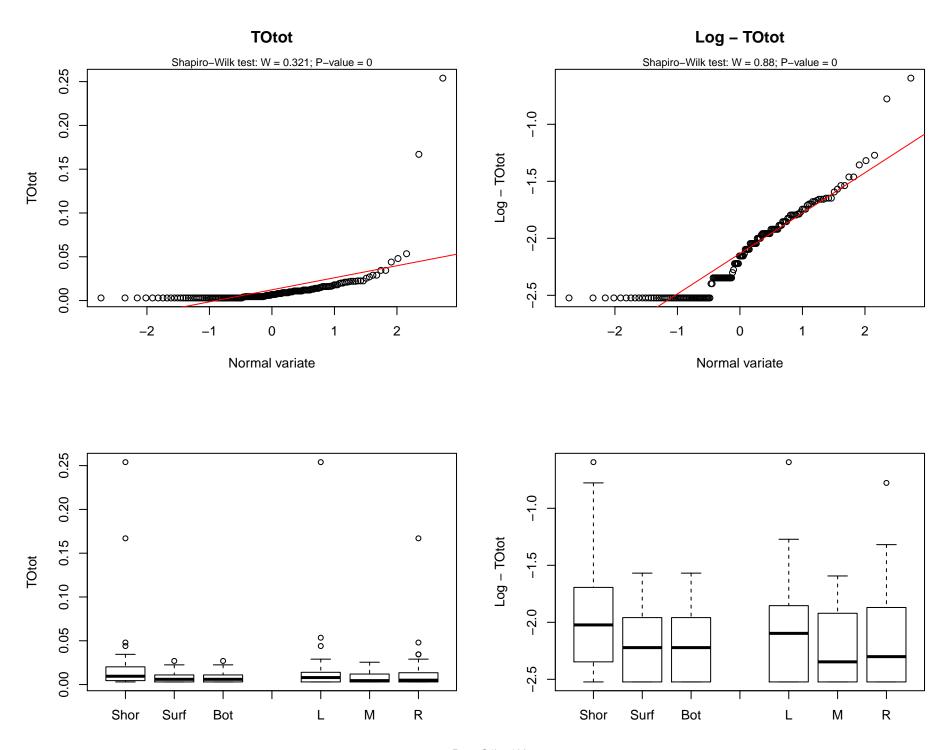


Page G1b - 99

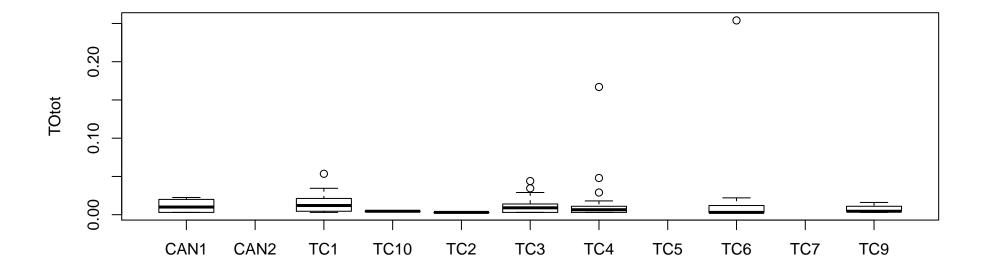


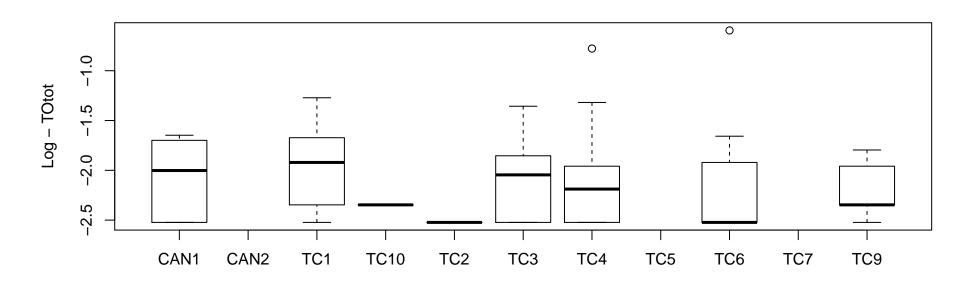


Page G1b - 100

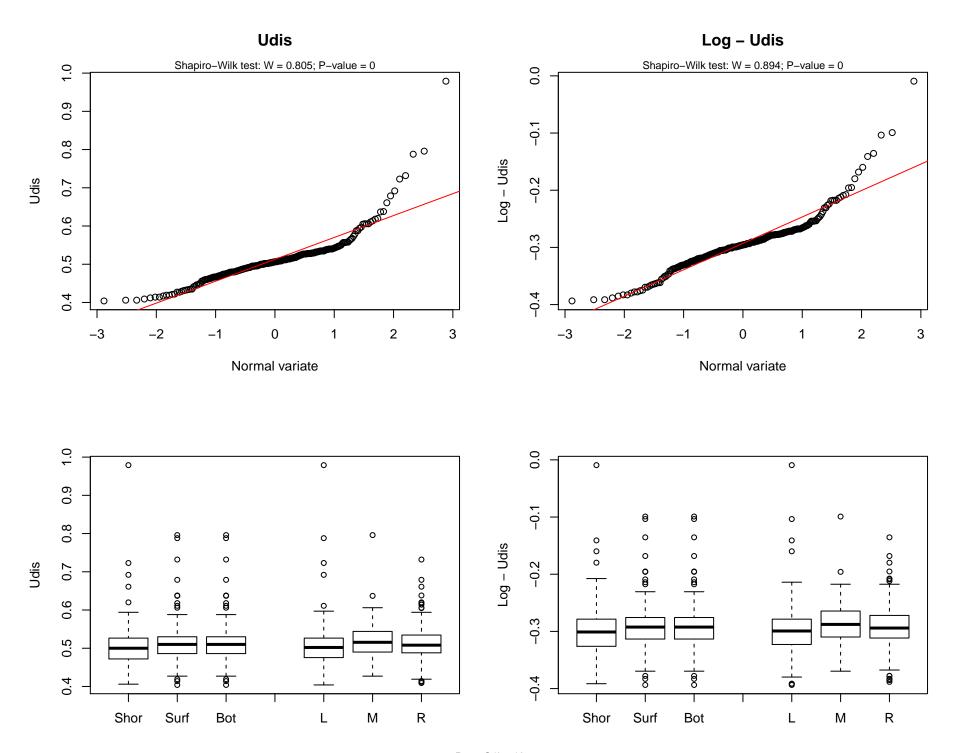


Page G1b - 101

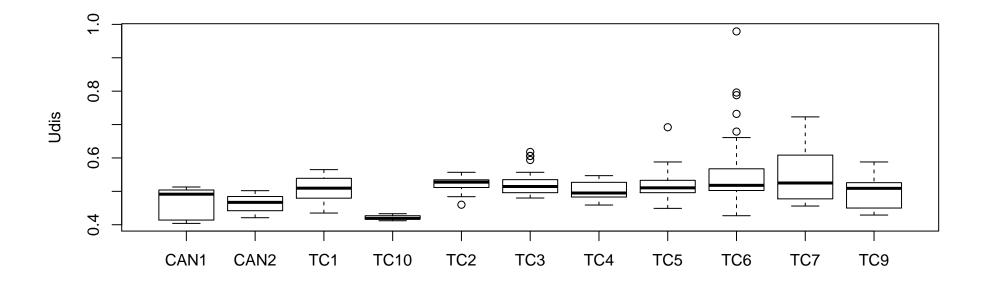


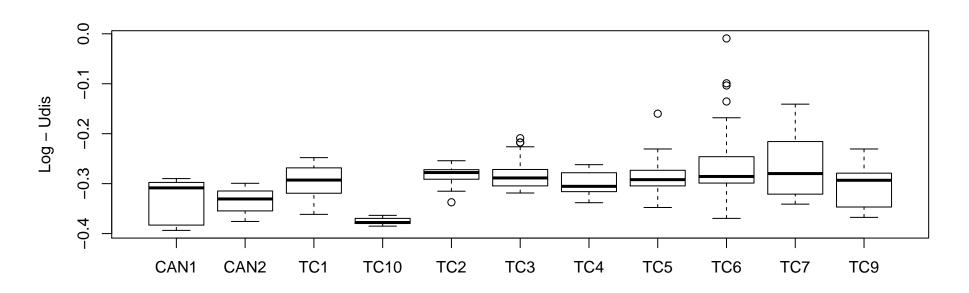


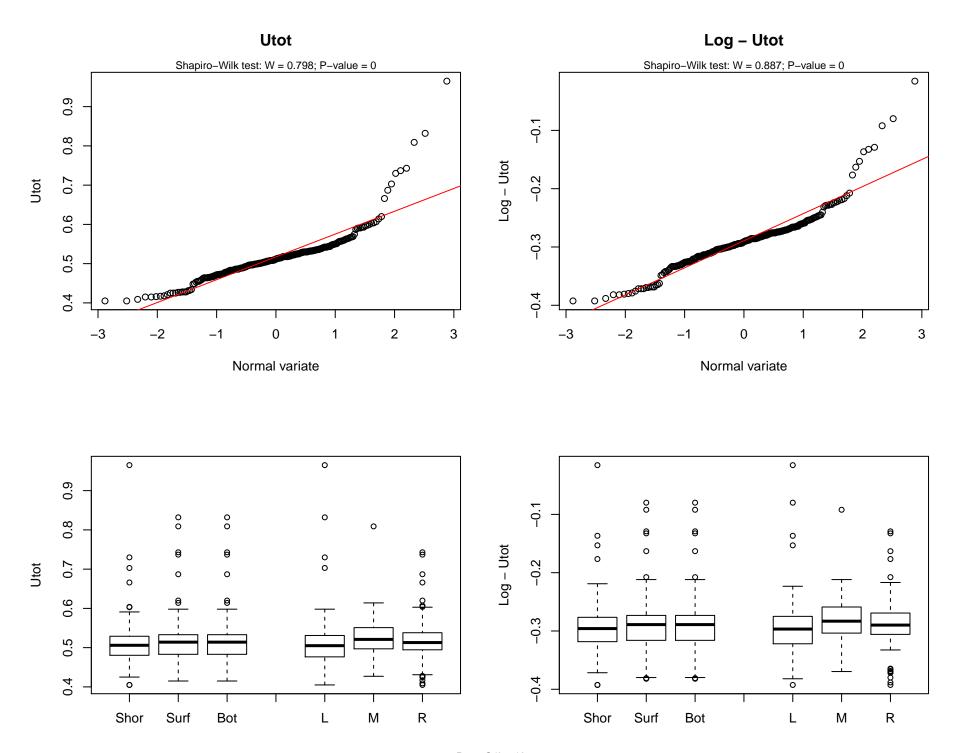
Page G1b - 102

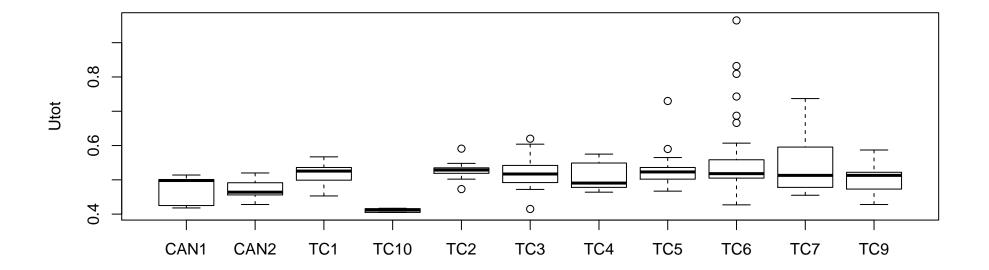


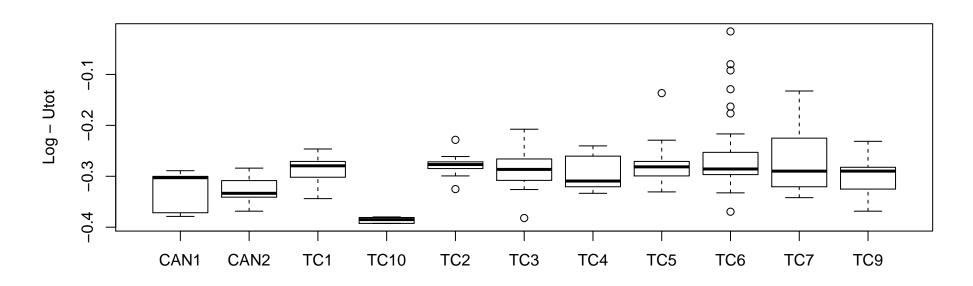
Page G1b - 103

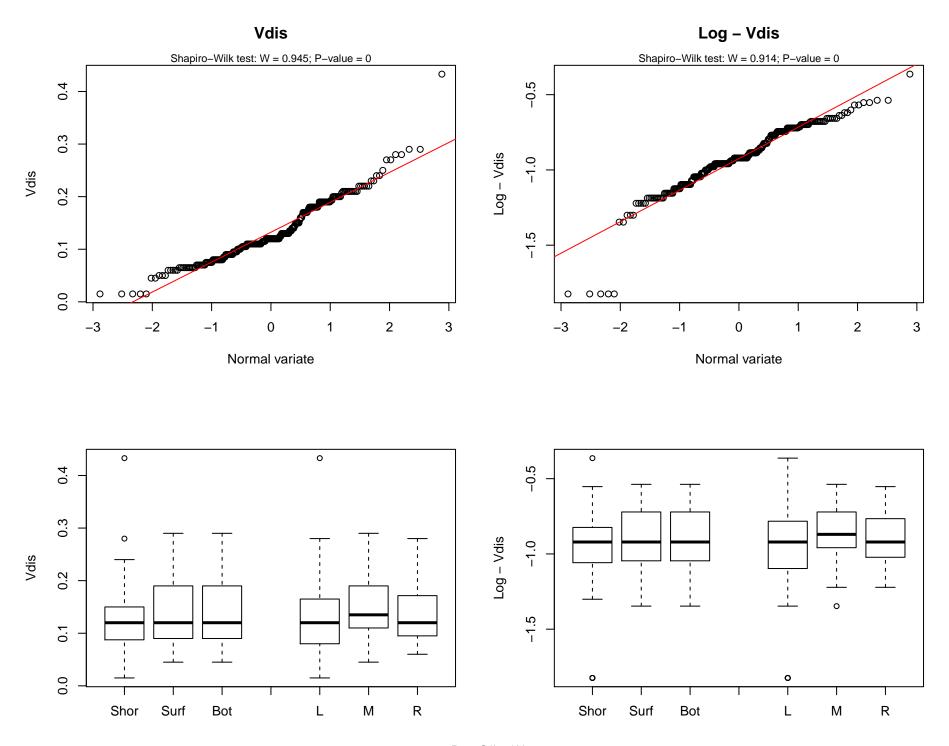




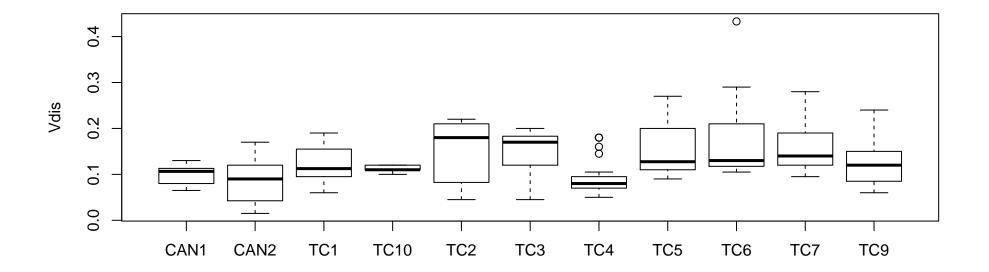

Page G1b - 104

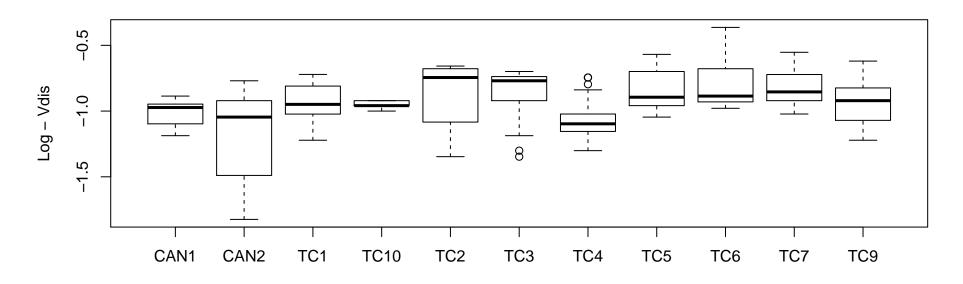

Page G1b - 105



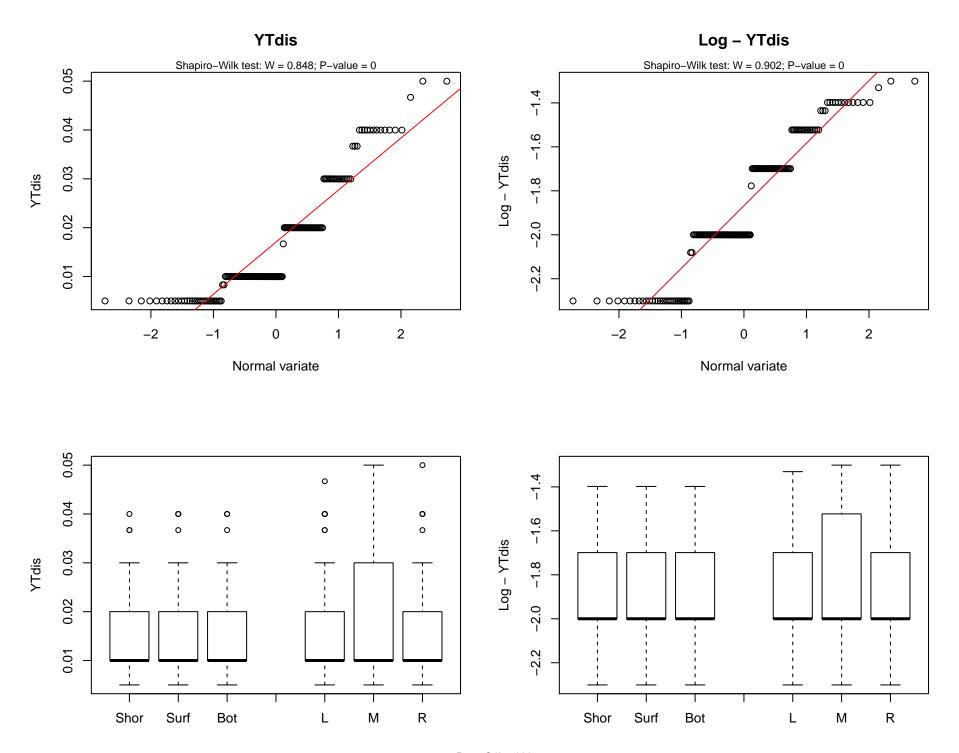


Page G1b - 107

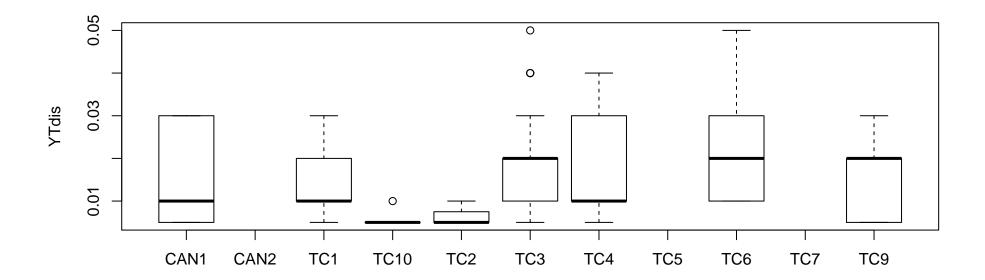


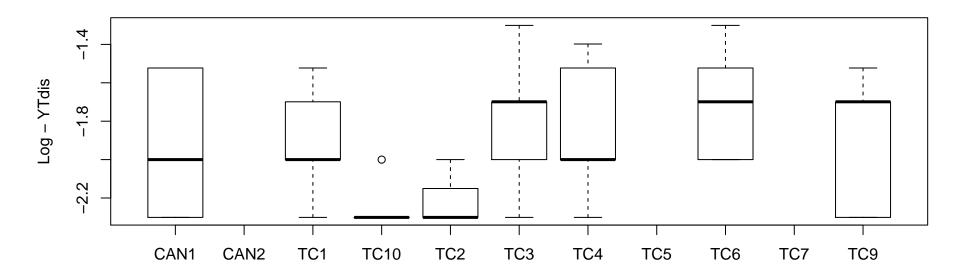


Page G1b - 108

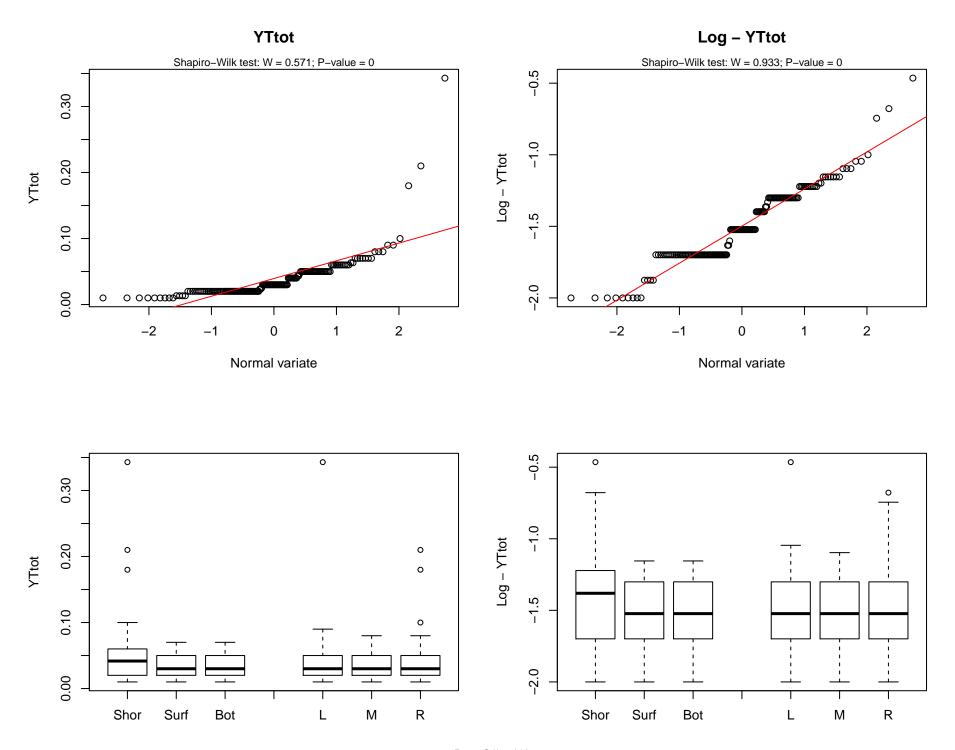


Page G1b - 109

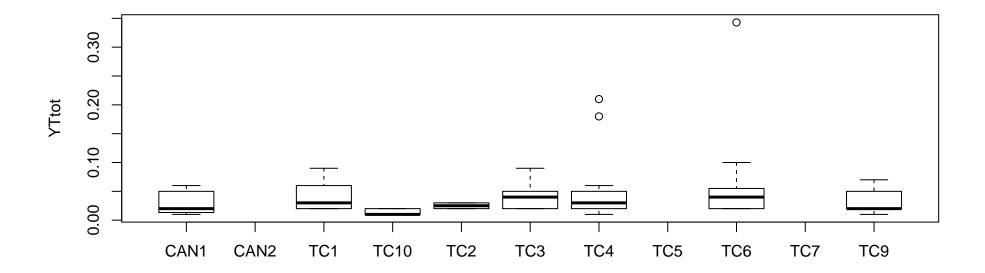


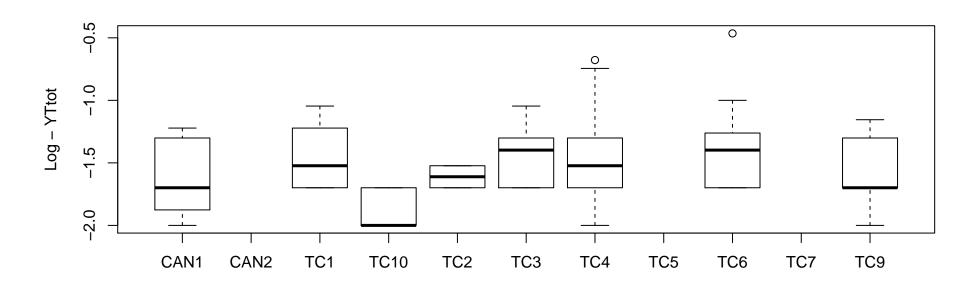


Page G1b - 110



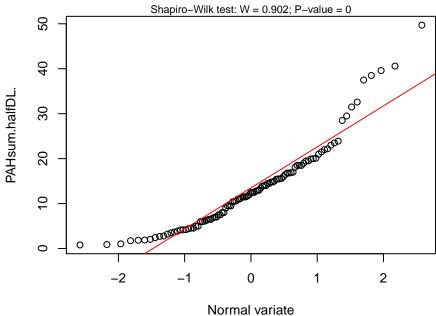
Page G1b - 111

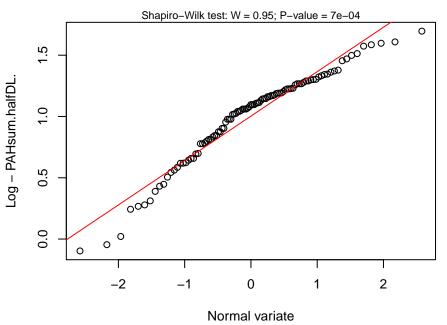


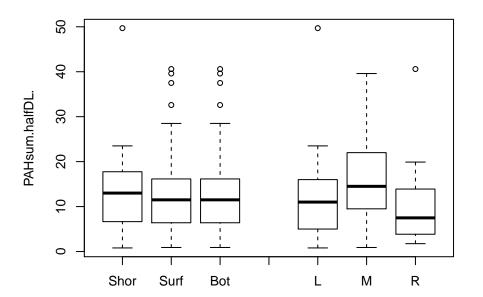


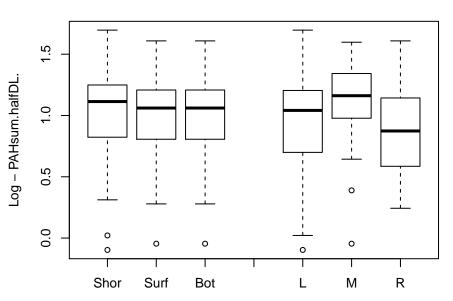
Page G1b - 112

Page G1b - 113

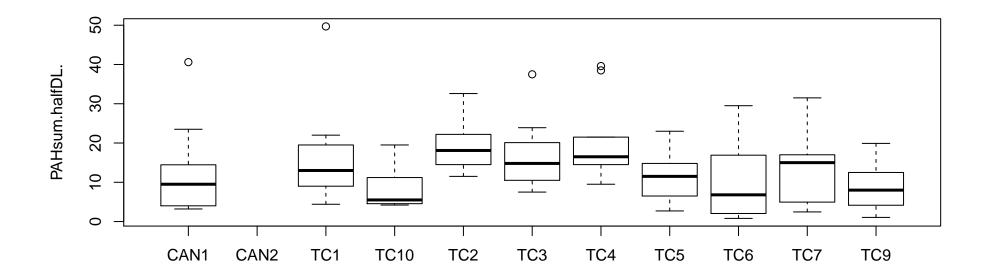


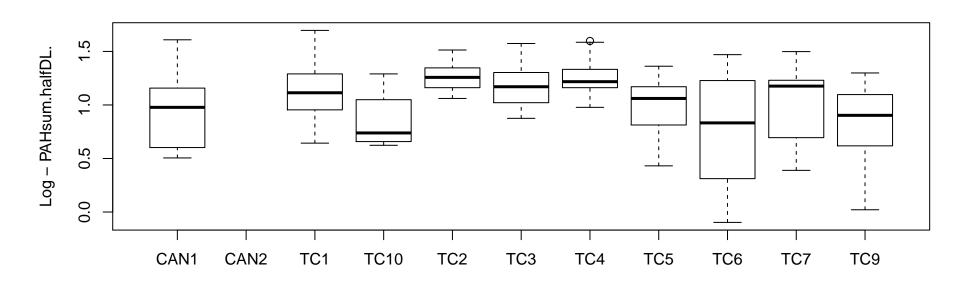


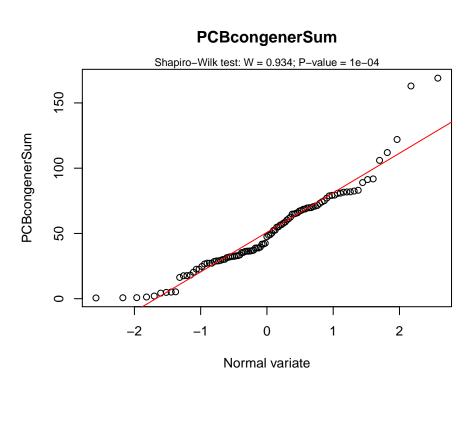

Page G1b - 114

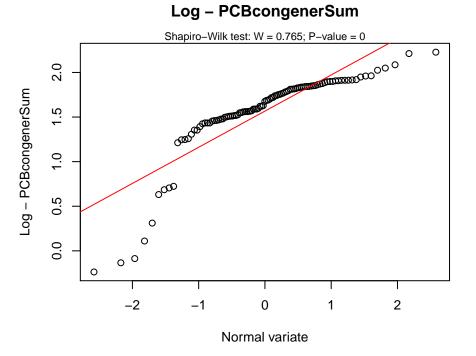

PAHsum.halfDL. Shapiro-Wilk test: W = 0.902; P-va

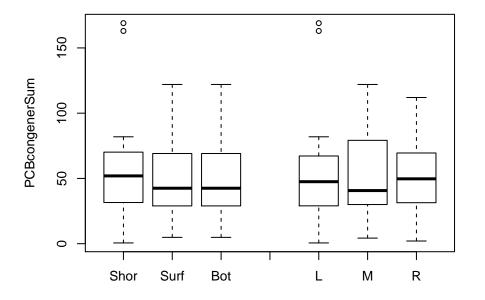
Log – PAHsum.halfDL.

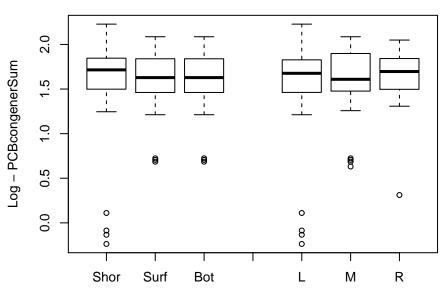




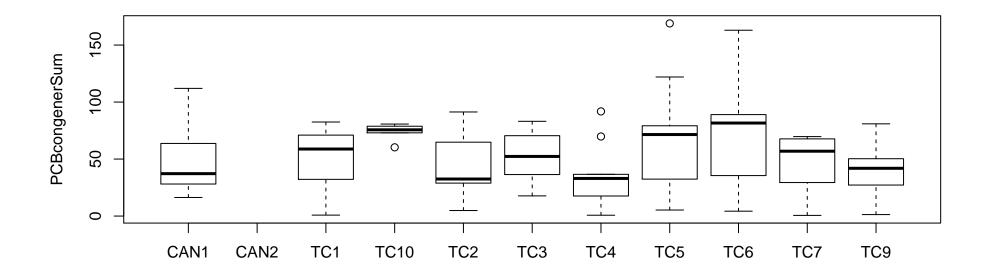


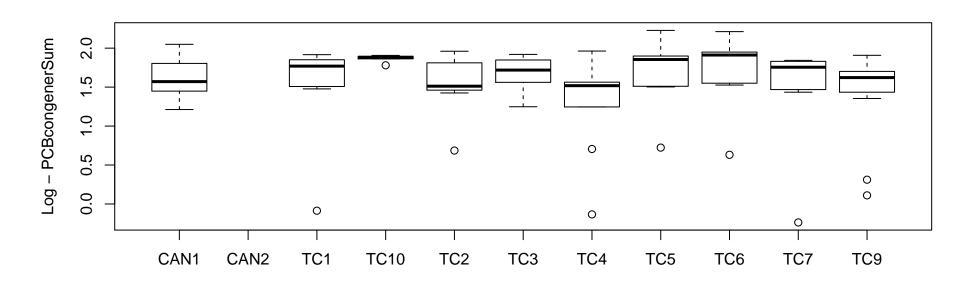

Page G1b - 115



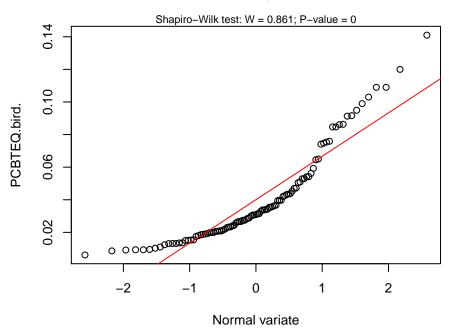


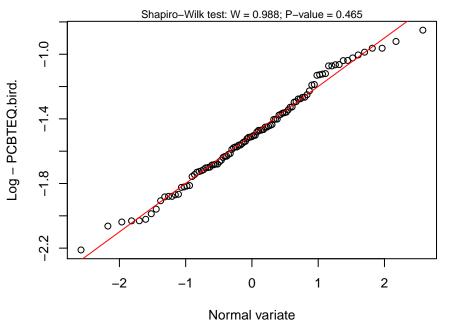
Page G1b - 116

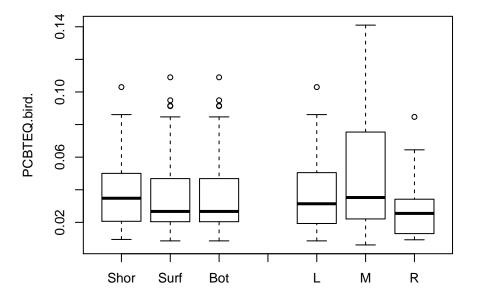


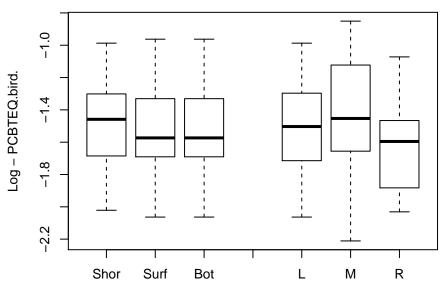


Page G1b - 117

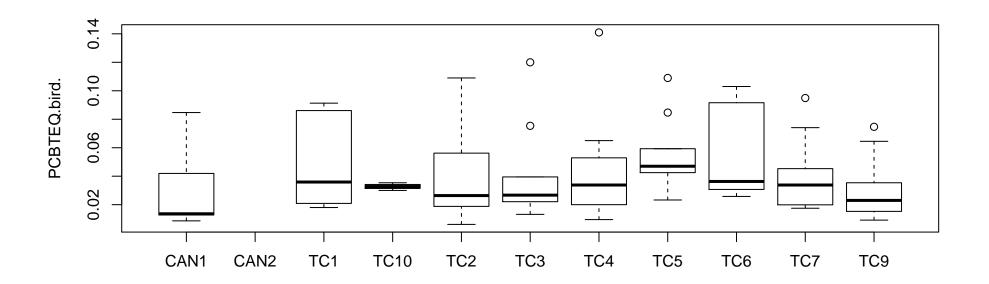


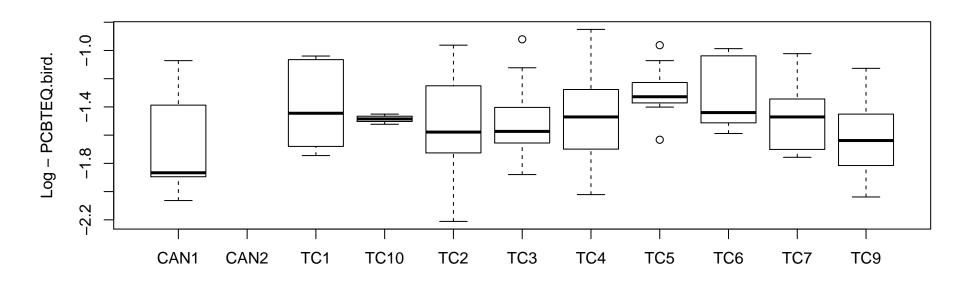


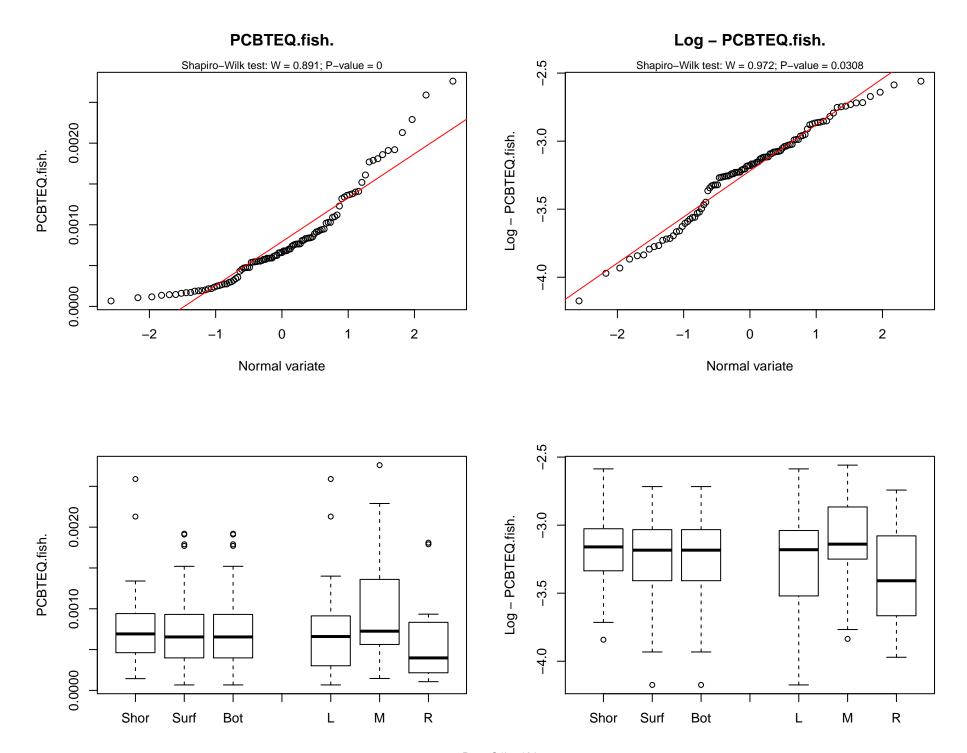

Page G1b - 118


PCBTEQ.bird.

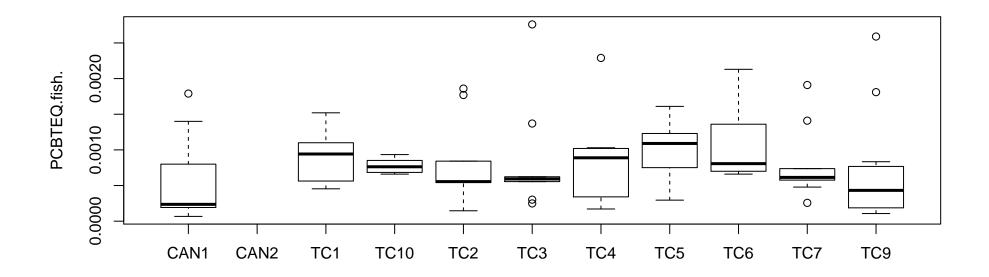
Log – PCBTEQ.bird.

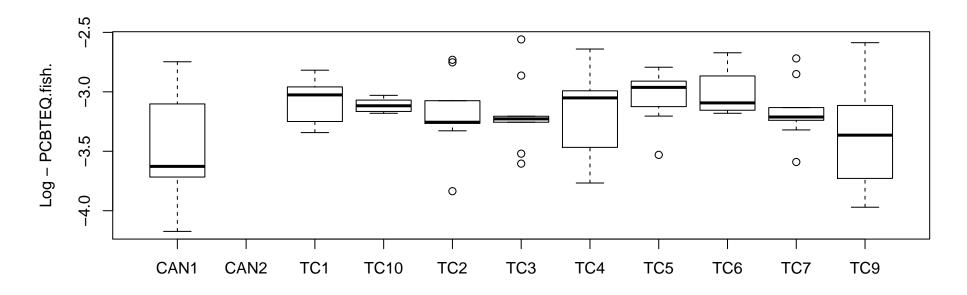




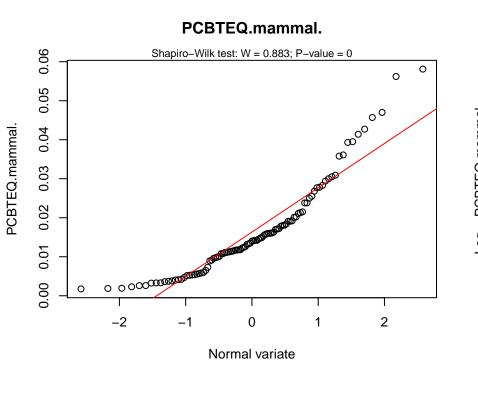


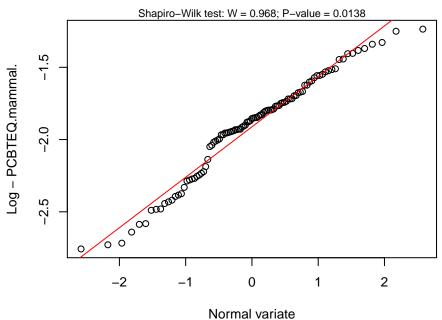
Page G1b - 119

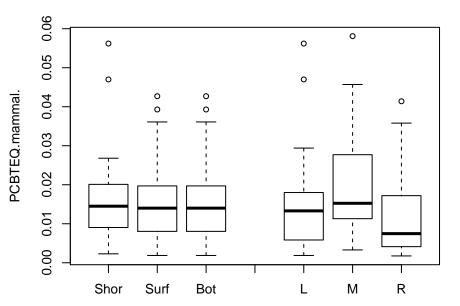


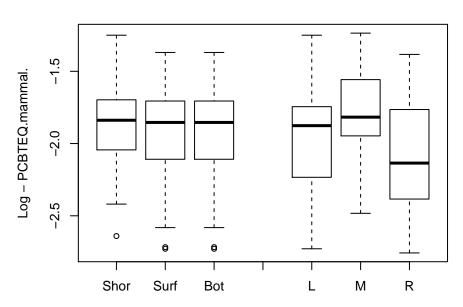


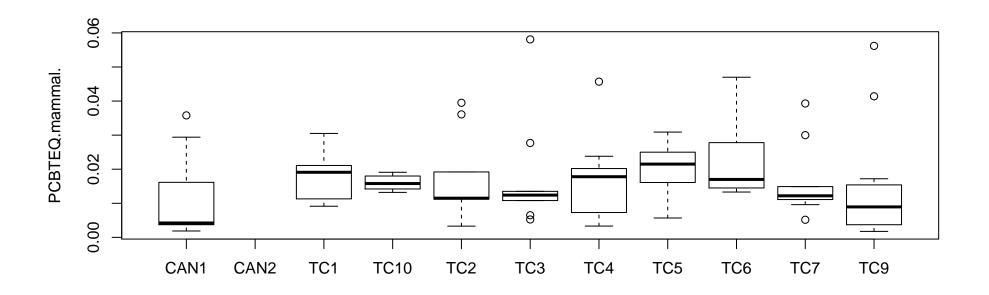
Page G1b - 120

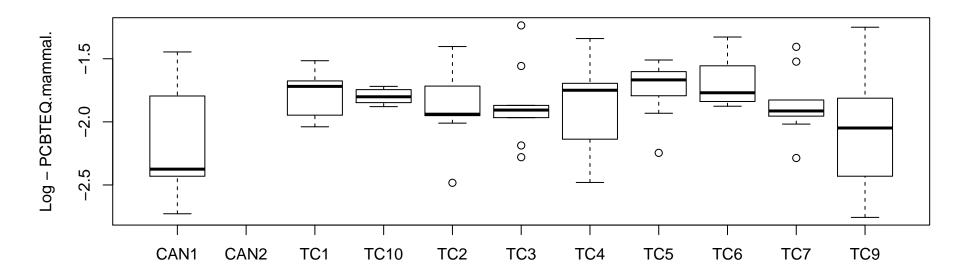


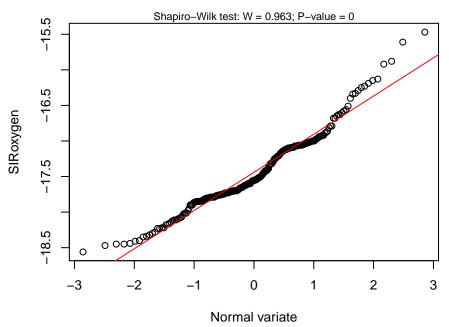

Page G1b - 121

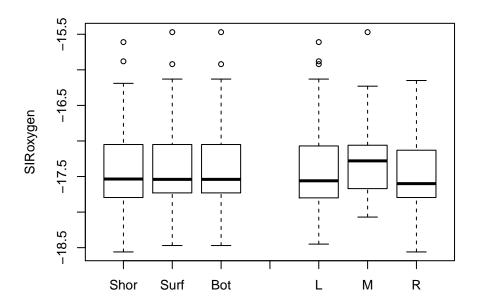


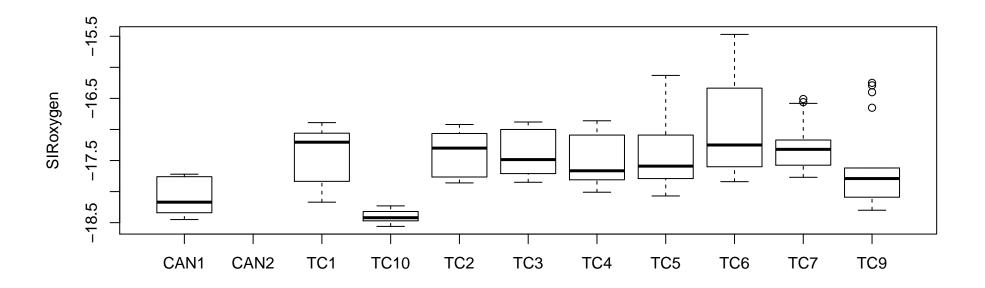

Page G1b - 122

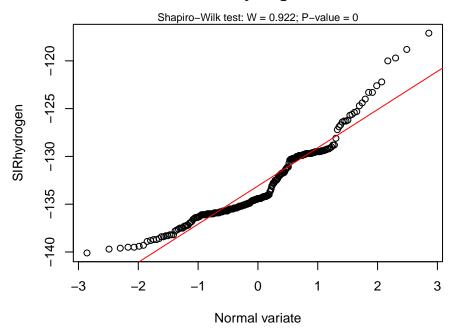


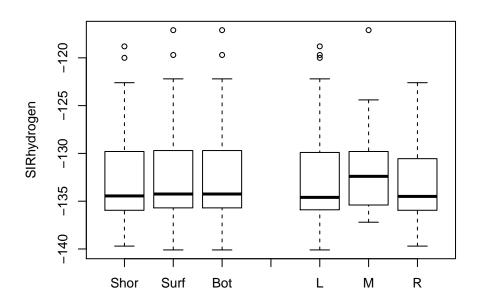

Log - PCBTEQ.mammal.

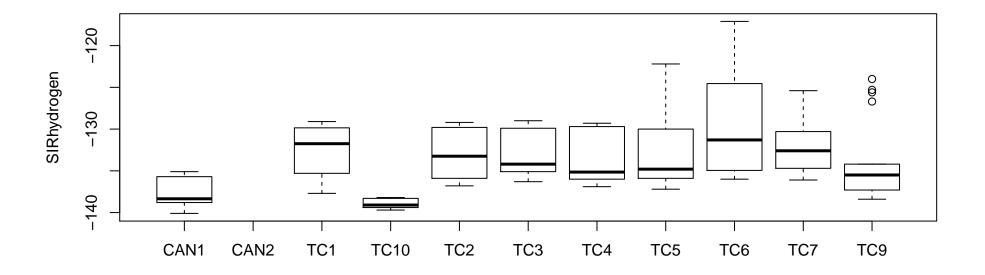


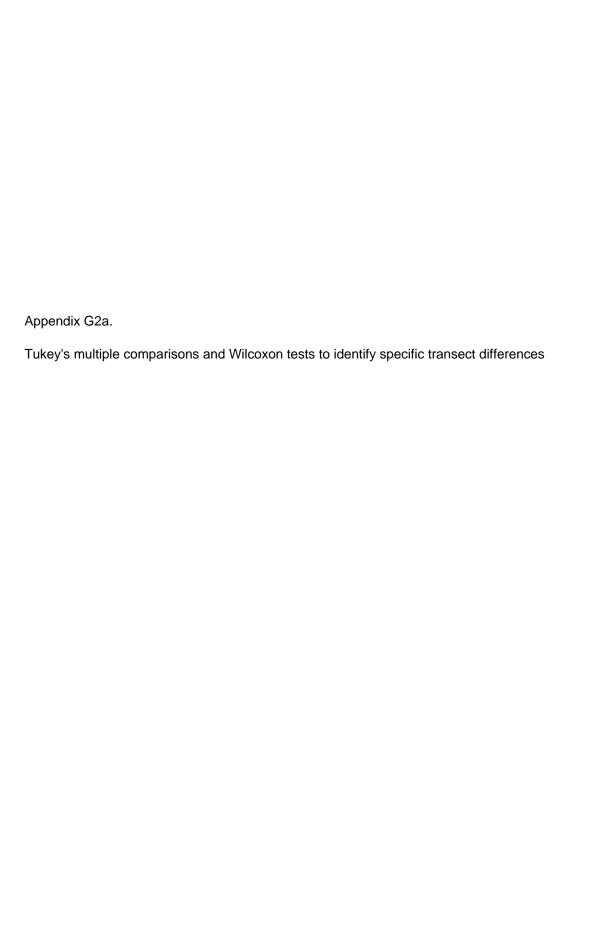

Page G1b - 123




SIRoxygen







SIRhydrogen


```
Wilcox Tests between Transects:
 CAN1 - CAN2: W = 162.5; P-value = 0.8078
 CAN1 - TC1: W = 92; P-value = 0.0017
 CAN1 - TC10: W = 90; P-value = 0.0178
 CAN1 - TC2: W = 60.5; P-value = 1e-04
 CAN1 - TC3: W = 107; P-value = 5e-04
 CAN1 - TC4: W = 135.5; P-value = 0.0043
 CAN1 - TC5: W = 162.5; P-value = 0.0227
 CAN1 - TC6: W = 187.5; P-value = 0.0591
 CAN1 - TC7: W = 96.5; P-value = 0.0025
 CAN1 - TC9: W = 79.5; P-value = 0.016
 CAN2 - TC1: W = 99.5; P-value = 0.0017
 CAN2 - TC10: W = 97.5; P-value = 0.0108
 CAN2 - TC2: W = 43; P-value = 0
 CAN2 - TC3: W = 116; P-value = 5e-04
 CAN2 - TC4: W = 190.5; P-value = 0.0536
 CAN2 - TC5: W = 193; P-value = 0.0603
 CAN2 - TC6: W = 188.5; P-value = 0.0349
 CAN2 - TC7: W = 139; P-value = 0.0303
 CAN2 - TC9: W = 88.5; P-value = 0.0216
 TC1 - TC10: W = 144; P-value = 2e-04
 TC1 - TC2: W = 227; P-value = 0.2119
 TC1 - TC3: W = 340.5; P-value = 0.7407
 TC1 - TC4: W = 451; P-value = 0.1149
 TC1 - TC5: W = 428; P-value = 0.2399
 TC1 - TC6: W = 413.5; P-value = 0.4865
 TC1 - TC7: W = 291; P-value = 0.9589
 TC1 - TC9: W = 207.5; P-value = 0.9367
 TC10 - TC2: W = 0; P-value = 2e-04
 TC10 - TC3: W = 0; P-value = 1e-04
 TC10 - TC4: W = 0; P-value = 1e-04
 TC10 - TC5: W = 9.5; P-value = 7e-04
 TC10 - TC6: W = 25; P-value = 0.0054
 TC10 - TC7: W = 0; P-value = 2e-04
 TC10 - TC9: W = 2; P-value = 1e-04
 TC2 - TC3: W = 423.5; P-value = 0.2726
 TC2 - TC4: W = 545; P-value = 0.0013
 TC2 - TC5: W = 489; P-value = 0.0252
 TC2 - TC6: W = 475; P-value = 0.0819
 TC2 - TC7: W = 339.5; P-value = 0.2926
 TC2 - TC9: W = 233.5; P-value = 0.4427
 TC3 - TC4: W = 588.5; P-value = 0.0412
 TC3 - TC5: W = 554.5; P-value = 0.1241
 TC3 - TC6: W = 533; P-value = 0.3301
 TC3 - TC7: W = 388.5; P-value = 0.6258
 TC3 - TC9: W = 262.5; P-value = 0.8768
 TC4 - TC5: W = 446.5; P-value = 0.9646
 TC4 - TC6: W = 426; P-value = 0.5785
 TC4 - TC7: W = 306.5; P-value = 0.3559
 TC4 - TC9: W = 232.5; P-value = 0.6261
 TC5 - TC6: W = 445; P-value = 0.7784
 TC5 - TC7: W = 295.5; P-value = 0.265
 TC5 - TC9: W = 216; P-value = 0.3939
 TC6 - TC7: W = 341.5; P-value = 0.6106
 TC6 - TC9: W = 217.5; P-value = 0.3266
 TC7 - TC9: W = 202.5; P-value = 0.9789
```

P-values reported are not adjusted for multiple comparisons. Adjusted significance level is 0.05 / 55 = 0.00091.

```
Wilcox Tests between Transects:
 CAN1 - CAN2: W = 209.5; P-value = 0.2478
 CAN1 - TC1: W = 225; P-value = 0.8285
 CAN1 - TC10: W = 72; P-value = 0.2414
 CAN1 - TC2: W = 194; P-value = 0.5842
 CAN1 - TC3: W = 276; P-value = 0.9067
 CAN1 - TC4: W = 338.5; P-value = 0.1474
 CAN1 - TC5: W = 299.5; P-value = 0.5366
 CAN1 - TC6: W = 262; P-value = 0.7321
 CAN1 - TC7: W = 284; P-value = 0.086
 CAN1 - TC9: W = 90; P-value = 0.0386
 CAN2 - TC1: W = 206; P-value = 0.5987
 CAN2 - TC10: W = 93.5; P-value = 0.0214
 CAN2 - TC2: W = 179.5; P-value = 0.24
 CAN2 - TC3: W = 257.5; P-value = 0.5794
 CAN2 - TC4: W = 298; P-value = 0.7975
 CAN2 - TC5: W = 268.5; P-value = 0.7426
 CAN2 - TC6: W = 158.5; P-value = 0.0067
 CAN2 - TC7: W = 274.5; P-value = 0.2604
 CAN2 - TC9: W = 90; P-value = 0.0242
 TC1 - TC10: W = 144; P-value = 2e-04
 TC1 - TC2: W = 229.5; P-value = 0.2313
 TC1 - TC3: W = 289.5; P-value = 0.2227
 TC1 - TC4: W = 327; P-value = 0.5714
 TC1 - TC5: W = 292.5; P-value = 0.2432
 TC1 - TC6: W = 242.5; P-value = 0.0285
 TC1 - TC7: W = 257.5; P-value = 0.536
 TC1 - TC9: W = 143.5; P-value = 0.1117
 TC10 - TC2: W = 0; P-value = 2e-04
 TC10 - TC3: W = 0; P-value = 1e-04
 TC10 - TC4: W = 0; P-value = 1e-04
 TC10 - TC5: W = 0; P-value = 1e-04
 TC10 - TC6: W = 0; P-value = 1e-04
 TC10 - TC7: W = 0; P-value = 2e-04
 TC10 - TC9: W = 0; P-value = 4e-04
 TC2 - TC3: W = 344.5; P-value = 0.7939
 TC2 - TC4: W = 366.5; P-value = 0.9168
 TC2 - TC5: W = 326.5; P-value = 0.5654
 TC2 - TC6: W = 276; P-value = 0.1049
 TC2 - TC7: W = 298.5; P-value = 0.8365
 TC2 - TC9: W = 167.5; P-value = 0.3397
 TC3 - TC4: W = 465; P-value = 0.8302
 TC3 - TC5: W = 410; P-value = 0.5591
 TC3 - TC6: W = 301.5; P-value = 0.0187
 TC3 - TC7: W = 374.5; P-value = 0.8074
 TC3 - TC9: W = 242; P-value = 0.7815
 TC4 - TC5: W = 380; P-value = 0.3038
 TC4 - TC6: W = 258.5; P-value = 0.003
 TC4 - TC7: W = 387.5; P-value = 0.6382
 TC4 - TC9: W = 192; P-value = 0.1661
 TC5 - TC6: W = 305; P-value = 0.0213
 TC5 - TC7: W = 433; P-value = 0.2065
 TC5 - TC9: W = 225; P-value = 0.5133
 TC6 - TC7: W = 589; P-value = 2e-04
 TC6 - TC9: W = 284.5; P-value = 0.6583
 TC7 - TC9: W = 145.5; P-value = 0.1243
```

P-values reported are not adjusted for multiple comparisons. Adjusted significance level is $0.05\ /\ 55$ = 0.00091.

Tukey multiple comparisons of means 95% family-wise confidence level

95% L	amily-wise con.				
	diff		-	p adj	
CAN2-CAN1		-6.560872e-03		0.9915697	
TC1-CAN1	4.513889e-03	-4.826723e-03	0.0138545005	0.8931271	
TC10-CAN1	1.388889e-02	-2.327885e-04	0.0280105662	0.0584253	
TC2-CAN1	5.972222e-03	-3.368389e-03	0.0153128338	0.5942567	
TC3-CAN1	1.211222e-02	3.180889e-03	0.0210435552	0.0007922	
TC4-CAN1	1.455556e-02	5.624223e-03	0.0234868885	0.0000142	
TC5-CAN1	1.022222e-02	1.290889e-03	0.0191535552	0.0110249	
TC6-CAN1	6.523297e-03	-2.353851e-03	0.0154004459	0.3786857	
TC7-CAN1	9.305556e-03	-3.505603e-05	0.0186461671	0.0518209	
TC9-CAN1	3.202614e-03	-6.928701e-03	0.0133339301	0.9945600	
TC1-CAN2	1.221491e-03	-7.977588e-03	0.0104205702	0.9999978	
TC10-CAN2	1.059649e-02	-3.431973e-03	0.0246249552	0.3367937	
TC2-CAN2	2.679825e-03	-6.519254e-03	0.0118789035	0.9972034	
TC3-CAN2		3.661685e-05	0.0176030323		
TC4-CAN2		2.479950e-03	0.0200463656		
TC5-CAN2		-1.853383e-03			
TC6-CAN2		-5.497204e-03	0.0137130323		
TC7-CAN2		-3.185921e-03	0.0119390033		
TC9-CAN2					
		-1.009076e-02			
TC10-TC1		-4.298255e-03	0.0230482553		
TC2-TC1		-7.189393e-03	0.0101060593		
TC3-TC1		-6.056198e-04	0.0158022865		
TC4-TC1		1.837713e-03	0.0182456198		
TC5-TC1		-2.495620e-03			
TC6-TC1		-6.135523e-03			
TC7-TC1	4.791667e-03	-3.856059e-03	0.0134393926	0.7787440	
TC9-TC1	-1.311275e-03	-1.080757e-02	0.0081850247	0.9999968	
TC2-TC10	-7.916667e-03	-2.158992e-02	0.0057565886	0.7287331	
TC3-TC10	-1.776667e-03	-1.517367e-02	0.0116203328	0.9999978	
TC4-TC10	6.666667e-04	-1.273033e-02	0.0140636661	1.0000000	
TC5-TC10	-3.666667e-03	-1.706367e-02	0.0097303328	0.9983420	
TC6-TC10	-7.365591e-03	-2.072653e-02	0.0059953461	0.7841246	
TC7-TC10	-4.583333e-03	-1.825659e-02	0.0090899220	0.9913590	
TC9-TC10	-1.068627e-02	-2.491141e-02	0.0035388597	0.3450370	
TC3-TC2	6.140000e-03	-2.063953e-03	0.0143439532	0.3506912	
TC4-TC2	8.583333e-03	3.793802e-04	0.0167872865	0.0316988	
TC5-TC2	4.250000e-03	-3.953953e-03	0.0124539532	0.8426454	
TC6-TC2	5.510753e-04	-7.593856e-03	0.0086960064	1.0000000	
TC7-TC2	3.33333e-03	-5.314393e-03	0.0119810593	0.9754661	
TC9-TC2		-1.226591e-02	0.0067266913	0.9971765	
TC4-TC3	2.443333e-03	-5.291428e-03	0.0101780946		
TC5-TC3		-9.624761e-03	0.0058447612	0.9993765	
TC6-TC3		-1.326106e-02	0.0020832058		
TC7-TC3		-1.101062e-02	0.0053972865		
TC9-TC3		-1.800364e-02	0.0001844221		
TC5-TC4		-1.206809e-02	0.0034014279		
TC6-TC4		-1.570439e-02	-0.00034014275		
TC7-TC4			0.0029539532		
		-1.345395e-02			
TC9-TC4		-2.044697e-02	-0.0022589112		
TC6-TC5		-1.137106e-02	0.0039732058		
TC7-TC5		-9.120620e-03	0.0072872865		
TC9-TC5		-1.611364e-02	0.0020744221		
TC7-TC6		-5.362673e-03	0.0109271892		
TC9-TC6		-1.236150e-02	0.0057201375		
TC9-TC7	-6.102941e-03	-1.559924e-02	0.0033933580	0.5866531	

P-values reported are adjusted for multiple comparisons.

```
Wilcox Tests between Transects:
 CAN1 - CAN2: W = 134; P-value = 0.267
 CAN1 - TC1: W = 85.5; P-value = 0.0037
 CAN1 - TC10: W = 108; P-value = 4e-04
 CAN1 - TC2: W = 77; P-value = 0.0027
 CAN1 - TC3: W = 191; P-value = 0.0945
 CAN1 - TC4: W = 252.5; P-value = 0.7172
 CAN1 - TC5: W = 240.5; P-value = 0.5367
 CAN1 - TC6: W = 231; P-value = 0.3245
 CAN1 - TC7: W = 165; P-value = 0.199
 CAN1 - TC9: W = 111.5; P-value = 0.1758
 CAN2 - TC1: W = 120; P-value = 0.0323
 CAN2 - TC10: W = 114; P-value = 3e-04
 CAN2 - TC2: W = 111; P-value = 0.0273
 CAN2 - TC3: W = 193.5; P-value = 0.0618
 CAN2 - TC4: W = 297; P-value = 0.8134
 CAN2 - TC5: W = 320.5; P-value = 0.4724
 CAN2 - TC6: W = 272.5; P-value = 0.6673
 CAN2 - TC7: W = 230; P-value = 0.9707
 CAN2 - TC9: W = 147; P-value = 0.6571
 TC1 - TC10: W = 126; P-value = 3e-04
 TC1 - TC2: W = 234; P-value = 0.5398
 TC1 - TC3: W = 349; P-value = 0.5213
 TC1 - TC4: W = 437.5; P-value = 0.0195
 TC1 - TC5: W = 483; P-value = 0.0013
 TC1 - TC6: W = 411; P-value = 0.1128
 TC1 - TC7: W = 339.5; P-value = 0.0476
 TC1 - TC9: W = 225; P-value = 0.1767
 TC10 - TC2: W = 0; P-value = 3e-04
 TC10 - TC3: W = 6; P-value = 4e-04
 TC10 - TC4: W = 0; P-value = 1e-04
 TC10 - TC5: W = 6; P-value = 4e-04
 TC10 - TC6: W = 28; P-value = 0.0078
 TC10 - TC7: W = 0; P-value = 2e-04
 TC10 - TC9: W = 0; P-value = 4e-04
 TC2 - TC3: W = 364; P-value = 0.2085
 TC2 - TC4: W = 427; P-value = 0.0122
 TC2 - TC5: W = 439; P-value = 0.0061
 TC2 - TC6: W = 368.5; P-value = 0.263
 TC2 - TC7: W = 301; P-value = 0.1536
 TC2 - TC9: W = 187.5; P-value = 0.6043
 TC3 - TC4: W = 597; P-value = 0.0303
 TC3 - TC5: W = 602; P-value = 0.0251
 TC3 - TC6: W = 539; P-value = 0.289
 TC3 - TC7: W = 399.5; P-value = 0.4971
 TC3 - TC9: W = 256.5; P-value = 0.9823
 TC4 - TC5: W = 496; P-value = 0.5011
 TC4 - TC6: W = 425.5; P-value = 0.5736
 TC4 - TC7: W = 328; P-value = 0.5833
 TC4 - TC9: W = 229; P-value = 0.5723
 TC5 - TC6: W = 387; P-value = 0.2635
 TC5 - TC7: W = 318.5; P-value = 0.4753
 TC5 - TC9: W = 209; P-value = 0.3137
 TC6 - TC7: W = 357.5; P-value = 0.8121
 TC6 - TC9: W = 258.5; P-value = 0.9227
 TC7 - TC9: W = 207; P-value = 0.9472
```

```
Wilcox Tests between Transects:
 CAN1 - CAN2: W = 192; P-value = 0.5331
 CAN1 - TC1: W = 96; P-value = 0.0024
 CAN1 - TC10: W = 72; P-value = 0.2428
 CAN1 - TC2: W = 127; P-value = 0.0244
 CAN1 - TC3: W = 120; P-value = 0.0015
 CAN1 - TC4: W = 233; P-value = 0.4369
 CAN1 - TC5: W = 145; P-value = 0.008
 CAN1 - TC6: W = 149; P-value = 0.0072
 CAN1 - TC7: W = 76.5; P-value = 4e-04
 CAN1 - TC9: W = 81.5; P-value = 0.0191
 CAN2 - TC1: W = 85.5; P-value = 5e-04
 CAN2 - TC10: W = 90; P-value = 0.0386
 CAN2 - TC2: W = 125; P-value = 0.0122
 CAN2 - TC3: W = 106; P-value = 2e-04
 CAN2 - TC4: W = 217; P-value = 0.166
 CAN2 - TC5: W = 153.5; P-value = 0.0072
 CAN2 - TC6: W = 155.5; P-value = 0.0056
 CAN2 - TC7: W = 52; P-value = 0
 CAN2 - TC9: W = 88.5; P-value = 0.0216
 TC1 - TC10: W = 144; P-value = 2e-04
 TC1 - TC2: W = 328; P-value = 0.4153
 TC1 - TC3: W = 307.5; P-value = 0.3653
 TC1 - TC4: W = 436.5; P-value = 0.1858
 TC1 - TC5: W = 329.5; P-value = 0.6015
 TC1 - TC6: W = 311; P-value = 0.3045
 TC1 - TC7: W = 171.5; P-value = 0.0167
 TC1 - TC9: W = 215; P-value = 0.7811
 TC10 - TC2: W = 0; P-value = 2e-04
 TC10 - TC3: W = 4; P-value = 3e-04
 TC10 - TC4: W = 0; P-value = 1e-04
 TC10 - TC5: W = 6; P-value = 4e-04
 TC10 - TC6: W = 0; P-value = 1e-04
 TC10 - TC7: W = 0; P-value = 2e-04
 TC10 - TC9: W = 0; P-value = 4e-04
 TC2 - TC3: W = 257; P-value = 0.0743
 TC2 - TC4: W = 361; P-value = 0.9931
 TC2 - TC5: W = 304; P-value = 0.334
 TC2 - TC6: W = 266.5; P-value = 0.0747
 TC2 - TC7: W = 136.5; P-value = 0.0018
 TC2 - TC9: W = 197; P-value = 0.8634
 TC3 - TC4: W = 581.5; P-value = 0.0527
 TC3 - TC5: W = 517; P-value = 0.3255
 TC3 - TC6: W = 454; P-value = 0.8796
 TC3 - TC7: W = 247; P-value = 0.0502
 TC3 - TC9: W = 303; P-value = 0.2929
 TC4 - TC5: W = 387.5; P-value = 0.3593
 TC4 - TC6: W = 308; P-value = 0.024
 TC4 - TC7: W = 153.5; P-value = 3e-04
 TC4 - TC9: W = 234.5; P-value = 0.6578
 TC5 - TC6: W = 358.5; P-value = 0.1262
 TC5 - TC7: W = 244; P-value = 0.0443
 TC5 - TC9: W = 274; P-value = 0.6821
 TC6 - TC7: W = 329; P-value = 0.4707
 TC6 - TC9: W = 326.5; P-value = 0.1779
 TC7 - TC9: W = 275; P-value = 0.062
```

```
CAN1 - TC1: W = 92; P-value = 0.0017
CAN1 - TC10: W = 72; P-value = 0.2427
CAN1 - TC2: W = 44; P-value = 0.5225
CAN1 - TC3: W = 132; P-value = 0.0034
CAN1 - TC4: W = 164; P-value = 0.0246
CAN1 - TC6: W = 132; P-value = 0.0024
CAN1 - TC9: W = 92.5; P-value = 0.0475
TC1 - TC10: W = 144; P-value = 2e-04
TC1 - TC2: W = 84.5; P-value = 0.018
TC1 - TC3: W = 298; P-value = 0.2843
TC1 - TC4: W = 336; P-value = 0.6824
TC1 - TC6: W = 266.5; P-value = 0.0747
TC1 - TC9: W = 225; P-value = 0.5874
TC10 - TC2: W = 0; P-value = 0.0095
TC10 - TC3: W = 0; P-value = 1e-04
TC10 - TC4: W = 0; P-value = 1e-04
TC10 - TC6: W = 0; P-value = 1e-04
TC10 - TC9: W = 1; P-value = 0
TC2 - TC3: W = 18; P-value = 0.0265
TC2 - TC4: W = 30; P-value = 0.1146
TC2 - TC6: W = 32; P-value = 0.126
TC2 - TC9: W = 18; P-value = 0.1718
TC3 - TC4: W = 585.5; P-value = 0.0459
TC3 - TC6: W = 400; P-value = 0.352
TC3 - TC9: W = 317.5; P-value = 0.1697
TC4 - TC6: W = 272; P-value = 0.0055
TC4 - TC9: W = 272; P-value = 0.7147
TC6 - TC9: W = 365; P-value = 0.0294
```

```
Silicon, total
        Wilcox Tests between Transects:
         CAN1 - TC1: W = 94; P-value = 0.002
         CAN1 - TC10: W = 93; P-value = 0.0102
         CAN1 - TC2: W = 36; P-value = 1
         CAN1 - TC3: W = 141.5; P-value = 0.0064
         CAN1 - TC4: W = 163.5; P-value = 0.024
         CAN1 - TC6: W = 134; P-value = 0.0027
         CAN1 - TC9: W = 97; P-value = 0.0669
         TC1 - TC10: W = 144; P-value = 2e-04
         TC1 - TC2: W = 85; P-value = 0.0165
         TC1 - TC3: W = 313.5; P-value = 0.4232
         TC1 - TC4: W = 383; P-value = 0.6952
         TC1 - TC6: W = 271; P-value = 0.0881
         TC1 - TC9: W = 225; P-value = 0.5874
         TC10 - TC2: W = 0; P-value = 0.0139
         TC10 - TC3: W = 0; P-value = 1e-04
         TC10 - TC4: W = 0; P-value = 1e-04
         TC10 - TC6: W = 0; P-value = 1e-04
         TC10 - TC9: W = 1; P-value = 0
         TC2 - TC3: W = 21.5; P-value = 0.0422
         TC2 - TC4: W = 30; P-value = 0.1147
         TC2 - TC6: W = 32; P-value = 0.1261
         TC2 - TC9: W = 17; P-value = 0.1393
         TC3 - TC4: W = 588.5; P-value = 0.0413
         TC3 - TC6: W = 413; P-value = 0.4575
         TC3 - TC9: W = 314; P-value = 0.1952
         TC4 - TC6: W = 286.5; P-value = 0.0102
         TC4 - TC9: W = 269.5; P-value = 0.7565
         TC6 - TC9: W = 353; P-value = 0.055
```

```
Wilcox Tests between Transects:
 CAN1 - CAN2: W = 117; P-value = 0.1033
 CAN1 - TC1: W = 320; P-value = 0.0085
 CAN1 - TC10: W = 72; P-value = 0.2413
 CAN1 - TC2: W = 326; P-value = 0.0053
 CAN1 - TC3: W = 405.5; P-value = 0.004
 CAN1 - TC4: W = 360.5; P-value = 0.055
 CAN1 - TC5: W = 366; P-value = 0.0418
 CAN1 - TC6: W = 422; P-value = 0.0031
 CAN1 - TC7: W = 317; P-value = 0.0105
 CAN1 - TC9: W = 178.5; P-value = 0.4088
 CAN2 - TC1: W = 383.5; P-value = 1e-04
 CAN2 - TC10: W = 93; P-value = 0.023
 CAN2 - TC2: W = 379; P-value = 2e-04
 CAN2 - TC3: W = 459; P-value = 4e-04
 CAN2 - TC4: W = 489.5; P-value = 0
 CAN2 - TC5: W = 489.5; P-value = 0
 CAN2 - TC6: W = 561.5; P-value = 0
 CAN2 - TC7: W = 425; P-value = 0
 CAN2 - TC9: W = 230; P-value = 0.031
 TC1 - TC10: W = 36; P-value = 0.0652
 TC1 - TC2: W = 307.5; P-value = 0.6951
 TC1 - TC3: W = 349.5; P-value = 0.8618
 TC1 - TC4: W = 396; P-value = 0.5363
 TC1 - TC5: W = 336; P-value = 0.6823
 TC1 - TC6: W = 377; P-value = 0.9391
 TC1 - TC7: W = 251; P-value = 0.4514
 TC1 - TC9: W = 164.5; P-value = 0.3019
 TC10 - TC2: W = 96; P-value = 0.222
 TC10 - TC3: W = 120; P-value = 0.2101
 TC10 - TC4: W = 120; P-value = 0.2094
 TC10 - TC5: W = 120; P-value = 0.2096
 TC10 - TC6: W = 160; P-value = 0.0061
 TC10 - TC7: W = 107; P-value = 0.073
 TC10 - TC9: W = 48; P-value = 0.8606
 TC2 - TC3: W = 323.5; P-value = 0.5307
 TC2 - TC4: W = 374; P-value = 0.8141
 TC2 - TC5: W = 330.5; P-value = 0.6134
 TC2 - TC6: W = 366.5; P-value = 0.9324
 TC2 - TC7: W = 248.5; P-value = 0.421
 TC2 - TC9: W = 164; P-value = 0.2956
 TC3 - TC4: W = 442.5; P-value = 0.9175
 TC3 - TC5: W = 428.5; P-value = 0.7561
 TC3 - TC6: W = 460.5; P-value = 0.954
 TC3 - TC7: W = 302.5; P-value = 0.321
 TC3 - TC9: W = 208; P-value = 0.3031
 TC4 - TC5: W = 372.5; P-value = 0.2542
 TC4 - TC6: W = 483; P-value = 0.8006
 TC4 - TC7: W = 343; P-value = 0.7738
 TC4 - TC9: W = 210; P-value = 0.3241
 TC5 - TC6: W = 515; P-value = 0.475
 TC5 - TC7: W = 398.5; P-value = 0.5081
 TC5 - TC9: W = 209; P-value = 0.3134
 TC6 - TC7: W = 356; P-value = 0.7924
 TC6 - TC9: W = 194; P-value = 0.1368
 TC7 - TC9: W = 155; P-value = 0.1988
```

```
Aluminum, total
        Wilcox Tests between Transects:
         CAN1 - CAN2: W = 95.5; P-value = 0.0226
         CAN1 - TC1: W = 117; P-value = 0.0123
         CAN1 - TC10: W = 86; P-value = 0.0355
         CAN1 - TC2: W = 129.5; P-value = 0.0288
         CAN1 - TC3: W = 187.5; P-value = 0.0807
         CAN1 - TC4: W = 237; P-value = 0.4888
         CAN1 - TC5: W = 152.5; P-value = 0.0127
         CAN1 - TC6: W = 170.5; P-value = 0.0251
         CAN1 - TC7: W = 219; P-value = 0.9493
         CAN1 - TC9: W = 109; P-value = 0.2338
         CAN2 - TC1: W = 233; P-value = 0.9124
         CAN2 - TC10: W = 109.5; P-value = 9e-04
         CAN2 - TC2: W = 258.5; P-value = 0.4631
         CAN2 - TC3: W = 336; P-value = 0.3001
         CAN2 - TC4: W = 411; P-value = 0.01
         CAN2 - TC5: W = 282; P-value = 0.9591
         CAN2 - TC6: W = 302.5; P-value = 0.8808
         CAN2 - TC7: W = 335.5; P-value = 0.0089
         CAN2 - TC9: W = 198; P-value = 0.1332
         TC1 - TC10: W = 144; P-value = 0
         TC1 - TC2: W = 303; P-value = 0.7649
         TC1 - TC3: W = 412; P-value = 0.3699
         TC1 - TC4: W = 508; P-value = 0.0102
         TC1 - TC5: W = 325; P-value = 0.5481
         TC1 - TC6: W = 351; P-value = 0.7279
         TC1 - TC7: W = 396.5; P-value = 0.0259
         TC1 - TC9: W = 239; P-value = 0.2017
         TC10 - TC2: W = 0; P-value = 2e-04
          TC10 - TC3: W = 6; P-value = 4e-04
         TC10 - TC4: W = 10; P-value = 7e-04
         TC10 - TC5: W = 1; P-value = 2e-04
         TC10 - TC6: W = 5; P-value = 3e-04
          TC10 - TC7: W = 27.5; P-value = 0.0225
         TC10 - TC9: W = 11.5; P-value = 0.0079
         TC2 - TC3: W = 375.5; P-value = 0.794
         TC2 - TC4: W = 489.5; P-value = 0.0247
         TC2 - TC5: W = 304; P-value = 0.3339
         TC2 - TC6: W = 325.5; P-value = 0.435
         TC2 - TC7: W = 395; P-value = 0.0281
         TC2 - TC9: W = 225; P-value = 0.3695
         TC3 - TC4: W = 567.5; P-value = 0.0837
         TC3 - TC5: W = 374; P-value = 0.2643
         TC3 - TC6: W = 396; P-value = 0.323
         TC3 - TC7: W = 469.5; P-value = 0.0577
         TC3 - TC9: W = 275.5; P-value = 0.4195
         TC4 - TC5: W = 242.5; P-value = 0.0022
         TC4 - TC6: W = 261.5; P-value = 0.0034
         TC4 - TC7: W = 356; P-value = 0.9514
         TC4 - TC9: W = 224.5; P-value = 0.7294
         TC5 - TC6: W = 476; P-value = 0.8796
         TC5 - TC7: W = 543.5; P-value = 0.0014
         TC5 - TC9: W = 303; P-value = 0.1494
         TC6 - TC7: W = 560; P-value = 0.0015
         TC6 - TC9: W = 298.5; P-value = 0.2616
```

TC7 - TC9: W = 154.5; P-value = 0.307

```
CAN1 - CAN2: W = 0.5; P-value = 0
CAN1 - TC1: W = 1; P-value = 0
CAN1 - TC10: W = 0; P-value = 5e-04
CAN1 - TC2: W = 0; P-value = 0
CAN1 - TC3: W = 0; P-value = 0
CAN1 - TC4: W = 3; P-value = 0
CAN1 - TC5: W = 0; P-value = 0
CAN1 - TC6: W = 0; P-value = 0
CAN1 - TC7: W = 0; P-value = 0
\overline{\text{CAN1} - \text{TC9}}: W = 1; P-value = 0
CAN2 - TC1: W = 132; P-value = 0.0584
CAN2 - TC10: W = 10; P-value = 0.0046
CAN2 - TC2: W = 129; P-value = 0.0485
CAN2 - TC3: W = 161; P-value = 0.0384
CAN2 - TC4: W = 225.5; P-value = 0.5208
CAN2 - TC5: W = 170.5; P-value = 0.0628
CAN2 - TC6: W = 116.5; P-value = 0.0016
CAN2 - TC7: W = 76; P-value = 7e-04
CAN2 - TC9: W = 101.5; P-value = 0.1432
TC1 - TC10: W = 29; P-value = 0.0275
TC1 - TC2: W = 271; P-value = 0.7336
TC1 - TC3: W = 343.5; P-value = 0.7805
TC1 - TC4: W = 492; P-value = 0.0221
TC1 - TC5: W = 418.5; P-value = 0.3126
TC1 - TC6: W = 326; P-value = 0.4399
TC1 - TC7: W = 260.5; P-value = 0.5776
TC1 - TC9: W = 174; P-value = 0.435
TC10 - TC2: W = 109.5; P-value = 0.0548
TC10 - TC3: W = 147.5; P-value = 0.0155
TC10 - TC4: W = 180; P-value = 1e-04
TC10 - TC5: W = 172; P-value = 5e-04
TC10 - TC6: W = 149; P-value = 0.0222
TC10 - TC7: W = 127.5; P-value = 0.0043
TC10 - TC9: W = 62.5; P-value = 0.4411
TC2 - TC3: W = 384; P-value = 0.6824
TC2 - TC4: W = 473; P-value = 0.0501
TC2 - TC5: W = 401.5; P-value = 0.4751
TC2 - TC6: W = 328.5; P-value = 0.4654
TC2 - TC7: W = 252; P-value = 0.464
TC2 - TC9: W = 190; P-value = 0.7208
TC3 - TC4: W = 626; P-value = 0.0095
TC3 - TC5: W = 540; P-value = 0.1856
TC3 - TC6: W = 440; P-value = 0.7237
TC3 - TC7: W = 338.5; P-value = 0.7146
TC3 - TC9: W = 214.5; P-value = 0.3757
TC4 - TC5: W = 315; P-value = 0.0467
TC4 - TC6: W = 166; P-value = 0
TC4 - TC7: W = 74.5; P-value = 0
TC4 - TC9: W = 183.5; P-value = 0.1159
TC5 - TC6: W = 285.5; P-value = 0.0098
TC5 - TC7: W = 175.5; P-value = 0.0014
TC5 - TC9: W = 210; P-value = 0.3244
TC6 - TC7: W = 360; P-value = 0.8452
TC6 - TC9: W = 257.5; P-value = 0.9056
TC7 - TC9: W = 189; P-value = 0.7012
```

```
CAN1 - CAN2: W = 0; P-value = 0
CAN1 - TC1: W = 0; P-value = 0
CAN1 - TC10: W = 0; P-value = 5e-04
CAN1 - TC2: W = 0.5; P-value = 0
CAN1 - TC3: W = 0; P-value = 0
CAN1 - TC4: W = 0; P-value = 0
CAN1 - TC5: W = 0; P-value = 0
CAN1 - TC6: W = 0; P-value = 0
CAN1 - TC7: W = 0; P-value = 0
CAN1 - TC9: W = 0; P-value = 0
CAN2 - TC1: W = 182; P-value = 0.5693
CAN2 - TC10: W = 10; P-value = 0.0046
CAN2 - TC2: W = 195.5; P-value = 0.8322
CAN2 - TC3: W = 239; P-value = 0.7314
CAN2 - TC4: W = 341; P-value = 0.0582
CAN2 - TC5: W = 283; P-value = 0.5425
CAN2 - TC6: W = 192; P-value = 0.1258
CAN2 - TC7: W = 128.5; P-value = 0.0471
CAN2 - TC9: W = 130; P-value = 0.6296
TC1 - TC10: W = 30; P-value = 0.0313
TC1 - TC2: W = 302; P-value = 0.7805
TC1 - TC3: W = 390; P-value = 0.6075
TC1 - TC4: W = 505.5; P-value = 0.0116
TC1 - TC5: W = 485.5; P-value = 0.0295
TC1 - TC6: W = 388.5; P-value = 0.7859
TC1 - TC7: W = 296; P-value = 0.877
TC1 - TC9: W = 188; P-value = 0.6816
TC10 - TC2: W = 119; P-value = 0.0157
TC10 - TC3: W = 167; P-value = 0.0012
TC10 - TC4: W = 180; P-value = 1e-04
TC10 - TC5: W = 178; P-value = 2e-04
TC10 - TC6: W = 158; P-value = 0.0079
TC10 - TC7: W = 135; P-value = 0.0012
TC10 - TC9: W = 70; P-value = 0.195
TC2 - TC3: W = 404.5; P-value = 0.4435
TC2 - TC4: W = 474; P-value = 0.048
TC2 - TC5: W = 433.5; P-value = 0.2031
TC2 - TC6: W = 345.5; P-value = 0.6589
TC2 - TC7: W = 274.5; P-value = 0.7885
TC2 - TC9: W = 188.5; P-value = 0.6907
TC3 - TC4: W = 632.5; P-value = 0.0071
TC3 - TC5: W = 587.5; P-value = 0.0428
TC3 - TC6: W = 489.5; P-value = 0.7291
TC3 - TC7: W = 381.5; P-value = 0.7146
TC3 - TC9: W = 215; P-value = 0.3817
TC4 - TC5: W = 351; P-value = 0.145
TC4 - TC6: W = 175.5; P-value = 0
TC4 - TC7: W = 85; P-value = 0
TC4 - TC9: W = 171.5; P-value = 0.066
TC5 - TC6: W = 233.5; P-value = 9e-04
TC5 - TC7: W = 126; P-value = 0
TC5 - TC9: W = 191; P-value = 0.1595
TC6 - TC7: W = 324; P-value = 0.42
TC6 - TC9: W = 259; P-value = 0.9313
TC7 - TC9: W = 206.5; P-value = 0.9578
```

CAN1 - CAN2: W = 79.5; P-value = 0.0045 CAN1 - TC1: W = 25; P-value = 0 CAN1 - TC10: W = 84.5; P-value = 0.0334 CAN1 - TC2: W = 2; P-value = 0 CAN1 - TC3: W = 32; P-value = 0 CAN1 - TC4: W = 37; P-value = 0CAN1 - TC5: W = 48; P-value = 0 CAN1 - TC6: W = 25; P-value = 0 CAN1 - TC7: W = 12; P-value = 0 CAN1 - TC9: W = 51.5; P-value = 7e-04 CAN2 - TC1: W = 22; P-value = 0CAN2 - TC10: W = 112.5; P-value = 3e-04 CAN2 - TC2: W = 1; P-value = 0 CAN2 - TC3: W = 35; P-value = 0 CAN2 - TC4: W = 47; P-value = 0 CAN2 - TC5: W = 84; P-value = 0CAN2 - TC6: W = 22; P-value = 0 CAN2 - TC7: W = 6; P-value = 0 $\overline{\text{CAN2} - \text{TC}9}$: W = 108; P-value = 0.086 TC1 - TC10: W = 144; P-value = 1e-04 TC1 - TC2: W = 50; P-value = 0 TC1 - TC3: W = 363; P-value = 0.963TC1 - TC4: W = 403; P-value = 0.4232TC1 - TC5: W = 435.5; P-value = 0.1839 TC1 - TC6: W = 299; P-value = 0.2053TC1 - TC7: W = 151; P-value = 0.0039 TC1 - TC9: W = 214; P-value = 0.7938TC10 - TC2: W = 0; P-value = 2e-04TC10 - TC3: W = 0; P-value = 1e-04TC10 - TC4: W = 0; P-value = 1e-04 TC10 - TC5: W = 0; P-value = 1e-04TC10 - TC6: W = 0; P-value = 1e-04TC10 - TC7: W = 0; P-value = 2e-04TC10 - TC9: W = 1.5; P-value = 5e-04TC2 - TC3: W = 642; P-value = 0TC2 - TC4: W = 658.5; P-value = 0 TC2 - TC5: W = 597; P-value = 0 TC2 - TC6: W = 574; P-value = 6e-04TC2 - TC7: W = 355; P-value = 0.1654TC2 - TC9: W = 316; P-value = 0.0029TC3 - TC4: W = 495.5; P-value = 0.4846TC3 - TC5: W = 523.5; P-value = 0.2734TC3 - TC6: W = 382; P-value = 0.2251TC3 - TC7: W = 190; P-value = 0.0027 TC3 - TC9: W = 270; P-value = 0.7433TC4 - TC5: W = 493; P-value = 0.5222 TC4 - TC6: W = 336; P-value = 0.0577 TC4 - TC7: W = 165.5; P-value = 6e-04TC4 - TC9: W = 259; P-value = 0.9365TC5 - TC6: W = 327; P-value = 0.0447TC5 - TC7: W = 179; P-value = 0.0015TC5 - TC9: W = 270.5; P-value = 0.7379TC6 - TC7: W = 264; P-value = 0.0654TC6 - TC9: W = 313; P-value = 0.2877TC7 - TC9: W = 281; P-value = 0.0411

```
CAN1 - CAN2: W = 89; P-value = 0.0133
CAN1 - TC1: W = 10; P-value = 0
CAN1 - TC10: W = 61.5; P-value = 0.6406
CAN1 - TC2: W = 0; P-value = 0
CAN1 - TC3: W = 60.5; P-value = 0
CAN1 - TC4: W = 0; P-value = 0
CAN1 - TC5: W = 0; P-value = 0
CAN1 - TC6: W = 0; P-value = 0
CAN1 - TC7: W = 0; P-value = 0
CAN1 - TC9: W = 24; P-value = 0
CAN2 - TC1: W = 21; P-value = 0
CAN2 - TC10: W = 84.5; P-value = 0.0856
CAN2 - TC2: W = 6; P-value = 0
CAN2 - TC3: W = 101; P-value = 2e-04
CAN2 - TC4: W = 0; P-value = 0
CAN2 - TC5: W = 0; P-value = 0
CAN2 - TC6: W = 0; P-value = 0
CAN2 - TC7: W = 0; P-value = 0
\overline{\text{CAN2} - \text{TC}9}: W = 57.5; P-value = 0.001
TC1 - TC10: W = 141; P-value = 4e-04
TC1 - TC2: W = 240.5; P-value = 0.3324
TC1 - TC3: W = 337.5; P-value = 0.7017
TC1 - TC4: W = 410.5; P-value = 0.2678
TC1 - TC5: W = 321.5; P-value = 0.5082
TC1 - TC6: W = 169; P-value = 6e-04
TC1 - TC7: W = 171; P-value = 0.0163
TC1 - TC9: W = 262; P-value = 0.1281
TC10 - TC2: W = 0; P-value = 0
TC10 - TC3: W = 7.5; P-value = 5e-04
TC10 - TC4: W = 0; P-value = 2e-04
TC10 - TC5: W = 0; P-value = 1e-04
TC10 - TC6: W = 0; P-value = 1e-04
TC10 - TC7: W = 0; P-value = 2e-04
TC10 - TC9: W = 1; P-value = 5e-04
TC2 - TC3: W = 397.5; P-value = 0.5195
TC2 - TC4: W = 445; P-value = 0.0846
TC2 - TC5: W = 368; P-value = 0.8961
TC2 - TC6: W = 227; P-value = 0.0142
TC2 - TC7: W = 222.5; P-value = 0.1801
TC2 - TC9: W = 274; P-value = 0.0658
TC3 - TC4: W = 553; P-value = 0.0748
TC3 - TC5: W = 456; P-value = 0.9352
TC3 - TC6: W = 252.5; P-value = 0.0022
TC3 - TC7: W = 275.5; P-value = 0.1436
TC3 - TC9: W = 277.5; P-value = 0.6262
TC4 - TC5: W = 283; P-value = 0.0216
TC4 - TC6: W = 79; P-value = 0
TC4 - TC7: W = 81.5; P-value = 0
TC4 - TC9: W = 334; P-value = 0.0477
TC5 - TC6: W = 212.5; P-value = 3e-04
TC5 - TC7: W = 225.5; P-value = 0.0196
TC5 - TC9: W = 357; P-value = 0.0246
TC6 - TC7: W = 475.5; P-value = 0.0804
TC6 - TC9: W = 405; P-value = 0.0024
TC7 - TC9: W = 294; P-value = 0.0178
```

Wilcox Tests between Transects: CAN1 - CAN2: W = 73; P-value = 0.003 CAN1 - TC1: W = 3; P-value = 0CAN1 - TC10: W = 65; P-value = 0.4837 CAN1 - TC2: W = 0; P-value = 0 CAN1 - TC3: W = 65.5; P-value = 0 CAN1 - TC4: W = 0; P-value = 0CAN1 - TC5: W = 0; P-value = 0 CAN1 - TC6: W = 3; P-value = 0 CAN1 - TC7: W = 0; P-value = 0 CAN1 - TC9: W = 20; P-value = 0 CAN2 - TC1: W = 21; P-value = 0CAN2 - TC10: W = 88; P-value = 0.0522CAN2 - TC2: W = 9; P-value = 0CAN2 - TC3: W = 107; P-value = 3e-04CAN2 - TC4: W = 0; P-value = 0 CAN2 - TC5: W = 0; P-value = 0CAN2 - TC6: W = 31.5; P-value = 0 CAN2 - TC7: W = 0; P-value = 0CAN2 - TC9: W = 57; P-value = 0.001TC1 - TC10: W = 144; P-value = 2e-04 TC1 - TC2: W = 201.5; P-value = 0.0761 TC1 - TC3: W = 368; P-value = 0.8961 TC1 - TC4: W = 380; P-value = 0.5734TC1 - TC5: W = 276; P-value = 0.1461TC1 - TC6: W = 263.5; P-value = 0.0668TC1 - TC7: W = 168; P-value = 0.0137 TC1 - TC9: W = 254.5; P-value = 0.1857TC10 - TC2: W = 0; P-value = 2e-04TC10 - TC3: W = 9; P-value = 1e-04TC10 - TC4: W = 0; P-value = 2e-04 TC10 - TC5: W = 0; P-value = 0 TC10 - TC6: W = 0; P-value = 1e-04TC10 - TC7: W = 0; P-value = 2e-04 TC10 - TC9: W = 5.5; P-value = 0.0016TC2 - TC3: W = 466.5; P-value = 0.065TC2 - TC4: W = 497.5; P-value = 0.0077TC2 - TC5: W = 397; P-value = 0.5251TC2 - TC6: W = 337; P-value = 0.5582TC2 - TC7: W = 268; P-value = 0.6876TC2 - TC9: W = 282; P-value = 0.0403TC3 - TC4: W = 487.5; P-value = 0.4304TC3 - TC5: W = 360.5; P-value = 0.1882 TC3 - TC6: W = 298.5; P-value = 0.0166 TC3 - TC7: W = 238.5; P-value = 0.0352TC3 - TC9: W = 267; P-value = 0.799TC4 - TC5: W = 271; P-value = 0.0132TC4 - TC6: W = 264.5; P-value = 0.0063TC4 - TC7: W = 89; P-value = 0TC4 - TC9: W = 320; P-value = 0.0966TC5 - TC6: W = 385.5; P-value = 0.2544

TC5 - TC7: W = 259.5; P-value = 0.0817

TC5 - TC9: W = 351; P-value = 0.0345

TC6 - TC7: W = 392; P-value = 0.7407

TC6 - TC9: W = 364; P-value = 0.0311

TC7 - TC9: W = 284.5; P-value = 0.0342

```
CAN1 - CAN2: W = 209.5; P-value = 0.2475
CAN1 - TC1: W = 0; P-value = 0
CAN1 - TC10: W = 74; P-value = 0.1929
CAN1 - TC2: W = 0; P-value = 0
CAN1 - TC3: W = 0; P-value = 0
CAN1 - TC4: W = 0; P-value = 0
CAN1 - TC5: W = 0; P-value = 0
CAN1 - TC6: W = 13; P-value = 0
CAN1 - TC7: W = 0; P-value = 0
CAN1 - TC9: W = 28.5; P-value = 0
CAN2 - TC1: W = 0; P-value = 0
CAN2 - TC10: W = 96; P-value = 0.0141
CAN2 - TC2: W = 0; P-value = 0
CAN2 - TC3: W = 0; P-value = 0
CAN2 - TC4: W = 0; P-value = 0
CAN2 - TC5: W = 0; P-value = 0
CAN2 - TC6: W = 12; P-value = 0
CAN2 - TC7: W = 0; P-value = 0
CAN2 - TC9: W = 19; P-value = 0
TC1 - TC10: W = 144; P-value = 2e-04
TC1 - TC2: W = 227; P-value = 0.2122
TC1 - TC3: W = 396.5; P-value = 0.5308
TC1 - TC4: W = 459.5; P-value = 0.0848
TC1 - TC5: W = 487.5; P-value = 0.027
TC1 - TC6: W = 534; P-value = 0.0061
TC1 - TC7: W = 391.5; P-value = 0.0337
TC1 - TC9: W = 271; P-value = 0.0784
TC10 - TC2: W = 0; P-value = 2e-04
TC10 - TC3: W = 0; P-value = 1e-04
TC10 - TC4: W = 0; P-value = 1e-04
TC10 - TC5: W = 0; P-value = 1e-04
TC10 - TC6: W = 0; P-value = 1e-04
TC10 - TC7: W = 0; P-value = 2e-04
TC10 - TC9: W = 0; P-value = 4e-04
TC2 - TC3: W = 449.5; P-value = 0.1213
TC2 - TC4: W = 519; P-value = 0.0058
TC2 - TC5: W = 586.5; P-value = 1e-04
TC2 - TC6: W = 647.5; P-value = 0
    - TC7: W = 478; P-value = 1e-04
TC2 - TC9: W = 298; P-value = 0.0133
TC3 - TC4: W = 645.5; P-value = 0.0039
TC3 - TC5: W = 713.5; P-value = 1e-04
TC3 - TC6: W = 776.5; P-value = 0
TC3 - TC7: W = 559; P-value = 5e-04
\overline{\text{TC3}} - \overline{\text{TC9}}: W = 362; P-value = 0.0184
TC4 - TC5: W = 727.5; P-value = 0
TC4 - TC6: W = 833.5; P-value = 0
TC4 - TC7: W = 519; P-value = 0.0058
TC4 - TC9: W = 360; P-value = 0.0207
TC5 - TC6: W = 615.5; P-value = 0.0303
TC5 - TC7: W = 361.5; P-value = 0.9861
TC5 - TC9: W = 341.5; P-value = 0.0567
TC6 - TC7: W = 299; P-value = 0.2184
TC6 - TC9: W = 321; P-value = 0.2191
TC7 - TC9: W = 264.5; P-value = 0.1122
```

CAN1 - CAN2: W = 183; P-value = 0.7264 CAN1 - TC1: W = 0; P-value = 0CAN1 - TC10: W = 88; P-value = 0.0249 CAN1 - TC2: W = 0; P-value = 0 CAN1 - TC3: W = 0; P-value = 0 CAN1 - TC4: W = 0; P-value = 0CAN1 - TC5: W = 0; P-value = 0 CAN1 - TC6: W = 12; P-value = 0 CAN1 - TC7: W = 0; P-value = 0 CAN1 - TC9: W = 32; P-value = 1e-04 CAN2 - TC1: W = 0; P-value = 0CAN2 - TC10: W = 114; P-value = 3e-04CAN2 - TC2: W = 0; P-value = 0CAN2 - TC3: W = 0; P-value = 0CAN2 - TC4: W = 0; P-value = 0 CAN2 - TC5: W = 0; P-value = 0CAN2 - TC6: W = 15; P-value = 0 CAN2 - TC7: W = 0; P-value = 0 $\overline{\text{CAN2} - \text{TC}9}$: W = 35.5; P-value = 1e-04 TC1 - TC10: W = 144; P-value = 2e-04 TC1 - TC2: W = 226.5; P-value = 0.2084TC1 - TC3: W = 414; P-value = 0.3516 TC1 - TC4: W = 471; P-value = 0.0544TC1 - TC5: W = 488; P-value = 0.0264TC1 - TC6: W = 552.5; P-value = 0.0022TC1 - TC7: W = 401.5; P-value = 0.0198 TC1 - TC9: W = 271; P-value = 0.0784 TC10 - TC2: W = 0; P-value = 2e-04TC10 - TC3: W = 0; P-value = 1e-04TC10 - TC4: W = 0; P-value = 1e-04 TC10 - TC5: W = 0; P-value = 1e-04TC10 - TC6: W = 0; P-value = 1e-04 TC10 - TC7: W = 0; P-value = 2e-04 TC10 - TC9: W = 0; P-value = 4e-04TC2 - TC3: W = 491; P-value = 0.0231TC2 - TC4: W = 547; P-value = 0.0012TC2 - TC5: W = 574.5; P-value = 2e-04 TC2 - TC6: W = 652; P-value = 0- TC7: W = 494.5; P-value = 0 TC2 - TC9: W = 293; P-value = 0.0192TC3 - TC4: W = 655.5; P-value = 0.0024 TC3 - TC5: W = 700.5; P-value = 2e-04TC3 - TC6: W = 773; P-value = 0 TC3 - TC7: W = 569.5; P-value = 3e-04TC3 - TC9: W = 345; P-value = 0.0475TC4 - TC5: W = 583.5; P-value = 0.0491 TC4 - TC6: W = 771; P-value = 0 TC4 - TC7: W = 515.5; P-value = 0.007TC4 - TC9: W = 328.5; P-value = 0.106 TC5 - TC6: W = 703.5; P-value = 6e-04TC5 - TC7: W = 438.5; P-value = 0.1744TC5 - TC9: W = 323; P-value = 0.1349 TC6 - TC7: W = 327; P-value = 0.4499TC6 - TC9: W = 303; P-value = 0.4003

P-values reported are not adjusted for multiple comparisons. Adjusted significance level is 0.05 / 55 = 0.00091.

TC7 - TC9: W = 245; P-value = 0.2837

Tukey multiple comparisons of means
95% family-wise confidence level

A:ff lwr upr p adj

	diff	lwr	upr	p adj	
CAN2-CAN1	0.30893222	0.10103249	0.516831944	0.0001273	
TC1-CAN1	0.25388606	0.05680319	0.450968926	0.0019384	
TC10-CAN1	0.42719426	0.12923297	0.725155551	0.0002705	
TC2-CAN1	0.16656512	-0.03051775	0.363647994	0.1858238	
TC3-CAN1	0.13449504	-0.05395223	0.322942304	0.4241308	
TC4-CAN1	0.04970023	-0.13874704	0.238147500	0.9987911	
TC5-CAN1	0.02370491	-0.16474236	0.212152176	0.9999987	
TC6-CAN1	0.08854334	-0.09876066	0.275847340	0.9061139	
TC7-CAN1	0.11149358	-0.08558929	0.308576453	0.7559219	
TC9-CAN1	0.34386760	0.13010122	0.557633987	0.0000198	
TC1-CAN2	-0.05504616	-0.24914276	0.139050430	0.9977632	_
TC10-CAN2	0.11826204	-0.17773249	0.414256569	0.9684027	
TC2-CAN2	-0.14236709	-0.33646369	0.051729499	0.3815354	
TC3-CAN2	-0.17443718	-0.35975907	0.010884707	0.0856353	
TC4-CAN2	-0.25923199	-0.44455388	-0.073910097	0.0004416	
TC5-CAN2	-0.28522731	-0.47054920	-0.099905421	0.0000577	
TC6-CAN2	-0.22038888	-0.40454809	-0.036229658	0.0060142	
TC7-CAN2	-0.19743864	-0.39153523	-0.003342043	0.0423321	
TC9-CAN2	0.03493538	-0.17608096	0.245951727	0.9999822	
TC10-TC1	0.17330820	-0.11519158	0.461807984	0.6819943	
TC2-TC1	-0.08732093	-0.26978421	0.095142351	0.8990404	
TC3-TC1	-0.11939102	-0.29249089	0.053708849	0.4778540	
TC4-TC1	-0.20418582	-0.37728569	-0.031085955	0.0073633	
TC5-TC1	-0.23018115	-0.40328102	-0.057081278	0.0011274	
TC6-TC1	-0.16534271	-0.33719724	0.006511817	0.0711318	
TC7-TC1	-0.14239247	-0.32485576	0.040070810	0.2891284	
TC9-TC1	0.08998155	-0.11038627	0.290349356	0.9314202	
TC2-TC10	-0.26062913	-0.54912891	0.027870647	0.1181055	
TC3-TC10	-0.29269922	-0.57537012	-0.010028320	0.0353334	
TC4-TC10	-0.37749403	-0.66016493	-0.094823124	0.0010453	
TC5-TC10	-0.40348935	-0.68616025	-0.120818448	0.0002958	
TC6-TC10	-0.33865092	-0.62056093	-0.056740906	0.0056971	
TC7-TC10	-0.31570068	-0.60420046	-0.027200895	0.0191916	
TC9-TC10	-0.08332666	-0.38347085	0.216817531	0.9981297	
TC3-TC2	-0.03207009	-0.20516996	0.141029780	0.9999490	
TC4-TC2	-0.11686489	-0.28996476	0.056234976	0.5113362	
TC5-TC2	-0.14286022	-0.31596008	0.030239653	0.2143007	
TC6-TC2	-0.07802178	-0.24987631	0.093832748	0.9265898	
TC7-TC2	-0.05507154	-0.23753482	0.127391741	0.9962571	
TC9-TC2	0.17730248	-0.02306533	0.377670288	0.1371577	
TC4-TC3	-0.08479480	-0.24799493	0.078405317	0.8401593	
TC5-TC3	-0.11079013	-0.27399025	0.052409994	0.5027364	
TC6-TC3	-0.04595169	-0.20783033	0.115926947	0.9977457	
TC7-TC3	-0.02300145	-0.19610132	0.150098415	0.9999978	
TC9-TC3	0.20937256	0.01749246	0.401252670	0.0198443	
TC5-TC4	-0.02599532	-0.18919544	0.137204798	0.9999876	
TC6-TC4	0.03884311	-0.12303553	0.200721751	0.9994685	
TC7-TC4	0.06179335	-0.11130652	0.234893219	0.9860203	
TC9-TC4	0.29416737	0.10228726	0.486047474	0.0000632	
TC6-TC5	0.06483843	-0.09704021	0.226717075	0.9678512	
TC7-TC5	0.08778867	-0.08531119	0.260888542	0.8596782	
TC9-TC5	0.32016269	0.12828259	0.512042797	0.0000077	
TC7-TC6	0.02295024	-0.14890429	0.194804770	0.9999977	
TC9-TC6	0.25532426	0.06456685	0.446081669	0.0010041	
TC9-TC7	0.23237402	0.03200621	0.432741829	0.0092698	

P-values reported are adjusted for multiple comparisons.

Wilcox Tests between Transects: CAN1 - CAN2: W = 85; P-value = 0.0093 CAN1 - TC1: W = 58; P-value = 1e-04CAN1 - TC10: W = 4; P-value = 9e-04 CAN1 - TC2: W = 119.5; P-value = 0.0145 CAN1 - TC3: W = 151; P-value = 0.0115 CAN1 - TC4: W = 263.5; P-value = 0.8981 CAN1 - TC5: W = 285.5; P-value = 0.7487 CAN1 - TC6: W = 311.5; P-value = 0.506 CAN1 - TC7: W = 167.5; P-value = 0.2217 CAN1 - TC9: W = 15; P-value = 0 CAN2 - TC1: W = 215.5; P-value = 0.769CAN2 - TC10: W = 47.5; P-value = 0.5664 CAN2 - TC2: W = 258; P-value = 0.4702 CAN2 - TC3: W = 364.5; P-value = 0.1048 CAN2 - TC4: W = 423; P-value = 0.0047CAN2 - TC5: W = 431.5; P-value = 0.0027 CAN2 - TC6: W = 438; P-value = 0.0042 CAN2 - TC7: W = 280.5; P-value = 0.203 CAN2 - TC9: W = 125.5; P-value = 0.26 TC1 - TC10: W = 53.5; P-value = 0.3496 TC1 - TC2: W = 380; P-value = 0.0587 TC1 - TC3: W = 496.5; P-value = 0.0178TC1 - TC4: W = 593.5; P-value = 0 TC1 - TC5: W = 622; P-value = 0TC1 - TC6: W = 636.5; P-value = 0TC1 - TC7: W = 410; P-value = 0.0122 TC1 - TC9: W = 138; P-value = 0.0825 TC10 - TC2: W = 110.5; P-value = 0.0485 TC10 - TC3: W = 156; P-value = 0.0054 TC10 - TC4: W = 167.5; P-value = 0.0011TC10 - TC5: W = 170; P-value = 7e-04TC10 - TC6: W = 167; P-value = 0.0024 TC10 - TC7: W = 111.5; P-value = 0.0429 TC10 - TC9: W = 43; P-value = 0.5976TC2 - TC3: W = 378; P-value = 0.7605TC2 - TC4: W = 501; P-value = 0.0143TC2 - TC5: W = 547; P-value = 0.0011TC2 - TC6: W = 557.5; P-value = 0.0017TC2 - TC7: W = 345.5; P-value = 0.2393TC2 - TC9: W = 87.5; P-value = 0.0021TC3 - TC4: W = 611; P-value = 0.0175TC3 - TC5: W = 656.5; P-value = 0.0023 TC3 - TC6: W = 688; P-value = 0.0013TC3 - TC7: W = 432; P-value = 0.2129TC3 - TC9: W = 69; P-value = 0TC4 - TC5: W = 478; P-value = 0.6838 TC4 - TC6: W = 503.5; P-value = 0.5829TC4 - TC7: W = 297; P-value = 0.2758

TC4 - TC9: W = 37.5; P-value = 0TC5 - TC6: W = 482; P-value = 0.8113

TC5 - TC7: W = 247.5; P-value = 0.0508

TC5 - TC9: W = 34; P-value = 0 TC6 - TC7: W = 242; P-value = 0.0277

TC6 - TC9: W = 48; P-value = 0

TC7 - TC9: W = 88.5; P-value = 0.0023

Tukey multiple comparisons of means 95% family-wise confidence level

J J 6 I 6	diff	_		n adi	
CANO CANI	-36.25731			p adj	
	627.77778				
	-2472.22222				1
	648.61111				
	731.11111				
	294.44444				
	-582.22222				
	-717.92115				
	69.44444				
	328.75817				
TC1-CAN2	664.03509				
	-2435.96491				
TC2-CAN2		-820.9151			
TC3-CAN2	767.36842	-670.3418	2205.07861	0.8161794	
	330.70175				
	-545.96491				
	-681.66384				
	105.70175				
TC9-CAN2	365.01548	-1272.0299	2002.06090	0.9997232	
TC10-TC1	-3100.00000	-5338.1548	-861.84520	0.0005341	
TC2-TC1	20.83333	-1394.7001	1436.36672	1.0000000	
TC3-TC1	103.33333	-1239.5595	1446.22621	1.0000000	
TC4-TC1	-333.33333	-1676.2262	1009.55955	0.9992846	
TC5-TC1	-1210.00000	-2552.8929	132.89288	0.1204077	
TC6-TC1	-1345.69892	-2678.9306	-12.46727	0.0456996	
TC7-TC1	-558.33333	-1973.8667	857.20005	0.9711210	
TC9-TC1	-299.01961	-1853.4547	1255.41546	0.9999278	
TC2-TC10	3120.83333	882.6785	5358.98814	0.0004697	
TC3-TC10	3203.33333	1010.3984	5396.26823	0.0001837	
TC4-TC10	2766.66667	573.7318	4959.60156	0.0027178	
TC5-TC10	1890.00000	-302.9349	4082.93489	0.1640294	
TC6-TC10		-432.7309			
TC7-TC10		303.5119			
TC9-TC10		472.4893			
	82.50000				
TC4-TC2	-354.16667	-1697.0595	988.72621	0.9987911	
TC5-TC2	-1230.83333	-2573.7262	112.05955	0.1058694	
TC6-TC2	-1366.53226	-2699.7639	-33.30060	0.0392233	
TC7-TC2	-579.16667	-1994.7001	836.36672	0.9627778	
TC9-TC2	-319.85294	-1874.2880	1234.58213	0.9998661	
TC4-TC3	-436.66667	-1702.7582	829.42488	0.9892338	
TC5-TC3	-1313.33333	-2579.4249	-47.24178	0.0346889	
TC6-TC3	-1449.03226	-2704.8719	-193.19263	0.0099183	
TC7-TC3	-661.66667	-2004.5595	681.22621	0.8805408	
TC9-TC3	-402.35294	-1890.9412	1086.23529	0.9985090	
TC5-TC4	-876.66667	-2142.7582	389.42488	0.4717217	
TC6-TC4	-1012.36559	-2268.2052	243.47404	0.2445062	
TC7-TC4	-225.00000	-1567.8929	1117.89288	0.9999801	
TC9-TC4	34.31373	-1454.2745	1522.90196	1.0000000	
TC6-TC5	-135.69892	-1391.5386	1120.14070	0.9999997	
TC7-TC5	651.66667	-691.2262	1994.55955	0.8905175	
TC9-TC5	910.98039	-577.6078			
TC7-TC6	787.36559	-545.8661	2120.59725	0.7041354	
TC9-TC6		-433.1991			
TC9-TC7		-1295.1213			

P-values reported are adjusted for multiple comparisons.

```
Calcium, total
        Wilcox Tests between Transects:
         CAN1 - CAN2: W = 131.5; P-value = 0.2352
          CAN1 - TC1: W = 114.5; P-value = 0.0101
         CAN1 - TC10: W = 108; P-value = 3e-04
          CAN1 - TC2: W = 147; P-value = 0.0811
         CAN1 - TC3: W = 232; P-value = 0.4239
         CAN1 - TC4: W = 273.5; P-value = 0.949
         CAN1 - TC5: W = 309; P-value = 0.4117
         CAN1 - TC6: W = 287; P-value = 0.8762
         CAN1 - TC7: W = 261.5; P-value = 0.2516
         CAN1 - TC9: W = 124; P-value = 0.3461
          CAN2 - TC1: W = 163; P-value = 0.1138
         CAN2 - TC10: W = 114; P-value = 3e-04
          CAN2 - TC2: W = 162; P-value = 0.1089
         CAN2 - TC3: W = 226; P-value = 0.2296
         CAN2 - TC4: W = 293; P-value = 0.8774
         CAN2 - TC5: W = 389; P-value = 0.0335
         CAN2 - TC6: W = 320; P-value = 0.6168
         CAN2 - TC7: W = 272.5; P-value = 0.2813
          CAN2 - TC9: W = 170; P-value = 0.7996
         TC1 - TC10: W = 144; P-value = 2e-04
          TC1 - TC2: W = 305; P-value = 0.7333
          TC1 - TC3: W = 383; P-value = 0.6951
         TC1 - TC4: W = 452; P-value = 0.1101
          TC1 - TC5: W = 565; P-value = 4e-04
          TC1 - TC6: W = 463; P-value = 0.1232
         TC1 - TC7: W = 390.5; P-value = 0.0352
          TC1 - TC9: W = 252; P-value = 0.208
          TC10 - TC2: W = 0; P-value = 2e-04
          TC10 - TC3: W = 6; P-value = 4e-04
         TC10 - TC4: W = 0.5; P-value = 2e-04
          TC10 - TC5: W = 12; P-value = 0.001
          TC10 - TC6: W = 38; P-value = 0.0244
         TC10 - TC7: W = 4; P-value = 4e-04
          TC10 - TC9: W = 0.5; P-value = 5e-04
          TC2 - TC3: W = 427.5; P-value = 0.2429
          TC2 - TC4: W = 466; P-value = 0.0659
         TC2 - TC5: W = 551; P-value = 9e-04
          \overline{\text{TC2} - \text{TC6}}: W = 529.5; P-value = 0.0076
         TC2 - TC7: W = 375; P-value = 0.0742
         TC2 - TC9: W = 221.5; P-value = 0.6524
         TC3 - TC4: W = 517; P-value = 0.325
         TC3 - TC5: W = 630; P-value = 0.0079
         TC3 - TC6: W = 629.5; P-value = 0.0179
         TC3 - TC7: W = 410; P-value = 0.3886
         TC3 - TC9: W = 262; P-value = 0.8855
         TC4 - TC5: W = 564.5; P-value = 0.0915
         TC4 - TC6: W = 519; P-value = 0.4391
         TC4 - TC7: W = 376; P-value = 0.7869
         TC4 - TC9: W = 238.5; P-value = 0.7228
         TC5 - TC6: W = 388; P-value = 0.2694
         TC5 - TC7: W = 325.5; P-value = 0.5536
         TC5 - TC9: W = 206; P-value = 0.2826
         TC6 - TC7: W = 350.5; P-value = 0.7212
         TC6 - TC9: W = 228; P-value = 0.4501
         TC7 - TC9: W = 168; P-value = 0.3469
```

```
Cerium, total
        Wilcox Tests between Transects:
         CAN1 - TC1: W = 96; P-value = 0.0024
         CAN1 - TC10: W = 61; P-value = 0.6627
         CAN1 - TC2: W = 24; P-value = 0.3269
         CAN1 - TC3: W = 113.5; P-value = 9e-04
         CAN1 - TC4: W = 143; P-value = 0.007
         CAN1 - TC6: W = 141; P-value = 0.0043
         CAN1 - TC9: W = 91; P-value = 0.0422
         TC1 - TC10: W = 144; P-value = 2e-04
          TC1 - TC2: W = 54.5; P-value = 0.6933
         TC1 - TC3: W = 302.5; P-value = 0.3208
         TC1 - TC4: W = 332.5; P-value = 0.6382
         TC1 - TC6: W = 350; P-value = 0.715
         TC1 - TC9: W = 251; P-value = 0.2183
         TC10 - TC2: W = 0; P-value = 0.0128
         TC10 - TC3: W = 0; P-value = 1e-04
         TC10 - TC4: W = 2; P-value = 2e-04
         TC10 - TC6: W = 0; P-value = 1e-04
         TC10 - TC9: W = 8.5; P-value = 0.0032
         TC2 - TC3: W = 32; P-value = 0.1414
         TC2 - TC4: W = 39; P-value = 0.2727
         TC2 - TC6: W = 43; P-value = 0.3372
         TC2 - TC9: W = 38; P-value = 0.7538
         TC3 - TC4: W = 516.5; P-value = 0.3289
         TC3 - TC6: W = 533.5; P-value = 0.3264
         TC3 - TC9: W = 351; P-value = 0.0344
         TC4 - TC6: W = 456.5; P-value = 0.9081
         TC4 - TC9: W = 318.5; P-value = 0.1628
         TC6 - TC9: W = 327.5; P-value = 0.1709
```

Cesium, dissolved

```
Wilcox Tests between Transects:
 CAN1 - TC1: W = 150; P-value = 0.0641
 CAN1 - TC10: W = 18; P-value = 0.0063
 CAN1 - TC2: W = 12; P-value = 0.0205
 CAN1 - TC3: W = 261; P-value = 0.8407
 CAN1 - TC4: W = 327; P-value = 0.185
 CAN1 - TC6: W = 396; P-value = 0.0086
 CAN1 - TC9: W = 108; P-value = 0.117
 TC1 - TC10: W = 60; P-value = 0.5238
 TC1 - TC2: W = 40; P-value = 0.5995
 TC1 - TC3: W = 454; P-value = 0.0818
 TC1 - TC4: W = 522.5; P-value = 0.0027
 TC1 - TC6: W = 595; P-value = 1e-04
 TC1 - TC9: W = 205; P-value = 0.9889
 TC10 - TC2: W = 12; P-value = NaN
 TC10 - TC3: W = 141; P-value = 0.0215
 TC10 - TC4: W = 153; P-value = 0.0045
 TC10 - TC6: W = 180; P-value = 2e-04
 TC10 - TC9: W = 54; P-value = 0.849
 TC2 - TC3: W = 94; P-value = 0.0555
 TC2 - TC4: W = 102; P-value = 0.0178
 TC2 - TC6: W = 120; P-value = 0.0019
 TC2 - TC9: W = 36; P-value = 0.8858
 TC3 - TC4: W = 546.5; P-value = 0.1294
 TC3 - TC6: W = 647; P-value = 0.0056
 TC3 - TC9: W = 189.5; P-value = 0.1325
 TC4 - TC6: W = 528; P-value = 0.3407
 TC4 - TC9: W = 151.5; P-value = 0.0171
 TC6 - TC9: W = 129; P-value = 0.0029
```

Tukey multiple comparisons of means 95% family-wise confidence level

	diff	lwr	upr	p adj	
TC1-CAN1	0.222006518	0.07410537	0.369907662	0.0002208	
TC10-CAN1	0.180115058	-0.04349045	0.403720571	0.2138866	_
TC2-CAN1	0.121417972	-0.14078273	0.383618677	0.8451739	
TC3-CAN1	0.168375641	0.02695510	0.309796184	0.0081658	
TC4-CAN1	0.047603974	-0.09381657	0.189024517	0.9683933	
TC6-CAN1	0.065333935	-0.07522864	0.205896509	0.8426314	
TC9-CAN1	0.173209519	0.01278820	0.333630834	0.0244527	
TC10-TC1	-0.041891460	-0.25839657	0.174613647	0.9989014	
TC2-TC1	-0.100588546	-0.35676084	0.155583751	0.9288182	
TC3-TC1	-0.053630877	-0.18353394	0.076272187	0.9088386	
TC4-TC1	-0.174402544	-0.30430561	-0.044499480	0.0015286	
TC6-TC1	-0.156672583	-0.28564108	-0.027704086	0.0063332	
TC9-TC1	-0.048796999	-0.19916333	0.101569334	0.9742012	
TC2-TC10	-0.058697086	-0.36488154	0.247487372	0.9989655	
TC3-TC10	-0.011739417	-0.22387023	0.200391398	0.9999998	
TC4-TC10	-0.132511084	-0.34464190	0.079619731	0.5394604	
TC6-TC10	-0.114781124	-0.32634093	0.096778679	0.7080040	
TC9-TC10	-0.006905540	-0.23214921	0.218338131	1.0000000	
TC3-TC2	0.046957669	-0.20552850	0.299443841	0.9991505	
TC4-TC2	-0.073813998	-0.32630017	0.178672174	0.9858092	
TC6-TC2	-0.056084037	-0.30809065	0.195922579	0.9973110	
TC9-TC2	0.051791547	-0.21180757	0.315390666	0.9987870	
TC4-TC3	-0.120771667	-0.24324545	0.001702116	0.0562625	
TC6-TC3	-0.103041706	-0.22452378	0.018440370	0.1615055	
TC9-TC3	0.004833878	-0.13916284	0.148830599	1.0000000	
TC6-TC4	0.017729961	-0.10375212	0.139212037	0.9998290	
TC9-TC4	0.125605545	-0.01839118	0.269602266	0.1364976	
TC9-TC6	0.107875584	-0.03527861	0.251029777	0.2917663	

P-values reported are adjusted for multiple comparisons.

```
Cobalt, total
        Wilcox Tests between Transects:
         CAN1 - CAN2: W = 8; P-value = 0.0015
         CAN1 - TC1: W = 12; P-value = 0.0022
         CAN1 - TC10: W = 9; P-value = 0.0995
         CAN1 - TC2: W = 26.5; P-value = 0.0221
         CAN1 - TC3: W = 39.5; P-value = 0.0167
         CAN1 - TC4: W = 58; P-value = 0.125
         CAN1 - TC5: W = 84.5; P-value = 0.6856
         CAN1 - TC6: W = 15.5; P-value = 6e-04
          CAN1 - TC7: W = 30; P-value = 0.0114
          CAN1 - TC9: W = 8; P-value = 0.0066
         CAN2 - TC1: W = 246; P-value = 5e-04
          CAN2 - TC10: W = 90; P-value = 0.0022
         CAN2 - TC2: W = 270; P-value = 1e-04
         CAN2 - TC3: W = 375; P-value = 2e-04
          CAN2 - TC4: W = 347; P-value = 0.001
         CAN2 - TC5: W = 380.5; P-value = 0
         CAN2 - TC6: W = 358; P-value = 0.0067
         CAN2 - TC7: W = 300; P-value = 0.003
         CAN2 - TC9: W = 150.5; P-value = 0.0022
         TC1 - TC10: W = 104.5; P-value = 8e-04
         TC1 - TC2: W = 197.5; P-value = 0.4289
         TC1 - TC3: W = 286; P-value = 0.4507
         TC1 - TC4: W = 300.5; P-value = 0.1863
         TC1 - TC5: W = 329; P-value = 0.0474
         TC1 - TC6: W = 181.5; P-value = 0.0607
         TC1 - TC7: W = 246; P-value = 0.4529
         TC1 - TC9: W = 104.5; P-value = 0.8219
         TC10 - TC2: W = 34.5; P-value = 0.1605
         TC10 - TC3: W = 29.5; P-value = 0.0147
         TC10 - TC4: W = 58; P-value = 0.2932
         TC10 - TC5: W = 77; P-value = 0.8702
         TC10 - TC6: W = 9; P-value = 6e-04
          TC10 - TC7: W = 44; P-value = 0.1535
         TC10 - TC9: W = 14; P-value = 0.0623
         TC2 - TC3: W = 280; P-value = 0.7696
         TC2 - TC4: W = 297.5; P-value = 0.3659
         TC2 - TC5: W = 342.5; P-value = 0.0563
         TC2 - TC6: W = 166.5; P-value = 0.0154
         TC2 - TC7: W = 194.5; P-value = 0.4193
         TC2 - TC9: W = 95.5; P-value = 0.7138
         TC3 - TC4: W = 425.5; P-value = 0.4286
         TC3 - TC5: W = 475.5; P-value = 0.1024
         TC3 - TC6: W = 239; P-value = 0.005
         TC3 - TC7: W = 333.5; P-value = 0.9707
         TC3 - TC9: W = 133; P-value = 0.5222
         TC4 - TC5: W = 427; P-value = 0.2832
         TC4 - TC6: W = 217; P-value = 0.0027
         TC4 - TC7: W = 286.5; P-value = 0.4849
         TC4 - TC9: W = 108; P-value = 0.1978
         TC5 - TC6: W = 162.5; P-value = 1e-04
         TC5 - TC7: W = 215; P-value = 0.0406
         TC5 - TC9: W = 86; P-value = 0.0458
         TC6 - TC7: W = 448; P-value = 0.1276
         TC6 - TC9: W = 220.5; P-value = 0.1054
         TC7 - TC9: W = 133.5; P-value = 0.9716
```

```
Wilcox Tests between Transects:
 CAN1 - CAN2: W = 26; P-value = 0
 CAN1 - TC1: W = 30; P-value = 0
 CAN1 - TC10: W = 72; P-value = 0.2412
 CAN1 - TC2: W = 38.5; P-value = 0
 CAN1 - TC3: W = 120.5; P-value = 0.0015
 CAN1 - TC4: W = 103.5; P-value = 4e-04
 CAN1 - TC5: W = 24; P-value = 0
 CAN1 - TC6: W = 36; P-value = 0
 CAN1 - TC7: W = 84; P-value = 8e-04
 CAN1 - TC9: W = 24; P-value = 0
 CAN2 - TC1: W = 242.5; P-value = 0.7319
 CAN2 - TC10: W = 109; P-value = 0.001
 CAN2 - TC2: W = 283; P-value = 0.1824
 CAN2 - TC3: W = 386; P-value = 0.0391
 CAN2 - TC4: W = 410; P-value = 0.0106
 CAN2 - TC5: W = 352; P-value = 0.1087
 CAN2 - TC6: W = 355.5; P-value = 0.2263
 CAN2 - TC7: W = 298.5; P-value = 0.0867
 CAN2 - TC9: W = 201; P-value = 0.2162
 TC1 - TC10: W = 144; P-value = 2e-04
 TC1 - TC2: W = 356; P-value = 0.1637
 TC1 - TC3: W = 515.5; P-value = 0.0069
 TC1 - TC4: W = 572; P-value = 2e-04
 TC1 - TC5: W = 530; P-value = 0.0012
 TC1 - TC6: W = 506.5; P-value = 0.0229
 TC1 - TC7: W = 384; P-value = 0.0488
 TC1 - TC9: W = 252; P-value = 0.2086
 TC10 - TC2: W = 0; P-value = 2e-04
 TC10 - TC3: W = 0; P-value = 1e-04
 TC10 - TC4: W = 0; P-value = 1e-04
 TC10 - TC5: W = 0; P-value = 1e-04
 TC10 - TC6: W = 0; P-value = 1e-04
 TC10 - TC7: W = 0; P-value = 2e-04
 TC10 - TC9: W = 5; P-value = 0.0014
 TC2 - TC3: W = 458; P-value = 0.0895
 TC2 - TC4: W = 500; P-value = 0.0151
 TC2 - TC5: W = 411.5; P-value = 0.2597
 TC2 - TC6: W = 382; P-value = 0.8718
 TC2 - TC7: W = 333.5; P-value = 0.3531
 TC2 - TC9: W = 210; P-value = 0.8842
 TC3 - TC4: W = 488; P-value = 0.5792
 TC3 - TC5: W = 432.5; P-value = 0.9758
 TC3 - TC6: W = 393; P-value = 0.3022
 TC3 - TC7: W = 358.5; P-value = 0.9861
 TC3 - TC9: W = 210; P-value = 0.3243
 TC4 - TC5: W = 312; P-value = 0.0628
 TC4 - TC6: W = 268; P-value = 0.0046
 TC4 - TC7: W = 326; P-value = 0.5595
 TC4 - TC9: W = 204.5; P-value = 0.268
 TC5 - TC6: W = 347.5; P-value = 0.1326
 TC5 - TC7: W = 364.5; P-value = 0.7746
 TC5 - TC9: W = 246.5; P-value = 1
 TC6 - TC7: W = 424.5; P-value = 0.3772
 TC6 - TC9: W = 282.5; P-value = 0.6899
 TC7 - TC9: W = 185; P-value = 0.6243
```

```
CAN1 - TC1: W = 59; P-value = 0

CAN1 - TC10: W = 47.5; P-value = 0.4042

CAN1 - TC2: W = 10; P-value = 0.0012

CAN1 - TC3: W = 44.5; P-value = 0

CAN1 - TC4: W = 106.5; P-value = 1e-04

CAN1 - TC6: W = 136.5; P-value = 6e-04

CAN1 - TC9: W = 95; P-value = 0.0098
```

```
TC1 - TC10: W = 117; P-value = 0.0165
TC1 - TC2: W = 55; P-value = 0.6599
TC1 - TC3: W = 404; P-value = 0.4389
TC1 - TC4: W = 365; P-value = 0.9359
TC1 - TC6: W = 481; P-value = 0.0571
TC1 - TC9: W = 252; P-value = 0.1911
TC10 - TC2: W = 5; P-value = 0.117
TC10 - TC3: W = 29; P-value = 0.0083
TC10 - TC4: W = 44; P-value = 0.0424
TC10 - TC6: W = 58; P-value = 0.1255
TC10 - TC9: W = 36.5; P-value = 0.2475
TC2 - TC3: W = 58.5; P-value = 0.9562
TC2 - TC4: W = 55.5; P-value = 0.8259
TC2 - TC6: W = 74.5; P-value = 0.5153
TC2 - TC9: W = 40; P-value = 0.5931
TC3 - TC4: W = 438.5; P-value = 0.8685
TC3 - TC6: W = 589; P-value = 0.0684
TC3 - TC9: W = 316.5; P-value = 0.1654
TC4 - TC6: W = 566; P-value = 0.1316
TC4 - TC9: W = 298.5; P-value = 0.3171
TC6 - TC9: W = 268; P-value = 0.9264
```

```
CAN1 - TC1: W = 63.5; P-value = 1e-04
CAN1 - TC10: W = 74; P-value = 0.1445
CAN1 - TC2: W = 8.5; P-value = 0.016
CAN1 - TC3: W = 64; P-value = 0
CAN1 - TC4: W = 110.5; P-value = 6e-04
CAN1 - TC6: W = 162; P-value = 0.0131
CAN1 - TC9: W = 120.5; P-value = 0.2646
TC1 - TC10: W = 136; P-value = 9e-04
TC1 - TC2: W = 57; P-value = 0.5711
TC1 - TC3: W = 359; P-value = 0.993
TC1 - TC4: W = 358; P-value = 0.979
TC1 - TC6: W = 450; P-value = 0.1848
TC1 - TC9: W = 277; P-value = 0.0525
TC10 - TC2: W = 0; P-value = 0.0087
TC10 - TC3: W = 3.5; P-value = 2e-04
TC10 - TC4: W = 19; P-value = 0.0024
TC10 - TC6: W = 33; P-value = 0.0116
TC10 - TC9: W = 25.5; P-value = 0.0584
TC2 - TC3: W = 50; P-value = 0.6037
TC2 - TC4: W = 53.5; P-value = 0.7465
TC2 - TC6: W = 68; P-value = 0.7731
TC2 - TC9: W = 47; P-value = 0.2515
TC3 - TC4: W = 458.5; P-value = 0.9049
TC3 - TC6: W = 571; P-value = 0.1253
TC3 - TC9: W = 355; P-value = 0.0258
TC4 - TC6: W = 554; P-value = 0.198
TC4 - TC9: W = 333; P-value = 0.0825
TC6 - TC9: W = 298.5; P-value = 0.448
```

```
CAN1 - CAN2: W = 48.5; P-value = 2e-04
CAN1 - TC1: W = 92; P-value = 0.0012
CAN1 - TC10: W = 49; P-value = 0.7641
CAN1 - TC2: W = 93.5; P-value = 0.0019
CAN1 - TC3: W = 132.5; P-value = 0.0035
CAN1 - TC4: W = 178; P-value = 0.071
CAN1 - TC5: W = 142; P-value = 0.0066
CAN1 - TC6: W = 109; P-value = 3e-04
CAN1 - TC7: W = 219; P-value = 0.9493
CAN1 - TC9: W = 84; P-value = 0.0224
CAN2 - TC1: W = 294; P-value = 0.1092
CAN2 - TC10: W = 110; P-value = 8e-04
CAN2 - TC2: W = 294; P-value = 0.1092
CAN2 - TC3: W = 387; P-value = 0.0373
CAN2 - TC4: W = 425.5; P-value = 0.0016
CAN2 - TC5: W = 396.5; P-value = 0.0227
CAN2 - TC6: W = 376.5; P-value = 0.1033
CAN2 - TC7: W = 403; P-value = 0
CAN2 - TC9: W = 232; P-value = 0.0265
TC1 - TC10: W = 138; P-value = 7e-04
TC1 - TC2: W = 294; P-value = 0.9097
TC1 - TC3: W = 393; P-value = 0.5745
TC1 - TC4: W = 496; P-value = 0.0084
TC1 - TC5: W = 426; P-value = 0.2542
TC1 - TC6: W = 379; P-value = 0.9129
TC1 - TC7: W = 478.5; P-value = 1e-04
TC1 - TC9: W = 248.5; P-value = 0.2443
TC10 - TC2: W = 4; P-value = 5e-04
TC10 - TC3: W = 10; P-value = 7e-04
TC10 - TC4: W = 33.5; P-value = 0.0203
TC10 - TC5: W = 18; P-value = 0.0024
TC10 - TC6: W = 1; P-value = 2e-04
TC10 - TC7: W = 61.5; P-value = 0.604
TC10 - TC9: W = 7; P-value = 0.0023
TC2 - TC3: W = 371; P-value = 0.855
TC2 - TC4: W = 496.5; P-value = 0.0082
TC2 - TC5: W = 415; P-value = 0.3428
TC2 - TC6: W = 347.5; P-value = 0.6838
TC2 - TC7: W = 473; P-value = 1e-04
TC2 - TC9: W = 247; P-value = 0.2607
TC3 - TC4: W = 603; P-value = 0.0111
TC3 - TC5: W = 506; P-value = 0.4119
TC3 - TC6: W = 448.5; P-value = 0.8175
TC3 - TC7: W = 577; P-value = 2e-04
TC3 - TC9: W = 299; P-value = 0.3355
TC4 - TC5: W = 334.5; P-value = 0.1295
TC4 - TC6: W = 242.5; P-value = 0.0023
TC4 - TC7: W = 459; P-value = 0.0483
TC4 - TC9: W = 189.5; P-value = 0.1985
TC5 - TC6: W = 372; P-value = 0.1834
TC5 - TC7: W = 538.5; P-value = 0.0019
TC5 - TC9: W = 261; P-value = 0.9041
TC6 - TC7: W = 610.5; P-value = 1e-04
TC6 - TC9: W = 315; P-value = 0.2747
TC7 - TC9: W = 99.5; P-value = 0.0059
```

Lanthanum, total

```
Wilcox Tests between Transects:
 CAN1 - TC1: W = 114; P-value = 0.0097
 CAN1 - TC10: W = 73.5; P-value = 0.2021
 CAN1 - TC2: W = 25; P-value = 0.3701
 CAN1 - TC3: W = 144.5; P-value = 0.0078
 CAN1 - TC4: W = 164.5; P-value = 0.0253
 CAN1 - TC6: W = 183; P-value = 0.0475
 CAN1 - TC9: W = 107; P-value = 0.1325
 TC1 - TC10: W = 144; P-value = 2e-04
 TC1 - TC2: W = 62; P-value = 0.3725
 TC1 - TC3: W = 290.5; P-value = 0.2289
 TC1 - TC4: W = 331.5; P-value = 0.6255
 TC1 - TC6: W = 372.5; P-value = 1
 TC1 - TC9: W = 259.5; P-value = 0.1446
 TC10 - TC2: W = 0; P-value = 0.0128
 TC10 - TC3: W = 0; P-value = 1e-04
 TC10 - TC4: W = 5.5; P-value = 4e-04
 TC10 - TC6: W = 8.5; P-value = 5e-04
 TC10 - TC9: W = 8.5; P-value = 0.0031
 TC2 - TC3: W = 21.5; P-value = 0.0422
 TC2 - TC4: W = 32.5; P-value = 0.1488
 TC2 - TC6: W = 43; P-value = 0.3373
 TC2 - TC9: W = 31.5; P-value = 0.8572
 TC3 - TC4: W = 495; P-value = 0.5105
 TC3 - TC6: W = 571; P-value = 0.128
 TC3 - TC9: W = 352.5; P-value = 0.0316
 TC4 - TC6: W = 510.5; P-value = 0.5161
 TC4 - TC9: W = 314.5; P-value = 0.1911
 TC6 - TC9: W = 299.5; P-value = 0.4439
```

```
CAN1 - CAN2: W = 12; P-value = 0
CAN1 - TC1: W = 24; P-value = 0
CAN1 - TC10: W = 34; P-value = 0.1931
CAN1 - TC2: W = 6; P-value = 0
CAN1 - TC3: W = 86; P-value = 1e-04
CAN1 - TC4: W = 210; P-value = 0.205
CAN1 - TC5: W = 293; P-value = 0.6317
CAN1 - TC6: W = 320; P-value = 0.4009
CAN1 - TC7: W = 301; P-value = 0.0317
CAN1 - TC9: W = 19; P-value = 0
CAN2 - TC1: W = 289; P-value = 0.139
CAN2 - TC10: W = 107.5; P-value = 0.0015
CAN2 - TC2: W = 301; P-value = 0.0762
CAN2 - TC3: W = 469.5; P-value = 2e-04
CAN2 - TC4: W = 530.5; P-value = 0
CAN2 - TC5: W = 528; P-value = 0
CAN2 - TC6: W = 553.5; P-value = 0
CAN2 - TC7: W = 448.5; P-value = 0
CAN2 - TC9: W = 228; P-value = 0.0353
TC1 - TC10: W = 133; P-value = 0.0017
TC1 - TC2: W = 311; P-value = 0.6427
TC1 - TC3: W = 538; P-value = 0.002
TC1 - TC4: W = 647.5; P-value = 0
TC1 - TC5: W = 657.5; P-value = 0
TC1 - TC6: W = 686; P-value = 0
TC1 - TC7: W = 564; P-value = 0
TC1 - TC9: W = 235; P-value = 0.4195
TC10 - TC2: W = 12; P-value = 0.002
TC10 - TC3: W = 26; P-value = 0.007
TC10 - TC4: W = 83.5; P-value = 0.7989
TC10 - TC5: W = 121.5; P-value = 0.1881
TC10 - TC6: W = 137.5; P-value = 0.0698
TC10 - TC7: W = 116.5; P-value = 0.0225
TC10 - TC9: W = 14.5; P-value = 0.0117
TC2 - TC3: W = 571; P-value = 2e-04
TC2 - TC4: W = 674; P-value = 0
TC2 - TC5: W = 664; P-value = 0
TC2 - TC6: W = 695; P-value = 0
    - TC7: \overline{W} = 573; P-value = 0
TC2 - TC9: W = 225; P-value = 0.5875
TC3 - TC4: W = 747.5; P-value = 0
TC3 - TC5: W = 766.5; P-value = 0
TC3 - TC6: W = 804; P-value = 0
TC3 - TC7: W = 687; P-value = 0
TC3 - TC9: W = 158; P-value = 0.0326
TC4 - TC5: W = 565.5; P-value = 0.089
TC4 - TC6: W = 611.5; P-value = 0.0352
TC4 - TC7: W = 552.5; P-value = 8e-04
TC4 - TC9: W = 70.5; P-value = 0
TC5 - TC6: W = 491; P-value = 0.7129
TC5 - TC7: W = 450; P-value = 0.1191
TC5 - TC9: W = 63; P-value = 0
TC6 - TC7: W = 439.5; P-value = 0.2554
TC6 - TC9: W = 51; P-value = 0
TC7 - TC9: W = 13.5; P-value = 0
```

Wilcox Tests between Transects: CAN1 - CAN2: W = 132; P-value = 0.2417 CAN1 - TC1: W = 70.5; P-value = 2e-04CAN1 - TC10: W = 81; P-value = 0.0769 CAN1 - TC2: W = 39; P-value = 0 CAN1 - TC3: W = 91.5; P-value = 1e-04 CAN1 - TC4: W = 193.5; P-value = 0.1054 CAN1 - TC5: W = 129; P-value = 0.0028 CAN1 - TC6: W = 116; P-value = 7e-04CAN1 - TC7: W = 86; P-value = 0.001 CAN1 - TC9: W = 96; P-value = 0.0621 CAN2 - TC1: W = 118; P-value = 0.0074CAN2 - TC10: W = 111; P-value = 7e-04CAN2 - TC2: W = 57; P-value = 0CAN2 - TC3: W = 129; P-value = 0.0014CAN2 - TC4: W = 279; P-value = 0.9101 CAN2 - TC5: W = 173.5; P-value = 0.0227 CAN2 - TC6: W = 158; P-value = 0.0065 CAN2 - TC7: W = 121; P-value = 0.0092 CAN2 - TC9: W = 131; P-value = 0.3416 TC1 - TC10: W = 144; P-value = 2e-04 TC1 - TC2: W = 273.5; P-value = 0.7728 TC1 - TC3: W = 372; P-value = 0.8413TC1 - TC4: W = 530; P-value = 0.0032TC1 - TC5: W = 401.5; P-value = 0.4753 TC1 - TC6: W = 373.5; P-value = 0.9865TC1 - TC7: W = 268.5; P-value = 0.6951TC1 - TC9: W = 268; P-value = 0.0928 TC10 - TC2: W = 0; P-value = 2e-04 TC10 - TC3: W = 0; P-value = 1e-04TC10 - TC4: W = 0; P-value = 1e-04TC10 - TC5: W = 0; P-value = 1e-04 TC10 - TC6: W = 0; P-value = 1e-04TC10 - TC7: W = 0; P-value = 2e-04TC10 - TC9: W = 0; P-value = 4e-04TC2 - TC3: W = 402; P-value = 0.4699TC2 - TC4: W = 658; P-value = 0 TC2 - TC5: W = 444.5; P-value = 0.1435 TC2 - TC6: W = 443.5; P-value = 0.228TC2 - TC7: W = 337.5; P-value = 0.3121TC2 - TC9: W = 311; P-value = 0.0048TC3 - TC4: W = 698; P-value = 3e-04TC3 - TC5: W = 491.5; P-value = 0.5442 TC3 - TC6: W = 469.5; P-value = 0.954TC3 - TC7: W = 346.5; P-value = 0.8209TC3 - TC9: W = 339; P-value = 0.0644TC4 - TC5: W = 301.5; P-value = 0.0286 TC4 - TC6: W = 264; P-value = 0.0038TC4 - TC7: W = 192; P-value = 0.0035TC4 - TC9: W = 226; P-value = 0.5279TC5 - TC6: W = 405.5; P-value = 0.3945TC5 - TC7: W = 306.5; P-value = 0.3559TC5 - TC9: W = 304; P-value = 0.2827TC6 - TC7: W = 385.5; P-value = 0.8253TC6 - TC9: W = 336.5; P-value = 0.1179TC7 - TC9: W = 257.5; P-value = 0.1605

Wilcox Tests between Transects: CAN1 - CAN2: W = 114; P-value = 0.0859 CAN1 - TC1: W = 67.5; P-value = 2e-04 CAN1 - TC10: W = 108; P-value = 4e-04CAN1 - TC2: W = 27.5; P-value = 0 CAN1 - TC3: W = 80.5; P-value = 1e-04 CAN1 - TC4: W = 197; P-value = 0.1224 CAN1 - TC5: W = 135; P-value = 0.0042 CAN1 - TC6: W = 113; P-value = 6e-04 CAN1 - TC7: W = 85.5; P-value = 9e-04 CAN1 - TC9: W = 86; P-value = 0.0281 CAN2 - TC1: W = 126.5; P-value = 0.0135CAN2 - TC10: W = 114; P-value = 3e-04CAN2 - TC2: W = 74.5; P-value = 2e-04 CAN2 - TC3: W = 141.5; P-value = 0.0033CAN2 - TC4: W = 327; P-value = 0.3942CAN2 - TC5: W = 229.5; P-value = 0.259 CAN2 - TC6: W = 191; P-value = 0.0395 CAN2 - TC7: W = 163; P-value = 0.1146 CAN2 - TC9: W = 142; P-value = 0.5471TC1 - TC10: W = 144; P-value = 2e-04 TC1 - TC2: W = 242.5; P-value = 0.3531TC1 - TC3: W = 357.5; P-value = 0.9722TC1 - TC4: W = 550; P-value = 0.001TC1 - TC5: W = 403.5; P-value = 0.454TC1 - TC6: W = 378; P-value = 0.9256TC1 - TC7: W = 276; P-value = 0.8125 TC1 - TC9: W = 265; P-value = 0.1092 TC10 - TC2: W = 0; P-value = 2e-04 TC10 - TC3: W = 5; P-value = 3e-04TC10 - TC4: W = 0; P-value = 1e-04TC10 - TC5: W = 0; P-value = 1e-04 TC10 - TC6: W = 0; P-value = 1e-04TC10 - TC7: W = 0; P-value = 2e-04TC10 - TC9: W = 0; P-value = 4e-04TC2 - TC3: W = 417; P-value = 0.3251TC2 - TC4: W = 659; P-value = 0 TC2 - TC5: W = 477; P-value = 0.0425TC2 - TC6: W = 445.5; P-value = 0.2153TC2 - TC7: W = 347; P-value = 0.2276TC2 - TC9: W = 298; P-value = 0.0133 TC3 - TC4: W = 726; P-value = 0TC3 - TC5: W = 526; P-value = 0.2642 TC3 - TC6: W = 488.5; P-value = 0.74TC3 - TC7: W = 371.5; P-value = 0.8481 TC3 - TC9: W = 338.5; P-value = 0.066TC4 - TC5: W = 341.5; P-value = 0.1103TC4 - TC6: W = 260; P-value = 0.0032TC4 - TC7: W = 220.5; P-value = 0.0155TC4 - TC9: W = 195.5; P-value = 0.1913 TC5 - TC6: W = 384; P-value = 0.2455

P-values reported are not adjusted for multiple comparisons. Adjusted significance level is 0.05 / 55 = 0.00091.

TC5 - TC7: W = 289; P-value = 0.2195TC5 - TC9: W = 285; P-value = 0.5136 TC6 - TC7: W = 399.5; P-value = 0.6467TC6 - TC9: W = 323; P-value = 0.2034TC7 - TC9: W = 243; P-value = 0.3082

```
CAN1 - CAN2: W = 24; P-value = 0
CAN1 - TC1: W = 1; P-value = 0
CAN1 - TC10: W = 36; P-value = 0.2431
CAN1 - TC2: W = 5.5; P-value = 0
\overline{\text{CAN1} - \text{TC3}}: W = 38.5; P-value = 0
CAN1 - TC4: W = 257.5; P-value = 0.7983
CAN1 - TC5: W = 57.5; P-value = 0
CAN1 - TC6: W = 31.5; P-value = 0
CAN1 - TC7: W = 173.5; P-value = 0.2857
CAN1 - TC9: W = 3; P-value = 0
CAN2 - TC1: W = 218; P-value = 0.7209
CAN2 - TC10: W = 90; P-value = 0.0045
CAN2 - TC2: W = 260.5; P-value = 0.1383
CAN2 - TC3: W = 297.5; P-value = 0.3524
CAN2 - TC4: W = 410; P-value = 6e-04
CAN2 - TC5: W = 325; P-value = 0.1238
CAN2 - TC6: W = 292.5; P-value = 0.5389
CAN2 - TC7: W = 299; P-value = 0.0112
CAN2 - TC9: W = 178.5; P-value = 0.2484
TC1 - TC10: W = 144; P-value = 2e-04
TC1 - TC2: W = 364.5; P-value = 0.1171
TC1 - TC3: W = 375; P-value = 0.8007
TC1 - TC4: W = 593.5; P-value = 0
TC1 - TC5: W = 482.5; P-value = 0.0337
TC1 - TC6: W = 424; P-value = 0.3821
TC1 - TC7: W = 407; P-value = 0.0145
TC1 - TC9: W = 258.5; P-value = 0.1529
TC10 - TC2: W = 0; P-value = 2e-04
TC10 - TC3: W = 12; P-value = 2e-04
TC10 - TC4: W = 90; P-value = 1
TC10 - TC5: W = 21; P-value = 0.0019
TC10 - TC6: W = 6; P-value = 4e-04
TC10 - TC7: W = 68.5; P-value = 0.8764
TC10 - TC9: W = 0; P-value = 4e-04
TC2 - TC3: W = 283; P-value = 0.1829
TC2 - TC4: W = 564; P-value = 4e-04
TC2 - TC5: W = 424.5; P-value = 0.2652
TC2 - TC6: W = 363; P-value = 0.8853
TC2 - TC7: W = 383; P-value = 0.0513
TC2 - TC9: W = 227.5; P-value = 0.5427
TC3 - TC4: W = 717; P-value = 1e-04
TC3 - TC5: W = 567.5; P-value = 0.0837
TC3 - TC6: W = 502.5; P-value = 0.5935
TC3 - TC7: W = 507; P-value = 0.0108
TC3 - TC9: W = 306; P-value = 0.2635
TC4 - TC5: W = 249; P-value = 0.003
TC4 - TC6: W = 220; P-value = 4e-04
TC4 - TC7: W = 347; P-value = 0.8277
TC4 - TC9: W = 120; P-value = 0.0029
TC5 - TC6: W = 369.5; P-value = 0.1705
TC5 - TC7: W = 455.5; P-value = 0.0982
TC5 - TC9: W = 218; P-value = 0.419
TC6 - TC7: W = 504; P-value = 0.0256
TC6 - TC9: W = 266.5; P-value = 0.957
TC7 - TC9: W = 143; P-value = 0.1093
```

```
Molybdenum, dissolved
        Wilcox Tests between Transects:
         CAN1 - CAN2: W = 101.5; P-value = 0.036
         CAN1 - TC1: W = 248.5; P-value = 0.416
         CAN1 - TC10: W = 11; P-value = 0.0046
         CAN1 - TC2: W = 262.5; P-value = 0.2421
         CAN1 - TC3: W = 348.5; P-value = 0.0966
         CAN1 - TC4: W = 329.5; P-value = 0.2088
         CAN1 - TC5: W = 254.5; P-value = 0.7493
         CAN1 - TC6: W = 310; P-value = 0.527
         CAN1 - TC7: W = 183.5; P-value = 0.4159
         CAN1 - TC9: W = 137; P-value = 0.6089
         CAN2 - TC1: W = 329.5; P-value = 0.0135
         CAN2 - TC10: W = 33; P-value = 0.1348
         CAN2 - TC2: W = 356.5; P-value = 0.0017
          CAN2 - TC3: W = 440; P-value = 0.0015
         CAN2 - TC4: W = 448; P-value = 9e-04
         CAN2 - TC5: W = 375; P-value = 0.0662
         CAN2 - TC6: W = 409; P-value = 0.0227
         CAN2 - TC7: W = 274; P-value = 0.2657
         CAN2 - TC9: W = 208.5; P-value = 0.1406
         TC1 - TC10: W = 20; P-value = 0.0076
         TC1 - TC2: W = 319; P-value = 0.5293
         TC1 - TC3: W = 419.5; P-value = 0.3043
         TC1 - TC4: W = 385; P-value = 0.6697
         TC1 - TC5: W = 295; P-value = 0.2614
         TC1 - TC6: W = 384; P-value = 0.8453
         TC1 - TC7: W = 206; P-value = 0.0928
          TC1 - TC9: W = 176.5; P-value = 0.4749
         TC10 - TC2: W = 142; P-value = 3e-04
          TC10 - TC3: W = 165; P-value = 0.0016
         TC10 - TC4: W = 174; P-value = 4e-04
         TC10 - TC5: W = 159; P-value = 0.0036
         TC10 - TC6: W = 156; P-value = 0.01
         TC10 - TC7: W = 108; P-value = 0.0656
         TC10 - TC9: W = 88; P-value = 0.0106
         TC2 - TC3: W = 363.5; P-value = 0.9583
         TC2 - TC4: W = 359; P-value = 0.9931
         TC2 - TC5: W = 256; P-value = 0.0715
         TC2 - TC6: W = 329; P-value = 0.4707
         TC2 - TC7: W = 184; P-value = 0.0328
         TC2 - TC9: W = 133; P-value = 0.062
         TC3 - TC4: W = 417; P-value = 0.6308
         TC3 - TC5: W = 300.5; P-value = 0.0276
         TC3 - TC6: W = 400.5; P-value = 0.3558
         TC3 - TC7: W = 220; P-value = 0.0152
         TC3 - TC9: W = 177.5; P-value = 0.0882
```

TC4 - TC9: W = 172.5; P-value = 0.0694 TC5 - TC6: W = 542.5; P-value = 0.2666 TC5 - TC7: W = 312; P-value = 0.4082 TC5 - TC9: W = 241.5; P-value = 0.7734 TC6 - TC7: W = 284; P-value = 0.1375 TC6 - TC9: W = 235.5; P-value = 0.5533 TC7 - TC9: W = 228; P-value = 0.534

TC4 - TC5: W = 318; P-value = 0.0518 TC4 - TC6: W = 429.5; P-value = 0.6136 TC4 - TC7: W = 236; P-value = 0.0315

```
Molybdenum, total
Wilcox Te
```

Wilcox Tests between Transects: CAN1 - CAN2: W = 134; P-value = 0.2673 CAN1 - TC1: W = 246; P-value = 0.4533 CAN1 - TC10: W = 55; P-value = 0.9734 CAN1 - TC2: W = 302.5; P-value = 0.0288 CAN1 - TC3: W = 364; P-value = 0.0464 CAN1 - TC4: W = 425.5; P-value = 0.001 CAN1 - TC5: W = 292; P-value = 0.647 CAN1 - TC6: W = 336; P-value = 0.2412 CAN1 - TC7: W = 266.5; P-value = 0.2037 CAN1 - TC9: W = 207.5; P-value = 0.0746 CAN2 - TC1: W = 287.5; P-value = 0.149 CAN2 - TC10: W = 76.5; P-value = 0.2266 CAN2 - TC2: W = 352; P-value = 0.0025CAN2 - TC3: W = 406.5; P-value = 0.013 CAN2 - TC4: W = 467; P-value = 2e-04 CAN2 - TC5: W = 384.5; P-value = 0.0422 CAN2 - TC6: W = 397; P-value = 0.0415 CAN2 - TC7: W = 305; P-value = 0.0613 CAN2 - TC9: W = 247.5; P-value = 0.0067 TC1 - TC10: W = 64; P-value = 0.7047TC1 - TC2: W = 354.5; P-value = 0.1735TC1 - TC3: W = 427; P-value = 0.247TC1 - TC4: W = 510.5; P-value = 0.009TC1 - TC5: W = 338.5; P-value = 0.7147 TC1 - TC6: W = 396; P-value = 0.69TC1 - TC7: W = 316.5; P-value = 0.5637 TC1 - TC9: W = 235; P-value = 0.4195 TC10 - TC2: W = 101; P-value = 0.1395 TC10 - TC3: W = 125; P-value = 0.143 TC10 - TC4: W = 144; P-value = 0.0231TC10 - TC5: W = 94; P-value = 0.8819TC10 - TC6: W = 101; P-value = 0.7572 TC10 - TC7: W = 74; P-value = 0.9397TC10 - TC9: W = 69; P-value = 0.2204TC2 - TC3: W = 340.5; P-value = 0.7408TC2 - TC4: W = 425.5; P-value = 0.2578TC2 - TC5: W = 225; P-value = 0.0192 TC2 - TC6: W = 298; P-value = 0.2122TC2 - TC7: W = 237; P-value = 0.2977TC2 - TC9: W = 176; P-value = 0.4667TC3 - TC4: W = 558; P-value = 0.112 TC3 - TC5: W = 305.5; P-value = 0.0332TC3 - TC6: W = 390; P-value = 0.2824TC3 - TC7: W = 324; P-value = 0.5366TC3 - TC9: W = 225; P-value = 0.5136TC4 - TC5: W = 205.5; P-value = 3e-04 TC4 - TC6: W = 266; P-value = 0.0042TC4 - TC7: W = 228.5; P-value = 0.0226TC4 - TC9: W = 160.5; P-value = 0.0374 TC5 - TC6: W = 506; P-value = 0.559TC5 - TC7: W = 395.5; P-value = 0.5423TC5 - TC9: W = 330.5; P-value = 0.0967TC6 - TC7: W = 389.5; P-value = 0.7729TC6 - TC9: W = 296.5; P-value = 0.4834

P-values reported are not adjusted for multiple comparisons. Adjusted significance level is 0.05 / 55 = 0.00091.

TC7 - TC9: W = 217.5; P-value = 0.7308

```
Nickel, dissolved
        Wilcox Tests between Transects:
         CAN1 - CAN2: W = 65.5; P-value = 0.0023
         CAN1 - TC1: W = 268; P-value = 0.19
         CAN1 - TC10: W = 71.5; P-value = 0.2561
         CAN1 - TC2: W = 277.5; P-value = 0.1207
          CAN1 - TC3: W = 492.5; P-value = 0
         CAN1 - TC4: W = 445; P-value = 2e-04
         CAN1 - TC5: W = 428; P-value = 3e-04
         CAN1 - TC6: W = 458.5; P-value = 2e-04
          CAN1 - TC7: W = 367.5; P-value = 1e-04
          CAN1 - TC9: W = 181; P-value = 0.3633
         CAN2 - TC1: W = 364; P-value = 2e-04
          CAN2 - TC10: W = 91.5; P-value = 0.0135
         CAN2 - TC2: W = 365.5; P-value = 2e-04
          CAN2 - TC3: W = 515.5; P-value = 0
         CAN2 - TC4: W = 492; P-value = 0
         CAN2 - TC5: W = 474; P-value = 0
         CAN2 - TC6: W = 508.5; P-value = 0
         CAN2 - TC7: W = 391; P-value = 0
          CAN2 - TC9: W = 253; P-value = 0.001
         TC1 - TC10: W = 66.5; P-value = 0.7952
         TC1 - TC2: W = 302; P-value = 0.7806
         TC1 - TC3: W = 541; P-value = 0.0017
         TC1 - TC4: W = 461; P-value = 0.08
         TC1 - TC5: W = 434; P-value = 0.126
         TC1 - TC6: W = 462.5; P-value = 0.1264
         TC1 - TC7: W = 380; P-value = 0.059
         TC1 - TC9: W = 185.5; P-value = 0.6333
         TC10 - TC2: W = 78.5; P-value = 0.7556
         TC10 - TC3: W = 151; P-value = 0.0101
         TC10 - TC4: W = 131; P-value = 0.0851
         TC10 - TC5: W = 131; P-value = 0.0565
         TC10 - TC6: W = 138.5; P-value = 0.0635
         TC10 - TC7: W = 119; P-value = 0.0158
         TC10 - TC9: W = 46; P-value = 0.7516
         TC2 - TC3: W = 522.5; P-value = 0.0048
         TC2 - TC4: W = 430.5; P-value = 0.2227
         TC2 - TC5: W = 403; P-value = 0.3297
         TC2 - TC6: W = 410; P-value = 0.5242
         TC2 - TC7: W = 321.5; P-value = 0.4958
         TC2 - TC9: W = 172; P-value = 0.4042
         TC3 - TC4: W = 305; P-value = 0.0325
         TC3 - TC5: W = 262.5; P-value = 0.0091
         TC3 - TC6: W = 271; P-value = 0.0052
          TC3 - TC7: W = 169; P-value = 9e-04
         TC3 - TC9: W = 74; P-value = 1e-04
         TC4 - TC5: W = 413; P-value = 0.7443
```

```
TC4 - TC6: W = 425.5; P-value = 0.5732
TC4 - TC7: W = 295.5; P-value = 0.2649
TC4 - TC9: W = 129.5; P-value = 0.0056
TC5 - TC6: W = 449; P-value = 1
TC5 - TC7: W = 357.5; P-value = 0.8721
TC5 - TC9: W = 131; P-value = 0.0087
TC6 - TC7: W = 366; P-value = 0.9256
TC6 - TC9: W = 138.5; P-value = 0.0072
TC7 - TC9: W = 97; P-value = 0.0048
```

```
CAN1 - CAN2: W = 53; P-value = 6e-04
CAN1 - TC1: W = 255.5; P-value = 0.3213
CAN1 - TC10: W = 68; P-value = 0.3674
CAN1 - TC2: W = 265.5; P-value = 0.2126
CAN1 - TC3: W = 452.5; P-value = 1e-04
CAN1 - TC4: W = 426; P-value = 9e-04
CAN1 - TC5: W = 401.5; P-value = 0.0022
CAN1 - TC6: W = 445.5; P-value = 6e-04
CAN1 - TC7: W = 387; P-value = 0
CAN1 - TC9: W = 168; P-value = 0.6317
CAN2 - TC1: W = 369.5; P-value = 1e-04
CAN2 - TC10: W = 92; P-value = 0.0123
CAN2 - TC2: W = 366.5; P-value = 1e-04
CAN2 - TC3: W = 483.5; P-value = 0
CAN2 - TC4: W = 476; P-value = 0
CAN2 - TC5: W = 458.5; P-value = 0
CAN2 - TC6: W = 495.5; P-value = 0
CAN2 - TC7: W = 385.5; P-value = 0
CAN2 - TC9: W = 258; P-value = 6e-04
TC1 - TC10: W = 66; P-value = 0.7754
TC1 - TC2: W = 313.5; P-value = 0.606
TC1 - TC3: W = 524; P-value = 0.0044
TC1 - TC4: W = 482; P-value = 0.0343
TC1 - TC5: W = 423.5; P-value = 0.1799
TC1 - TC6: W = 468.5; P-value = 0.1031
TC1 - TC7: W = 393; P-value = 0.0311
TC1 - TC9: W = 177.5; P-value = 0.4912
TC10 - TC2: W = 74; P-value = 0.9379
TC10 - TC3: W = 143.5; P-value = 0.0243
TC10 - TC4: W = 130.5; P-value = 0.0893
TC10 - TC5: W = 124.5; P-value = 0.105
TC10 - TC6: W = 139.5; P-value = 0.0579
TC10 - TC7: W = 122.5; P-value = 0.0095
TC10 - TC9: W = 38; P-value = 0.3803
TC2 - TC3: W = 498.5; P-value = 0.0162
TC2 - TC4: W = 460; P-value = 0.0831
TC2 - TC5: W = 390.5; P-value = 0.4527
TC2 - TC6: W = 439; P-value = 0.259
TC2 - TC7: W = 347.5; P-value = 0.2233
TC2 - TC9: W = 165; P-value = 0.3078
TC3 - TC4: W = 408; P-value = 0.5393
TC3 - TC5: W = 283.5; P-value = 0.022
TC3 - TC6: W = 326; P-value = 0.0456
TC3 - TC7: W = 209; P-value = 0.0088
TC3 - TC9: W = 85.5; P-value = 2e-04
TC4 - TC5: W = 361; P-value = 0.2648
TC4 - TC6: W = 394; P-value = 0.3089
TC4 - TC7: W = 331.5; P-value = 0.6258
TC4 - TC9: W = 122.5; P-value = 0.0035
TC5 - TC6: W = 476; P-value = 0.7004
TC5 - TC7: W = 401; P-value = 0.3479
TC5 - TC9: W = 132; P-value = 0.0094
TC6 - TC7: W = 396.5; P-value = 0.6837
TC6 - TC9: W = 119.5; P-value = 0.002
TC7 - TC9: W = 56.5; P-value = 1e-04
```

```
Potassium, dissolved
        Wilcox Tests between Transects:
         CAN1 - CAN2: W = 118.5; P-value = 0.114
         CAN1 - TC1: W = 159; P-value = 0.1509
         CAN1 - TC10: W = 57; P-value = 0.8675
         CAN1 - TC2: W = 91; P-value = 0.0016
         CAN1 - TC3: W = 51; P-value = 0
         CAN1 - TC4: W = 43.5; P-value = 0
         CAN1 - TC5: W = 34; P-value = 0
         CAN1 - TC6: W = 45.5; P-value = 0
         CAN1 - TC7: W = 26.5; P-value = 0
          CAN1 - TC9: W = 56.5; P-value = 0.0015
         CAN2 - TC1: W = 219; P-value = 0.8353
         CAN2 - TC10: W = 81.5; P-value = 0.1267
         CAN2 - TC2: W = 129; P-value = 0.016
         CAN2 - TC3: W = 92.5; P-value = 1e-04
         CAN2 - TC4: W = 99.5; P-value = 1e-04
         CAN2 - TC5: W = 71.5; P-value = 0
         CAN2 - TC6: W = 83.5; P-value = 0
         CAN2 - TC7: W = 60; P-value = 0
          CAN2 - TC9: W = 91; P-value = 0.0265
         TC1 - TC10: W = 91.5; P-value = 0.3245
         TC1 - TC2: W = 152; P-value = 0.0052
         TC1 - TC3: W = 171; P-value = 0.001
         TC1 - TC4: W = 202; P-value = 0.0061
          TC1 - TC5: W = 111; P-value = 0
         TC1 - TC6: W = 133; P-value = 1e-04
         TC1 - TC7: W = 88.5; P-value = 0
          TC1 - TC9: W = 133.5; P-value = 0.0639
         TC10 - TC2: W = 33.5; P-value = 0.0488
          TC10 - TC3: W = 13; P-value = 0.0012
         TC10 - TC4: W = 7; P-value = 5e-04
         TC10 - TC5: W = 6; P-value = 4e-04
         TC10 - TC6: W = 10; P-value = 7e-04
         TC10 - TC7: W = 5; P-value = 6e-04
          TC10 - TC9: W = 17.5; P-value = 0.0208
         TC2 - TC3: W = 406; P-value = 0.4283
         TC2 - TC4: W = 437; P-value = 0.1829
         TC2 - TC5: W = 249; P-value = 0.0544
         TC2 - TC6: W = 255.5; P-value = 0.049
         TC2 - TC7: W = 193.5; P-value = 0.0525
         TC2 - TC9: W = 232; P-value = 0.4667
         TC3 - TC4: W = 530; P-value = 0.2397
         TC3 - TC5: W = 290; P-value = 0.0184
         TC3 - TC6: W = 328.5; P-value = 0.0497
         TC3 - TC7: W = 226.5; P-value = 0.0206
         TC3 - TC9: W = 288.5; P-value = 0.465
         TC4 - TC5: W = 258; P-value = 0.0046
         TC4 - TC6: W = 299; P-value = 0.0169
         TC4 - TC7: W = 204; P-value = 0.0068
         TC4 - TC9: W = 260.5; P-value = 0.9118
         TC5 - TC6: W = 424.5; P-value = 0.5639
         TC5 - TC7: W = 369.5; P-value = 0.8755
         TC5 - TC9: W = 358; P-value = 0.0232
```

TC6 - TC7: W = 419.5; P-value = 0.425 TC6 - TC9: W = 366; P-value = 0.0279 TC7 - TC9: W = 284.5; P-value = 0.0342

```
Potassium, total
        Wilcox Tests between Transects:
         CAN1 - CAN2: W = 88.5; P-value = 0.0127
         CAN1 - TC1: W = 92; P-value = 0.0017
         CAN1 - TC10: W = 102; P-value = 4e-04
         CAN1 - TC2: W = 46.5; P-value = 0
         CAN1 - TC3: W = 29.5; P-value = 0
         CAN1 - TC4: W = 89; P-value = 1e-04
          CAN1 - TC5: W = 180.5; P-value = 0.058
         CAN1 - TC6: W = 66.5; P-value = 0
          CAN1 - TC7: W = 33.5; P-value = 0
         CAN1 - TC9: W = 49; P-value = 6e-04
          CAN2 - TC1: W = 185.5; P-value = 0.3043
         CAN2 - TC10: W = 109; P-value = 0.001
         CAN2 - TC2: W = 113; P-value = 0.0051
         CAN2 - TC3: W = 102; P-value = 2e-04
          CAN2 - TC4: W = 212.5; P-value = 0.1395
         CAN2 - TC5: W = 213.5; P-value = 0.1451
         CAN2 - TC6: W = 125; P-value = 7e-04
         CAN2 - TC7: W = 89; P-value = 7e-04
          CAN2 - TC9: W = 119.5; P-value = 0.1883
         TC1 - TC10: W = 144; P-value = 0
         TC1 - TC2: W = 173; P-value = 0.0182
         TC1 - TC3: W = 172.5; P-value = 0.0011
         TC1 - TC4: W = 332; P-value = 0.6321
         TC1 - TC5: W = 300.5; P-value = 0.3044
         TC1 - TC6: W = 198.5; P-value = 0.0033
         TC1 - TC7: W = 137.5; P-value = 0.002
         TC1 - TC9: W = 176; P-value = 0.4667
         TC10 - TC2: W = 0; P-value = 2e-04
         TC10 - TC3: W = 0; P-value = 1e-04
         TC10 - TC4: W = 0; P-value = 1e-04
         TC10 - TC5: W = 29.5; P-value = 0.0109
         TC10 - TC6: W = 0; P-value = 1e-04
         TC10 - TC7: W = 0; P-value = 2e-04
          TC10 - TC9: W = 0; P-value = 0
         TC2 - TC3: W = 361.5; P-value = 0.9861
         TC2 - TC4: W = 486.5; P-value = 0.0283
         TC2 - TC5: W = 384; P-value = 0.6825
         TC2 - TC6: W = 290.5; P-value = 0.1692
         TC2 - TC7: W = 222.5; P-value = 0.1801
         TC2 - TC9: W = 258; P-value = 0.1568
         TC3 - TC4: W = 660; P-value = 0.0019
         TC3 - TC5: W = 444; P-value = 0.9352
         TC3 - TC6: W = 378.5; P-value = 0.2147
         TC3 - TC7: W = 248.5; P-value = 0.0533
         TC3 - TC9: W = 340.5; P-value = 0.0598
         TC4 - TC5: W = 398; P-value = 0.4464
         TC4 - TC6: W = 255.5; P-value = 0.0026
         TC4 - TC7: W = 200; P-value = 0.0055
         TC4 - TC9: W = 245.5; P-value = 0.842
```

TC5 - TC6: W = 329.5; P-value = 0.0515 TC5 - TC7: W = 269; P-value = 0.1151 TC5 - TC9: W = 277.5; P-value = 0.6262 TC6 - TC7: W = 388.5; P-value = 0.786 TC6 - TC9: W = 362; P-value = 0.0346 TC7 - TC9: W = 296; P-value = 0.0154

```
Rubidium, dissolved
Wilcox Tests between Transects:
CAN1 - TC1: W = 299; P-value = 0.0358
CAN1 - TC10: W = 14.5; P-value = 0.0086
CAN1 - TC2: W = 48.5; P-value = 0.3047

CAN1 - TC3: W = 427; P-value = 9e-04

CAN1 - TC4: W = 425; P-value = 0.001

CAN1 - TC6: W = 393.5; P-value = 0.0179
CAN1 - TC9: W = 184.5; P-value = 0.305
TC1 - TC10: W = 22.5; P-value = 0.0109
TC1 - TC2: W = 43; P-value = 0.7675
TC1 - TC3: W = 425; P-value = 0.2615
```

TC1 - TC4: W = 394; P-value = 0.5597
TC1 - TC6: W = 314.5; P-value = 0.3331
TC1 - TC9: W = 180.5; P-value = 0.5424
TC10 - TC2: W = 24; P-value = 0.0131
TC10 - TC3: W = 180; P-value = 1e-04
TC10 - TC4: W = 180; P-value = 1e-04

TC10 - TC4: W = 180; P-value = 1e-04

TC10 - TC6: W = 178; P-value = 5e-04

TC10 - TC9: W = 80.5; P-value = 0.0416

TC2 - TC3: W = 76; P-value = 0.4073

TC2 - TC4: W = 74.5; P-value = 0.4542

TC2 - TC4: W = 74.5; P-value = 0.4542 TC2 - TC6: W = 44.5; P-value = 0.3778 TC2 - TC9: W = 28; P-value = 0.6221 TC3 - TC4: W = 405; P-value = 0.5106

TC3 - TC6: W = 204; P-value = 2e-04

TC3 - TC9: W = 173; P-value = 0.0711

TC4 - TC6: W = 223.5; P-value = 5e-04

TC4 - TC9: W = 180.5; P-value = 0.1013 TC6 - TC9: W = 261.5; P-value = 0.9742

```
Wilcox Tests between Transects:
 CAN1 - TC1: W = 294; P-value = 0.0486
 CAN1 - TC10: W = 0; P-value = 3e-04
 CAN1 - TC2: W = 56; P-value = 0.0946
 CAN1 - TC3: W = 433.5; P-value = 5e-04
 CAN1 - TC4: W = 390; P-value = 0.0109
 CAN1 - TC6: W = 332; P-value = 0.2755
 CAN1 - TC9: W = 172.5; P-value = 0.5294
 TC1 - TC10: W = 15; P-value = 0.0032
 TC1 - TC2: W = 45; P-value = 0.8695
 TC1 - TC3: W = 434.5; P-value = 0.1976
 TC1 - TC4: W = 402.5; P-value = 0.4646
 TC1 - TC6: W = 290; P-value = 0.1663
 TC1 - TC9: W = 193; P-value = 0.781
 TC10 - TC2: W = 24; P-value = 0.012
 TC10 - TC3: W = 180; P-value = 1e-04
 TC10 - TC4: W = 168; P-value = 0.001
 TC10 - TC6: W = 159; P-value = 0.0068
 TC10 - TC9: W = 102; P-value = 4e-04
 TC2 - TC3: W = 68; P-value = 0.6885
 TC2 - TC4: W = 63.5; P-value = 0.8726
 TC2 - TC6: W = 37; P-value = 0.2035
 TC2 - TC9: W = 26.5; P-value = 0.5292
 TC3 - TC4: W = 411.5; P-value = 0.5742
 TC3 - TC6: W = 191.5; P-value = 1e-04
 TC3 - TC9: W = 171; P-value = 0.0644
 TC4 - TC6: W = 257.5; P-value = 0.0028
 TC4 - TC9: W = 195.5; P-value = 0.1912
```

P-values reported are not adjusted for multiple comparisons. Adjusted significance level is 0.05 / 28 = 0.00179.

TC6 - TC9: W = 301; P-value = 0.4246

Wilcox Tests between Transects:

```
CAN1 - TC1: W = 145; P-value = 0.0731
CAN1 - TC10: W = 108; P-value = 4e-04
CAN1 - TC2: W = 48; P-value = 0.342
CAN1 - TC3: W = 180; P-value = 0.0566
CAN1 - TC4: W = 184; P-value = 0.0686
CAN1 - TC6: W = 257.5; P-value = 0.6632
CAN1 - TC9: W = 140; P-value = 0.6799
TC1 - TC10: W = 144; P-value = 2e-04
TC1 - TC2: W = 81.5; P-value = 0.0302
TC1 - TC3: W = 276; P-value = 0.146
TC1 - TC4: W = 322.5; P-value = 0.5195
TC1 - TC6: W = 396.5; P-value = 0.6838
TC1 - TC9: W = 235.5; P-value = 0.4119
TC10 - TC2: W = 0; P-value = 0.0139
TC10 - TC3: W = 0; P-value = 1e-04
TC10 - TC4: W = 0; P-value = 1e-04
TC10 - TC6: W = 0; P-value = 1e-04
TC10 - TC9: W = 12; P-value = 0.007
TC2 - TC3: W = 1; P-value = 0.0018
TC2 - TC4: W = 1; P-value = 0.0018
TC2 - TC6: W = 2; P-value = 2e-04
TC2 - TC9: W = 19; P-value = 0.1936
TC3 - TC4: W = 527.5; P-value = 0.2549
TC3 - TC6: W = 612.5; P-value = 0.0339
TC3 - TC9: W = 321; P-value = 0.1469
TC4 - TC6: W = 520; P-value = 0.4317
TC4 - TC9: W = 295; P-value = 0.3817
TC6 - TC9: W = 263; P-value = 1
```

Wilcox Tests between Transects:

```
CAN1 - TC1: W = 149; P-value = 0.0909
CAN1 - TC10: W = 108; P-value = 4e-04
CAN1 - TC2: W = 48; P-value = 0.3273
CAN1 - TC3: W = 182; P-value = 0.0624
CAN1 - TC4: W = 182; P-value = 0.0624
CAN1 - TC6: W = 245; P-value = 0.4872
CAN1 - TC9: W = 146.5; P-value = 0.843
TC1 - TC10: W = 144; P-value = 2e-04
TC1 - TC2: W = 88; P-value = 0.0095
TC1 - TC3: W = 292; P-value = 0.2399
TC1 - TC4: W = 353; P-value = 0.9099
TC1 - TC6: W = 413; P-value = 0.4918
TC1 - TC9: W = 234.5; P-value = 0.4272
TC10 - TC2: W = 0; P-value = 0.0131
TC10 - TC3: W = 0; P-value = 1e-04
TC10 - TC4: W = 0; P-value = 1e-04
TC10 - TC6: W = 0; P-value = 1e-04
TC10 - TC9: W = 5.5; P-value = 0.0016
TC2 - TC3: W = 1; P-value = 0.0018
TC2 - TC4: W = 3; P-value = 0.0025
TC2 - TC6: W = 1; P-value = 0.0017
TC2 - TC9: W = 16; P-value = 0.12
TC3 - TC4: W = 505; P-value = 0.4203
TC3 - TC6: W = 592.5; P-value = 0.0669
TC3 - TC9: W = 305.5; P-value = 0.2682
TC4 - TC6: W = 493.5; P-value = 0.6862
TC4 - TC9: W = 309.5; P-value = 0.2318
TC6 - TC9: W = 276.5; P-value = 0.7876
```

Wilcox Tests between Transects: CAN1 - CAN2: W = 182.5; P-value = 0.7381 CAN1 - TC1: W = 54.5; P-value = 0 CAN1 - TC10: W = 72; P-value = 0.2431CAN1 - TC2: W = 6.5; P-value = 0 CAN1 - TC3: W = 21; P-value = 0 CAN1 - TC4: W = 173.5; P-value = 0.0408 CAN1 - TC5: W = 124.5; P-value = 0.002 CAN1 - TC6: W = 109; P-value = 4e-04CAN1 - TC7: W = 78; P-value = 5e-04 CAN1 - TC9: W = 77; P-value = 0.0127CAN2 - TC1: W = 32; P-value = 0 CAN2 - TC10: W = 101; P-value = 0.0056CAN2 - TC2: W = 15.5; P-value = 0CAN2 - TC3: W = 22; P-value = 0CAN2 - TC4: W = 88; P-value = 1e-04CAN2 - TC5: W = 67.5; P-value = 0 CAN2 - TC6: W = 64.5; P-value = 0 CAN2 - TC7: W = 31; P-value = 0 CAN2 - TC9: W = 66; P-value = 0.0026TC1 - TC10: W = 144; P-value = 2e-04 TC1 - TC2: W = 147; P-value = 0.0037TC1 - TC3: W = 287.5; P-value = 0.2098 TC1 - TC4: W = 563.5; P-value = 4e-04TC1 - TC5: W = 422.5; P-value = 0.2802 TC1 - TC6: W = 320; P-value = 0.3818TC1 - TC7: W = 234.5; P-value = 0.274TC1 - TC9: W = 229.5; P-value = 0.5077TC10 - TC2: W = 0; P-value = 2e-04 TC10 - TC3: W = 0; P-value = 1e-04TC10 - TC4: W = 0; P-value = 1e-04 TC10 - TC5: W = 0; P-value = 1e-04 TC10 - TC6: W = 0; P-value = 1e-04TC10 - TC7: W = 0; P-value = 2e-04TC10 - TC9: W = 0; P-value = 0TC2 - TC3: W = 472.5; P-value = 0.0511TC2 - TC4: W = 681; P-value = 0TC2 - TC5: W = 565.5; P-value = 4e-04 TC2 - TC6: W = 373; P-value = 0.9932TC2 - TC7: W = 242; P-value = 0.3477TC2 - TC9: W = 274.5; P-value = 0.0637 TC3 - TC4: W = 770; P-value = 0 TC3 - TC5: W = 591.5; P-value = 0.037TC3 - TC6: W = 430.5; P-value = 0.6237TC3 - TC7: W = 329; P-value = 0.5952TC3 - TC9: W = 305; P-value = 0.2729TC4 - TC5: W = 317.5; P-value = 0.0508TC4 - TC6: W = 291.5; P-value = 0.0125TC4 - TC7: W = 172.5; P-value = 0.0011TC4 - TC9: W = 224; P-value = 0.4993TC5 - TC6: W = 356; P-value = 0.1174TC5 - TC7: W = 240.5; P-value = 0.0382TC5 - TC9: W = 263.5; P-value = 0.8594TC6 - TC7: W = 390; P-value = 0.7663TC6 - TC9: W = 344.5; P-value = 0.0826TC7 - TC9: W = 271.5; P-value = 0.076

Sodium, total

Wilcox Tests between Transects: CAN1 - CAN2: W = 170.5; P-value = 1 CAN1 - TC1: W = 58.5; P-value = 1e-04 CAN1 - TC10: W = 72; P-value = 0.243 CAN1 - TC2: W = 10; P-value = 0 CAN1 - TC3: W = 42.5; P-value = 0 CAN1 - TC4: W = 126.5; P-value = 0.0023 CAN1 - TC5: W = 118; P-value = 0.0012 CAN1 - TC6: W = 97.5; P-value = 2e-04 CAN1 - TC7: W = 67.5; P-value = 2e-04 CAN1 - TC9: W = 68; P-value = 0.0053 CAN2 - TC1: W = 48; P-value = 0CAN2 - TC10: W = 112.5; P-value = 5e-04 CAN2 - TC2: W = 19; P-value = 0 CAN2 - TC3: W = 31; P-value = 0CAN2 - TC4: W = 92.5; P-value = 1e-04 CAN2 - TC5: W = 95.5; P-value = 1e-04 CAN2 - TC6: W = 68; P-value = 0 CAN2 - TC7: W = 53; P-value = 0 CAN2 - TC9: W = 70; P-value = 0.0039TC1 - TC10: W = 144; P-value = 2e-04 TC1 - TC2: W = 136; P-value = 0.0018 TC1 - TC3: W = 301; P-value = 0.3083TC1 - TC4: W = 478; P-value = 0.0406TC1 - TC5: W = 390; P-value = 0.6073TC1 - TC6: W = 309; P-value = 0.2887TC1 - TC7: W = 209; P-value = 0.1054TC1 - TC9: W = 209; P-value = 0.9052TC10 - TC2: W = 0; P-value = 2e-04TC10 - TC3: W = 0; P-value = 1e-04TC10 - TC4: W = 0; P-value = 1e-04 TC10 - TC5: W = 0; P-value = 1e-04 TC10 - TC6: W = 0; P-value = 1e-04TC10 - TC7: W = 0; P-value = 2e-04TC10 - TC9: W = 0; P-value = 4e-04TC2 - TC3: W = 465.5; P-value = 0.0674 TC2 - TC4: W = 655; P-value = 0TC2 - TC5: W = 528; P-value = 0.0035TC2 - TC6: W = 379.5; P-value = 0.9054TC2 - TC7: W = 236; P-value = 0.2879TC2 - TC9: W = 267; P-value = 0.0979 TC3 - TC4: W = 687.5; P-value = 5e-04TC3 - TC5: W = 563.5; P-value = 0.0947 TC3 - TC6: W = 437.5; P-value = 0.6968TC3 - TC7: W = 306; P-value = 0.3515TC3 - TC9: W = 295.5; P-value = 0.3756TC4 - TC5: W = 385; P-value = 0.34 TC4 - TC6: W = 304.5; P-value = 0.0209TC4 - TC7: W = 197; P-value = 0.0046TC4 - TC9: W = 214.5; P-value = 0.3755TC5 - TC6: W = 331; P-value = 0.0541TC5 - TC7: W = 205.5; P-value = 0.0073TC5 - TC9: W = 257.5; P-value = 0.9647TC6 - TC7: W = 401.5; P-value = 0.6225TC6 - TC9: W = 344.5; P-value = 0.0826TC7 - TC9: W = 282.5; P-value = 0.0389

Wilcox Tests between Transects:

```
CAN1 - TC1: W = 354; P-value = 5e-04
 CAN1 - TC10: W = 87.5; P-value = 0.0272
 CAN1 - TC2: W = 72; P-value = 0.0025
 CAN1 - TC3: W = 430; P-value = 7e-04
 CAN1 - TC4: W = 426.5; P-value = 9e-04
 CAN1 - TC6: W = 544.5; P-value = 0
 CAN1 - TC9: W = 243.5; P-value = 0.0029
 TC1 - TC10: W = 40.5; P-value = 0.1075
 TC1 - TC2: W = 42; P-value = 0.7177
 TC1 - TC3: W = 342.5; P-value = 0.7672
 TC1 - TC4: W = 280.5; P-value = 0.1687
 TC1 - TC6: W = 405.5; P-value = 0.5754
 TC1 - TC9: W = 172; P-value = 0.4043
 TC10 - TC2: W = 24; P-value = 0.0131
 TC10 - TC3: W = 131.5; P-value = 0.0817
 TC10 - TC4: W = 120.5; P-value = 0.2021
 TC10 - TC6: W = 175; P-value = 8e-04
 TC10 - TC9: W = 73; P-value = 0.1302
 TC2 - TC3: W = 50; P-value = 0.6115
 TC2 - TC4: W = 49; P-value = 0.574
 TC2 - TC6: W = 55; P-value = 0.7361
 TC2 - TC9: W = 19; P-value = 0.1938
 TC3 - TC4: W = 394; P-value = 0.4117
 TC3 - TC6: W = 523.5; P-value = 0.4027
 TC3 - TC9: W = 217.5; P-value = 0.4126
 TC4 - TC6: W = 571.5; P-value = 0.1261
 TC4 - TC9: W = 228.5; P-value = 0.5646
 TC6 - TC9: W = 174; P-value = 0.055
```

Wilcox Tests between Transects:

```
CAN1 - TC1: W = 365; P-value = 2e-04
 CAN1 - TC10: W = 86; P-value = 0.0341
 CAN1 - TC2: W = 72; P-value = 0.0024
 CAN1 - TC3: W = 449.5; P-value = 1e-04
 CAN1 - TC4: W = 444.5; P-value = 2e-04
 CAN1 - TC6: W = 542.5; P-value = 0
 CAN1 - TC9: W = 238.5; P-value = 0.0049
 TC1 - TC10: W = 36; P-value = 0.0654
 TC1 - TC2: W = 41; P-value = 0.6693
 TC1 - TC3: W = 334.5; P-value = 0.6634
 TC1 - TC4: W = 300.5; P-value = 0.3041
 TC1 - TC6: W = 399; P-value = 0.6528
 TC1 - TC9: W = 170; P-value = 0.3751
 TC10 - TC2: W = 24; P-value = 0.0128
 TC10 - TC3: W = 139.5; P-value = 0.0373
 TC10 - TC4: W = 120.5; P-value = 0.2024
 TC10 - TC6: W = 173; P-value = 0.001
 TC10 - TC9: W = 72.5; P-value = 0.1394
 TC2 - TC3: W = 49.5; P-value = 0.5928
 TC2 - TC4: W = 45; P-value = 0.438
 TC2 - TC6: W = 51.5; P-value = 0.6041
 TC2 - TC9: W = 20; P-value = 0.2263
 TC3 - TC4: W = 421.5; P-value = 0.6788
 TC3 - TC6: W = 499; P-value = 0.6288
 TC3 - TC9: W = 217; P-value = 0.4062
 TC4 - TC6: W = 549.5; P-value = 0.2255
 TC4 - TC9: W = 227; P-value = 0.5425
 TC6 - TC9: W = 177.5; P-value = 0.0653
```

Thorium, total

```
Wilcox Tests between Transects:
 CAN1 - TC1: W = 170; P-value = 0.2457
 CAN1 - TC10: W = 72; P-value = 0.2358
 CAN1 - TC2: W = 60; P-value = 0.0355
 CAN1 - TC3: W = 289.5; P-value = 0.6814
 CAN1 - TC4: W = 327.5; P-value = 0.2073
 CAN1 - TC6: W = 352; P-value = 0.1148
 CAN1 - TC9: W = 181; P-value = 0.3578
 TC1 - TC10: W = 117; P-value = 0.0179
 TC1 - TC2: W = 94; P-value = 0.0026
 TC1 - TC3: W = 455; P-value = 0.0988
 TC1 - TC4: W = 510.5; P-value = 0.0082
 TC1 - TC6: W = 553; P-value = 0.0019
 TC1 - TC9: W = 290.5; P-value = 0.0206
 TC10 - TC2: W = 24; P-value = 0.004
 TC10 - TC3: W = 48; P-value = 0.0754
 TC10 - TC4: W = 84; P-value = 0.8093
 TC10 - TC6: W = 102; P-value = 0.7142
 TC10 - TC9: W = 36; P-value = 0.2484
 TC2 - TC3: W = 16; P-value = 0.0172
 TC2 - TC4: W = 28; P-value = 0.068
 TC2 - TC6: W = 32; P-value = 0.0898
 TC2 - TC9: W = 4; P-value = 0.0059
 TC3 - TC4: W = 537; P-value = 0.1893
 TC3 - TC6: W = 570.5; P-value = 0.1179
 TC3 - TC9: W = 296; P-value = 0.366
 TC4 - TC6: W = 484.5; P-value = 0.7702
 TC4 - TC9: W = 226.5; P-value = 0.5258
 TC6 - TC9: W = 214.5; P-value = 0.2814
```

```
Uranium, dissolved
        Wilcox Tests between Transects:
         CAN1 - CAN2: W = 210; P-value = 0.2418
         CAN1 - TC1: W = 110.5; P-value = 0.0076
         CAN1 - TC10: W = 74; P-value = 0.193
         CAN1 - TC2: W = 41; P-value = 0
         CAN1 - TC3: W = 102.5; P-value = 4e-04
         CAN1 - TC4: W = 190.5; P-value = 0.0924
         CAN1 - TC5: W = 120; P-value = 0.0014
         CAN1 - TC6: W = 97.5; P-value = 2e-04
          CAN1 - TC7: W = 96.5; P-value = 0.0025
         CAN1 - TC9: W = 83; P-value = 0.0217
         CAN2 - TC1: W = 77.5; P-value = 2e-04
          CAN2 - TC10: W = 109; P-value = 0.001
         CAN2 - TC2: W = 19; P-value = 0
         CAN2 - TC3: W = 32; P-value = 0
         CAN2 - TC4: W = 87.5; P-value = 1e-04
         CAN2 - TC5: W = 57.5; P-value = 0
         CAN2 - TC6: W = 57.5; P-value = 0
         CAN2 - TC7: W = 74.5; P-value = 2e-04
          CAN2 - TC9: W = 79; P-value = 0.0094
         TC1 - TC10: W = 144; P-value = 2e-04
         TC1 - TC2: W = 226.5; P-value = 0.2083
         TC1 - TC3: W = 299.5; P-value = 0.2961
         TC1 - TC4: W = 412; P-value = 0.3699
         TC1 - TC5: W = 337.5; P-value = 0.7017
         TC1 - TC6: W = 276.5; P-value = 0.1068
         TC1 - TC7: W = 221.5; P-value = 0.1735
         TC1 - TC9: W = 232; P-value = 0.4666
         TC10 - TC2: W = 0; P-value = 2e-04
          TC10 - TC3: W = 0; P-value = 1e-04
         TC10 - TC4: W = 0; P-value = 1e-04
         TC10 - TC5: W = 0; P-value = 1e-04
         TC10 - TC6: W = 1.5; P-value = 2e-04
         TC10 - TC7: W = 0; P-value = 2e-04
          TC10 - TC9: W = 2; P-value = 7e-04
         TC2 - TC3: W = 410.5; P-value = 0.3839
         TC2 - TC4: W = 520.5; P-value = 0.0053
         TC2 - TC5: W = 439; P-value = 0.1716
         TC2 - TC6: W = 362.5; P-value = 0.8786
         TC2 - TC7: W = 268; P-value = 0.6875
         TC2 - TC9: W = 290.5; P-value = 0.0228
         TC3 - TC4: W = 605; P-value = 0.0223
         TC3 - TC5: W = 484; P-value = 0.6203
         TC3 - TC6: W = 407.5; P-value = 0.4108
         TC3 - TC7: W = 333.5; P-value = 0.6508
         TC3 - TC9: W = 311.5; P-value = 0.2149
         TC4 - TC5: W = 334.5; P-value = 0.089
         TC4 - TC6: W = 293; P-value = 0.0133
         TC4 - TC7: W = 271; P-value = 0.1234
         TC4 - TC9: W = 254; P-value = 0.9912
         TC5 - TC6: W = 379.5; P-value = 0.22
         TC5 - TC7: W = 305.5; P-value = 0.3472
         TC5 - TC9: W = 304; P-value = 0.2827
         TC6 - TC7: W = 386.5; P-value = 0.8122
         TC6 - TC9: W = 346; P-value = 0.077
```

P-values reported are not adjusted for multiple comparisons. Adjusted significance level is $0.05\ /\ 55$ = 0.00091.

TC7 - TC9: W = 274.5; P-value = 0.0639

Wilcox Tests between Transects:
 CAN1 - CAN2: W = 198.5; P-value = 0.4117

CAN1 - TC1: W = 79.5; P-value = 5e-04 CAN1 - TC10: W = 108; P-value = 4e-04 CAN1 - TC2: W = 20.5; P-value = 0

CAN1 - TC3: W = 117; P-value = 0.0012 CAN1 - TC4: W = 212.5; P-value = 0.2245

CAN1 - TC5: W = 79; P-value = 0 CAN1 - TC6: W = 84.5; P-value = 1e-04

CAN1 - TC7: W = 103; P-value = 0.0042 CAN1 - TC9: W = 74.5; P-value = 0.01

CAN2 - TC1: W = 52; P-value = 0

CAN2 - TC10: W = 114; P-value = 3e-04

CAN2 - TC2: W = 16.5; P-value = 0

CAN2 - TC3: W = 80.5; P-value = 0

CAN2 - TC4: W = 133; P-value = 0.0019

CAN2 - TC5: W = 47; P-value = 0

CAN2 - TC6: W = 69; P-value = 0

CAN2 - TC7: W = 84.5; P-value = 5e-04

CAN2 - TC9: W = 88.5; P-value = 0.0215

TC1 - TC10: W = 144; P-value = 2e-04

TC1 - TC2: W = 242; P-value = 0.3478 TC1 - TC3: W = 369.5; P-value = 0.8755

TC1 - TC4: W = 439.5; P-value = 0.1689 TC1 - TC5: W = 343; P-value = 0.7738

TC1 - TC6: W = 331; P-value = 0.4918

TC1 - TC7: W = 271.5; P-value = 0.7414

TC1 - TC9: W = 259; P-value = 0.1491

TC10 - TC2: W = 0; P-value = 2e-04

TC10 - TC3: W = 2.5; P-value = 2e-04

TC10 - TC4: W = 0; P-value = 1e-04
TC10 - TC5: W = 0; P-value = 1e-04

TC10 - TC6: W = 0; P-value = 1e-04

TC10 - TC7: W = 0; P-value = 2e-04 TC10 - TC9: W = 0; P-value = 4e-04

TC2 - TC3: W = 430.5; P-value = 0.2228 TC2 - TC4: W = 467.5; P-value = 0.0625

TC2 - TC5: W = 410; P-value = 0.3886

TC2 - TC6: W = 394; P-value = 0.7151

TC2 - TC7: W = 312.5; P-value = 0.6206

TC2 - TC9: W = 301.5; P-value = 0.0102

TC3 - TC4: W = 557; P-value = 0.1152

TC3 - TC5: W = 420; P-value = 0.6627

TC3 - TC6: W = 401; P-value = 0.3595

TC3 - TC7: W = 355.5; P-value = 0.9445

TC3 - TC9: W = 307.5; P-value = 0.2494

TC4 - TC5: W = 322; P-value = 0.0594

TC4 - TC6: W = 316; P-value = 0.0321

TC4 - TC7: W = 282.5; P-value = 0.18 TC4 - TC9: W = 266.5; P-value = 0.8075

TC5 - TC6: W = 434.5; P-value = 0.6651

TC5 - TC7: W = 367; P-value = 0.9099

TC5 - TC9: W = 331.5; P-value = 0.0923

TC6 - TC7: W = 416; P-value = 0.4602

TC6 - TC9: W = 344.5; P-value = 0.0826

TC7 - TC9: W = 249.5; P-value = 0.2336

```
Vanadium, dissolved
        Wilcox Tests between Transects:
         CAN1 - CAN2: W = 188.5; P-value = 0.6028
         CAN1 - TC1: W = 146.5; P-value = 0.0776
         CAN1 - TC10: W = 35.5; P-value = 0.2233
         CAN1 - TC2: W = 128.5; P-value = 0.0266
         CAN1 - TC3: W = 106; P-value = 5e-04
         CAN1 - TC4: W = 370; P-value = 0.0332
         CAN1 - TC5: W = 112.5; P-value = 8e-04
         CAN1 - TC6: W = 60.5; P-value = 0
         CAN1 - TC7: W = 48; P-value = 0
          CAN1 - TC9: W = 113; P-value = 0.1911
         CAN2 - TC1: W = 138; P-value = 0.0277
         CAN2 - TC10: W = 39.5; P-value = 0.2708
         CAN2 - TC2: W = 106; P-value = 0.0029
         CAN2 - TC3: W = 97; P-value = 1e-04
          CAN2 - TC4: W = 300.5; P-value = 0.7573
         CAN2 - TC5: W = 109.5; P-value = 3e-04
         CAN2 - TC6: W = 85.5; P-value = 0
         CAN2 - TC7: W = 64.5; P-value = 1e-04
          CAN2 - TC9: W = 104.5; P-value = 0.072
         TC1 - TC10: W = 81; P-value = 0.6555
         TC1 - TC2: W = 212.5; P-value = 0.1204
         TC1 - TC3: W = 247; P-value = 0.0496
         TC1 - TC4: W = 535; P-value = 0.0023
         TC1 - TC5: W = 261; P-value = 0.0853
         TC1 - TC6: W = 216.5; P-value = 0.0083
         TC1 - TC7: W = 180; P-value = 0.0264
         TC1 - TC9: W = 212; P-value = 0.8421
         TC10 - TC2: W = 49; P-value = 0.2408
         TC10 - TC3: W = 41.5; P-value = 0.041
         TC10 - TC4: W = 149; P-value = 0.0126
         TC10 - TC5: W = 56; P-value = 0.1527
         TC10 - TC6: W = 32; P-value = 0.0121
         TC10 - TC7: W = 26; P-value = 0.0179
         TC10 - TC9: W = 46; P-value = 0.7513
         TC2 - TC3: W = 408; P-value = 0.4071
         TC2 - TC4: W = 528; P-value = 0.0034
         TC2 - TC5: W = 341.5; P-value = 0.7533
         TC2 - TC6: W = 329.5; P-value = 0.4748
         TC2 - TC7: W = 292.5; P-value = 0.9341
         TC2 - TC9: W = 249; P-value = 0.2378
         TC3 - TC4: W = 715; P-value = 1e-04
         TC3 - TC5: W = 439.5; P-value = 0.8822
         TC3 - TC6: W = 426.5; P-value = 0.583
         TC3 - TC7: W = 369.5; P-value = 0.8753
         TC3 - TC9: W = 343; P-value = 0.0523
         TC4 - TC5: W = 117; P-value = 0
         TC4 - TC6: W = 95; P-value = 0
         TC4 - TC7: W = 85; P-value = 0
          TC4 - TC9: W = 162; P-value = 0.0399
         TC5 - TC6: W = 381; P-value = 0.2271
         TC5 - TC7: W = 323.5; P-value = 0.53
         TC5 - TC9: W = 322; P-value = 0.1401
```

P-values reported are not adjusted for multiple comparisons. Adjusted significance level is 0.05 / 55 = 0.00091.

TC6 - TC7: W = 391.5; P-value = 0.7466 TC6 - TC9: W = 367; P-value = 0.026 TC7 - TC9: W = 277.5; P-value = 0.0529 Tukey multiple comparisons of means 95% family-wise confidence level

	-			
	diff	lwr	upr	p adj
TC1-CAN1	0.028474615	-0.23706701	0.29401624	0.9999788
TC10-CAN1	-0.299772568	-0.70123377	0.10168863	0.3031793
TC2-CAN1	-0.274686735	-0.74544172	0.19606825	0.6254687
TC3-CAN1	0.145443341	-0.10846302	0.39934970	0.6474494
TC4-CAN1	0.109175552	-0.14473081	0.36308191	0.8893581
TC6-CAN1	0.236795408	-0.01557055	0.48916137	0.0830951
TC9-CAN1	0.032274658	-0.25574567	0.32029499	0.9999714
TC10-TC1	-0.328247184	-0.71696032	0.06046595	0.1656991
TC2-TC1	-0.303161351	-0.76309294	0.15677024	0.4680244
TC3-TC1	0.116968725	-0.11625916	0.35019661	0.7836574
TC4-TC1	0.080700937	-0.15252695	0.31392882	0.9632588
TC6-TC1	0.208320792	-0.02322917	0.43987075	0.1117712
TC9-TC1	0.003800043	-0.26616758	0.27376767	1.0000000
TC2-TC10	0.025085833	-0.52463756	0.57480922	0.9999999
TC3-TC10	0.445215909	0.06435637	0.82607545	0.0102028
TC4-TC10	0.408948120	0.02808858	0.78980766	0.0258541
TC6-TC10	0.536567976	0.15673363	0.91640232	0.0006643
TC9-TC10	0.332047226	-0.07235512	0.73644958	0.1935622
TC3-TC2	0.420130076	-0.03318344	0.87344360	0.0909275
TC4-TC2	0.383862287	-0.06945123	0.83717581	0.1630725
TC6-TC2	0.511482143	0.05902962	0.96393467	0.0150121
TC9-TC2	0.306961393	-0.16630430	0.78022709	0.4896577
TC4-TC3	-0.036267789	-0.25615714	0.18362157	0.9996139
TC6-TC3	0.091352067	-0.12675678	0.30946091	0.9022992
TC9-TC3	-0.113168683	-0.37170031	0.14536294	0.8797744
TC6-TC4	0.127619856	-0.09048899	0.34572870	0.6221198
TC9-TC4	-0.076900894	-0.33543252	0.18163073	0.9843036
TC9-TC6	-0.204520750	-0.46153970	0.05249820	0.2273412

```
Yttrium, total
        Wilcox Tests between Transects:
         CAN1 - TC1: W = 117; P-value = 0.0105
         CAN1 - TC10: W = 86; P-value = 0.0299
         CAN1 - TC2: W = 30; P-value = 0.6282
         CAN1 - TC3: W = 162; P-value = 0.0197
         CAN1 - TC4: W = 178; P-value = 0.0441
         CAN1 - TC6: W = 155.5; P-value = 0.0094
         CAN1 - TC9: W = 125.5; P-value = 0.3565
         TC1 - TC10: W = 137; P-value = 6e-04
          TC1 - TC2: W = 67; P-value = 0.2045
         TC1 - TC3: W = 351.5; P-value = 0.887
         TC1 - TC4: W = 403.5; P-value = 0.4399
         TC1 - TC6: W = 354; P-value = 0.7624
         TC1 - TC9: W = 256; P-value = 0.1604
         TC10 - TC2: W = 2; P-value = 0.0302
         TC10 - TC3: W = 8; P-value = 4e-04
         TC10 - TC4: W = 15; P-value = 0.0011
         TC10 - TC6: W = 9; P-value = 5e-04
         TC10 - TC9: W = 15; P-value = 0.0096
         TC2 - TC3: W = 31; P-value = 0.1199
         TC2 - TC4: W = 43; P-value = 0.3585
         TC2 - TC6: W = 34; P-value = 0.1464
         TC2 - TC9: W = 31; P-value = 0.8146
         TC3 - TC4: W = 493; P-value = 0.5199
         TC3 - TC6: W = 447.5; P-value = 0.8034
         TC3 - TC9: W = 323; P-value = 0.1266
         TC4 - TC6: W = 402; P-value = 0.3563
         TC4 - TC9: W = 295; P-value = 0.3642
         TC6 - TC9: W = 337; P-value = 0.1077
```

Tukey multiple comparisons of means 95% family-wise confidence level

95% Ia	amily-wise co	onfidence le	sveī		
	diff	lwr	upr	p adj	
TC1-CAN1	0.18630642	-0.2816424	0.654255233	0.9531666	
TC10-CAN1	-0.09613644	-0.6322392	0.439966281	0.9998812	
			0.787183278	0.4559115	
	0.24432538		0.712274191	0.7962131	
	0.33113901		0.799087827	0.4022115	
TC5-CAN1	0.01853215	-0.4494167	0.486480966	1.0000000	
TC6-CAN1	-0.18896779	-0.6569166	0.278981027	0.9489145	
TC7-CAN1	0.04861723	-0.4193316	0.516566048	0.9999989	
TC9-CAN1	-0.13342543	-0.5265811	0.259730213	0.9834676	
TC10-TC1	-0.28244285	-0.8673789	0.302493166	0.8606025	
TC2-TC1	0.13292805	-0.3902546	0.656110726	0.9980190	
TC3-TC1	0.05801896	-0.4651637	0.581201639	0.9999981	
TC4-TC1	0.14483259	-0.3783501	0.668015275	0.9961884	
TC5-TC1	-0.16777427	-0.6909569	0.355408414	0.9888529	
TC6-TC1	-0.37527421	-0.8984569	0.147908475	0.3825469	
TC7-TC1	-0.13768918	-0.6608719	0.385493496	0.9974030	
TC9-TC1	-0.31973185	-0.7772418	0.137778134	0.4204752	
TC2-TC10	0.41537090	-0.1695651	1.000306917	0.3971299	
TC3-TC10	0.34046181	-0.2444742	0.925397830	0.6770280	
TC4-TC10	0.42727545	-0.1576606	1.012211467	0.3564392	
TC5-TC10	0.11466859	-0.4702674	0.699604606	0.9997514	
TC6-TC10	-0.09283135	-0.6777674	0.492104666	0.9999575	
TC7-TC10	0.14475367	-0.4401824	0.729689688	0.9983857	
TC9-TC10	-0.03728900	-0.5643046	0.489726577	1.0000000	
TC3-TC2	-0.07490909	-0.5980918	0.448273593	0.9999824	
TC4-TC2	0.01190455	-0.5112781	0.535087230	1.0000000	
TC5-TC2	-0.30070231	-0.8238850	0.222480369	0.6925466	
TC6-TC2	-0.50820225	-1.0313849	0.014980429	0.0642549	
TC7-TC2	-0.27061723	-0.7937999	0.252565451	0.8048756	
TC9-TC2	-0.45265989	-0.9101699	0.004850089	0.0549228	
TC4-TC3	0.08681364	-0.4363690	0.609996317	0.9999381	
TC5-TC3	-0.22579322	-0.7489759	0.297389456	0.9242657	
TC6-TC3	-0.43329316	-0.9564758	0.089889517	0.1950475	
TC7-TC3	-0.19570814	-0.7188908	0.327474538	0.9683939	
TC9-TC3	-0.37775081	-0.8352608	0.079759176	0.1984361	
TC5-TC4	-0.31260686	-0.8357895	0.210575820	0.6435098	
TC6-TC4	-0.52010680	-1.0432895	0.003075880	0.0526808	
TC7-TC4	-0.28252178	-0.8057045	0.240660902	0.7629059	
TC9-TC4	-0.46456444	-0.9220744	-0.007054460	0.0435236	
TC6-TC5	-0.20749994	-0.7306826	0.315682741	0.9542615	
TC7-TC5	0.03008508	-0.4930976	0.553267763	1.0000000	
TC9-TC5	-0.15195758	-0.6094676	0.305552401	0.9857482	
TC7-TC6	0.23758502	-0.2855977	0.760767702	0.8992343	
TC9-TC6	0.05554236	-0.4019676	0.513052340	0.9999958	
TC9-TC7	-0.18204266	-0.6395526	0.275467319	0.9533370	

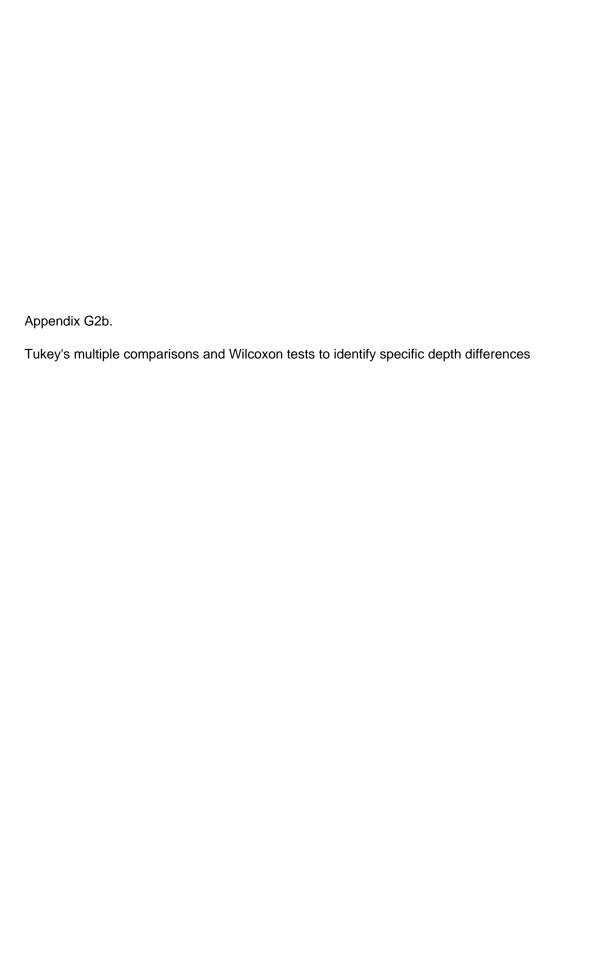
Tukey multiple comparisons of means 95% family-wise confidence level

95% family-wise confidence level							
	diff	lwr	upr	p adj			
TC1-CAN1	0.36700965	-0.07251928	0.80653858	0.1860863			
TC10-CAN1	0.34728898	-0.15625467	0.85083263	0.4398489			
TC2-CAN1	0.28480639	-0.15472254	0.72433532	0.5311689			
TC3-CAN1	0.27264415	-0.16688478	0.71217308	0.5930180			
TC4-CAN1	0.25330881	-0.18622012	0.69283774	0.6892393			
TC5-CAN1	0.42256451	-0.01696442	0.86209344	0.0699673			
TC6-CAN1	0.45567238	0.01614345	0.89520131	0.0357848			
TC7-CAN1	0.29873544	-0.14079349	0.73826437	0.4613731	<u>.</u>		
TC9-CAN1	0.06964812	-0.29963005	0.43892628	0.9998193			
TC10-TC1	-0.01972067	-0.56913183	0.52969049	1.0000000			
TC2-TC1	-0.08220327	-0.57361155	0.40920502	0.9999337			
TC3-TC1	-0.09436551	-0.58577379	0.39704277	0.9997903			
TC4-TC1	-0.11370084	-0.60510913	0.37770744	0.9990491			
TC5-TC1	0.05555485	-0.43585343	0.54696314	0.9999977			
TC6-TC1	0.08866273	-0.40274556	0.58007101	0.9998750			
TC7-TC1	-0.06827422	-0.55968250	0.42313406	0.9999864			
TC9-TC1	-0.29736154	-0.72708562	0.13236254	0.4349716			
TC2-TC10	-0.06248260	-0.61189376	0.48692857	0.9999976			
TC3-TC10	-0.07464484	-0.62405600	0.47476633	0.9999888			
TC4-TC10	-0.09398017	-0.64339133	0.45543099	0.9999200			
TC5-TC10	0.07527553	-0.47413564	0.62468669	0.9999879			
TC6-TC10	0.10838340	-0.44102776	0.65779456	0.9997382			
TC7-TC10	-0.04855355	-0.59796471	0.50085762	0.9999997			
TC9-TC10	-0.27764087	-0.77264926	0.21736753	0.7214174			
TC3-TC2	-0.01216224	-0.50357052	0.47924604	1.0000000			
TC4-TC2	-0.03149758	-0.52290586	0.45991071	1.0000000			
TC5-TC2	0.13775812	-0.35365016	0.62916640	0.9958114			
TC6-TC2	0.17086599	-0.32054229	0.66227428	0.9804990			
TC7-TC2	0.01392905	-0.47747923	0.50533733	1.0000000			
TC9-TC2	-0.21515827	-0.64488235	0.21456581	0.8329495			
TC4-TC3	-0.01933534	-0.51074362	0.47207295	1.0000000			
TC5-TC3	0.14992036	-0.34148792	0.64132864	0.9921937			
TC6-TC3	0.18302823	-0.30838005	0.67443652	0.9692654			
TC7-TC3	0.02609129	-0.46531699	0.51749957	1.0000000			
TC9-TC3	-0.20299603	-0.63272011	0.22672805	0.8755450			
TC5-TC4	0.16925570	-0.32215258	0.66066398	0.9817110			
TC6-TC4	0.20236357	-0.28904471	0.69377185	0.9424997			
TC7-TC4	0.04542663	-0.44598166	0.53683491	0.9999996			
TC9-TC4	-0.18366069	-0.61338477	0.24606338	0.9284094			
TC6-TC5	0.03310787	-0.45830041	0.52451615	1.0000000			
TC7-TC5	-0.12382907	-0.61523735	0.36757921	0.9981417			
TC9-TC5	-0.35291639	-0.78264047	0.07680769	0.2044572			
TC7-TC6	-0.15693694	-0.64834523	0.33447134	0.9891728			
TC9-TC6	-0.38602426	-0.81574834	0.04369981	0.1168410			
TC9-TC7	-0.22908732	-0.65881140	0.20063676	0.7760251			

Tukey multiple comparisons of means 95% family-wise confidence level

95% family-wise confidence level							
	diff	lwr	upr	p adj			
TC1-CAN1	0.371137638	-0.08054559	0.82282087	0.2038857			
TC10-CAN1	0.362261801	-0.15520635	0.87972995	0.4179334			
TC2-CAN1	0.308240347	-0.14344288	0.75992358	0.4554233			
TC3-CAN1	0.291091016	-0.16059221	0.74277425	0.5390293			
TC4-CAN1	0.267215172	-0.18446806	0.71889840	0.6564144			
TC5-CAN1	0.425938577	-0.02574465	0.87762181	0.0816442			
TC6-CAN1	0.477349116	0.02566589	0.92903235	0.0296274			
TC7-CAN1	0.306805673	-0.14487756	0.75848890	0.4622873			
TC9-CAN1	0.057123439	-0.32236638	0.43661326	0.9999729			
TC10-TC1	-0.008875837	-0.57347987	0.55572820	1.0000000			
TC2-TC1	-0.062897290	-0.56789449	0.44209991	0.9999947			
TC3-TC1	-0.080046622	-0.58504383	0.42495058	0.9999580			
TC4-TC1	-0.103922465	-0.60891967	0.40107474	0.9996299			
TC5-TC1	0.054800940	-0.45019626	0.55979814	0.9999984			
TC6-TC1	0.106211478	-0.39878573	0.61120868	0.9995581			
TC7-TC1	-0.064331965	-0.56932917	0.44066524	0.9999936			
TC9-TC1	-0.314014198	-0.75562144	0.12759305	0.3951700			
TC2-TC10	-0.054021453	-0.61862549	0.51058258	0.9999995			
TC3-TC10	-0.071170785	-0.63577482	0.49343325	0.9999941			
TC4-TC10	-0.095046628	-0.65965067	0.46955741	0.9999301			
TC5-TC10	0.063676777	-0.50092726	0.62828081	0.9999978			
TC6-TC10	0.115087315	-0.44951672	0.67969135	0.9996576			
TC7-TC10	-0.055456128	-0.62006017	0.50914791	0.9999993			
TC9-TC10	-0.305138361	-0.81383523	0.20355851	0.6383903			
TC3-TC2	-0.017149332	-0.52214654	0.48784787	1.0000000			
TC4-TC2	-0.041025175	-0.54602238	0.46397203	0.9999999			
TC5-TC2	0.117698230	-0.38729897	0.62269543	0.9989926			
TC6-TC2	0.169108768	-0.33588844	0.67410597	0.9849177			
TC7-TC2	-0.001434674	-0.50643188	0.50356253	1.0000000			
TC9-TC2	-0.251116908	-0.69272415	0.19049034	0.7053785			
TC4-TC3	-0.023875843	-0.52887305	0.48112136	1.0000000			
TC5-TC3	0.134847561	-0.37014964	0.63984477	0.9970985			
TC6-TC3	0.186258100	-0.31873910	0.69125530	0.9711568			
TC7-TC3	0.015714657	-0.48928255	0.52071186	1.0000000			
TC9-TC3	-0.233967576	-0.67557482	0.20763967	0.7821707			
TC5-TC4	0.158723405	-0.34627380	0.66372061	0.9903329			
TC6-TC4	0.210133943	-0.29486326	0.71513115	0.9388172			
TC7-TC4	0.039590500	-0.46540670	0.54458770	0.9999999			
TC9-TC4	-0.210091733	-0.65169898	0.23151551	0.8708638			
TC6-TC5	0.051410538	-0.45358667	0.55640774	0.9999991			
TC7-TC5	-0.119132904	-0.62413011	0.38586430	0.9988912			
TC9-TC5	-0.368815138	-0.81042238	0.07279211	0.1858813			
TC7-TC6	-0.170543443	-0.67554065	0.33445376	0.9840142			
TC9-TC6	-0.420225676	-0.86183292	0.02138157	0.0760115			
TC9-TC7	-0.249682233	-0.69128948	0.19192501	0.7121278			

```
Wilcox Tests between Transects:
 CAN1 - TC1: W = 52; P-value = 0
 CAN1 - TC10: W = 91.5; P-value = 0.0136
 CAN1 - TC2: W = 40.5; P-value = 0
 CAN1 - TC3: W = 20; P-value = 0
 CAN1 - TC4: W = 68; P-value = 0
 CAN1 - TC5: W = 54.5; P-value = 0
 CAN1 - TC6: W = 10.5; P-value = 0
 CAN1 - TC7: W = 5; P-value = 0
 CAN1 - TC9: W = 65.5; P-value = 0.0041
 TC1 - TC10: W = 144; P-value = 2e-04
 TC1 - TC2: W = 281; P-value = 0.8934
 TC1 - TC3: W = 320.5; P-value = 0.4971
 TC1 - TC4: W = 400.5; P-value = 0.4861
 TC1 - TC5: W = 367.5; P-value = 0.903
 TC1 - TC6: W = 296.5; P-value = 0.203
 TC1 - TC7: W = 261; P-value = 0.5847
 TC1 - TC9: W = 252; P-value = 0.2087
 TC10 - TC2: W = 0; P-value = 2e-04
 TC10 - TC3: W = 0; P-value = 1e-04
 TC10 - TC4: W = 0; P-value = 1e-04
 TC10 - TC5: W = 0; P-value = 1e-04
 TC10 - TC6: W = 0; P-value = 1e-04
 TC10 - TC7: W = 0; P-value = 2e-04
 TC10 - TC9: W = 1; P-value = 0
 TC2 - TC3: W = 319; P-value = 0.4806
 TC2 - TC4: W = 434; P-value = 0.2006
 TC2 - TC5: W = 387; P-value = 0.6445
 TC2 - TC6: W = 296; P-value = 0.2
 TC2 - TC7: W = 251.5; P-value = 0.4578
 TC2 - TC9: W = 274; P-value = 0.0658
 TC3 - TC4: W = 595.5; P-value = 0.032
 TC3 - TC5: W = 513; P-value = 0.3554
 TC3 - TC6: W = 376; P-value = 0.2016
 TC3 - TC7: W = 292.5; P-value = 0.2434
 TC3 - TC9: W = 353; P-value = 0.0308
 TC4 - TC5: W = 404.5; P-value = 0.5058
 TC4 - TC6: W = 267; P-value = 0.0044
 TC4 - TC7: W = 227; P-value = 0.0211
 TC4 - TC9: W = 316; P-value = 0.1803
 TC5 - TC6: W = 310; P-value = 0.0258
 TC5 - TC7: W = 267; P-value = 0.1072
 TC5 - TC9: W = 326.5; P-value = 0.1159
 TC6 - TC7: W = 414.5; P-value = 0.4758
 TC6 - TC9: W = 420.5; P-value = 7e-04
```


P-values reported are not adjusted for multiple comparisons. Adjusted significance level is 0.05 / 45 = 0.00111.

TC7 - TC9: W = 304.5; P-value = 0.0081

```
Wilcox Tests between Transects:
 CAN1 - TC1: W = 34; P-value = 0
 CAN1 - TC10: W = 74.5; P-value = 0.1817
 CAN1 - TC2: W = 43; P-value = 0
 CAN1 - TC3: W = 30.5; P-value = 0
 CAN1 - TC4: W = 75.5; P-value = 0
 CAN1 - TC5: W = 66; P-value = 0
 CAN1 - TC6: W = 16; P-value = 0
 CAN1 - TC7: W = 10; P-value = 0
 CAN1 - TC9: W = 52.5; P-value = 0.001
 TC1 - TC10: W = 144; P-value = 2e-04
 TC1 - TC2: W = 302.5; P-value = 0.7727
 TC1 - TC3: W = 373.5; P-value = 0.8209
 TC1 - TC4: W = 399.5; P-value = 0.4968
 TC1 - TC5: W = 391.5; P-value = 0.5893
 TC1 - TC6: W = 303; P-value = 0.2449
 TC1 - TC7: W = 278; P-value = 0.8447
 TC1 - TC9: W = 253; P-value = 0.1991
 TC10 - TC2: W = 0; P-value = 2e-04
 TC10 - TC3: W = 0; P-value = 1e-04
 TC10 - TC4: W = 0; P-value = 1e-04
 TC10 - TC5: W = 0; P-value = 1e-04
 TC10 - TC6: W = 0; P-value = 1e-04
 TC10 - TC7: W = 0; P-value = 2e-04
 TC10 - TC9: W = 2; P-value = 7e-04
 TC2 - TC3: W = 343; P-value = 0.7738
 TC2 - TC4: W = 392.5; P-value = 0.5771
 TC2 - TC5: W = 387; P-value = 0.6444
 TC2 - TC6: W = 276.5; P-value = 0.1068
 TC2 - TC7: W = 237.5; P-value = 0.3024
 TC2 - TC9: W = 253; P-value = 0.1992
 TC3 - TC4: W = 549.5; P-value = 0.143
 TC3 - TC5: W = 516; P-value = 0.3326
 TC3 - TC6: W = 370.5; P-value = 0.175
 TC3 - TC7: W = 286.5; P-value = 0.2036
 TC3 - TC9: W = 332; P-value = 0.0901
 TC4 - TC5: W = 423; P-value = 0.6949
 TC4 - TC6: W = 272.5; P-value = 0.0056
 TC4 - TC7: W = 232.5; P-value = 0.027
 TC4 - TC9: W = 288; P-value = 0.4715
 TC5 - TC6: W = 303; P-value = 0.0198
```

P-values reported are not adjusted for multiple comparisons. Adjusted significance level is 0.05 / 45 = 0.00111.

TC5 - TC7: W = 258; P-value = 0.0772 TC5 - TC9: W = 300.5; P-value = 0.319 TC6 - TC7: W = 405; P-value = 0.581 TC6 - TC9: W = 385.5; P-value = 0.0088 TC7 - TC9: W = 289.5; P-value = 0.0245

Dependent Variable Alkalinity

Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.152

The p-value is 0.927 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 2.000

The p-value is 0.368 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.288

The p-value is 0.866 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 0.235

The p-value is 0.889 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.281

The p-value is 0.869 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 0.072

The p-value is 0.965 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 0.395

The p-value is 0.821 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 0.063

The p-value is 0.969 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 1.339

The p-value is 0.512 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 0.871

The p-value is 0.647 assuming chi-square distribution with 2 df.

Dependent Variable Chloride ion

Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.322

The p-value is 0.851 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 2.500

The p-value is 0.287 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.236

The p-value is 0.889 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 0.409

The p-value is 0.815 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 3.395

The p-value is 0.183 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 0.454

The p-value is 0.797 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 10.807

The p-value is 0.005 assuming chi-square distribution with $2\ \mathrm{df.}$

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 4.838

The p-value is 0.089 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 4.760

The p-value is 0.093 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 0.232

The p-value is 0.890 assuming chi-square distribution with 2 df.

P-values reported are not adjusted for multiple comparisons.

Adjusted significance level is 0.05 / 10 = 0.005.

Dependent Variable Chloride ion Grouping Variable DEPTH\$

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 10.807

The p-value is 0.005 assuming chi-square distribution with 2 df.

Wilcoxon rank sum test with continuity correction NB - NSH W = 6.5, p-value = 0.006522 alternative hypothesis: true location shift is not equal to 0

Wilcoxon rank sum test with continuity correction NB - NS W = 27.5, p-value = 0.01095 alternative hypothesis: true location shift is not equal to 0

Wilcoxon rank sum test with continuity correction NSH - NS $\,$ W = 48.5, p-value = 0.2606 alternative hypothesis: true location shift is not equal to 0

Dependent Variable Hardness Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.197

The p-value is 0.906 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 2.571

The p-value is 0.276 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.302

The p-value is 0.860 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 0.359

The p-value is 0.835 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 3.105

The p-value is 0.212 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 0.099

The p-value is 0.952 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 0.508

The p-value is 0.776 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 0.843

The p-value is 0.656 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 2.226

The p-value is 0.329 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 0.716

The p-value is 0.699 assuming chi-square distribution with 2 df.

Dependent Variable Silica Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.082

The p-value is 0.960 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 3.162

The p-value is 0.206 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.181

The p-value is 0.913 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 0.445

The p-value is 0.801 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.356

The p-value is 0.837 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 1.486

The p-value is 0.476 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 0.506

The p-value is 0.776 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 2.633

The p-value is 0.268 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 0.936

The p-value is 0.626 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 1.582

The p-value is 0.453 assuming chi-square distribution with 2 df.

Dependent Variable Silicon, dissolved

Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.232

The p-value is 0.890 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 3.429

The p-value is 0.180 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.008

The p-value is 0.996 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 1.800

The p-value is 0.407 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.408

The p-value is 0.816 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 1.175

The p-value is 0.556 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 2.779

The p-value is 0.249 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 1.165

The p-value is 0.559 assuming chi-square distribution with 2 df.

Dependent Variable Silicon, total

Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.114

The p-value is 0.944 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 0.286

The p-value is 0.867 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.472

The p-value is 0.790 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 2.250

The p-value is 0.325 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.485

The p-value is 0.785 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 0.754

The p-value is 0.686 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 3.644

The p-value is 0.162 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 2.613

The p-value is 0.271 assuming chi-square distribution with 2 df.

Dependent Variable Sulfate Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.570

The p-value is 0.752 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 1.250

The p-value is 0.535 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.758

The p-value is 0.684 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 0.139

The p-value is 0.933 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.130

The p-value is 0.937 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 0.125

The p-value is 0.939 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 0.173

The p-value is 0.917 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 1.508

The p-value is 0.470 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 2.182

The p-value is 0.336 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 1.452

The p-value is 0.484 assuming chi-square distribution with 2 df.

Dependent Variable TDS, lab Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 1.696

The p-value is 0.428 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 0.074

The p-value is 0.964 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 2.715

The p-value is 0.257 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 4.076

The p-value is 0.130 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 1.358

The p-value is 0.507 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 0.649

The p-value is 0.723 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 2.395

The p-value is 0.302 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 0.643

The p-value is 0.725 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 0.090

The p-value is 0.956 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 2.814

The p-value is 0.245 assuming chi-square distribution with 2 df.

Dependent Variable Aluminum, total

Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.079

The p-value is 0.961 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 4.571

The p-value is 0.102 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.378

The p-value is 0.828 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 1.509

The p-value is 0.470 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 7.574

The p-value is 0.023 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 4.339

The p-value is 0.114 assuming chi-square distribution with 2 df.

Results for TRANSECTS = TC5

Kruskal-Wallis Test Statistic: 13.498

The p-value is 0.001 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 8.277

The p-value is 0.016 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 6.846

The p-value is 0.033 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 1.309

The p-value is 0.520 assuming chi-square distribution with 2 df.

P-values reported are not adjusted for multiple comparisons.

Adjusted significance level is 0.05 / 10 = 0.005.

Dependent Variable Aluminum, total Grouping Variable DEPTH\$

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 13.498

The p-value is 0.001 assuming chi-square distribution with 2 df.

Wilcoxon rank sum test with continuity correction NB - NS W = 18.5, p-value = 0.1112 alternative hypothesis: true location shift is not equal to 0

Wilcoxon rank sum test with continuity correction

NB - NS W = 123, p-value = 0.00355

alternative hypothesis: true location shift is not equal to 0

Wilcoxon rank sum test with continuity correction NSH - NS W = 67, p-value = 0.004282 alternative hypothesis: true location shift is not equal to 0

Dependent Variable Antimony, dissolved

Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.234

The p-value is 0.889 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 3.429

The p-value is 0.180 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.756

The p-value is 0.685 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 0.202

The p-value is 0.904 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.570

The p-value is 0.752 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 3.627

The p-value is 0.163 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 5.143

The p-value is 0.076 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 12.253

The p-value is 0.002 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 0.969

The p-value is 0.616 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 0.518

The p-value is 0.772 assuming chi-square distribution with 2 df.

P-values reported are not adjusted for multiple comparisons.

Adjusted significance level is 0.05 / 10 = 0.005.

Dependent Variable Antimony, dissolved Grouping Variable DEPTH\$

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 12.253

The p-value is 0.002 assuming chi-square distribution with 2 df.

Wilcoxon rank sum test with continuity correction

NB - NSH W = 5, p-value = 0.004282

alternative hypothesis: true location shift is not equal to 0

Wilcoxon rank sum test with continuity correction NB - NS W = 27, p-value = 0.006008 alternative hypothesis: true location shift is not equal to 0

Wilcoxon rank sum test with continuity correction NSH - NS $\,$ W = 54, p-value = 0.2033 alternative hypothesis: true location shift is not equal to 0

Dependent Variable Antimony, total

Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.492

The p-value is 0.782 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 1.838

The p-value is 0.399 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.116

The p-value is 0.944 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 0.323

The p-value is 0.851 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.856

The p-value is 0.652 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 1.634

The p-value is 0.442 assuming chi-square distribution with 2 df.

Results for TRANSECTS = TC5

Kruskal-Wallis Test Statistic: 4.761

The p-value is 0.093 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 13.205

The p-value is 0.001 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 3.253

The p-value is 0.197 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 1.522

The p-value is 0.467 assuming chi-square distribution with 2 df.

P-values reported are not adjusted for multiple comparisons.

Adjusted significance level is 0.05 / 10 = 0.005.

Dependent Variable Antimony, total Grouping Variable DEPTH\$

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 13.205

The p-value is 0.001 assuming chi-square distribution with 2 df.

Wilcoxon rank sum test with continuity correction NB - NSH W = 7, p-value = 0.007602 alternative hypothesis: true location shift is not equal to 0

Wilcoxon rank sum test with continuity correction NB - NS W = 17.5, p-value = 0.001093 alternative hypothesis: true location shift is not equal to 0

Wilcoxon rank sum test with continuity correction NSH - NS $\,$ W = 41, p-value = 0.8952 alternative hypothesis: true location shift is not equal to 0

Dependent Variable Arsenic, dissolved

Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.038

The p-value is 0.981 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 2.000

The p-value is 0.368 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 1.970

The p-value is 0.373 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 1.275

The p-value is 0.529 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.105

The p-value is 0.949 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 0.808

The p-value is 0.668 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 3.009

The p-value is 0.222 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 8.820

The p-value is 0.012 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 1.543

The p-value is 0.462 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 0.816

The p-value is 0.665 assuming chi-square distribution with 2 df.

Dependent Variable Inorganic arsenic, dissolved Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 1.133

The p-value is 0.568 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 3.714

The p-value is 0.156 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 1.869

The p-value is 0.393 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 0.151

The p-value is 0.927 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.492

The p-value is 0.782 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 0.615

The p-value is 0.735 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 6.271

The p-value is 0.043 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 15.497

The p-value is 0.000 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 3.487

The p-value is 0.175 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 3.069

The p-value is 0.216 assuming chi-square distribution with 2 df.

Dependent Variable Inorganic arsenic, dissolved Grouping Variable DEPTH\$

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 15.497

The p-value is 0.000 assuming chi-square distribution with 2 df.

Wilcoxon rank sum test with continuity correction NB - NSH W = 4, p-value = 0.00316 alternative hypothesis: true location shift is not equal to 0

Wilcoxon rank sum test with continuity correction NB - NS W = 14, p-value = 0.0005511 alternative hypothesis: true location shift is not equal to 0

Wilcoxon rank sum test with continuity correction NSH - NS $\,$ W = 48, p-value = 0.456 alternative hypothesis: true location shift is not equal to 0

Dependent Variable Inorganic arsenic, total Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.495

The p-value is 0.781 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 0.000

The p-value is 1.000 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 1.016

The p-value is 0.602 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 1.356

The p-value is 0.508 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.320

The p-value is 0.852 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 2.554

The p-value is 0.279 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 4.916

The p-value is 0.086 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 10.030

The p-value is 0.007 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 4.006

The p-value is 0.135 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 4.970

The p-value is 0.083 assuming chi-square distribution with 2 df.

Dependent Variable Barium, dissolved

Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 1.256

The p-value is 0.534 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 3.603

The p-value is 0.165 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.653

The p-value is 0.721 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 0.222

The p-value is 0.895 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.114

The p-value is 0.945 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 2.310

The p-value is 0.315 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 4.109

The p-value is 0.128 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 8.874

The p-value is 0.012 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 4.122

The p-value is 0.127 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 0.903

The p-value is 0.637 assuming chi-square distribution with 2 df.

Dependent Variable Barium, total Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.091

The p-value is 0.955 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 2.721

The p-value is 0.257 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.471

The p-value is 0.790 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 0.182

The p-value is 0.913 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.295

The p-value is 0.863 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 2.563

The p-value is 0.278 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 3.584

The p-value is 0.167 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 7.925

The p-value is 0.019 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 3.122

The p-value is 0.210 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 1.348

The p-value is 0.510 assuming chi-square distribution with 2 df.

Dependent Variable Cadmium, dissolved

Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 1.338

The p-value is 0.512 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 1.591

The p-value is 0.451 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.058

The p-value is 0.971 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 1.141

The p-value is 0.565 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 2.204

The p-value is 0.332 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 6.190

The p-value is 0.045 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 5.866

The p-value is 0.053 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 6.494

The p-value is 0.039 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 3.585

The p-value is 0.167 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 0.220

The p-value is 0.896 assuming chi-square distribution with 2 df.

Page G2b - 22

Dependent Variable Cadmium, total

Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.047

The p-value is 0.977 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 1.397

The p-value is 0.497 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 1.010

The p-value is 0.603 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 0.492

The p-value is 0.782 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 2.879

The p-value is 0.237 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 1.352

The p-value is 0.509 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 5.102

The p-value is 0.078 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 7.600

The p-value is 0.022 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 0.478

The p-value is 0.787 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 1.203

The p-value is 0.548 assuming chi-square distribution with 2 df.

Dependent Variable Calcium, total

Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.225

The p-value is 0.893 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 2.803

The p-value is 0.246 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.839

The p-value is 0.657 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 0.202

The p-value is 0.904 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.686

The p-value is 0.710 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 0.174

The p-value is 0.917 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 1.007

The p-value is 0.604 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 1.884

The p-value is 0.390 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 2.012

The p-value is 0.366 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 0.483

The p-value is 0.785 assuming chi-square distribution with 2 df.

Dependent Variable Cerium, total

Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.115

The p-value is 0.944 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 4.333

The p-value is 0.115 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.979

The p-value is 0.613 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 1.800

The p-value is 0.407 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 6.753

The p-value is 0.034 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 7.636

The p-value is 0.022 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 9.529

The p-value is 0.009 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 1.196

The p-value is 0.550 assuming chi-square distribution with 2 df.

Dependent Variable Cesium, dissolved

Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 1.417

The p-value is 0.492 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 0.000

The p-value is 1.000 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.618

The p-value is 0.734 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 0.000

The p-value is 1.000 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.412

The p-value is 0.814 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 0.520

The p-value is 0.771 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 6.562

The p-value is 0.038 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 3.279

The p-value is 0.194 assuming chi-square distribution with 2 df.

Dependent Variable Cesium, total Grouping Variable DEPTH\$ Results for TRANSECT\$ = CAN1 Df Sum Sq Mean Sq F value Pr(>F) MET\$Depth[MET\$Transect=="CAN1"] 2 0.0081 0.004065 0.166 0.848 Residuals 15 0.3670 0.024465 Results for TRANSECT\$ = TC10 Df Sum Sq Mean Sq F value Pr(>F) MET\$Depth[MET\$Transect=="TC10"] 2 0.01034 0.005168 0.5 0.65 Residuals 3 0.03101 0.010336 Results for TRANSECT\$ = TC1 Df Sum Sq Mean Sq F value Pr(>F) MET\$Depth[MET\$Transect=="TC1"] 2 0.00744 0.00372 0.368 0.697 Residuals 21 0.21244 0.01012 Results for TRANSECT\$ = TC2 Insufficient replication for comparisons (one sample per depth) Results for TRANSECT\$ = TC3 Df Sum Sq Mean Sq F value Pr(>F) MET\$Depth[MET\$Transect=="TC3"] 2 0.02429 0.012145 2.08 0.144 Residuals 27 0.15762 0.005838 Results for TRANSECT\$ = TC4 Df Sum Sq Mean Sq F value Pr(>F) MET\$Depth[MET\$Transect=="TC4"] 2 0.2204 0.11019 3.546 0.0429 * Residuals 27 0.8391 0.03108 Tukey multiple comparisons of means 95% family-wise confidence level diff lwr upr p adj NS-NB -0.15051500 -0.32895383 0.02792384 0.1105333 NSH-NB 0.05738917 -0.16115288 0.27593122 0.7933379 NSH-NS 0.20790417 -0.01063788 0.42644622 0.0645718

Results for TRANSECT\$ = TC6

Df Sum Sq Mean Sq F value Pr(>F)
MET\$Depth[MET\$Transect=="TC6"] 2 0.3558 0.17790 3.9 0.0321 *
Residuals 28 1.2772 0.04561

Tukey multiple comparisons of means 95% family-wise confidence level

NS-NB -0.01543047 -0.22698184 0.1961209 0.9822148 NSH-NB 0.26257376 -0.00165382 0.5268013 0.0516999 NSH-NS 0.27800422 0.01718618 0.5388223 0.0349076

Results for TRANSECT\$ = TC9

Df Sum Sq Mean Sq F value Pr(>F)
MET\$Depth[MET\$Transect=="TC9"] 2 0.00505 0.002523 0.338 0.719
Residuals 14 0.10439 0.007457

Dependent Variable Cobalt, total

Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 1.136

The p-value is 0.567 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 1.397

The p-value is 0.497 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.230

The p-value is 0.891 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 2.451

The p-value is 0.294 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 5.951

The p-value is 0.051 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 6.660

The p-value is 0.036 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 4.995

The p-value is 0.082 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 5.887

The p-value is 0.053 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 0.041

The p-value is 0.980 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 0.386

The p-value is 0.824 assuming chi-square distribution with 2 df.

Dependent Variable Copper, total

Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 2.878

The p-value is 0.237 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 0.515

The p-value is 0.773 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.406

The p-value is 0.816 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 6.598

The p-value is 0.037 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 4.128

The p-value is 0.127 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 5.565

The p-value is 0.062 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 8.642

The p-value is 0.013 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 3.207

The p-value is 0.201 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 1.757

The p-value is 0.415 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 2.338

The p-value is 0.311 assuming chi-square distribution with 2 df.

Dependent Variable Europium, dissolved

Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 2.000

The p-value is 0.368 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 2.000

The p-value is 0.368 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 3.275

The p-value is 0.194 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 2.700

The p-value is 0.259 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.585

The p-value is 0.747 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 0.828

The p-value is 0.661 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 4.078

The p-value is 0.130 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 1.406

The p-value is 0.495 assuming chi-square distribution with 2 df.

Dependent Variable Europium, total

Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 1.429

The p-value is 0.490 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 2.000

The p-value is 0.368 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.001

The p-value is 0.999 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 3.000

The p-value is 0.223 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 1.985

The p-value is 0.371 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 2.270

The p-value is 0.321 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 3.978

The p-value is 0.137 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 3.497

The p-value is 0.174 assuming chi-square distribution with 2 df.

Dependent Variable Iron, total Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.292

The p-value is 0.864 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 4.191

The p-value is 0.123 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.364

The p-value is 0.833 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 4.074

The p-value is 0.130 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 5.514

The p-value is 0.063 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 6.855

The p-value is 0.032 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 20.670

The p-value is 0.000 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 8.329

The p-value is 0.016 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 9.592

The p-value is 0.008 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 2.170

The p-value is 0.338 assuming chi-square distribution with 2 df.

P-values reported are not adjusted for multiple comparisons.

Adjusted significance level is 0.05 / 10 = 0.005.

Dependent Variable Iron, total Grouping Variable DEPTH\$

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 20.670

The p-value is 0.000 assuming chi-square distribution with 2 df.

Wilcoxon rank sum test with continuity correction NB - NSH $\,$ W = 15, p-value = 0.05486 alternative hypothesis: true location shift is not equal to 0

Wilcoxon rank sum test with continuity correction

NB - NS W = 139, p-value = 0.0001233

alternative hypothesis: true location shift is not equal to 0

Wilcoxon rank sum test with continuity correction

NSH - NS W = 72, p-value = 0.0008846

alternative hypothesis: true location shift is not equal to 0

Dependent Variable Lanthanum, total

Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.153

The p-value is 0.926 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 2.903

The p-value is 0.234 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.415

The p-value is 0.813 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 0.917

The p-value is 0.632 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 4.151

The p-value is 0.125 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 5.893

The p-value is 0.053 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 6.152

The p-value is 0.046 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 0.953

The p-value is 0.621 assuming chi-square distribution with 2 df.

Dependent Variable Lead, total Grouping Variable DEPTH\$

D----1+-- ----

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.114

The p-value is 0.944 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 0.000

The p-value is 1.000 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 1.325

The p-value is 0.516 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 3.401

The p-value is 0.183 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 5.309

The p-value is 0.070 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 1.837

The p-value is 0.399 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 5.449

The p-value is 0.066 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 5.087

The p-value is 0.079 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 9.262

The p-value is 0.010 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 1.459

The p-value is 0.482 assuming chi-square distribution with 2 df.

Dependent Variable Magnesium, dissolved

Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.504

The p-value is 0.777 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 2.721

The p-value is 0.257 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.736

The p-value is 0.692 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 1.057

The p-value is 0.589 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.744

The p-value is 0.689 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 0.205

The p-value is 0.902 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 0.798

The p-value is 0.671 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 0.228

The p-value is 0.892 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 0.269

The p-value is 0.874 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 0.505

The p-value is 0.777 assuming chi-square distribution with 2 df.

Dependent Variable Magnesium, total

Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.319

The p-value is 0.853 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 0.000

The p-value is 1.000 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.135

The p-value is 0.935 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 0.576

The p-value is 0.750 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 3.518

The p-value is 0.172 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 0.907

The p-value is 0.635 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 1.522

The p-value is 0.467 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 0.022

The p-value is 0.989 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 1.968

The p-value is 0.374 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 1.652

The p-value is 0.438 assuming chi-square distribution with 2 df.

Dependent Variable Manganese, total

Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 1.116

The p-value is 0.572 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 0.857

The p-value is 0.651 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.215

The p-value is 0.898 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 4.740

The p-value is 0.093 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 7.078

The p-value is 0.029 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 3.686

The p-value is 0.158 assuming chi-square distribution with 2 df.

Results for TRANSECTS = TC5

Kruskal-Wallis Test Statistic: 18.287

The p-value is 0.000 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 6.179

The p-value is 0.046 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 5.200

The p-value is 0.074 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 1.607

The p-value is 0.448 assuming chi-square distribution with 2 df.

P-values reported are not adjusted for multiple comparisons.

Adjusted significance level is 0.05 / 10 = 0.005.

Dependent Variable Manganese, total Grouping Variable DEPTH\$

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 18.287

The p-value is 0.000 assuming chi-square distribution with 2 df.

Wilcoxon rank sum test with continuity correction NB - NSH $\,$ W = 37, p-value = 0.9626 alternative hypothesis: true location shift is not equal to 0

Wilcoxon rank sum test with continuity correction

NB - NS W = 137, p-value = 0.0001962

alternative hypothesis: true location shift is not equal to 0

Wilcoxon rank sum test with continuity correction

NSH - NS W = 72, p-value = 0.0008846

alternative hypothesis: true location shift is not equal to 0

Dependent Variable Molybdenum, dissolved

Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.856

The p-value is 0.652 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 3.529

The p-value is 0.171 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 1.228

The p-value is 0.541 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 0.610

The p-value is 0.737 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.029

The p-value is 0.986 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 0.081

The p-value is 0.960 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 0.551

The p-value is 0.759 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 0.123

The p-value is 0.940 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 0.895

The p-value is 0.639 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 2.264

The p-value is 0.322 assuming chi-square distribution with 2 df.

Dependent Variable Molybdenum, total

Grouping Variable DEPTH\$

DELIUS

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 3.287

The p-value is 0.193 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 0.857

The p-value is 0.651 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.899

The p-value is 0.638 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 0.490

The p-value is 0.783 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.174

The p-value is 0.917 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 5.000

The p-value is 0.082 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 0.115

The p-value is 0.944 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 1.178

The p-value is 0.555 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 0.822

The p-value is 0.663 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 0.921

The p-value is 0.631 assuming chi-square distribution with 2 df.

P-values reported are not adjusted for multiple comparisons.

Adjusted significance level is 0.05 / 10 = 0.005.

Dependent Variable Nickel, dissolved

Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.380

The p-value is 0.827 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 4.571

The p-value is 0.102 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.971

The p-value is 0.616 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 1.079

The p-value is 0.583 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 2.282

The p-value is 0.320 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 3.600

The p-value is 0.165 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 7.583

The p-value is 0.023 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 11.809

The p-value is 0.003 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 10.081

The p-value is 0.006 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 1.367

The p-value is 0.505 assuming chi-square distribution with 2 df.

P-values reported are not adjusted for multiple comparisons.

Adjusted significance level is 0.05 / 10 = 0.005.

Dependent Variable Nickel, dissolved Grouping Variable DEPTH\$

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 11.809

The p-value is 0.003 assuming chi-square distribution with 2 df.

Wilcoxon rank sum test with continuity correction NB - NSH W = 4, p-value = 0.003144 alternative hypothesis: true location shift is not equal to 0

Wilcoxon rank sum test with continuity correction NB - NS W = 37.5, p-value = 0.0292 alternative hypothesis: true location shift is not equal to 0

Wilcoxon rank sum test with continuity correction NSH - NS W = 62.5, p-value = 0.0433 alternative hypothesis: true location shift is not equal to 0

Dependent Variable Nickel, total

Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.432

The p-value is 0.806 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 1.591

The p-value is 0.451 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.495

The p-value is 0.781 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 1.498

The p-value is 0.473 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 5.001

The p-value is 0.082 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 8.898

The p-value is 0.012 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 8.168

The p-value is 0.017 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 11.163

The p-value is 0.004 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 9.298

The p-value is 0.010 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 1.964

The p-value is 0.375 assuming chi-square distribution with 2 df.

P-values reported are not adjusted for multiple comparisons.

Adjusted significance level is 0.05 / 10 = 0.005.

Dependent Variable Nickel, total Grouping Variable DEPTH\$

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 11.163

The p-value is 0.004 assuming chi-square distribution with 2 df.

Wilcoxon rank sum test with continuity correction NB - NSH W = 2, p-value = 0.001694 alternative hypothesis: true location shift is not equal to 0

Wilcoxon rank sum test with continuity correction NB - NS W = 54, p-value = 0.2009 alternative hypothesis: true location shift is not equal to 0

Wilcoxon rank sum test with continuity correction NSH - NS = 67, p-value = 0.01587 alternative hypothesis: true location shift is not equal to 0

Dependent Variable Potassium, dissolved Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.799

The p-value is 0.671 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 0.857

The p-value is 0.651 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.658

The p-value is 0.720 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 1.273

The p-value is 0.529 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.131

The p-value is 0.936 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 3.157

The p-value is 0.206 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 2.711

The p-value is 0.258 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 4.367

The p-value is 0.113 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 2.057

The p-value is 0.358 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 1.099

The p-value is 0.577 assuming chi-square distribution with 2 df.

Dependent Variable Potassium, total

Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 1.731

The p-value is 0.421 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 3.429

The p-value is 0.180 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.659

The p-value is 0.719 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 0.606

The p-value is 0.739 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 4.990

The p-value is 0.082 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 0.919

The p-value is 0.631 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 5.258

The p-value is 0.072 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 5.757

The p-value is 0.056 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7

Kruskal-Wallis Test Statistic: 1.338

The p-value is 0.512 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 6.214

The p-value is 0.045 assuming chi-square distribution with 2 df.

Dependent Variable Rubidium, dissolved

Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.806

The p-value is 0.668 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 0.968

The p-value is 0.616 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.077

The p-value is 0.962 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 1.800

The p-value is 0.407 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 2.044

The p-value is 0.360 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 0.217

The p-value is 0.897 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 3.389

The p-value is 0.184 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 1.825

The p-value is 0.402 assuming chi-square distribution with 2 df.

Dependent Variable Rubidium, total

Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.603

The p-value is 0.740 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 3.333

The p-value is 0.189 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.223

The p-value is 0.895 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 1.800

The p-value is 0.407 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 2.572

The p-value is 0.276 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 3.989

The p-value is 0.136 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 5.698

The p-value is 0.058 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 3.103

The p-value is 0.212 assuming chi-square distribution with 2 df.

Dependent Variable Scandium, dissolved

Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.105

The p-value is 0.949 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 3.603

The p-value is 0.165 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.431

The p-value is 0.806 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 1.800

The p-value is 0.407 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.044

The p-value is 0.978 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 0.866

The p-value is 0.649 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 5.362

The p-value is 0.069 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 0.479

The p-value is 0.787 assuming chi-square distribution with 2 df.

P-values reported are not adjusted for multiple comparisons. Adjusted significance level is 0.05 / 8 = 0.00625.

Page G2b - 50

Dependent Variable Scandium, total

Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.179

The p-value is 0.915 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 2.258

The p-value is 0.323 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.215

The p-value is 0.898 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 2.700

The p-value is 0.259 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.387

The p-value is 0.824 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 0.400

The p-value is 0.819 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 2.629

The p-value is 0.269 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 0.763

The p-value is 0.683 assuming chi-square distribution with 2 df.

Dependent Variable Sodium, dissolved

Grouping Variable DEPTH\$

Results for TRANSECT\$ = CAN1

Kruskal-Wallis Test Statistic: 0.495

The p-value is 0.781 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC10

Kruskal-Wallis Test Statistic: 2.000

The p-value is 0.368 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC1

Kruskal-Wallis Test Statistic: 0.030

The p-value is 0.985 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2

Kruskal-Wallis Test Statistic: 3.370

The p-value is 0.185 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC3

Kruskal-Wallis Test Statistic: 0.133

The p-value is 0.936 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4

Kruskal-Wallis Test Statistic: 0.162

The p-value is 0.922 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC5

Kruskal-Wallis Test Statistic: 2.759

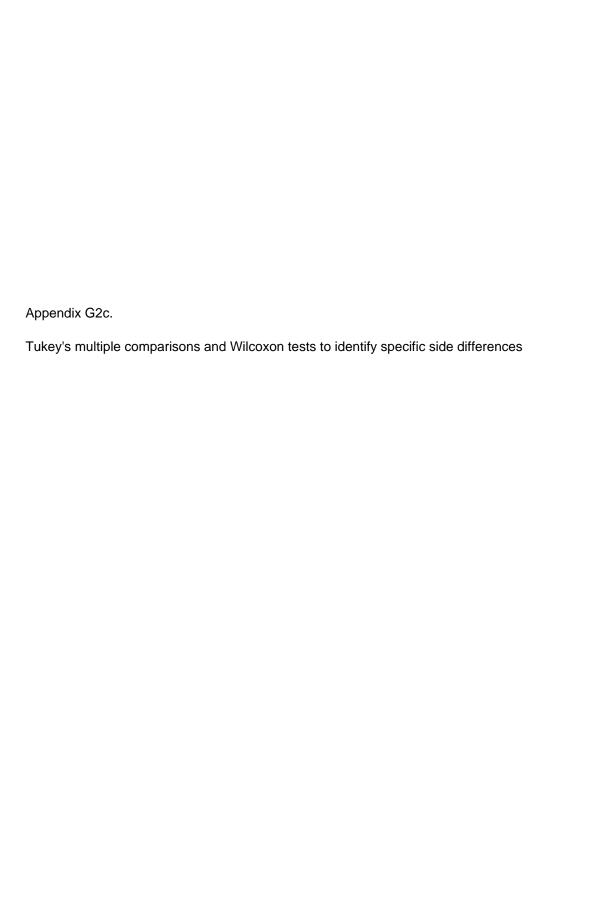
The p-value is 0.252 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6

Kruskal-Wallis Test Statistic: 2.519

The p-value is 0.284 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7


Kruskal-Wallis Test Statistic: 0.522

The p-value is 0.770 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 0.365

The p-value is 0.833 assuming chi-square distribution with 2 df.

Dependent Variable Arsenic, dissolved Grouping Variable SIDE\$

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 7.993

The p-value is 0.005 assuming chi-square distribution with 1 df.

 Dependent Variable Inorganic arsenic, dissolved Grouping Variable SIDE\$

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 9.199

The p-value is 0.002 assuming chi-square distribution with 1 df.

Dependent Variable Barium, dissolved Grouping Variable SIDE\$

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 10.704

The p-value is 0.001 assuming chi-square distribution with 1 df.

Wilcoxon rank sum test with continuity correction
data: BAdis[MET\$Transect == "TC9" & MET\$Side == "L"] and
BAdis[MET\$Transect == "TC9" & MET\$Side == "R"]
W = 70, p-value = 0.001266
alternative hypothesis: true location shift is not equal to 0

Dependent Variable Barium, total Grouping Variable SIDE\$

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 12.000

The p-value is 0.001 assuming chi-square distribution with 1 df.

Wilcoxon rank sum test with continuity correction
data: BAtot[MET\$Transect == "TC9" & MET\$Side == "L"] and
BAtot[MET\$Transect == "TC9" & MET\$Side == "R"]
W = 72, p-value = 0.0006355
alternative hypothesis: true location shift is not equal to 0

Dependent Variable Magnesium, total Grouping Variable SIDE\$

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 8.898

The p-value is 0.003 assuming chi-square distribution with 1 df.

 Dependent Variable Manganese, total Grouping Variable SIDE\$

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 8.920

The p-value is 0.003 assuming chi-square distribution with 1 df.

 Dependent Variable Strontium, total Grouping Variable SIDE\$

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 7.806

The p-value is 0.005 assuming chi-square distribution with 1 df.

Wilcoxon rank sum test with continuity correction
data: STtot[MET\$Transect == "TC9" & MET\$Side == "L"] and
 STtot[MET\$Transect == "TC9" & MET\$Side == "R"]
W = 7, p-value = 0.006037
alternative hypothesis: true location shift is not equal to 0

Dependent Variable Vanadium, dissolved Grouping Variable SIDE\$

Results for TRANSECT\$ = TC9

Kruskal-Wallis Test Statistic: 8.374

The p-value is 0.004 assuming chi-square distribution with 1 df.

Wilcoxon rank sum test with continuity correction
data: Vdis[MET\$Transect == "TC9" & MET\$Side == "L"] and
Vdis[MET\$Transect == "TC9" & MET\$Side == "R"]
W = 66, p-value = 0.004432
alternative hypothesis: true location shift is not equal to 0

Table H-1. Field Measurements made during the First Round of Surface Water Sampling (Fall 2009)

						Depth to	Oxidation Reduction	_		Dissolved		
Survey	Sample Number	Survey Station	Date	Sample ID	Field Replicate	Water Level (m total)	Potential (mV total)	Temperature (degC total)	Conductivity (µS/cm total)	Oxygen (mg/L total)	Turbidity (NTU total)	pH (pH total)
TECKSWR1		CAN1-NB-L	10/9/2009	SWNB-1-CAN1-LA	1	3	-130	13.5	118	8.6	0	8.2
TECKSWR1		CAN1-NB-L	10/9/2009	SWNB-1-CAN1-LA	2	13	-143	13.5	118	8.5	0	8.3
TECKSWR1		CAN1-NB-L	10/9/2009	SWNB-1-CAN1-LC	3	13	-149	13.56	118	8.63	0	8.4
TECKSWR1		CAN1-NB-R	10/9/2009	SWNB-1-CAN1-RA	1	3	-162	13.7	119	8.7	0	8.2
TECKSWR1		CAN1-NB-R	10/9/2009	SWNB-1-CAN1-RB	2	12	-163	13.67	119	8.6	0	8.23
	SWNB-1-CAN1-RC	CAN1-NB-R	10/9/2009	SWNB-1-CAN1-RC	3	12	-160	13.65	119	8.71	0	8.2
TECKSWR1		TC10-NB-L	10/10/2009	SWNB-1-TC10-L	0	11	-63	13.31	119	8.76		8.16
TECKSWR1		TC10-NB-R	10/10/2009	SWNB-1-TC10-R	0	6	-135	13.15	120	8.69	0	8.07
TECKSWR1		TC1-NB-L	10/13/2009	SWNB-1-TC1-L	0	7	-778	12.4	100	8.7		8.1
	SWNB-1-TC1-M	TC1-NB-M	10/12/2009	SWNB-1-TC1-M	0							
TECKSWR1	SWNB-1-TC1-R	TC1-NB-R	10/12/2009	SWNB-1-TC1-R	0	3	-136	13.14	108	8.7	0	8.09
TECKSWR1		TC2-NB-L	10/14/2009	SWNB-1-TC2-L	0	68.7	-779	11.83	107	9.1		8.28
TECKSWR1		TC2-NB-M	10/14/2009	SWNB-1-TC2-M	0	55	-780	11.85	107	8.98		8.24
TECKSWR1	SWNB-1-TC2-R	TC2-NB-R	10/13/2009	SWNB-1-TC2-R	0	48.5	-545	12.29	101	8.9		8.20
TECKSWR1	SWNB-1-TC3-L1A	TC3-NB-L1	10/16/2009	SWNB-1-TC3-L1A	1	68.1	-783	11.92	105	8.98		8.26
TECKSWR1	SWNB-1-TC3-L1B	TC3-NB-L1	10/16/2009	SWNB-1-TC3-L1B	2	70.9	-784	11.9	106	9		8.27
TECKSWR1	SWNB-1-TC3-L1C	TC3-NB-L1	10/16/2009	SWNB-1-TC3-L1C	3	72.6	-784	11.8	106	8.9		8.29
TECKSWR1	SWNB-1-TC3-L2A	TC3-NB-L2	10/16/2009	SWNB-1-TC3-L2A	1	59.7	-784	12.2	105	9.16		8.24
TECKSWR1	SWNB-1-TC3-L2B	TC3-NB-L2	10/16/2009	SWNB-1-TC3-L2B	2	60.3	-782	12.17	105	9.17		8.23
TECKSWR1	SWNB-1-TC3-L2C	TC3-NB-L2	10/16/2009	SWNB-1-TC3-L2C	3	60.5	-781	12.17	104	8.66		8.25
TECKSWR1	SWNB-1-TC3-MA	TC3-NB-M	10/15/2009	SWNB-1-TC3-MA	1	35	-736	12.1	105	8.7		8.28
TECKSWR1	SWNB-1-TC3-MB	TC3-NB-M	10/15/2009	SWNB-1-TC3-MB	2	83.8	-785	12.2	105.3	8.7		8.28
TECKSWR1	SWNB-1-TC3-MC	TC3-NB-M	10/15/2009	SWNB-1-TC3-MC	3	81	-784	12.14	105.5	8.8		8.28
TECKSWR1		TC3-NB-R	10/15/2009	SWNB-1-TC3-RA	1	101		12.12	104.5	8.99		8.34
TECKSWR1		TC3-NB-R	10/15/2009	SWNB-1-TC3-RB	2	94	-73	12.11	104.5	8.84		8.31
TECKSWR1		TC3-NB-R	10/15/2009	SWNB-1-TC3-RC	3	93	-784	12.15	104.2	8.97		8.3
	SWNB-1-TC4-L1	TC4-NB-L1	10/17/2009	SWNB-1-TC4-L1	0	70	-792	13.6	101	8.07		8.3
	SWNB-1-TC4-L2	TC4-NB-L2	10/17/2009	SWNB-1-TC4-L2	0	73	-793	13.7	101	8.3		7.8
	SWNB-1-TC4-M	TC4-NB-M	10/17/2009	SWNB-1-TC4-M	0	175.0	-790	13.16	102	8.03		8.2
TECKSWR1		TC4-NB-R	10/17/2009	SWNB-1-TC4-R	0	140	-788	13.19	101	8.27		8.13
TECKSWR1		TC5-NB-L1	10/18/2009	SWNB-1-TC5-L1	0	93.1	-788	15.7	99	8.1		8.27
TECKSWR1		TC5-NB-L2	10/18/2009	SWNB-1-TC5-L2	0	84.2	-791	15.74	99	8.5		8.3
	SWNB-1-TC5-M	TC5-NB-M	10/18/2009	SWNB-1-TC5-M	0	192	-788	15	98	7.6		8.2
TECKSWR1		TC5-NB-R	10/18/2009	SWNB-1-TC5-R	0	116	-789	15.6	99	7.7		8.3
TECKSWR1		TC6-NB-L	10/20/2009	SWNB-1-TC6-LA	1	81.0	-792	16.06	167	8.5		8.22
TECKSWR1		TC6-NB-L	10/20/2009	SWNB-1-TC6-LB	2	69	-791	16.07	167	9.03		8.24
	SWNB-1-TC6-LC	TC6-NB-L	10/20/2009	SWNB-1-TC6-LC	3	73	-794	16.0	166	9.80		8.2
	SWNB-1-TC6-MA	TC6-NB-M	10/19/2009	SWNB-1-TC6-MA	2	179	-784	15.3	102	7.87		8.36
TECKSWR1		TC6-NB-M TC6-NB-M	10/19/2009 10/19/2009	SWNB-1-TC6-MB SWNB-1-TC6-MC	3	135.5 170.5	-784 -784	15.66 15.43	101	8.76 7.94		8.42 8.43
TECKSWR1		TC6-NB-R1			0	269.2	-795	15.32	100			8.41
	SWNB-1-TC6-R1	TC6-NB-R2	10/19/2009 10/19/2009	SWNB-1-TC6-R1 SWNB-1-TC6-R2	0	73.1	-795	15.32	98	7.63 7.39		8.29
TECKSWR1		TC7-NB-L	10/19/2009	SWNB-1-TC0-R2 SWNB-1-TC7-L	0	155	-819	17.3	164	9.06		8.78
TECKSWR1		TC7-NB-M	10/20/2009	SWNB-1-TC7-M	0	236	-812	17.3	165	7.8		8.5
TECKSWR1		TC7-NB-R	10/20/2009	SWNB-1-TC7-R	0	183	-798	17.0	163	8.2		8.2
	SWNB-1-TC9-L	TC9-NB-L	10/20/2009	SWNB-1-TC9-L	0	27.5	-122	12.94	126	8.61		8.16
	SWNB-1-TC9-R	TC9-NB-R	10/11/2009	SWNB-1-TC9-R	0	4.0	-127	12.85	124	8.6	538	8.1
	SWNS-1-CAN1-LA	CAN1-NS-L	10/9/2009	SWNS-1-CAN1-LA	1	1	-104	13.46	118	8.6	388	7.9
TECKSWR1		CAN1-NS-L	10/9/2009	SWNS-1-CAN1-LB	2	1	-129	13.46	118	8.6	388	7.93
TECKSWR1		CAN1-NS-L	10/9/2009	SWNS-1-CAN1-LC	3	1	-128	13.47	118	8.6	388	7.94
	SWNS-1-CAN1-RA	CAN1-NS-R	10/9/2009	SWNS-1-CAN1-RA	1	1	-148	13.65	118	8.72	152	8.1
TECKSWR1		CAN1-NS-R	10/9/2009	SWNS-1-CAN1-RB	2	1	-159	13.6	118	8.72	152	8.1
TECKSWR1		CAN1-NS-R	10/9/2009	SWNS-1-CAN1-RC	3	1	-161	13.7	118	8.7	149	8.1
TECKSWR1		TC10-NS-L	10/10/2009	SWNS-1-TC10-L	0	1	-109	13.26	118	8.77	25	8
TECKSWR1		TC10-NS-R	10/10/2009	SWNS-1-TC10-R	0	1	-119	13.11	119	8.7		7.9
	SWNS-1-TC1-L	TC1-NS-L	10/13/2009	SWNS-1-TC1-L	0	2	-786	12.4	97	7		8
TECKSWR1	SWNS-1-TC1-M	TC1-NS-M	10/12/2009	SWNS-1-TC1-M	0	1	-178	12.44	138	8.95		8.18

Table H-1. Field Measurements made during the First Round of Surface Water Sampling (Fall 2009)

					Field	Depth to Water Level	Oxidation Reduction Potential	Temperature	Conductivity	Dissolved Oxygen	Turbidity	pН
Survey	Sample Number	Survey Station	Date	Sample ID	Replicate	(m total)	(mV total)	(degC total)	(μS/cm total)	(mg/L total)	(NTU total)	(pH total)
	SWNS-1-TC1-R	TC1-NS-R	10/12/2009	SWNS-1-TC1-R	0	1	-790	12.52	109	8.34		8.3
	SWNS-1-TC2-L	TC2-NS-L	10/14/2009	SWNS-1-TC2-L	0	1	-774	11.82	106	9.02		8.27
	SWNS-1-TC2-M	TC2-NS-M	10/14/2009	SWNS-1-TC2-M	0	1	-781	11.9	107	9		8.3
	SWNS-1-TC2-R	TC2-NS-R	10/13/2009	SWNS-1-TC2-R	0	4	-781	12.2	105	7.4		8.2
	SWNS-1-TC3-L1A	TC3-NS-L1	10/16/2009	SWNS-1-TC3-L1A	1	1	-144	12.13	117	8.8		8.26
	SWNS-1-TC3-L1B	TC3-NS-L1	10/16/2009	SWNS-1-TC3-L1B	2	1	-169	12.1	118	8.8		8.24
	SWNS-1-TC3-L1C	TC3-NS-L1	10/16/2009	SWNS-1-TC3-L1C	3	1	-170	11.74	118	8.98		7.75
	SWNS-1-TC3-L2A	TC3-NS-L2	10/16/2009	SWNS-1-TC3-L2A	1	1.09	-187	12.27	117	8.77		8.2
	SWNS-1-TC3-L2B	TC3-NS-L2	10/16/2009	SWNS-1-TC3-L2B	2	1.09	-181	12.25	117	8.77		8.2
	SWNS-1-TC3-L2C	TC3-NS-L2	10/16/2009	SWNS-1-TC3-L2C	3	1.09	-177 -784	12.26 12.3	117	8.78		8.20
	SWNS-1-TC3-MA SWNS-1-TC3-MB	TC3-NS-M TC3-NS-M	10/15/2009 10/16/2009	SWNS-1-TC3-MA SWNS-1-TC3-MB	2	1	-783	12.04	104 104	8.9 8.9		8.35 8.13
	SWNS-1-TC3-MC	TC3-NS-M	10/16/2009	SWNS-1-TC3-MC	3	<u></u>	-763	12.04	104	8.57		8.3
	SWNS-1-TC3-MC	TC3-NS-R	10/14/2009	SWNS-1-TC3-INC	1	2	-783	12.3	104	9.57		8.3
	SWNS-1-TC3-RB	TC3-NS-R	10/14/2009	SWNS-1-TC3-RB	2	1	-782	12.3	104	8.73		8.3
	SWNS-1-TC3-RC	TC3-NS-R	10/14/2009	SWNS-1-TC3-RC	3	<u></u>	-781	12.31	104	8.7		8.3
	SWNS-1-TC4-L1	TC4-NS-L1	10/17/2009	SWNS-1-TC3-RC	0	0.95	-171	13.9	86	8.5		8.2
	SWNS-1-TC4-L1	TC4-NS-L1	10/17/2009	SWNS-1-TC4-L1	0	36	-608	13.8	97	8.3		8.3
	SWNS-1-TC4-M	TC4-NS-M	10/17/2009	SWNS-1-TC4-M	0	1	-792	14	101	8		8.4
	SWNS-1-TC4-R	TC4-NS-R	10/17/2009	SWNS-1-TC4-R	0	3	-779	13.78	100	8		8
	SWNS-1-TC5-L1	TC5-NS-L1	10/17/2009	SWNS-1-TC5-L1	0	1.2	-182	16.13	87	7.72	0	8.10
	SWNS-1-TC5-L2	TC5-NS-L2	10/18/2009	SWNS-1-TC5-L2	0	1.02	111	16.11	87	8.0	0	8.13
	SWNS-1-TC5-M	TC5-NS-M	10/18/2009	SWNS-1-TC5-M	0	4	-790	16	99	7.4	-	8.4
	SWNS-1-TC5-R	TC5-NS-R	10/18/2009	SWNS-1-TC5-R	0	4	-789	15.87	100	7.4		8.2
	SWNS-1-TC6-L	TC6-NS-L	10/20/2009	SWNS-1-TC6-L	0	4	-796	16.1	166	7.5		8.3
TECKSWR1 S	SWNS-1-TC6-MA	TC6-NS-M	10/19/2009	SWNS-1-TC6-MA	1	1	-66	16.2	88	7.63	0	8
TECKSWR1 S	SWNS-1-TC6-MB	TC6-NS-M	10/19/2009	SWNS-1-TC6-MB	2	1.04	-76	16.22	87	7.62	0	8.01
TECKSWR1 S	SWNS-1-TC6-MC	TC6-NS-M	10/19/2009	SWNS-1-TC6-MC	3	1.04	-76	16.22	87	7.62	0	8.01
TECKSWR1 S	SWNS-1-TC6-R1	TC6-NS-R1	10/19/2009	SWNS-1-TC6-R1	0	3.9	-788	16.24	101	8.20		8.33
TECKSWR1 S	SWNS-1-TC6-RA2	TC6-NS-R2	10/19/2009	SWNS-1-TC6-RA2	0	3.7	-795	16.14	99	7.44		8.38
	SWNS-1-TC6-RB2	TC6-NS-R2	10/19/2009	SWNS-1-TC6-RB2	0	3.7	-794	16.38	99	7.38		8.38
	SWNS-1-TC6-RC2	TC6-NS-R2	10/19/2009	SWNS-1-TC6-RC2	0	3.7	-794	16.38	99	7.38		8.38
	SWNS-1-TC7-L	TC7-NS-L	10/20/2009	SWNS-1-TC7-L	0	1	-178	17.35	85	7.2	0	7.88
	SWNS-1-TC7-M	TC7-NS-M	10/20/2009	SWNS-1-TC7-M	0	0.93	-180	17.37	85	7.25	0	7.9
	SWNS-1-TC7-R	TC7-NS-R	10/20/2009	SWNS-1-TC7-R	0	0.90	230	17.38	85	7.3	0	7.92
	SWNS-1-TC9-L	TC9-NS-L	10/11/2009	SWNS-1-TC9-L	0	0.3	-103	12.8	132	8.7	986	8.1
	SWNS-1-TC9-R	TC9-NS-R	10/11/2009	SWNS-1-TC9-R	0	1	-119	12.8	122	8.64	051	7.94
	SWNSH-1A-CAN2-L	CAN2-NSH-L	9/1/2009	SWNSH-1A-CAN2-L	0		174	20.23	79	9.7	651	5.68
	SWNSH-1B-CAN2-L	CANA NOLL	9/8/2009	SWNSH-1B-CAN2-L	0	0.05	171	16.94	50	10.95	205	5.51
	SWNSH-1-CAN1-LA	CAN1-NSH-L	10/8/2009	SWNSH-1-CAN1-LA	1	0.25	-71 122	13.67	118	8.67	0	8.05
	SWNSH-1-CAN1-LB	CAN1-NSH-L	10/8/2009	SWNSH-1-CAN1-LB	3	0.25 0.25	-132	13.81	118 119	8.7 8.73	0	8.1 8.1
	SWNSH-1-CAN1-LC SWNSH-1-CAN1-RA	CAN1-NSH-L CAN1-NSH-R	10/8/2009 10/8/2009	SWNSH-1-CAN1-LC SWNSH-1-CAN1-RA	1	0.25	-138 -89	13.8 13.87	119	8.73	0	8.1
	SWNSH-1-CAN1-RA	CAN1-NSH-R	10/8/2009	SWNSH-1-CAN1-RB	2	0.25	-166	13.85	119	8.7	0	8.1
	SWNSH-1-CAN1-RC	CAN1-NSH-R	10/8/2009	SWNSH-1-CAN1-RC	3	0.25	-169	13.84	118	8.7	0	8.1
	SWNSH-1C-CAN2-L	CAN2-NSH-L	9/15/2009	SWNSH-1C-CAN2-L	0	0.23	162	18.44	47	7.98	U	6.12
	SWNSH-1D-CAN2-L	CAN2-NSH-L	9/22/2009	SWNSH-1D-CAN2-L	0		153	17.76	46	7.47	9.2	7.35
	SWNSH-1E-CAN2-L	CAN2-NSH-L	9/29/2009	SWNSH-1E-CAN2-L	0		179	16.99	47	6.86	0	6.86
	SWNSH-1-TC10-L	TC10-NSH-L	10/10/2009	SWNSH-1-TC10-L	0	0.5	-82	13.3	118	8.8	0	8.13
	SWNSH-1-TC10-R	TC10-NSH-R	10/10/2009	SWNSH-1-TC10-R	0	0.25	-39	13.04	118	8.7	3	7.7
	SWNSH-1-TC1-L	TC1-NSH-L	10/13/2009	SWNSH-1-TC1-L	0	0.25	-202	12.2	126	8.8	Ü	8.05
		TC1-NSH-L	10/13/2009	SWNSH-1-TC1-LDISA	1				1			
	SWNSH-1-TC1-LDISB	TC1-NSH-L	10/13/2009	SWNSH-1-TC1-LDISB	2	0.25	-200	12.2	126	8.84		8.10
		TC1-NSH-L	10/13/2009	SWNSH-1-TC1-LDISC	3	0.25	-182	12.3	130	8.9		8.15
	SWNSH-1-TC1-R	TC1-NSH-R	10/12/2009	SWNSH-1-TC1-R	0	0.23	-182	12.46	138	8.95		8.2
		TC1-NSH-R	10/12/2009	SWNSH-1-TC1-RDISA	1	0.22	-194	12.46	138	8.96		8.2
	SWNSH-1-TC1-RDISB	TC1-NSH-R	10/12/2009	SWNSH-1-TC1-RDISB	2	0.22	-194	12.46	138	8.96		8.2

Table H-1. Field Measurements made during the First Round of Surface Water Sampling (Fall 2009)

			_		Field	Depth to Water Level	Oxidation Reduction Potential	Temperature	Conductivity	Dissolved Oxygen	Turbidity	рН
Survey	Sample Number	Survey Station	Date	Sample ID	Replicate	(m total)	(mV total)	(degC total)	(µS/cm total)	(mg/L total)	(NTU total)	(pH total)
TECKSWR1	1	TC1-NSH-R	10/12/2009	SWNSH-1-TC1-RDISC	3	0.22	-194	12.46	138	8.96		8.2
TECKSWR1	1	TC2-NSH-L	10/13/2009	SWNSH-1-TC2-L	0	0.25	-194	12.12	134	8.84		8.17
TECKSWR1		TC2-NSH-R	10/13/2009	SWNSH-1-TC2-R	0	0.25	-148	12.06	137	9.00		8.2
TECKSWR1			10/13/2009	SWNSH-1-TC2-RDISA	1	0.25	-180	12.03	136	8.95		8.18
TECKSWR1			10/13/2009	SWNSH-1-TC2-RDISB	2	0.25	-180	12.03	136	8.95		8.18
TECKSWR1			10/13/2009	SWNSH-1-TC2-RDISC	3	0.25	-180	12.03	136	8.95		8.18
TECKSWR1		TC3-NSH-L TC3-NSH-L	10/15/2009 10/15/2009	SWNSH-1-TC3-LA SWNSH-1-TC3-LB	2	0.25 0.25	-136 -149	13.06 12.89	132 132	8.98 8.93		8.1 8.2
TECKSWR1		TC3-NSH-L		1	3		-149		132	8.9		8.2
TECKSWR1		TC3-NSH-L	10/15/2009 10/15/2009	SWNSH-1-TC3-LC SWNSH-1-TC3-LDISA	1	0.25 0.25	-157	12.79 12.9	132	9.9		8.27
TECKSWR1	1	TC3-NSH-L	10/15/2009	SWNSH-1-TC3-LDISB	2	0.25	-173	12.8	132	8.98		8.26
TECKSWR1	1	TC3-NSH-L	10/15/2009	SWNSH-1-TC3-LDISC	3	0.25	-178	12.78	132	8.98		8.28
TECKSWR1		TC3-NSH-R	10/15/2009	SWNSH-1-TC3-RA	1	0.25	-184	12.74	134	8.83		8.2
TECKSWR1		TC3-NSH-R	10/15/2009	SWNSH-1-TC3-RB	2	0.25	-184	12.37	134	8.83		8.18
TECKSWR1		TC3-NSH-R	10/15/2009	SWNSH-1-TC3-RC	3	0.25	-154	12.34	134	8.82		8.19
TECKSWR1		TC3-NSH-R	10/16/2009	SWNSH-1-TC3-RDISA	1	0.25	-168	11.96	118	8.80		8.15
TECKSWR1		TC3-NSH-R	10/16/2009	SWNSH-1-TC3-RDISB	2	0.25	-165	11.96	118	8.78		8.16
TECKSWR1		TC3-NSH-R	10/16/2009	SWNSH-1-TC3-RDISC	3	0.25	-162	11.96	118	8.78		8.17
TECKSWR1		TC4-NSH-L	10/17/2009	SWNSH-1-TC4-L	0	0.1	-168	13.8	86	8.2		8.02
TECKSWR1	SWNSH-1-TC4-LDISA	TC4-NSH-L	10/17/2009	SWNSH-1-TC4-LDISA	1	0.023	-176	13.8	85	8.25		8.06
TECKSWR1		TC4-NSH-L	10/17/2009	SWNSH-1-TC4-LDISB	2	0.010	-175	13.83	85	8.27		8.07
TECKSWR1	SWNSH-1-TC4-LDISC	TC4-NSH-L	10/17/2009	SWNSH-1-TC4-LDISC	3	0.007	-175	13.85	86	8.26		8.07
TECKSWR1	SWNSH-1-TC4-R	TC4-NSH-R	10/17/2009	SWNSH-1-TC4-R	0	0.15	-176	13.73	86	8.52		8.16
TECKSWR1	SWNSH-1-TC5-L	TC5-NSH-L	10/18/2009	SWNSH-1-TC5-L	0	0.25	-144	15.7	87	7.63		7.88
TECKSWR1	SWNSH-1-TC5-LDISA	TC5-NSH-L	10/18/2009	SWNSH-1-TC5-LDISA	1	0.25	-157	15.68	87	7.65	16	7.95
TECKSWR1		TC5-NSH-L	10/18/2009	SWNSH-1-TC5-LDISB	2	0.25	-166	15.71	88	7.64	38	7.97
TECKSWR1		TC5-NSH-L	10/18/2009	SWNSH-1-TC5-LDISC	3	0.25	-173	15.75	88	7.63	32	7.97
TECKSWR1		TC5-NSH-R	10/18/2009	SWNSH-1-TC5-R	0	0.25	-156	16.23	86	7.94	1	8.1
TECKSWR1	1	TC5-NSH-R	10/18/2009	SWNSH-1-TC5-RDISA	1	0.25	-157	16.30	86	8	15	8.11
TECKSWR1		TC5-NSH-R	10/18/2009	SWNSH-1-TC5-RDISB	2	0.25	-160	16.3	86	8.02	1	8.15
TECKSWR1			10/18/2009	SWNSH-1-TC5-RDISC	3	0.25	-158	16.34	86	8.06	2	8.17
TECKSWR1		TC6-NSH-L	10/19/2009	SWNSH-1-TC6-LA	1	0.25	-74	15.95	87	7.7	2	7.65
TECKSWR1		TC6-NSH-L	10/19/2009	SWNSH-1-TC6-LB	2	0.3	-84	16.1	88	7.6	0.3	7.98
TECKSWR1		TC6-NSH-L	10/19/2009	SWNSH-1-TC6-LC	3	0.3	-84	16.1	88	7.6	0.3	7.98
TECKSWR1		TC6-NSH-L	10/19/2009	SWNSH-1-TC6-LDISA	1	0.3	-15	16.21	88	7.65	11	8
TECKSWR1		TC6-NSH-L	10/19/2009	SWNSH-1-TC6-LDISB	3	0.21	-8	16.22	88	7.67	3	8
TECKSWR1		TC6-NSH-L	10/19/2009	SWNSH-1-TC6-LDISC	_	0.24	-68	16.23	88	7.71	5	8.02
TECKSWR1 TECKSWR1		TC6-NSH-R TC6-NSH-R	10/19/2009 10/19/2009	SWNSH-1-TC6-R SWNSH-1-TC6-RDISA	0	0.1 0.13	-92 -71	16.8 16.8	87 87	8.3 8.38	8 26	8.2 8.25
TECKSWR1		TC6-NSH-R	10/19/2009	SWNSH-1-TC6-RDISB	2	0.13	-71 -70	16.83	87	8.44	20	8.25
TECKSWR1	1	TC6-NSH-R	10/19/2009	SWNSH-1-TC6-RDISC	3	0.13	-75	16.75	87	8.43	1	8.27
TECKSWR1		TC7-NSH-L	10/19/2009	SWNSH-1-TC7-L	0	0.13	-75	17.2	85	7.3	1	7.9
TECKSWR1		TC7-NSH-L	10/20/2009	SWNSH-1-TC7-LDISA	1	0.2	-51	17.25	85	7.3	2	7.9
TECKSWR1		TC7-NSH-L	10/20/2009	SWNSH-1-TC7-LDISB	2	0.23	7	17.25	85	7.34	1	7.9
TECKSWR1		TC7-NSH-L	10/20/2009	SWNSH-1-TC7-LDISC	3	0.23	3	17.25	85	7.37	0.3	7.9
TECKSWR1		TC7-NSH-R	10/20/2009	SWNSH-1-TC7-R	0	0.32	34	17.44	85	7.95	2	8.1
TECKSWR1		TC7-NSH-R	10/20/2009	SWNSH-1-TC7-RDISA	1	0.35	76	17.49	85	7.94	2	8.1
TECKSWR1		TC7-NSH-R	10/20/2009	SWNSH-1-TC7-RDISB	2	0.37	-8	17.48	85	7.94	2	8.11
TECKSWR1			10/20/2009	SWNSH-1-TC7-RDISC	3	0.37	6	17.51	85	7.91	1	8.1
TECKSWR1		TC8-NSH-L	10/12/2009	SWNSH-1-TC8-LDISA	1	0.34	-146	12.43	138	8.9		8.1
TECKSWR1		TC8-NSH-L	10/12/2009	SWNSH-1-TC8-LDISB	2	0.25	-157	12.45	138	8.9		8.2
TECKSWR1		TC8-NSH-L	10/12/2009	SWNSH-1-TC8-LDISC	3	0.25	-162	12.47	138	8.95		8.2
TECKSWR1	SWNSH-1-TC9-L	TC9-NSH-L	10/11/2009	SWNSH-1-TC9-L	0	0.25	-152	12.67	149	9.1	595	8.3
TECKSWR1	SWNSH-1-TC9-R	TC9-NSH-R	10/11/2009	SWNSH-1-TC9-R	0	0.25	-82	12.7	121	8.6	641	7.9

Table H-2. Field Measurements made during the Second Round of Surface Water Sampling (Spring 2010)

		,		<u> </u>		Depth to Water		Total Dissolved			Dissolved	Dissolved Oxygen		
Survey	Sample Number	Survey Station	Date	Sample ID	Field Replicate	Level (ft total)	Oxidation Reduction Potential (mV total)	Solids (g/L total)	Temperature (degC total)	Conductivity (mS/cm total)	Oxygen (mg/L total)	% Saturation (% total)	Turbidity (NTU total)	pH (pH total)
TECKSWR2	SWNB-2-CAN1-LA	CAN1-NB-L	4/7/2010	SWNB-2-CAN1-LA	1	7	721	(g/L total)	5.05	0.091	11	(70 total)	1.000	8.3
TECKSWR2	SWNB-2-CAN1-LA	CAN1-NB-L	4/7/2010	SWNB-2-CAN1-LA	2	7	446		5.06	0.091	11.1		1,000	8.3
TECKSWR2	SWNB-2-CAN1-LC	CAN1-NB-L	4/7/2010	SWNB-2-CAN1-LC	3	,	110		0.00	0.001			1,000	0.0
TECKSWR2	SWNB-2-CAN1-RA	CAN1-NB-R	4/8/2010	SWNB-2-CAN1-RA	1									
TECKSWR2	SWNB-2-CAN1-RB	CAN1-NB-R	4/8/2010	SWNB-2-CAN1-RB	2									
TECKSWR2	SWNB-2-CAN1-RC	CAN1-NB-R	4/8/2010	SWNB-2-CAN1-RC	3	5			5	0.134	11		64	8.3
TECKSWR2	SWNB-2-TC1-L	TC1-NB-L	4/11/2010	SWNB-2-TC1-L	0	19	-528		5.05	0.149	13		0	8.3
TECKSWR2	SWNB-2-TC1-M	TC1-NB-M	4/11/2010	SWNB-2-TC1-M	0	20	-664		5.8	0.154	9.6		20	8.5
TECKSWR2	SWNB-2-TC1-R	TC1-NB-R	4/11/2010	SWNB-2-TC1-R	0	23.3	-889		5.3	0.140	9.7		0.06	8.0
TECKSWR2	SWNB-2-TC2-L	TC2-NB-L	4/12/2010	SWNB-2-TC2-L	0		-64		5.4	0.141	9.51		366	8.12
TECKSWR2	SWNB-2-TC2-M	TC2-NB-M TC2-NB-R	4/12/2010 4/12/2010	SWNB-2-TC2-M	0	29.3	-341		5.46	0.141	9.4		365	8.3
TECKSWR2	SWNB-2-TC2-R SWNB-2-TC3-L1A	TC3-NB-L1	4/13/2010	SWNB-2-TC2-R SWNB-2-TC3-L1A	1	32.3	-774 -147		5.5 5.7	0.095 0.143	11.28		55 0.06	8.4
TECKSWR2 TECKSWR2	SWNB-2-TC3-L1A SWNB-2-TC3-L1B	TC3-NB-L1	4/13/2010	SWNB-2-TC3-LTA SWNB-2-TC3-L1B	2	52.5	-185		5.59	0.143	9.16		9	8.04
TECKSWR2	SWNB-2-TC3-L1C	TC3-NB-L1	4/13/2010	SWNB-2-TC3-L1C	3	53.2	-186		5.62	0.144	9.11		1	8.09
TECKSWR2	SWNB-2-TC3-L2A	TC3-NB-L2	4/13/2010	SWNB-2-TC3-L2A	1	27.7	-174		6	0.144	8.3		1	8.25
TECKSWR2	SWNB-2-TC3-L2B	TC3-NB-L2	4/13/2010	SWNB-2-TC3-L2B	2					41.11				
TECKSWR2	SWNB-2-TC3-L2C	TC3-NB-L2	4/13/2010	SWNB-2-TC3-L2C	2									
TECKSWR2	SWNB-2-TC3-MA	TC3-NB-M	4/14/2010	SWNB-2-TC3-MA	1	43	-231		5.68	0.692	9		0	8
TECKSWR2	SWNB-2-TC3-MB	TC3-NB-M	4/14/2010	SWNB-2-TC3-MB	2	42.9	2		5.76	0.694	8.84		0	7.88
TECKSWR2	SWNB-2-TC3-MC	TC3-NB-M	4/14/2010	SWNB-2-TC3-MC	3	41	-192		5.8	0.694	8.9		0	8.06
TECKSWR2	SWNB-2-TC3-RA	TC3-NB-R	4/14/2010	SWNB-2-TC3-RA	1	37.8	-132		6.03	0.685	8.4		0	8.02
TECKSWR2	SWNB-2-TC3-RB	TC3-NB-R	4/14/2010	SWNB-2-TC3-RB	2	36	-237		6.05	0.688	8.37		0	8.03
TECKSWR2	SWNB-2-TC3-RC	TC3-NB-R TC4-NB-L1	4/14/2010	SWNB-2-TC3-RC	0	37 45	-51	0.4	6.4	0.685	8		0	8.01
TECKSWR2	SWNB-2-TC4-L1 SWNB-2-TC4-L2	TC4-NB-L1	4/15/2010 4/15/2010	SWNB-2-TC4-L1 SWNB-2-TC4-L2	0	57	-698 -687	0.1	6.4 6.14	0.129 0.129	7.0		0.1	7.6 7.57
TECKSWR2 TECKSWR2	SWNB-2-TC4-L2	TC4-NB-M	4/15/2010	SWNB-2-TC4-L2	0	103	-731	0.09	6.12	0.129	8.65		0.1	8.05
TECKSWR2	SWNB-2-TC4-R	TC4-NB-R	4/15/2010	SWNB-2-TC4-R	0	40	274	0.03	6.16	0.112	13.15		0	7.9
TECKSWR2	SWNB-2-TC5-L1	TC5-NB-L1	4/16/2010	SWNB-2-TC5-L1	0	121	-351		5.91	0.149	11.14		0.0	7.81
TECKSWR2	SWNB-2-TC5-L2	TC5-NB-L2	4/16/2010	SWNB-2-TC5-L2	0	17	-393		6.4	0.150	7		0	7.9
TECKSWR2	SWNB-2-TC5-M	TC5-NB-M	4/16/2010	SWNB-2-TC5-M	0	255	-520		5.74	0.148	9.22		1.0	7.81
TECKSWR2	SWNB-2-TC5-R	TC5-NB-R	4/16/2010	SWNB-2-TC5-R	0	152.5	-555	0.1	5.82	0.149	12.57			7.9
TECKSWR2	SWNB-2-TC6-LA	TC6-NB-L	4/17/2010	SWNB-2-TC6-LA	1	59	-277		6.8	0.143	6.0		0.1	8.0
TECKSWR2	SWNB-2-TC6-LB	TC6-NB-L	4/17/2010	SWNB-2-TC6-LB	2									
TECKSWR2	SWNB-2-TC6-LC	TC6-NB-L	4/17/2010	SWNB-2-TC6-LC	3		100		0.51	2.1.12				
TECKSWR2	SWNB-2-TC6-MA	TC6-NB-M	4/17/2010	SWNB-2-TC6-MA	1 2	83	-199	0.1	6.51	0.142	6.0		0.04	8.0
TECKSWR2	SWNB-2-TC6-MB SWNB-2-TC6-MC	TC6-NB-M TC6-NB-M	4/17/2010 4/17/2010	SWNB-2-TC6-MB SWNB-2-TC6-MC	3									
TECKSWR2 TECKSWR2	SWNB-2-TC6-R1	TC6-NB-R1	4/17/2010	SWNB-2-TC6-R1	0	137	-207		6.2	0.142	6.4		0.1	7.8
TECKSWR2	SWNB-2-TC6-R2	TC6-NB-R2	4/17/2010	SWNB-2-TC6-R2	0	29	-207		7.40	0.142	4		0.1	8.0
TECKSWR2	SWNB-2-TC7-L	TC7-NB-L	4/18/2010	SWNB-2-TC7-L	0	118	-175		5.8	0.145	6.41		0	7.8
TECKSWR2	SWNB-2-TC7-M	TC7-NB-M	4/18/2010	SWNB-2-TC7-M	0	335	-180		4.92	0.144	5.65		0	7.65
TECKSWR2	SWNB-2-TC7-R	TC7-NB-R	4/18/2010	SWNB-2-TC7-R	0	248	-157		5.20	0.145	5.24		0	7.69
TECKSWR2	SWNB-2-TC9-L	TC9-NB-L	4/9/2010	SWNB-2-TC9-L	0	15	-604		5.3	0.139	10.8		0.03	8.4
TECKSWR2	SWNB-2-TC9-R	TC9-NB-R	4/9/2010	SWNB-2-TC9-R	0	5.2	-668		5.25	0.137	10.97		0	8.23
TECKSWR2	SWNS-2-CAN1-LA	CAN1-NS-L	4/7/2010	SWNS-2-CAN1-LA	1	3	621		4.98	0.091	11		1,000	8.1
TECKSWR2	SWNS-2-CAN1-LB	CAN1-NS-L	4/7/2010	SWNS-2-CAN1-LB	2	3	963		5	0.091	11		1,000	8.1
TECKSWR2	SWNS-2-CAN1-LC	CAN1-NS-L CAN1-NS-R	4/7/2010 4/8/2010	SWNS-2-CAN1-LC	3	3	1,000		5.03 4.94	0.091 0.133	11.1 10.96		1,000	8.1
TECKSWR2	SWNS-2-CAN1-RA SWNS-2-CAN1-RB	CAN1-NS-R CAN1-NS-R	4/8/2010	SWNS-2-CAN1-RA SWNS-2-CAN1-RB	2	3			4.94	0.133	10.96		U	9.0
TECKSWR2 TECKSWR2	SWNS-2-CAN1-RB SWNS-2-CAN1-RC	CAN1-NS-R	4/8/2010	SWNS-2-CAN1-RB	3									
TECKSWR2	SWNS-2-TC1-L	TC1-NS-L	4/11/2010	SWNS-2-CANT-RC	0	3	-495		5.04	0.149	13		0	8.4
TECKSWR2	SWNS-2-TC1-M	TC1-NS-M	4/11/2010	SWNS-2-TC1-M	0	3.4	-539		5.7	0.153	12.6		38	8.47
TECKSWR2	SWNS-2-TC1-R	TC1-NS-R	4/11/2010	SWNS-2-TC1-R	0	3.7	-984		5.1	0.138	10.1		0	8.1
TECKSWR2	SWNS-2-TC2-L	TC2-NS-L	4/12/2010	SWNS-2-TC2-L	0		-288		5.4	0.140	9.47		360	8.1
TECKSWR2	SWNS-2-TC2-M	TC2-NS-M	4/12/2010	SWNS-2-TC2-M	0	4	-421		5.4	0.140	11		362	8.2
TECKSWR2	SWNS-2-TC2-R	TC2-NS-R	4/12/2010	SWNS-2-TC2-R	0		-774		5.5	0.095	11.84		54	8.4
TECKSWR2	SWNS-2-TC3-L1A	TC3-NS-L1	4/13/2010	SWNS-2-TC3-L1A	1	3.3	-183		5.79	0.143	8.81			7.91
TECKSWR2	SWNS-2-TC3-L1B	TC3-NS-L1	4/13/2010	SWNS-2-TC3-L1B	2	3.3	-184		5.79	0.141	8.82		0	7.93
TECKSWR2	SWNS-2-TC3-L1C	TC3-NS-L1	4/13/2010	SWNS-2-TC3-L1C	3	3.5	-180		5.92	0.143	8.6		0	7.95
TECKSWR2	SWNS-2-TC3-L2A	TC3-NS-L2	4/13/2010	SWNS-2-TC3-L2A	1	3.6	-195		6.53	0.144	7.6		1	8.3
TECKSWR2	SWNS-2-TC3-L2B SWNS-2-TC3-L2C	TC3-NS-L2 TC3-NS-L2	4/13/2010 4/13/2010	SWNS-2-TC3-L2B SWNS-2-TC3-L2C	3	3.4	-187 -186		6.54 6.52	0.143 0.143	7.6 7.6		1	8.3 8.3
TECKSWR2 TECKSWR2	SWNS-2-TC3-L2C	TC3-NS-L2	4/14/2010	SWNS-2-TC3-L2C SWNS-2-TC3-MA	1	3.5	-748		5.9	0.143	16		48	8.0
TECKSWR2	SWNS-2-TC3-MB	TC3-NS-M	4/14/2010	SWNS-2-TC3-MB	2	2	-746		5.9	0.149	12		46	8.0
TECKSWR2	SWNS-2-TC3-MC	TC3-NS-M	4/14/2010	SWNS-2-TC3-MC	3	2	-718		6.1	0.149	13.8		45	8.0
TECKSWR2	SWNS-2-TC3-RA	TC3-NS-R	4/14/2010	SWNS-2-TC3-RA	1	3.4	-252		7	0.683	7.4		0	8.13

Table H-2. Field Measurements made during the Second Round of Surface Water Sampling (Spring 2010)

						Depth to Water		Total Dissolved			Dissolved	Dissolved Oxygen		
Survey	Sample Number	Survey Station	Date	Sample ID	Field Replicate	Level (ft total)	Oxidation Reduction Potential (mV total)	Solids (g/L total)	Temperature (degC total)	Conductivity (mS/cm total)	Oxygen (mg/L total)	% Saturation (% total)	Turbidity (NTU total)	pH (pH total)
TECKSWR2	SWNS-2-TC3-RB	TC3-NS-R	4/14/2010	SWNS-2-TC3-RB	2 2	3.5	-191	(g/L total)	6.38	0.684	(Hig/L total)	(% IOIai)	(NTO total)	8.15
TECKSWR2	SWNS-2-TC3-RC	TC3-NS-R	4/14/2010	SWNS-2-TC3-RB SWNS-2-TC3-RC	3	3.5	-175		6.36	0.685	7.85		0	8.15
TECKSWR2	SWNS-2-TC3-RC	TC4-NS-L1	4/15/2010	SWNS-2-TC4-L1	0	3.4	-675		7.52	0.149	9.76		0	8.10
TECKSWR2	SWNS-2-TC4-L2	TC4-NS-L2	4/15/2010	SWNS-2-TC4-L2	0	2.0	-660		7.4	0.149	11.0		1	8.1
TECKSWR2	SWNS-2-TC4-M	TC4-NS-M	4/15/2010	SWNS-2-TC4-M	0									
TECKSWR2	SWNS-2-TC4-R	TC4-NS-R	4/15/2010	SWNS-2-TC4-R	0	3.4	-159		6.3	0.112	13.6		0.2	7.9
TECKSWR2	SWNS-2-TC5-L1	TC5-NS-L1	4/16/2010	SWNS-2-TC5-L1	0									
TECKSWR2	SWNS-2-TC5-L2	TC5-NS-L2	4/16/2010	SWNS-2-TC5-L2	0	3.3	477	0.1	7.1	0.137	14.4		3	8.5
TECKSWR2	SWNS-2-TC5-M	TC5-NS-M	4/16/2010	SWNS-2-TC5-M	0	3	186	0.1	7	0.136	14	115	2	8.5
TECKSWR2	SWNS-2-TC5-R	TC5-NS-R	4/16/2010	SWNS-2-TC5-R	0	3.6	-617	0.1	6.9	0.148	11.7		200	8.2
TECKSWR2	SWNS-2-TC6-L SWNS-2-TC6-MA	TC6-NS-L TC6-NS-M	4/17/2010 4/18/2010	SWNS-2-TC6-L SWNS-2-TC6-MA	0	3	-335 544		8.0 9	0.146 0.137	14		306 0.4	8.3 8.0
TECKSWR2 TECKSWR2	SWNS-2-TC6-MB	TC6-NS-M	4/18/2010	SWNS-2-TC6-MB	2	3	805		9	0.136	14		0.4	8.0
TECKSWR2	SWNS-2-TC6-MC	TC6-NS-M	4/18/2010	SWNS-2-TC6-MC	3		000		3	0.130			0.5	0.0
TECKSWR2	SWNS-2-TC6-R1	TC6-NS-R1	4/17/2010	SWNS-2-TC6-R1	0	4	-255		8.4	0.145	5.3		0	8.26
TECKSWR2	SWNS-2-TC6-R2A	TC6-NS-R2	4/17/2010	SWNS-2-TC6-R2A	1									
TECKSWR2	SWNS-2-TC6-R2B	TC6-NS-R2	4/17/2010	SWNS-2-TC6-R2B	2	4	-282	0.1	8.5	0.143	5.5		0.4	8.3
TECKSWR2	SWNS-2-TC6-R2C	TC6-NS-R2	4/17/2010	SWNS-2-TC6-R2C	3									
TECKSWR2	SWNS-2-TC7-L	TC7-NS-L	4/19/2010	SWNS-2-TC7-L	0	3.6	-229		8.9	0.146	5.98		0.09	8.33
TECKSWR2	SWNS-2-TC7-M	TC7-NS-M	4/18/2010	SWNS-2-TC7-M	0	3	-231		8	0.147	2.0		0	8.4
TECKSWR2	SWNS-2-TC7-R	TC7-NS-R	4/18/2010	SWNS-2-TC7-R	0	3.2	-206		7.79	0.149	1.28		0	8.39
TECKSWR2	SWNS-2-TC9-L	TC9-NS-L	4/9/2010	SWNS-2-TC9-L	0	3	-671		5.4	0.140	10.8		0.03	8.2
TECKSWR2	SWNS-2-TC9-R	TC9-NS-R	4/9/2010	SWNS-2-TC9-R	0	3	-717		5.23 5	0.137	10.9		0.05	8.3
TECKSWR2	SWNSH-2A-CAN2-L SWNSH-2B-CAN2-L	CAN2-NSH-L CAN2-NSH-L	2/23/2010 3/2/2010	SWNSH-2A-CAN2-L SWNSH-2B-CAN2-L	0		168 93		5.3	0.36 0.423	11.30 12.26		27 16.0	7.40
TECKSWR2 TECKSWR2	SWNSH-2-CAN1-LA	CAN1-NSH-L	4/6/2010	SWNSH-2-CAN1-LA	1	0.2	1,000		5.3	0.423	11.2		3	7.9
TECKSWR2	SWNSH-2-CAN1-LB	CAN1-NSH-L	4/6/2010	SWNSH-2-CAN1-LB	2	0.09	1,000		5.3	0.090	11.1		1	8.0
TECKSWR2	SWNSH-2-CAN1-LC	CAN1-NSH-L	4/6/2010	SWNSH-2-CAN1-LC	3	0.07	1,000		5.32	0.091	11.1		0.1	8.0
TECKSWR2	SWNSH-2-CAN1-RA	CAN1-NSH-R	4/7/2010	SWNSH-2-CAN1-RA	1	0.5	928		4.9	0.090	10.9		435	8.0
TECKSWR2	SWNSH-2-CAN1-RB	CAN1-NSH-R	4/7/2010	SWNSH-2-CAN1-RB	2	0.4	963		4.92	0.091	10.9		430	8.0
TECKSWR2	SWNSH-2-CAN1-RC	CAN1-NSH-R	4/7/2010	SWNSH-2-CAN1-RC	3	0.5	920		4.92	0.090	10.9		428	8.0
TECKSWR2	SWNSH-2C-CAN2-L	CAN2-NSH-L	3/9/2010	SWNSH-2C-CAN2-L	0		41		6	0.42	11.89		15	7.22
TECKSWR2	SWNSH-2D-CAN2-L	CAN2-NSH-L	3/16/2010	SWNSH-2D-CAN2-L	0		74		5.7	0.409	10.89		13.0	7.13
TECKSWR2	SWNSH-2E-CAN2-L	CAN2-NSH-L	3/23/2010	SWNSH-2E-CAN2-L	0		94		6	0.43	10.7		0	7.1
TECKSWR2	SWNSH-2F-CAN2-L	CAN2-NSH-L CAN2-NSH-L	3/30/2010	SWNSH-2F-CAN2-L	0		96		6.1	0.431	11.21		75 9	6.93
TECKSWR2 TECKSWR2	SWNSH-2G-CAN2-L SWNSH-2-TC1-L	TC1-NSH-L	4/6/2010 4/10/2010	SWNSH-2G-CAN2-L SWNSH-2-TC1-L	0	1	130 -184		6.46	0.439 0.139	10.55 11.2		336	8.06
TECKSWR2	SWNSH-2-TC1-LDISA	TC1-NSH-L	4/10/2010	SWNSH-2-TC1-LDISA	1	1	-581		6	0.139	11.3		329	8.3
TECKSWR2	SWNSH-2-TC1-LDISB	TC1-NSH-L	4/10/2010	SWNSH-2-TC1-LDISB	2	1	-236		6	0.141	11.3		326	8.3
TECKSWR2	SWNSH-2-TC1-LDISC	TC1-NSH-L	4/10/2010	SWNSH-2-TC1-LDISC	3	1	-519		6	0.141	11.3		287	8.4
TECKSWR2	SWNSH-2-TC1-R	TC1-NSH-R	4/11/2010	SWNSH-2-TC1-R	0	1	-563		5.13	0.137			0.1	8.2
TECKSWR2	SWNSH-2-TC1-RDISA	TC1-NSH-R	4/11/2010	SWNSH-2-TC1-RDISA	1	1.1	-1,000		5.12	0.137			2	8.24
TECKSWR2	SWNSH-2-TC1-RDISB		4/11/2010	SWNSH-2-TC1-RDISB	2	1	-904		5.12	0.137			4	8.2
TECKSWR2	SWNSH-2-TC1-RDISC		4/11/2010	SWNSH-2-TC1-RDISC	3	1.1	-143		5.1	0.138	10		2	8.1
TECKSWR2	SWNSH-2-TC2-L	TC2-NSH-L	4/12/2010	SWNSH-2-TC2-L	0	2	-769		5.8	0.095	10.65		59	8.5
TECKSWR2	SWNSH-2-TC2-LDISA	TC2-NSH-L TC2-NSH-L	4/12/2010	SWNSH-2-TC2-LDISA	1		-782		5.8	0.095	10.13		59	8.49
TECKSWR2	SWNSH-2-TC2-LDISB SWNSH-2-TC2-LDISC		4/12/2010 4/12/2010	SWNSH-2-TC2-LDISB SWNSH-2-TC2-LDISC	3		-783 -783		5.7 5.7	0.095	10.0 9.98		59 59	8.5 8.49
TECKSWR2 TECKSWR2	SWNSH-2-TC2-R	TC2-NSH-R	4/11/2010	SWNSH-2-TC2-LDISC	0	1	840		6.8	0.095	9.98		9	8.49
TECKSWR2			4/11/2010	SWNSH-2-TC2-RDISA	1	1	-519		6.7	0.140	8		38	8.3
TECKSWR2	SWNSH-2-TC2-RDISB		4/11/2010	SWNSH-2-TC2-RDISB	2	1	-35		6.5	0.140	7		62	8.2
TECKSWR2	SWNSH-2-TC2-RDISC		4/11/2010	SWNSH-2-TC2-RDISC	3	1	-257		6.5	0.139	7.6		22	8.3
TECKSWR2	SWNSH-2-TC3-LA	TC3-NSH-L	4/13/2010	SWNSH-2-TC3-LA	1	0.4	-783		7.26	0.148	9.3		1	7.99
TECKSWR2	SWNSH-2-TC3-LB	TC3-NSH-L	4/13/2010	SWNSH-2-TC3-LB	2	0.5	-783		7.04	0.150	9.49		1	8.01
TECKSWR2	SWNSH-2-TC3-LC	TC3-NSH-L	4/13/2010	SWNSH-2-TC3-LC	3	0.5	-783		7.28	0.148	9.3		2	8.04
TECKSWR2	SWNSH-2-TC3-LDISA	TC3-NSH-L	4/13/2010	SWNSH-2-TC3-LDISA	1	0.5	-783		7.17	0.148	9.4		30	8.04
TECKSWR2	SWNSH-2-TC3-LDISB	TC3-NSH-L	4/13/2010	SWNSH-2-TC3-LDISB	2									
TECKSWR2	SWNSH-2-TC3-LDISC	TC3-NSH-L	4/13/2010	SWNSH-2-TC3-LDISC	3	0.0	770		0.00	0.004	40.40			0.47
TECKSWR2	SWNSH-2-TC3-RA SWNSH-2-TC3-RB	TC3-NSH-R TC3-NSH-R	4/12/2010 4/12/2010	SWNSH-2-TC3-RA SWNSH-2-TC3-RB	2	0.6	-776 -776		6.38	0.094	10.13		38 37	8.47
TECKSWR2 TECKSWR2	SWNSH-2-TC3-RB SWNSH-2-TC3-RC	TC3-NSH-R	4/12/2010	SWNSH-2-TC3-RC	3	0.6	-776 -776		6.3 6.4	0.094	10.06 10.61		37	8.48 8.48
TECKSWR2	SWNSH-2-TC3-RCISA		4/12/2010	SWNSH-2-TC3-RDISA	1	0.6	-776		6.2	0.095	9.7		1	7.8
TECKSWR2	SWNSH-2-TC3-RDISB		4/13/2010	SWNSH-2-TC3-RDISB	2	0.5	-782		6.2	0.148	9.74		1	7.8
TECKSWR2	SWNSH-2-TC3-RDISC		4/13/2010	SWNSH-2-TC3-RDISC	3	0.5	-782		6.2	0.148	9.65		1	7.8
TECKSWR2	SWNSH-2-TC4-L	TC4-NSH-L	4/15/2010	SWNSH-2-TC4-L	0	0.7	-682		7.21	0.150	11.36		1	8.13
TECKSWR2	SWNSH-2-TC4-LDISA	TC4-NSH-L	4/15/2010	SWNSH-2-TC4-LDISA	1	0	-673		7.47	0.151	9.57		1	8.15
TECKSWR2	SWNSH-2-TC4-LDISB	TC4-NSH-L	4/15/2010	SWNSH-2-TC4-LDISB	2									

Table H-2. Field Measurements made during the Second Round of Surface Water Sampling (Spring 2010)

						Depth to Water		Total Dissolved			Dissolved	Dissolved Oxygen		
Survey	Sample Number	Survey Station	Date	Sample ID	Field Replicate	Level (ft total)	Oxidation Reduction Potential (mV total)	Solids (g/L total)	Temperature (degC total)	Conductivity (mS/cm total)	Oxygen (mg/L total)	% Saturation (% total)	Turbidity (NTU total)	pH (pH total)
TECKSWR2	SWNSH-2-TC4-LDISC	TC4-NSH-L	4/15/2010	SWNSH-2-TC4-LDISC	3					T .			<u> </u>	
TECKSWR2	SWNSH-2-TC4-R	TC4-NSH-R	4/14/2010	SWNSH-2-TC4-R	0	0.6	-656		6.96	0.147	14.06			8.11
TECKSWR2	SWNSH-2-TC4-RDISA	TC4-NSH-R	4/14/2010	SWNSH-2-TC4-RDISA	1					******				
TECKSWR2	SWNSH-2-TC4-RDISB	TC4-NSH-R	4/14/2010	SWNSH-2-TC4-RDISB	2	0.6	-665		7.02	0.149	16.08		0	8.08
TECKSWR2	SWNSH-2-TC4-RDISC	TC4-NSH-R	4/14/2010	SWNSH-2-TC4-RDISC	3								-	
TECKSWR2	SWNSH-2-TC5-L	TC5-NSH-L	4/16/2010	SWNSH-2-TC5-L	0	0.5	39		7.94	0.140	14.37		27	8.44
TECKSWR2	SWNSH-2-TC5-LDISA	TC5-NSH-L	4/16/2010	SWNSH-2-TC5-LDISA	1									
TECKSWR2	SWNSH-2-TC5-LDISB	TC5-NSH-L	4/16/2010	SWNSH-2-TC5-LDISB	2									
TECKSWR2	SWNSH-2-TC5-LDISC	TC5-NSH-L	4/16/2010	SWNSH-2-TC5-LDISC	3	0.3	-177		8.02	0.139	13.74		152	8.48
TECKSWR2	SWNSH-2-TC5-R	TC5-NSH-R	4/16/2010	SWNSH-2-TC5-R	0	0.4	527	0.1	7.8	0.135	14	114	11	8.4
TECKSWR2	SWNSH-2-TC5-RDISA	TC5-NSH-R	4/16/2010	SWNSH-2-TC5-RDISA	1	0.4	39	0.1	7.53	0.135	14.0	117	3	8.58
TECKSWR2	SWNSH-2-TC5-RDISB	TC5-NSH-R	4/16/2010	SWNSH-2-TC5-RDISB	2	0.6	-44	0.1	7.5	0.136	14	117	12	8.6
TECKSWR2	SWNSH-2-TC5-RDISC	TC5-NSH-R	4/16/2010	SWNSH-2-TC5-RDISC	3	0.5	11	0.1	7.47	0.136	13.9	116	23	8.6
TECKSWR2	SWNSH-2-TC6-LA	TC6-NSH-L	4/17/2010	SWNSH-2-TC6-LA	1	2	-19		8	0.140	12.9		2	8.0
TECKSWR2	SWNSH-2-TC6-LB	TC6-NSH-L	4/17/2010	SWNSH-2-TC6-LB	2	2	33		9.0	0.139	13		2	8.1
TECKSWR2	SWNSH-2-TC6-LC	TC6-NSH-L	4/17/2010	SWNSH-2-TC6-LC	3									
TECKSWR2	SWNSH-2-TC6-LDISA	TC6-NSH-L	4/17/2010	SWNSH-2-TC6-LDISA	1	1.5	124		9.4	0.141	13		27	8.2
TECKSWR2	SWNSH-2-TC6-LDISB	TC6-NSH-L	4/17/2010	SWNSH-2-TC6-LDISB	2	1.5	67		9.5	0.142	13		31	8.2
TECKSWR2	SWNSH-2-TC6-LDISC	TC6-NSH-L	4/17/2010	SWNSH-2-TC6-LDISC	3	1.5	101		9.4	0.141	12.8		32	8.2
TECKSWR2	SWNSH-2-TC6-R	TC6-NSH-R	4/17/2010	SWNSH-2-TC6-R	0	1	51		10.0	0.132	14.0		15	8.3
TECKSWR2	SWNSH-2-TC6-RDISA	TC6-NSH-R	4/17/2010	SWNSH-2-TC6-RDISA	1	0.7	248		10	0.131	13.8		164	8.0
TECKSWR2	SWNSH-2-TC6-RDISB	TC6-NSH-R	4/17/2010	SWNSH-2-TC6-RDISB	2	0.7	134		10.5	0.133	13.0		59	8.0
TECKSWR2	SWNSH-2-TC6-RDISC	TC6-NSH-R	4/17/2010	SWNSH-2-TC6-RDISC	3	0.7	136		10.7	0.133	13.7		92	8.0
TECKSWR2	SWNSH-2-TC7-L	TC7-NSH-L	4/18/2010	SWNSH-2-TC7-L	0	0.5			9	0.127	14		3	8.0
TECKSWR2	SWNSH-2-TC7-LDISA	TC7-NSH-L	4/19/2010	SWNSH-2-TC7-LDISA	1	0.4			9.2	0.128	13.9		4	8.29
TECKSWR2	SWNSH-2-TC7-LDISB	TC7-NSH-L	4/19/2010	SWNSH-2-TC7-LDISB	2	0.6			9	0.129	13.88		12	8.27
TECKSWR2	SWNSH-2-TC7-LDISC	TC7-NSH-L	4/19/2010	SWNSH-2-TC7-LDISC	3	0.5			9.9	0.134	13.8		11	8.3
TECKSWR2	SWNSH-2-TC7-R	TC7-NSH-R	4/19/2010	SWNSH-2-TC7-R	0	1.5			11.48	0.135	13.47		2	8.22
TECKSWR2	SWNSH-2-TC7-RDISA	TC7-NSH-R	4/18/2010	SWNSH-2-TC7-RDISA	1	1.5			12.29	0.137	13.63		7	8.55
TECKSWR2	SWNSH-2-TC7-RDISB	TC7-NSH-R	4/18/2010	SWNSH-2-TC7-RDISB	2	1.5			12.15	0.136	13.82			8.21
TECKSWR2	SWNSH-2-TC7-RDISC	TC7-NSH-R	4/18/2010	SWNSH-2-TC7-RDISC	3	1.5			12.09	0.135	13.90			8.07
TECKSWR2	SWNSH-2-TC8-LDISA	TC8-NSH-L	4/10/2010	SWNSH-2-TC8-LDISA	1	1	-495		5.3	0.141	10.7		0.2	8.0
TECKSWR2	SWNSH-2-TC8-LDISB	TC8-NSH-L	4/10/2010	SWNSH-2-TC8-LDISB	2	1	-159		5.35	0.141	10.76		0.5	8.0
TECKSWR2	SWNSH-2-TC8-LDISC	TC8-NSH-L	4/10/2010	SWNSH-2-TC8-LDISC	3	1	-169		5.4	0.141	10.8		0.3	8.0
TECKSWR2	SWNSH-2-TC9-L	TC9-NSH-L	4/8/2010	SWNSH-2-TC9-L	0	0.3	239		6.4	0.147	10.6		4	8.2
TECKSWR2	SWNSH-2-TC9-R	TC9-NSH-R	4/8/2010	SWNSH-2-TC9-R	0	1.5	449		5.3	0.136	10.8		2	8.1

Table H-3. Field Measurements made during the Third Round of Surface Water Sampling (Summer 2010

					Field		Oxidation Reduction	Total Dissolved Solids	Temperature	Conductivity	Dissolved Oxygen	Turbidity	pН
Survey	Sample Number	Survey Station	Date	Sample ID	Replicate	Level (m total)	Potential (mV total)	(g/L total)	(degC total)	(µS/cm total)	(mg/L total)	(NTU total)	(pH total)
TECKSWR3	SWNB-3-CAN1-L	CAN1-NB-L-R3	6/7/2010	SWNB-3-CAN1-L	0	5			10.8	119		1	8.4
TECKSWR3	SWNB-3-CAN1-R	CAN1-NB-R-R3	6/6/2010	SWNB-3-CAN1-R	0								
TECKSWR3	SWNB-3-TC1-L	TC1-NB-L-R3	6/10/2010	SWNB-3-TC1-L	0	10			11.86	123		2	8.3
TECKSWR3	SWNB-3-TC1-M	TC1-NB-M-R3	6/10/2010	SWNB-3-TC1-M	0	10			11.9	123	9	3	8.4
TECKSWR3	SWNB-3-TC1-R	TC1-NB-R-R3	6/11/2010	SWNB-3-TC1-R	0	10			11.77	118		1	8.2
TECKSWR3	SWNB-3-TC2-L	TC2-NB-L-R3	6/11/2010	SWNB-3-TC2-L	0	12.9			12.10	116			8.14
TECKSWR3	SWNB-3-TC2-M	TC2-NB-M-R3	6/11/2010	SWNB-3-TC2-M	0	14			11.95	119		1	8.2
TECKSWR3	SWNB-3-TC2-R	TC2-NB-R-R3	6/11/2010	SWNB-3-TC2-R	0	12.5			12.13	117		1	8.18
TECKSWR3	SWNB-3-TC3-L1	TC3-NB-L1-R3	6/12/2010	SWNB-3-TC3-L1	0	10			12.6	110		6	8.2
TECKSWR3	SWNB-3-TC3-L2	TC3-NB-L2-R3	6/12/2010	SWNB-3-TC3-L2	0	13			12.15	113		1	8.14
TECKSWR3	SWNB-3-TC3-M	TC3-NB-M-R3	6/12/2010	SWNB-3-TC3-M	0	16.4			12.0	110		2	8.1
TECKSWR3	SWNB-3-TC3-R	TC3-NB-R-R3	6/12/2010	SWNB-3-TC3-R	0	18.9			12.3	106		1	8.1
TECKSWR3	SWNB-3-TC4-L1	TC4-NB-L1-R3	6/13/2010	SWNB-3-TC4-L1	0	17			12.5	115		0	8.13
TECKSWR3	SWNB-3-TC4-L2	TC4-NB-L2-R3	6/13/2010	SWNB-3-TC4-L2	0	16			12.5	110		0	8.17
TECKSWR3	SWNB-3-TC4-M	TC4-NB-M-R3	6/13/2010	SWNB-3-TC4-M	0	25			12	111		0	8.3
TECKSWR3	SWNB-3-TC4-R	TC4-NB-R-R3	6/13/2010	SWNB-3-TC4-R	0	22			12.3	116		0	8
TECKSWR3	SWNB-3-TC5-L1	TC5-NB-L1-R3	6/14/2010	SWNB-3-TC5-L1	0	25			12.4	119		0	8.0
TECKSWR3	SWNB-3-TC5-L2	TC5-NB-L2-R3	6/14/2010	SWNB-3-TC5-L2	0	22			12.7	120		0	8
TECKSWR3	SWNB-3-TC5-M	TC5-NB-M-R3	6/14/2010	SWNB-3-TC5-M	0	50			11.9	118		0	8
TECKSWR3	SWNB-3-TC5-R	TC5-NB-R-R3	6/14/2010	SWNB-3-TC5-R	0	28.9			12.2	119		0	8.0
TECKSWR3	SWNB-3-TC6-LA	TC6-NB-L-R3	6/15/2010	SWNB-3-TC6-LA	1	22			12.47	111		0	7.9
TECKSWR3	SWNB-3-TC6-LB	TC6-NB-L-R3	6/15/2010	SWNB-3-TC6-LB	2	35.5			11.34	114		0	7.91
TECKSWR3	SWNB-3-TC6-LC	TC6-NB-L-R3	6/15/2010	SWNB-3-TC6-LC	3	35.5			11.34	114		0	7.91
TECKSWR3	SWNB-3-TC6-MA	TC6-NB-M-R3	6/15/2010	SWNB-3-TC6-MA	1	33.1			12	111		0.3	8.0
TECKSWR3	SWNB-3-TC6-MB	TC6-NB-M-R3	6/15/2010	SWNB-3-TC6-MB	2	55.0			11.34	113		0.4	7.9
TECKSWR3	SWNB-3-TC6-MC	TC6-NB-M-R3	6/15/2010	SWNB-3-TC6-MC	3	55.0			11.34	113		0.4	7.9
TECKSWR3	SWNB-3-TC6-R1	TC6-NB-R1-R3	6/16/2010	SWNB-3-TC6-R1	0	51			11.7	113		0	7.96
TECKSWR3	SWNB-3-TC6-R2	TC6-NB-R2-R3	6/16/2010	SWNB-3-TC6-R2	0	14			13.0	108		0	8.1
TECKSWR3	SWNB-3-TC7-L	TC7-NB-L-R3	6/16/2010	SWNB-3-TC7-L	0	40			11.5	117		0	7.97
TECKSWR3	SWNB-3-TC7-M	TC7-NB-M-R3	6/17/2010	SWNB-3-TC7-M	0	71			10.4	122	12	0	7.9
TECKSWR3	SWNB-3-TC7-R	TC7-NB-R-R3	6/17/2010	SWNB-3-TC7-R	0	48			11.8	117	11.1	0	8.0
TECKSWR3	SWNB-3-TC9-R	TC9-NB-R-R3	6/8/2010	SWNB-3-TC9-R	0	8			11.3	119		1	8.45
TECKSWR3	SWNS-3-CAN1-L	CAN1-NS-L-R3	6/7/2010	SWNS-3-CAN1-L	0	1			10.7	119		1	8.4
TECKSWR3	SWNS-3-CAN1-R	CAN1-NS-R-R3	6/6/2010	SWNS-3-CAN1-R	0	1	151		10.26	91		0.01	8
TECKSWR3	SWNS-3-TC1-L	TC1-NS-L-R3	6/10/2010	SWNS-3-TC1-L	0	1			15.9	117		0.1	8.15
TECKSWR3	SWNS-3-TC1-M	TC1-NS-M-R3	6/10/2010	SWNS-3-TC1-M	0	1	231		11.9	133	10.7	3	8
TECKSWR3	SWNS-3-TC1-R	TC1-NS-R-R3	6/11/2010	SWNS-3-TC1-R	0	1	238		11.73	130		3	7.8
TECKSWR3	SWNS-3-TC2-L	TC2-NS-L-R3	6/11/2010	SWNS-3-TC2-L	0		285	0.1	12.05	130	13	2	7.64
TECKSWR3	SWNS-3-TC2-M	TC2-NS-M-R3	6/11/2010	SWNS-3-TC2-M	0	0.6			11.9	118		3	8.35
TECKSWR3	SWNS-3-TC2-R	TC2-NS-R-R3	6/11/2010	SWNS-3-TC2-R	0		279		12.1	130	13	3	7.7
TECKSWR3	SWNS-3-TC3-L1	TC3-NS-L1-R3	6/12/2010	SWNS-3-TC3-L1	0	1	232	0.1	13.5	129	11.0	1	7.85
TECKSWR3	SWNS-3-TC3-L2	TC3-NS-L2-R3	6/12/2010	SWNS-3-TC3-L2	0	1.2			13.1	113		0	8.44
TECKSWR3	SWNS-3-TC3-M	TC3-NS-M-R3	6/12/2010	SWNS-3-TC3-M	0	0.5			13	114		3	8.36
TECKSWR3	SWNS-3-TC3-R	TC3-NS-R-R3	6/12/2010	SWNS-3-TC3-R	0	1	225	0.1	13.6	127	11	1	7.76
TECKSWR3	SWNS-3-TC4-L1	TC4-NS-L1-R3	6/13/2010	SWNS-3-TC4-L1	0	1			16.2	112		0.07	8.5
TECKSWR3	SWNS-3-TC4-L2	TC4-NS-L2-R3	6/13/2010	SWNS-3-TC4-L2	0	1.2			16	112		0.2	8.54
TECKSWR3	SWNS-3-TC4-M	TC4-NS-M-R3	6/13/2010	SWNS-3-TC4-M	0	1.2	247		15	117	12	1	7.7
TECKSWR3	SWNS-3-TC4-R	TC4-NS-R-R3	6/13/2010	SWNS-3-TC4-R	0	1.1	243		14	117	12.5	1	7.75
TECKSWR3	SWNS-3-TC5-L1	TC5-NS-L1-R3	6/14/2010	SWNS-3-TC5-L1	0	1			16	113		0.1	8.2
TECKSWR3	SWNS-3-TC5-L2	TC5-NS-L2-R3	6/14/2010	SWNS-3-TC5-L2	0	1			15.9	117	0	0	8.15
TECKSWR3	SWNS-3-TC5-M	TC5-NS-M-R3	6/14/2010	SWNS-3-TC5-M	0	1.2	229		16	119	10.4	10	7.6
TECKSWR3	SWNS-3-TC5-R	TC5-NS-R-R3	6/14/2010	SWNS-3-TC5-R	0	1.2	223		15.8	119	10.4	11	7.65
TECKSWR3	SWNS-3-TC6-L	TC6-NS-L-R3	6/15/2010	SWNS-3-TC6-L	0	1.2			16.6	104		227	8.14
TECKSWR3	SWNS-3-TC6-MA	TC6-NS-M-R3	6/16/2010	SWNS-3-TC6-MA	1	1.1	238		15	99	10.8	3	7.8
TECKSWR3	SWNS-3-TC6-MB	TC6-NS-M-R3	6/16/2010	SWNS-3-TC6-MB	2								
TECKSWR3	SWNS-3-TC6-MC	TC6-NS-M-R3	6/16/2010	SWNS-3-TC6-MC	3								
TECKSWR3	SWNS-3-TC6-R1	TC6-NS-R1-R3	6/15/2010	SWNS-3-TC6-R1	0	1	160		15.5	110	10.4		7.9
TECKSWR3	SWNS-3-TC6-R2A	TC6-NS-R2-R3	6/15/2010	SWNS-3-TC6-R2A	1	1.2	167		15.3	110	10.6	124	7.9
TECKSWR3	SWNS-3-TC6-R2B	TC6-NS-R2-R3	6/15/2010	SWNS-3-TC6-R2B	2								
TECKSWR3	SWNS-3-TC6-R2C	TC6-NS-R2-R3	6/15/2010	SWNS-3-TC6-R2C	3								
TECKSWR3	SWNS-3-TC7-L	TC7-NS-L-R3	6/16/2010	SWNS-3-TC7-L	0	1			15.7	114		0	8.3

FINAL October 2013

								Total Dissolved			Dissolved		
Survey	Sample Number	Survey Station	Date	Sample ID	Field Replicate	Depth to Water Level (m total)	Oxidation Reduction Potential (mV total)	Solids (g/L total)	Temperature (degC total)	Conductivity (µS/cm total)	Oxygen (mg/L total)	Turbidity (NTU total)	pH (pH total)
TECKSWR3	SWNS-3-TC7-M	TC7-NS-M-R3	6/17/2010	SWNS-3-TC7-M	1 0	1.1		(5)	15.5	112	3.2	0	8.33
TECKSWR3	SWNS-3-TC7-R	TC7-NS-R-R3	6/17/2010	SWNS-3-TC7-R	0	1			15.8	112	2.4	0	8.32
TECKSWR3	SWNS-3-TC9-L	TC9-NS-L-R3	6/10/2010	SWNS-3-TC9-L	0	1.3	232		12	135	13.1	5	7.7
TECKSWR3	SWNS-3-TC9-R	TC9-NS-R-R3	6/8/2010	SWNS-3-TC9-R	0	1			11.3	119		1	8.4
TECKSWR3	SWNSH-3A-CAN2-L	CAN2-NSH-L-R3	4/24/2010	SWNSH-3A-CAN2-L	0		141		8.3	750	9.75	2.2	8.02
TECKSWR3	SWNSH-3B-CAN2-L	CAN2-NSH-L-R3	5/4/2010	SWNSH-3B-CAN2-L	0		151		9.5	710	9.60	4	8.1
TECKSWR3	SWNSH-3-CAN1-L	CAN1-NSH-L-R3	6/6/2010	SWNSH-3-CAN1-L	0								
TECKSWR3	SWNSH-3-CAN1-R	CAN1-NSH-R-R3	6/6/2010	SWNSH-3-CAN1-R	0	0.6	162		10.26	91		2	8
TECKSWR3	SWNSH-3C-CAN2-L	CAN2-NSH-L-R3	5/11/2010	SWNSH-3C-CAN2-L	0		165		10.4	773	8.8	7.4	7.46
TECKSWR3	SWNSH-3D-CAN2-L	CAN2-NSH-L-R3	5/18/2010	SWNSH-3D-CAN2-L	0		137		11.3	710	9.0	9.8	7.82
TECKSWR3	SWNSH-3E-CAN2-L	CAN2-NSH-L-R3	5/25/2010	SWNSH-3E-CAN2-L	0		164		10.7	786	11.71	4	8
TECKSWR3	SWNSH-3F-CAN2-L	CAN2-NSH-L-R3	6/1/2010	SWNSH-3F-CAN2-L	0		156		11.3	726	11.71	7.7	8.02
TECKSWR3	SWNSH-3G-CAN2-L	CAN2-NSH-L-R3	6/8/2010	SWNSH-3G-CAN2-L	0		171		12	775	11.74	8	7.46
TECKSWR3	SWNSH-3-TC1-L	TC1-NSH-L-R3	6/10/2010	SWNSH-3-TC1-L	0		230		12.3	133	11.2	4	7.9
TECKSWR3	SWNSH-3-TC1-LDISA	TC1-NSH-L(d)-R3	6/10/2010	SWNSH-3-TC1-LDISA	1		235		12.2	133	11.4	3	7.9
TECKSWR3	SWNSH-3-TC1-LDISB	TC1-NSH-L(d)-R3	6/10/2010	SWNSH-3-TC1-LDISB	2								
TECKSWR3	SWNSH-3-TC1-LDISC	TC1-NSH-L(d)-R3	6/10/2010	SWNSH-3-TC1-LDISC	3	0.4	055		44.04	00	40		7.5
TECKSWR3	SWNSH-3-TC1-R	TC1-NSH-R-R3	6/9/2010	SWNSH-3-TC1-R	0	0.4	255		11.94	93	12		7.5
TECKSWR3	SWNSH-3-TC1-RDISA	TC1-NSH-R(d)-R3	6/10/2010	SWNSH-3-TC1-RDISA	1		232		11.76	133	11.7		7.8
TECKSWR3	SWNSH-3-TC1-RDISB	TC1-NSH-R(d)-R3	6/10/2010	SWNSH-3-TC1-RDISB	2								-
TECKSWR3 TECKSWR3	SWNSH-3-TC1-RDISC SWNSH-3-TC2-L	TC1-NSH-R(d)-R3 TC2-NSH-L-R3	6/10/2010 6/11/2010	SWNSH-3-TC1-RDISC SWNSH-3-TC2-L	0		282	0.1	12	128	12	6	7.6
TECKSWR3	SWNSH-3-TC2-LDISA	TC2-NSH-L-R3	6/11/2010	SWNSH-3-TC2-LDISA	1		282	0.1	12	128	12	4	7.6 7.65
TECKSWR3	SWNSH-3-TC2-LDISB	TC2-NSH-L(d)-R3	6/11/2010	SWNSH-3-TC2-LDISB	2		291	0.1	12	127	12	4	7.00
TECKSWR3	SWNSH-3-TC2-LDISC	TC2-NSH-L(d)-R3	6/11/2010	SWNSH-3-TC2-LDISC	3								
TECKSWR3	SWNSH-3-TC2-R	TC2-NSH-R-R3	6/11/2010	SWNSH-3-TC2-EDISC	0		247		12.5	125	11.3	3	7.5
TECKSWR3	SWNSH-3-TC2-RDISA	TC2-NSH-R(d)-R3	6/11/2010	SWNSH-3-TC2-RDISA	1		261		12.5	126	11.3	9	7.6
TECKSWR3	SWNSH-3-TC2-RDISB	TC2-NSH-R(d)-R3	6/11/2010	SWNSH-3-TC2-RDISB	2		201		12.0	120	11	3	7.0
TECKSWR3	SWNSH-3-TC2-RDISC	TC2-NSH-R(d)-R3	6/11/2010	SWNSH-3-TC2-RDISC	3								
TECKSWR3	SWNSH-3-TC3-L	TC3-NSH-L-R3	6/12/2010	SWNSH-3-TC3-L	0		248		13	130	10.4	70	7.8
TECKSWR3	SWNSH-3-TC3-LDISA	TC3-NSH-L(d)-R3	6/12/2010	SWNSH-3-TC3-LDISA	1		250		14	130	10.3	3	7.9
TECKSWR3	SWNSH-3-TC3-LDISB	TC3-NSH-L(d)-R3	6/12/2010	SWNSH-3-TC3-LDISB	2		200				10.0		7.0
TECKSWR3	SWNSH-3-TC3-LDISC	TC3-NSH-L(d)-R3	6/12/2010	SWNSH-3-TC3-LDISC	3								
TECKSWR3	SWNSH-3-TC3-R	TC3-NSH-R-R3	6/12/2010	SWNSH-3-TC3-R	0		244		13	125	10.4	1	7.7
TECKSWR3	SWNSH-3-TC3-RDISA	TC3-NSH-R(d)-R3	6/12/2010	SWNSH-3-TC3-RDISA	1		252	0.1	13.0	124	10.4	2	7.75
TECKSWR3	SWNSH-3-TC3-RDISB	TC3-NSH-R(d)-R3	6/12/2010	SWNSH-3-TC3-RDISB	2								
TECKSWR3	SWNSH-3-TC3-RDISC	TC3-NSH-R(d)-R3	6/12/2010	SWNSH-3-TC3-RDISC	3								
TECKSWR3	SWNSH-3-TC4-L	TC4-NSH-L-R3	6/13/2010	SWNSH-3-TC4-L	0		240	0.1	19.4	114	11	5	7.8
TECKSWR3	SWNSH-3-TC4-LDISA	TC4-NSH-L(d)-R3	6/13/2010	SWNSH-3-TC4-LDISA	1		242	0.1	18	114	11	0.2	7.8
TECKSWR3	SWNSH-3-TC4-LDISB	TC4-NSH-L(d)-R3	6/13/2010	SWNSH-3-TC4-LDISB	2								
TECKSWR3	SWNSH-3-TC4-LDISC	TC4-NSH-L(d)-R3	6/13/2010	SWNSH-3-TC4-LDISC	3								
TECKSWR3	SWNSH-3-TC4-R	TC4-NSH-R-R3	6/13/2010	SWNSH-3-TC4-R	0		248	0.1	14.3	116	10.8	23	7.7
TECKSWR3	SWNSH-3-TC5-L	TC5-NSH-L-R3	6/14/2010	SWNSH-3-TC5-L	0	0.5	232		16.6	115	9.6	18	7.56
TECKSWR3	SWNSH-3-TC5-LDISA	TC5-NSH-L(d)-R3	6/14/2010	SWNSH-3-TC5-LDISA	1	0.33	230		16.8	103	10	14	7.5
TECKSWR3	SWNSH-3-TC5-LDISB	TC5-NSH-L(d)-R3	6/14/2010	SWNSH-3-TC5-LDISB	2								
TECKSWR3	SWNSH-3-TC5-LDISC	TC5-NSH-L(d)-R3	6/14/2010	SWNSH-3-TC5-LDISC	3								
TECKSWR3	SWNSH-3-TC5-R	TC5-NSH-R-R3	6/14/2010	SWNSH-3-TC5-R	0	0.5	231		16	120	10.5	18	7.75
TECKSWR3	SWNSH-3-TC5-RDISA	TC5-NSH-R(d)-R3	6/14/2010	SWNSH-3-TC5-RDISA	1	0.5	231		15.8	120	10.5	14	7.74
TECKSWR3	SWNSH-3-TC5-RDISB	TC5-NSH-R(d)-R3	6/14/2010	SWNSH-3-TC5-RDISB	2								
TECKSWR3	SWNSH-3-TC5-RDISC	TC5-NSH-R(d)-R3	6/14/2010	SWNSH-3-TC5-RDISC	3								
TECKSWR3	SWNSH-3-TC6-LA	TC6-NSH-L-R3	6/15/2010	SWNSH-3-TC6-LA	1	0.4	177		17	107	9.4	36	7.8
TECKSWR3	SWNSH-3-TC6-LB	TC6-NSH-L-R3	6/15/2010	SWNSH-3-TC6-LB	2								
TECKSWR3	SWNSH-3-TC6-LC	TC6-NSH-L-R3	6/15/2010	SWNSH-3-TC6-LC	3	^-	100		47.5	400			
TECKSWR3	SWNSH-3-TC6-LDISA	TC6-NSH-L(d)-R3	6/15/2010	SWNSH-3-TC6-LDISA	1	0.7	169		17.5	106	9.4	26	7.8
TECKSWR3	SWNSH-3-TC6-LDISB	TC6-NSH-L(d)-R3	6/15/2010	SWNSH-3-TC6-LDISB	2								
TECKSWR3	SWNSH-3-TC6-LDISC	TC6-NSH-L(d)-R3	6/15/2010	SWNSH-3-TC6-LDISC	3		107		47.7	100	100		
TECKSWR3	SWNSH-3-TC6-R	TC6-NSH-R-R3	6/15/2010	SWNSH-3-TC6-R	0	0.3	167		17.7	108	10.3	23	8
TECKSWR3	SWNSH-3-TC6-RDISA	TC6-NSH-R(d)-R3	6/15/2010	SWNSH-3-TC6-RDISA	1	0.8	166		16.5	110	10.6	5	8
TECKSWR3 TECKSWR3	SWNSH-3-TC6-RDISB SWNSH-3-TC6-RDISC	TC6-NSH-R(d)-R3	6/15/2010	SWNSH-3-TC6-RDISB SWNSH-3-TC6-RDISC	3								-
TECKSWR3	SWNSH-3-TC6-RDISC	TC6-NSH-R(d)-R3 TC7-NSH-L-R3	6/15/2010 6/17/2010	SWNSH-3-TC6-RDISC	0	0.5	238		16	115	7	1	7.9
	300100H-3-10/-L	I I O / - INOTI-L-RO	0/17/2010	300103F1-3-10/-L	0	0.5	230		10	115	/	1	1.9

Table H-3. Field Measurements made during the Third Round of Surface Water Sampling (Summer 2010

								Total Dissolved			Dissolved		
					Field	Depth to Water	Oxidation Reduction	Solids	Temperature	Conductivity	Oxygen	Turbidity	рН
Survey	Sample Number	Survey Station	Date	Sample ID	Replicate	Level (m total)	Potential (mV total)	(g/L total)	(degC total)	(µS/cm total)	(mg/L total)	(NTU total)	(pH total)
TECKSWR3	SWNSH-3-TC7-LDISA	TC7-NSH-L(d)-R3	6/17/2010	SWNSH-3-TC7-LDISA	1	0.5	237		15.7	114	8	0.4	7.95
TECKSWR3	SWNSH-3-TC7-LDISB	TC7-NSH-L(d)-R3	6/17/2010	SWNSH-3-TC7-LDISB	2								
TECKSWR3	SWNSH-3-TC7-LDISC	TC7-NSH-L(d)-R3	6/17/2010	SWNSH-3-TC7-LDISC	3								
TECKSWR3	SWNSH-3-TC7-R	TC7-NSH-R-R3	6/17/2010	SWNSH-3-TC7-R	0	0.4	233		15.6	119	7.7	0	7.86
TECKSWR3	SWNSH-3-TC7-RDISA	TC7-NSH-R(d)-R3	6/17/2010	SWNSH-3-TC7-RDISA	1	0.4	239		16	119	7.6	0.5	7.9
TECKSWR3	SWNSH-3-TC7-RDISB	TC7-NSH-R(d)-R3	6/17/2010	SWNSH-3-TC7-RDISB	2								
TECKSWR3	SWNSH-3-TC7-RDISC	TC7-NSH-R(d)-R3	6/17/2010	SWNSH-3-TC7-RDISC	3								
TECKSWR3	SWNSH-3-TC8-LDISA	TC8-NSH-L(d)-R3	6/9/2010	SWNSH-3-TC8-LDISA	1	0.6	252		11.9	94	12.5	32	7.5
TECKSWR3	SWNSH-3-TC8-LDISB	TC8-NSH-L(d)-R3	6/9/2010	SWNSH-3-TC8-LDISB	2								
TECKSWR3	SWNSH-3-TC8-LDISC	TC8-NSH-L(d)-R3	6/9/2010	SWNSH-3-TC8-LDISC	3								
TECKSWR3	SWNSH-3-TC9-L	TC9-NSH-L-R3	6/7/2010	SWNSH-3-TC9-L	0	0.5			12	121		4	8.4
TECKSWR3	SWNSH-3-TC9-R	TC9-NSH-R-R3	6/8/2010	SWNSH-3-TC9-R	0	0.4			11.1	117	9	2	8.45