UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

 REGION 101200 Sixth Avenue, Suite 900
Seattle, Washington 98101-3140
April 21, 2010

CERTIFIED MAIL - RETURN RECEIPT REQUESTED

Reply To: ECL-111

Marko Adzic

Teck American Incorporated
501 North Riverpoint Boulevard, Suite 300
Spokane, Washington 99202
RE: Triplicate Samples in the Surface Water Sampling Program
Dear Mr. Adzic,
I am writing in response to your email message dated April $5^{\text {th }}$, in which you informed the United Stated Environmental Agency (EPA) that Teck planned to drop planned triplicate samples from the ongoing surface water sampling program. EPA directed Teck to collect the triplicate samples as planned, while we reviewed the technical analysis that you provided as an attachment to your April $5^{\text {th }}$ email message. The samples were collected. Technical experts representing EPA and Teck have held several meetings by teleconference since April $5^{\text {th }}$ to discuss this issue, and Teck has provided additional statistical analyses and data requested by EPA. After reviewing all the information, EPA has determined that triplicate samples are no longer needed. Teck is not required to analyze the triplicate samples that were collected during the April sampling event, and triplicate samples will not be required during the third sampling event that will take place later this year. We wish to clarify that triplicate samples are still required on the quality assurance transect, as described in the Quality Assurance Project Plan.

However, the timing, format, and language of Teck's email notification on this issue were unacceptable. The email arrived the day before the first triplicate samples were to be collected and informed EPA that Teck had unilaterally decided not to collect triplicate samples. Teck must get EPA approval for any changes to approved sampling programs. We understand that Teck spent more than $\$ 150,000$ collecting triplicate samples that will never be analyzed. This is unfortunate, but it was Teck's responsibility to provide EPA the sampling data analysis with adequate time to evaluate the analysis in order to determine whether triplicate sampling was necessary. Validated surface water data from the first round of sampling has been available for months now. Teck could have brought this analysis to EPA in a timely manner.

Sincerely,
Heden It Botteher

Helen Bottcher
Project Manager
cc: Dan Audet, U.S. Department of the Interior
Patti Bailey, Confederated Tribes of the Colville Reservation
Randy Connolly, Spokane Tribe of Indians
John Roland, Washington State Department of Ecology
David Godlewski, Teck

E X T ER N A L M E M O R A N D U M

To:	Bruce Duncan, EPA
From:	Melanie Edwards
DATE:	April 13, 2010
PROJECT:	0900083.013
SUBJECT:	Statistical analysis of surface water samples using variability of field triplicate samples

As discussed on the conference call on April $8^{\text {th }}$, I have conducted a statistical analysis of a selected few metals to assess whether field triplicate sampling should be continued at transects CAN1 and TC3. EPA indicated on the aforementioned conference call that the currently available field triplicate samples represent an agreed upon level of effort and, therefore, could be used as the residual variability when assessing significant interactions between locations and depths within a transect. The materials associated with this memo provide a summary of the analysis conducted for three selected metals, specifically cadmium, cobalt, and manganese that lead to the conclusion of no significant and meaningful interaction terms.

Table 1 provides a summary of the metals and metalloids measured in surface water samples, including both undisturbed and disturbed samples. The three metals selected for analysis have only a few undetected results and one or more samples with concentrations above the lowest criterion. Dissolved manganese was not evaluated because a large majority of samples had undetected concentrations.

Table 2 provides an overview of the analysis of variance models fit to each metal. Initially, the complete model was fit, including a term for transect differences as well as terms for location, depth, and their interaction within each transect. In this manner, the depth and location differences were evaluated within each transect. The full ANOVA model was simplified sequentially be removing each non-significant term individually then refitting the resulting model. P-values for each term in each of the models are provided in Table 2. Pages A1-A9 provide the original statistical output with several plots of the residuals from the final model for each metal. Total and dissolved manganese concentrations were $\log _{10}$ transformed to meet the method assumptions.

Multiple comparisons followed the final ANOVA model for each metal to assess differences between locations and/or depths within each transect. A Bonferroni adjustment was used to account for the number of comparisons in order to achieve an overall 0.05 significance level,

Statistical analysis of surface water samples using variability of field triplicate samples April 13, 2010
Page 2
i.e., 95 percent confidence. Table 3 provides the P-values for the significant terms in the final ANOVA model for each metal and a summary of the significant differences found between locations and depths at each transect. The sample design does not provide enough degrees of freedom to assess pairwise comparisons of the interaction term. A significant interaction term indicates differences between locations within transects may not be consistent for all depths. Alternatively, it could indicate that differences between depths within transects may not be consistent for all three locations. When the interaction term was significant, separate ANOVA models were evaluated based on subsets of the data, specifically evaluating depth differences for each location individually and evaluating location differences for each depth individually. The significance of the statistical comparisons must be interpreted jointly with an assessment of the magnitude of the difference and number of undetected results to evaluate how "real" (or meaningful) it is.

The only significant interaction term was for dissolved cobalt. Comparisons within transects identified only one significant difference between near bottom and nearshore samples on the left bank of TC2. Within each transect the range in concentration was $0.016 \mu \mathrm{~g} / \mathrm{L}$ or less when calculated with undetected results included at the full detection limit ($0.024-0.028 \mu \mathrm{~g} / \mathrm{L})$. The significant difference identified is because the undetected concentrations were included at half the detection limit in the statistical analysis ($0.012-0.014 \mu \mathrm{~g} / \mathrm{L}$). Table 4 shows the range in concentrations measured within each transect, with undetected results at half the detection limit.

Table 5 provides the measured concentrations by sample for the three metals evaluated. Figures $1-3$ show the measured concentrations by transect, along with the appropriate comparison criteria. Symbols distinguish between depths (near-surface, nearshore, and near-bottom) within each area of a transect (i.e., left bank, mid-channel, and right bank) as well as indicating undetected concentration samples.

These three metals reasonably represent patterns among many of the other metals/chemicals. Total manganese was detected at a fairly wide range of concentrations whereas cadmium and cobalt were generally detected over a smaller range. All three exceeded the minimum comparison criteria level. The small range in cadmium and cobalt concentrations resulted in detectable differences that may not be meaningful. The only significant interaction term between location and depth was for dissolved cobalt, which was due to undetected results included at half the detection limit

Overall, the evaluation of these three metals indicates the field triplicate samples provided the variability estimate necessary for comparisons between depths and locations by transect. However, it is recommended that field triplicate samples be discontinued in the later rounds of sampling. The analysis included here indicated no significant and meaningful interaction terms, therefore the multiple depth and/or location samples provide the necessary replication for statistical assessments. Further, the second and third rounds of surface water sampling will provide even more samples.

Table 1. Summary of concentrations measured in surface water samples (including disturbed samples)

Metals and Metalloids ($\mu \mathrm{g} / \mathrm{L}$)	N	Detects \% ND		Min. ${ }^{\text {a }}$	Maximum		Median ${ }^{\text {b }}$	Mean ${ }^{\text {b }}$	Criteria			
				Alla	Detect	AWQC			DWS	RBC		
Dissolved aluminum	96	11	89		1.2	18.9	18.9	2.0	2.4	87	--	--
Total aluminum	96	56	42	5.5	469	469	10.6	35.9	--	50-200	23	
Dissolved antimony	96	91	5	0.018	0.23	0.23	0.18	0.17	--	--	-	
Total antimony	96	91	5	0.020	1.1	1.1	0.18	0.18	--	6	0.34	
Dissolved arsenic	96	34	65	0.075	0.90	0.70	0.25	0.31	150	--	--	
Total arsenic	96	12	88	0.083	1.1	0.70	0.25	0.26	--	10	0.013	
Dissolved inorganic arsenic	62	62	0	0.053	0.75	0.75	0.34	0.34	150	--	--	
Total inorganic arsenic	62	62	0	0.067	1.0	1.0	0.37	0.37	--	10	0.013	
Dissolved barium	96	96	0	17.6	58.6	58.6	29.9	31.0	--	--	--	
Total barium	96	96	0	18.0	59.7	59.7	31.1	32.1	--	2,000	3.3	
Dissolved beryllium	96	0	100	0.0060	0.0060	--	0.0030	0.0030	--	--	--	
Total beryllium	96	13	86	0.0047	0.029	0.029	0.0030	0.0041	--	4	0.029	
Dissolved bismuth	62	4	94	0.0031	0.0050	0.0045	0.0025	0.0026	--	--	--	
Total bismuth	62	7	89	0.0033	0.0063	0.0063	0.0025	0.0028	--	--	--	
Dissolved boron	63	7	89	1.7	9.4	3.6	1.5	1.9	--	--	--	
Total boron	63	11	83	1.5	11.9	4.9	1.7	2.1	--	6,000	130	
Dissolved cadmium	96	87	9	0.0037	0.028	0.028	0.010	0.012	0.25		--	
Total cadmium	96	91	5	0.0062	0.27	0.27	0.015	0.019	--	5	0.039	
Dissolved calcium	96	96	0	15.7	20.3	20.3	18.2	18.2	--	--	--	
Total calcium	96	96	0	15.8	20.5	20.5	18.2	18.1	--	--	--	
Dissolved cerium	62	1	98	0.0090	0.015	0.015	0.0045	0.0047	--	--	--	
Total cerium	62	62	0	0.013	0.23	0.23	0.029	0.035	--	--	--	
Dissolved cesium	62	59	5	0.0067	0.020	0.020	0.010	0.013	--	--	--	
Total cesium	62	62	0	0.010	0.030	0.030	0.020	0.018	--	--	--	
Dissolved chromium	96	8	92	0.030	0.21	0.16	0.055	0.056	74	--	-	
Total chromium	96	16	83	0.038	1.2	1.2	0.070	0.10	--	100	100	
Dissolved cobalt	96	89	7	0.021	0.084	0.084	0.034	0.033	--	--	-	
Total cobalt	96	95	1	0.029	0.47	0.47	0.044	0.064	--	--	0.025	
Dissolved copper	96	9	91	0.17	0.84	0.64	0.26	0.27	9	--	--	
Total copper	96	82	15	0.19	14.9	14.9	0.60	0.82	--	1,000	34	
Dissolved dysprosium	62	0	100	0.0070	0.0070	--	0.0035	0.0035	--	--	--	
Total dysprosium	62	5	92	0.00533	0.014	0.014	0.0035	0.0039	--	--	--	
Dissolved erbium	62	0	100	0.010	0.010	--	0.0050	0.0050	--	--	--	
Total erbium	62	0	100	0.010	0.010	--	0.0050	0.0050	--	--	--	
Dissolved europium	62	23	63	0.0040	0.011	0.011	0.0030	0.0044	--	--	--	
Total europium	62	35	44	0.0040	0.015	0.015	0.006	0.006	--	--	--	
Dissolved gadolinium	62	0	100	0.010	0.010	--	0.0050	0.0050	--	--	--	
Total gadolinium	62	4	94	0.00667	0.020	0.020	0.0050	0.0054	--	--	--	
Dissolved gallium	62	0	100	0.020	0.020	--	0.010	0.010	--	--	--	
Total gallium	62	3	95	0.017	0.040	0.040	0.010	0.011	--	--	--	
Dissolved germanium	62	4	94	0.012	0.13	0.031	0.015	0.019	--	--	--	
Total germanium	62	9	85	0.017	0.18	0.049	0.025	0.026	--	--	--	
Dissolved gold	63	3	95	0.030	0.14	0.048	0.025	0.027	--	--	--	
Total gold	63	8	87	0.028	0.17	0.073	0.025	0.035	--	--	--	
Dissolved holmium	62	0	100	0.0090	0.0090	--	0.0045	0.0045	--	--	--	
Total holmium	62	0	100	0.0090	0.0090	--	0.0045	0.0045	--	--	--	
Dissolved indium	62	0	100	0.0060	0.0060	--	0.0030	0.0030	--	--	--	
Total indium	62	2	97	0.0045	0.0070	0.0070	0.0030	0.0031	--	--	--	
Dissolved iron	88	16	82	2.1	19.9	19.9	1.5	2.1	1,000	--	--	
Total iron	96	76	21	3.0	1,477	1,477	23.1	79.9	--	300	600	
Dissolved lanthanum	62	5	92	0.0040	0.0080	0.0080	0.0030	0.0032	--	--	--	
Total lanthanum	62	62	0	0.011	0.12	0.12	0.019	0.022	--	--	-	
Dissolved lead	96	6	94	0.0033	0.030	0.028	0.0070	0.0072	2.5	--	--	
Total lead	96	44	54	0.023	17.2	17.2	0.060	0.34	--	15	15	
Dissolved lithium	63	12	81	1.4	3.9	2.7	1.0	1.3	--	--	--	
Total lithium	63	14	78	1.3	3.4	3.4	1.0	1.2	--	--	17	
Dissolved lutetium	62	0	100	0.0060	0.0060	--	0.0030	0.0030	--	--	--	
Total lutetium	62	1	98	0.0045	0.0060	0.0045	0.0030	0.0030	--	--	--	

Table 1. Cont.

Metals and Metalloids ($\mu \mathrm{g} / \mathrm{L}$)	N	Detects	\% ND	Min. ${ }^{\text {a }}$	Maximum		Median ${ }^{\text {b }}$	Mean ${ }^{\text {b }}$	Criteria		
					All $^{\text {a }}$	Detect			AWQC	DWS	RBC
Dissolved magnesium	96	96	0	3,683	5,600	5,600	4,460	4,437	--	--	--
Total magnesium	96	96	0	3,580	5,420	5,420	4,455	4,438	--	--	--
Dissolved manganese	96	11	89	0.11	1.3	1.3	0.22	0.24	--	--	--
Total manganese	96	96	0	1.6	32.5	32.5	3.1	4.7	--	300	0.33
Dissolved mercury	96	0	100	0.080	0.67	--	0.14	0.14	800	--	--
Total mercury	96	5	95	0.090	19.9	19.9	0.24	0.47	--	2,000	0.000089
Dissolved molybdenum	96	96	0	0.52	0.72	0.72	0.58	0.59	--	--	-
Total molybdenum	96	96	0	0.49	0.71	0.71	0.57	0.57	--	40	4.3
Dissolved neodymium	62	0	100	0.020	0.020	--	0.010	0.010	--	--	--
Total neodymium	62	20	68	0.013	0.11	0.11	0.010	0.016	--	--	--
Dissolved nickel	96	83	14	0.16	0.58	0.58	0.39	0.35	52	--	--
Total nickel	96	87	9	0.17	1.2	1.2	0.42	0.40	--	100	17
Dissolved niobium	63	5	92	0.010	0.040	0.020	0.0050	0.011	--	--	--
Total niobium	63	5	92	0.010	0.070	0.060	0.010	0.013	--	--	--
Dissolved potassium	96	96	0	548	782	782	636	643	--	--	--
Total potassium	96	96	0	528	851	851	632	646	--	--	--
Dissolved praseodymium	62	0	100	0.0060	0.0060	--	0.0030	0.0030	--	--	--
Total praseodymium	62	14	77	0.0040	0.024	0.024	0.0030	0.0043	--	--	--
Dissolved rubidium	62	62	0	0.72	1.1	1.1	0.98	0.97	--	--	--
Total rubidium	62	62	0	0.80	1.1	1.1	1.0	1.0	--	--	--
Dissolved samarium	62	0	100	0.0080	0.0080	--	0.0040	0.0040	--	--	--
Total samarium	62	5	92	0.0065	0.019	0.019	0.0040	0.0046	--	--	--
Dissolved scandium	62	53	15	0.077	0.36	0.36	0.25	0.21	--	--	--
Total scandium	62	54	13	0.094	0.41	0.41	0.26	0.23	--	--	--
Dissolved selenium	96	5	95	0.23	0.60	0.50	0.15	0.18	5	--	-
Total selenium	96	3	97	0.21	0.50	0.38	0.15	0.16	--	50	4.3
Dissolved silver	96	0	100	0.0040	0.011	--	0.0020	0.0021	1.6	--	-
Total silver	96	2	98	0.0040	0.037	0.037	0.0020	0.0024	--	100	4.3
Dissolved sodium	96	96	0	1,233	2,450	2,450	1,770	1,774	--	--	--
Total sodium	96	96	0	1,263	2,500	2,500	1,718	1,752	--	--	--
Dissolved strontium	63	63	0	62.6	107	107	94.8	93.7	--	--	-
Total strontium	63	63	0	63.5	109	109	94.1	93.7	--	4,000	520
Dissolved tantalum	59	4	93	0.0066	0.012	0.012	0.0040	0.0043	--	,	-
Total tantalum	59	4	93	0.0060	0.013	0.011	0.0040	0.0043	--	--	--
Dissolved tellurium	62	0	100	0.050	0.070	--	0.025	0.025	--	--	--
Total tellurium	62	1	98	0.050	0.59	0.59	0.025	0.034	--	--	--
Dissolved terbium	62	0	100	0.0070	0.0070	--	0.0035	0.0035	--	--	--
Total terbium	62	0	100	0.0070	0.0070	--	0.0035	0.0035	--	--	--
Dissolved thallium	96	18	81	0.0049	0.056	0.042	0.0095	0.013	--	--	--
Total thallium	96	20	79	0.0050	0.048	0.042	0.012	0.014	--	2	0.06
Dissolved thorium	63	2	97	0.00583	0.057	0.0080	0.0030	0.0043	--	--	-
Total thorium	63	16	75	0.0040	0.061	0.061	0.0043	0.0066	--	--	--
Dissolved thulium	62	0	100	0.0080	0.0080	--	0.0040	0.0040	--	--	--
Total thulium	62	0	100	0.0080	0.0080	--	0.0040	0.0040	--	--	-
Dissolved tin	62	3	95	0.013	0.080	0.018	0.010	0.011	--	--	--
Total tin	63	5	92	0.017	0.060	0.060	0.010	0.012	--	--	--
Dissolved titanium	63	1	98	0.32	1.0	0.32	0.20	0.21	--	--	--
Total titanium	63	11	83	0.30	8.7	8.7	0.40	0.60	--	--	--
Dissolved tungsten	62	6	90	0.050	0.45	0.25	0.050	0.073	--	--	--
Total tungsten	62	7	89	0.042	0.20	0.16	0.030	0.042	--	--	--
Dissolved uranium	100	100	0	0.41	0.57	0.57	0.48	0.48	--	--	--
Total uranium	100	100	0	0.41	0.63	0.63	0.49	0.49	--	--	--
Dissolved vanadium	96	62	35	0.10	0.33	0.23	0.13	0.14	--	--	-
Total vanadium	96	25	74	0.073	1.4	1.4	0.12	0.18	--	--	0.86
Dissolved ytterbium	62	0	100	0.0080	0.0080	--	0.0040	0.0040	--	--	--
Total ytterbium	62	1	98	0.0060	0.0080	0.0060	0.0040	0.0040	--	--	--
Dissolved yttrium	62	31	50	0.0067	0.010	0.010	0.0058	0.0073	--	--	--
Total yttrium	62	62	0	0.010	0.060	0.060	0.020	0.022	--	--	--

Table 1. Cont.

Metals and Metalloids ($\mu \mathrm{g} / \mathrm{L}$)	N	Detects \% ND		Min. ${ }^{\text {a }}$	Maximum		Median ${ }^{\text {b }}$	Mean ${ }^{\text {b }}$	Criteria			
				All $^{\text {a }}$	Detect	AWQC			DWS	RBC		
Dissolved zinc	96	7	93		0.20	3.9	0.83	0.40	0.45	120	--	--
Total zinc	96	16	83	0.32	126	126	0.60	2.97	--	2,000	260	

${ }^{\text {a }}$ Calculated with non-detected results at the full detection limit.
${ }^{\mathrm{b}}$ Calculated with non-detected results at half the detection limit.
${ }^{\text {c }}$ Criterion was only exceeded by unfiltered disturbed surface water samples.
AWQC - Chronic ambient water quality criteria
DWS - U.S. EPA drinking water standard
RBC - Spokane Tribe risk based concentration drinking water standard

Table 2. Summary of analysis of variance model assessments

	Cadmium		Cobalt		Manganese	
	Total	Dissolved	Total	Dissolved	Total	Dissolved
Number of results	129	129	128	127	128	127
Number of undetected results	8	23	1	9	0	117
Percent undetected results	6.2	17.8	0.8	7.1	0	92.1
P-values for sequential ANOVA models						
Full model						
Transect	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	NA
Depth w/in transect	0.1206	0.1204	0.0003	0.0126	<0.0001	
Location w/in transect	0.0122	0.0121	0.0001	<0.0001	0.0126	
Interaction w/in transect	0.4277	0.1103	0.0700	0.0055	0.0551	
Without interaction						
Transect	<0.0001	<0.0001	<0.0001	NA	<0.0001	NA
Depth w/in transect	0.1130	0.2134	0.0007		<0.0001	
Location w/in transect	0.0088	0.0252	0.0002		0.0381	
Type difference model						
Transect	NA	NA	NA	NA	NA	NA
Depth w/in transect						
Side difference model						
Transect	<0.0001	<0.0001	NA	NA	NA	NA
Location w/in transect	0.0171	0.0054				

Note: Disturbed samples and samples from CAN2 were excluded from analysis.
Values for the ANOVA models are the P-values for each term in the model, rounded to four decimal places
Results of multiple comparisons are reportd in Table 3.
ANOVA - Analysis of variance
NA - Not analyzed

Table 3. Summary of multiple comparisons between depths and locations

		Cadmium		Cobalt		Manganese	
		Total	Dissolved	Total	Dissolved	Total	Dissolved
P-values from final ANOVA model							
Transe		<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	$N A^{2}$
Depth	w/in transect	ns	ns	0.0007	0.0126	<0.0001	
Locatio	w/in transect	0.0171	0.0054	0.0002	<0.0001	0.0381	
Interac	ion w/in transect	ns	ns	ns	0.0055	ns	
Location comparisons							
CAN1	Left - Right	--	--	--	--	--	
TC10	Left - Right	--	--	--	--	--	
TC9	Left - Right	--	--	--	--	--	
TC1	Left - Mid-channel	--	--	--	--	--	
	Left - Right	--	--	--	--	--	
	Mid-channel - Right	--	--	--	--	--	
TC2	Left - Mid-channel	--	--	--	--	--	
	Left - Right	--	--	Signif.	--	--	
	Mid-channel - Right	Signif.	Signif.	Signif.	--	--	
TC3	Left - Mid-channel	--	--	--	--	--	
	Left - Right	--	--	Signif.	--	--	
	Mid-channel - Right	--	--	--	--	--	
TC4	Left - Mid-channel	--	--	--	--	--	
	Left - Right	--	--	--	--	--	
	Mid-channel - Right	--	--	--	--	--	
TC5	Left - Mid-channel	--	--	--	--	--	
	Left - Right	--	--	--	--	--	
	Mid-channel - Right	--	--	--	--	--	
TC6	Left - Mid-channel	--	--	--	--	--	
	Left - Right	--	--	--	--	--	
	Mid-channel - Right	--	--	--	--	--	
TC7	Left - Mid-channel	--	--	--	--	--	
	Left - Right	--	--	--	--	--	
	Mid-channel - Right	--	--	--	--	--	
Depth comparisons							
CAN1	Bottom - Shore	NA	NA	--	--	--	
	Bottom - Surface			--	--	--	
	Shore - Surface			--	--	--	
TC10	Bottom - Shore			--	--	--	
	Bottom - Surface			--	--	--	
	Shore - Surface			--	--	--	
TC9	Bottom - Shore			--	--	--	
	Bottom - Surface			--	--	--	
	Shore - Surface			--	--	--	
TC1	Bottom - Shore			--	--	--	
	Bottom - Surface			--	--	--	
	Shore - Surface			--	--	--	

Table 3. Cont.

		Cadmium		Cobalt		Manganese	
		Total	Dissolved	Total	Dissolved	Total	Dissolved
Depth comparisons (cont.)							
TC2	Bottom - Shore			--	Signif. ${ }^{\text {b }}$	--	
	Bottom - Surface			--	--	--	
	Shore - Surface			--	--	--	
TC3	Bottom - Shore			--	--	--	
	Bottom - Surface			--	--	--	
	Shore - Surface			Signif.	--	--	
TC4	Bottom - Shore			--	--	--	
	Bottom - Surface			--	--	Signif.	
	Shore - Surface			--	--	--	
TC5	Bottom - Shore			--	--	--	
	Bottom - Surface			--	--	Signif.	
	Shore - Surface			--	--	--	
TC6	Bottom - Shore			--	--	--	
	Bottom - Surface			--	--	Signif.	
	Shore - Surface			Signif.	--	--	
TC7	Bottom - Shore			--	--	--	
	Bottom - Surface			--	--	Signif.	
	Shore - Surface			--	--	--	

ANOVA - Analysis of variance
NA - Not analyzed
ns - Not significant at 0.05 level.
-- - Not significant at overall 0.05 level.
a - Not analyzed because 92 percent of results were undetected.
b - Difference is significant only for the left samples.

Table 4. Range of measured concentrations by transect

	Total Cadmium $(\mu \mathrm{g} / \mathrm{L})$			Dissolved Cadmium $(\mu \mathrm{g} / \mathrm{L})$			
Transect	Min.	Max.	Difference		Min.	Max.	Difference
CAN1	0.003	U	0.019	0.017		$0.003 U$	0.010
CAN2	0.009	U	0.023	0.014		$0.008 U$	0.015
TC10	0.021	0.033	0.012		0.018	0.028	ND
TC9	0.016	0.031	0.015		0.009	0.024	0.010
TC1	0.013	U	0.031	0.019		$0.009 U$	0.013
TC2	$0.008 U$	0.020	0.013		$0.008 U$	0.019	0.004
TC3	0.010	0.028	0.018		0.010	0.020	0.012
TC4	0.011	0.018	0.007		0.008	0.013	0.005
TC5	0.008	0.022	0.014		0.006	0.011	0.005
TC6	0.005	0.017	0.012		$0.003 U$	0.013	0.011
TC7	0.009	0.016	0.007		$0.005 U$	0.013	0.008

	Total Cobalt $(\mu \mathrm{g} / \mathrm{L})$				Dissolved Cobalt $(\mu \mathrm{g} / \mathrm{L})$		
Transect	Min.	Max.	Difference		Min.	Max.	Difference
CAN1	0.025	0.041	0.016		0.022	0.029	0.007
CAN2	0.037	0.069	0.032		0.059	0.088	0.029
TC10	0.032	0.036	0.004		0.025	0.032	0.007
TC9	0.031	0.053	0.022		0.028	0.038	0.010
TC1	0.036	0.056	0.020		$0.012 U$	0.040	0.029
TC2	0.015		0.056	0.041		0.014	U
TC3	0.035	0.074	0.039		0.014	0	0.043
TC4	0.038	0.081	0.043		0.030	0.028	
TC5	0.043	0.060	0.017		0.029	0.039	0.009
TC6	0.039	0.080	0.041		0.029	0.041	0.013
TC7	0.033	0.041	0.008		0.027	0.037	0.012

	Total Manganese $(\mu \mathrm{g} / \mathrm{L})$				Dissolved Manganese $(\mu \mathrm{g} / \mathrm{L})$		
Transect	Min.	Max.	Difference		Min.	Max.	Difference
CAN1	1.64	1.93	0.29		$0.110 U$	0.209	0.099
CAN2	1.92	3.07	1.15		0.177	U	0.299

Note: Undetected results included at half the detection limit. ND - Differences were not calculated between two undetected results.

Table 5. Measured concentrations by sample

Transect	Depth	Loc.	Field Trip.	Sample	Total Cadmium $(\mu \mathrm{g} / \mathrm{L})$	Dissolved Cadmium ($\mu \mathrm{g} / \mathrm{L}$)	Total Cobalt ($\mu \mathrm{g} / \mathrm{L}$)	Dissolved Cobalt ($\mu \mathrm{g} / \mathrm{L}$)	Total Manganese ($\mu \mathrm{g} / \mathrm{L}$)	Dissolved Manganese $(\mu \mathrm{g} / \mathrm{L})$
CAN1	Bottom	L	A	SW0000010	0.009	0.007	0.041	0.027	1.82	0.121 U
CAN1	Bottom	L	B	SW0000012	0.003 U	0.003 U	0.029	0.026	1.72	$0.129 U$
CAN1	Bottom	L	C	SW0000011	0.007	0.003 U	0.030	0.024	1.70	$0.123 U$
CAN1	Bottom	R	A	SW0000016	0.007	0.003 U	0.030	0.024	1.75	0.159 U
CAN1	Bottom	R	B	SW0000017	0.007	0.003 U	0.030	0.028	1.76	$0.163 U$
CAN1	Bottom	R	C	SW0000018	0.011	0.006	0.026	0.027	1.70	$0.161 U$
CAN1	Shore	L	A	SW0000019	0.009	0.003 U	0.031	0.024	1.93	0.151 U
CAN1	Shore	L	B	SW0000020	0.009	0.003 U	0.030	0.028	1.87	0.181 U
CAN1	Shore	L	C	SW0000021	0.008	0.007	0.025	0.027	1.88	0.180 U
CAN1	Shore	R	A	SW0000022	0.006	0.006	0.032	0.028	1.91	0.180 U
CAN1	Shore	R	B	SW0000023	0.009	0.006	0.028	0.026	1.92	0.180 U
CAN1	Shore	R	C	SW0000024	0.009	0.008	0.034	0.025	1.89	0.181 U
CAN1	Surface	L	A	SW0000007	0.009	0.010	0.034	0.026	1.75	$0.112 U$
CAN1	Surface	L	B	SW0000009	0.011	0.008	0.032	0.029	1.68	0.110 U
CAN1	Surface	L	C	SW0000008	0.007	0.003 U	0.029	0.022	1.70	0.209
CAN1	Surface	R	A	SW0000013	0.010	0.008	0.027	0.028	1.72	0.150 U
CAN1	Surface	R	B	SW0000014	0.008	0.003 U	0.028	0.025	1.71	0.152 U
CAN1	Surface	R	C	SW0000015	0.019	0.006	0.034	0.024	1.64	0.155 U
$\mathrm{CAN2}^{\text {a }}$	Shore	L		SW0000001	0.009 U	0.009 U				
CAN2 ${ }^{\text {a }}$	Shore	L		SW0000002	0.011 U	0.015 U	0.069	0.088	2.13	$0.178 U$
CAN2 ${ }^{\text {a }}$	Shore	L		SW0000003	0.020	0.008 U	0.037	0.059	1.92	0.299
CAN2 ${ }^{\text {a }}$	Shore	L		SW0000004	0.023	0.008 U	0.054		3.07	
CAN2 ${ }^{\text {a }}$	Shore	L		SW0000005	0.021	0.010 U	0.051	0.084	2.10	0.177 U
TC10	Bottom	L		SW0000026	0.031	0.028	0.035	0.032	2.12	0.361 U
TC10	Bottom	R		SW0000028	0.021	0.023	0.032	0.025	2.07	0.277 U
TC10	Shore	L		SW0000029	0.033	0.023	0.035	0.027	2.09	0.368 U
TC10	Shore	R		SW0000030	0.026	0.018	0.036	0.029	1.98	0.244 U
TC10	Surface	L		SW0000025	0.026	0.027	0.036	0.032	2.06	0.618
TC10	Surface	R		SW0000027	0.023	0.018	0.033	0.028	2.03	0.260 U
TC9	Bottom	L		SW0000032	0.023	0.020	0.037	0.033	2.90	0.335 U
TC9	Bottom	R		SW0000034	0.028	0.021	0.034	0.030	2.43	0.291 U
TC9	Shore	L		SW0000035	0.016	0.009	0.053	0.038	4.45	0.243 U
TC9	Shore	R		SW0000036	0.031	0.024	0.035	0.029	2.43	0.294 U
TC9	Surface	L		SW0000031	0.021	0.024	0.043	0.031	3.35	0.311 U
TC9	Surface	R		SW0000033	0.029	0.021	0.031	0.028	2.46	0.298 U
TC1	Bottom	L		SW0000042	0.031	0.009 U	0.036	0.013 U	2.64	0.238 U
TC1	Bottom	M		SW0000044	0.020	0.011	0.044	0.032	3.45	0.274 U
TC1	Bottom	R		SW0000046	0.018	0.012	0.043	0.031	3.30	0.268 U
TC1	Shore	L		SW0000047	$0.013 U$	0.010 U	0.039	0.014 U	2.62	$0.266 U$
TC1	Shore	R		SW0000052	0.021	0.009	0.056	0.040	3.42	0.261 U
TC1	Surface	L		SW0000041	0.026	0.009 U	0.036	0.012 U	2.46	0.248 U
TC1	Surface	M		SW0000043	0.020	0.013	0.043	0.033	3.47	0.267 U
TC1	Surface	R		SW0000045	0.014	0.012	0.041	0.037	3.08	0.251 U
TC2	Bottom	L		SW0000057	0.018	0.016	0.056	0.042	3.51	0.295 U
TC2	Bottom	M		SW0000059	0.020	0.013	0.051	0.037	3.18	$0.136 U$
TC2	Bottom	R		SW0000061	0.010 U	0.008 U	0.015 U	0.014 U	2.48	0.179 U
TC2	Shore	L		SW0000062	0.012 U	0.008 U	0.042	0.014 U	3.24	$0.164 U$
TC2	Shore	R		SW0000066	0.008 U	0.008 U	0.037	0.014 U	3.07	$0.222 U$
TC2	Surface	L		SW0000056	0.020	0.013	0.056	0.039	3.08	$0.136 U$
TC2	Surface	M		SW0000058	0.020	0.019	0.056	0.036	3.21	$0.130 U$
TC2	Surface	R		SW0000060	0.011 U	0.008 U	0.038	0.015 U	3.13	0.163 U

Table 5. Cont.
$\left.\begin{array}{lllllllllll}\hline \hline & & & & & & & \text { Total } & \text { Dissolved } & \text { Total } & \text { Dissolved } \\ & & & \text { Field } & & \text { Cadmium } \\ \text { Cadmium }\end{array}\right)$

Table 5. Cont.

Transect	Depth	Loc.	Field Trip.	Sample	Total Cadmium ($\mu \mathrm{g} / \mathrm{L}$)	Dissolved Cadmium ($\mu \mathrm{g} / \mathrm{L}$)	Total Cobalt ($\mu \mathrm{g} / \mathrm{L}$)	$\begin{gathered} \hline \hline \text { Dissolved } \\ \text { Cobalt } \\ (\mu \mathrm{g} / \mathrm{L}) \\ \hline \end{gathered}$	Total Manganese ($\mu \mathrm{g} / \mathrm{L}$)	Dissolved Manganese ($\mu \mathrm{g} / \mathrm{L}$)
TC6	Bottom	L	A	SW0000139	0.009	0.005	0.046	0.037	2.83	0.208 U
TC6	Bottom	L	B	SW0000140	0.014	0.008	0.049	0.037	2.81	$0.152 U$
TC6	Bottom	L	C	SW0000141	0.009	0.007	0.040	0.034	2.83	0.168 U
TC6	Bottom	M	A	SW0000146	0.009	0.003 U	0.049	0.033	5.49	0.107 U
TC6	Bottom	M	B	SW0000147	0.005	0.006	0.051	0.038	4.89	0.107 U
TC6	Bottom	M	C	SW0000148	0.011	0.003 U	0.042	0.034	4.83	0.122 U
TC6	Bottom	R		SW0000150	0.012	0.010	0.051	0.037	13.20	0.375
TC6	Bottom	R		SW0000154	0.013	0.012	0.047	0.035	2.93	0.296 U
TC6	Shore	L	A	SW0000155	0.012	0.009	0.080	0.037	5.06	0.120 U
TC6	Shore	L	B	SW0000156	0.008	0.005	0.049	0.039	3.27	0.163 U
TC6	Shore	L	C	SW0000157	0.010	0.008	0.045	0.032	3.16	0.187 U
TC6	Shore	R		SW0000161	0.009	0.006	0.048	0.038	2.71	0.341 U
TC6	Surface	L		SW0000138	0.012	0.008	0.044	0.034	2.83	0.294
TC6	Surface	M	A	SW0000143	0.016	0.012	0.044	0.033	2.70	0.223 U
TC6	Surface	M	B	SW0000144	0.007	0.012	0.039	0.036	2.71	0.263 U
TC6	Surface	M	C	SW0000145	0.017	0.005	0.039	0.029	2.63	0.246 U
TC6	Surface	R		SW0000149	0.010	0.010	0.046	0.036	2.99	0.398
TC6	Surface	R	A	SW0000151	0.014	0.013	0.041	0.037	2.86	0.162 U
TC6	Surface	R	B	SW0000152	0.008	0.010	0.046	0.038	2.88	$0.202 U$
TC6	Surface	R	C	SW0000153	0.010	0.013	0.040	0.041	2.83	0.147 U
TC7	Bottom	L		SW0000166	0.009	0.008	0.039	0.030	3.86	0.178 U
TC7	Bottom	M		SW0000168	0.011	0.013	0.036	0.032	12.50	0.951
TC7	Bottom	R		SW0000170	0.016	0.009	0.040	0.029	6.21	0.313 U
TC7	Shore	L		SW0000171	0.009	0.012	0.034	0.030	3.05	0.179 U
TC7	Shore	R		SW0000175	0.013	0.005 U	0.041	0.032	3.50	0.298 U
TC7	Surface	L		SW0000165	0.012	0.006	0.037	0.027	3.39	0.210 U
TC7	Surface	M		SW0000167	0.012	0.012	0.033	0.031	3.20	0.198 U
$\underline{\text { TC7 }}$	Surface	R		SW0000169	0.014	0.010	0.036	0.037	3.14	$0.256 U$

Note: Undetected results are reported at half the detection limit.
a - CAN2 was excluded from statistical analysis of location and depth differences.

∇	Near-surface	$\mathrm{L}=$ Left bank (orange)
\bigcirc	Nearshore	$\mathrm{M}=$ Mid-channel (black)
Δ	Near-bottom	$\mathrm{R}=$ Right bank (blue)

- Undetected concentration

Note: Disturbed samples are not shown. Y-axes are on $\log _{10}$ scale.

DWS
STI RBC Spokane Tribe risk based concentration AWQC Chronic EPA ambient water quality criterion

Figure 1. Cadmium concentrations by transect, depth, and location

∇	Near-surface	L $=$ Left bank (orange)
\bigcirc	Nearshore	$\mathrm{M}=$ Mid-channel (black)
Δ	Near-bottom	$\mathrm{R}=$ Right bank (blue)

- Undetected concentration
Note: Disturbed samples are not shown. Y-axes are on $\log _{10}$ scale.

DWS	EPA drinking water standard
STI RBC	Spokane Tribe risk based concentration
AWQC	Chronic EPA ambient water quality criterion

Figure 2. Cobalt concentrations by transect, depth, and location

∇	Near-surface	$\mathrm{L}=$ Left bank (orange)
\bigcirc	Nearshore	$\mathrm{M}=$ Mid-channel (black)
Δ	Near-bottom	$\mathrm{R}=$ Right bank (blue)

- Undetected concentration
Note: Disturbed samples are not shown.
Y -axes are on $\log _{10}$ scale.
DWS EPA drinking water standard STI RBC Spokane Tribe risk based concentration AWQC Chronic EPA ambient water quality criterion

Figure 3. Manganese concentrations by transect, depth, and location

Total Cadmium

```
temp <- aov(CDtot ~ Stn + Type %in% Stn * Side %in% Stn, na.action = na.omit,
    subset = Stn != "CAN2" & Stn != "zzzzz", data = MetalsInput.FldTripsHalfDL.)
> summary(temp)
                        Df Sum of Sq Mean Sq F Value
                    Stn 9 0.003728882 0.0004143202 33.66518
                            Type %in% Stn 20 0.000371160 0.0000185580 1.50791
                            Side %in% Stn 17 0.000478153 0.0000281267 2.28540
(Type %in% Stn):(Side %in% Stn) 27 0.000349440 0.0000129422 1.05161
                            Residuals 50 0.000615354 0.0000123071
                        Pr(F)
                    Stn 0.0000000
                            Type %in% Stn 0.1205555
                            Side %in% Stn 0.0121776
(Type %in% Stn):(Side %in% Stn) 0.4277479 remove and rerun model
                        Residuals
```

```
> temp2 <- aov(CDtot ~ Stn + Type %in% Stn + Side %in% Stn, na.action = na.omit,
```

> temp2 <- aov(CDtot ~ Stn + Type %in% Stn + Side %in% Stn, na.action = na.omit,
subset = Stn != "CAN2" \& Stn != "zzzzz", data = MetalsInput.FldTripsHalfDL.)
subset = Stn != "CAN2" \& Stn != "zzzzz", data = MetalsInput.FldTripsHalfDL.)
> summary(temp2)
> summary(temp2)
Df Sum of Sq Mean Sq F Value Pr(F)
Df Sum of Sq Mean Sq F Value Pr(F)
Stn 9 0.003728882 0.0004143202 33.06679 0.0000000
Stn 9 0.003728882 0.0004143202 33.06679 0.0000000
Type %in% Stn 20 0.000371160 0.0000185580 1.48111 0.1130019 remove and rerun model
Type %in% Stn 20 0.000371160 0.0000185580 1.48111 0.1130019 remove and rerun model
Side %in% Stn 17 0.000478153 0.0000281267 2.24478 0.0087631
Side %in% Stn 17 0.000478153 0.0000281267 2.24478 0.0087631
Residuals 77 0.000964795 0.0000125298
Residuals 77 0.000964795 0.0000125298
> temp3 <- aov(CDtot ~ Stn + Side %in% Stn, na.action = na.omit, subset = Stn !=
CAN2 \& Stn != "zzzzz", data = MetalsInput.FldTripsHalfDL.)
> summary(temp3)
Df Sum of Sq Mean Sq F Value Pr(F)
Stn 9 0.003728882 0.0004143202 29.98746 0.00000000
Side %in% Stn 17 0.000473913 0.0000278772 2.01768 0.01711169
Residuals 97 0.001340196 0.0000138164

```


\section*{Dissolved Cadmium}
```

temp <- aov(CDdiss ~ Stn + Type %in% Stn * Side %in% Stn, na.action = na.omit,
subset = Stn != "CAN2" \& Stn != "zzzzz", data = MetalsInput.FldTripsHalfDL.)
> summary(temp)
Df Sum of Sq Mean Sq F Value
Stn 9 0.002488544 0.0002765048 42.75848
Type %in% Stn 20 0.000195086 0.0000097543 1.50840
Side %in% Stn 17 0.000251495 0.0000147938 2.28771
(Type %in% Stn):(Side %in% Stn) 27 0.000260026 0.0000096306 1.48927
Residuals 50 0.000323333 0.0000064667
Pr(F)
Stn 0.0000000
Type %in% Stn 0.1203761
Side %in% Stn 0.0120899
(Type %in% Stn):(Side %in% Stn) 0.1103032 remove and rerun model
Residuals

```
> temp2 <- aov(CDdiss ~ Stn + Type \%in\% Stn + Side \%in\% Stn, na.action = na.omit,
    subset \(=\) Stn != "CAN2" \& Stn != "zzzzz", data = MetalsInput.FldTripsHalfDL.)
> summary(temp2)
            Df Sum of Sq Mean Sq F Value Pr(F)
    Stn 90.0024885440 .000276504836 .497030 .0000000
Type \%in\% Stn 20 0.000195086 0.0000097543 1.28751 0.2134396 remove and rerun model
Side \%in\% Stn 170.0002514950 .00001479381 .952700 .0252230
    Residuals 77 0.000583359 0.0000075761
> temp3 <- aov(CDdiss ~ Stn + Side \%in\% Stn, na.action = na.omit, subset = Stn !=
        CAN2 \& Stn != "zzzzz", data = MetalsInput.FldTripsHalfDL.)
> summary(temp3)
            Df Sum of Sq Mean Sq F Value Pr(F)
            Stn 90.0024885440 .000276504836 .600010 .000000000
Side \%in\% Stn 170.000297127 0.0000174781 2.313510 .005415231
    Residuals 97 0.000732813 0.0000075548


\section*{Total Cobalt}
```

> temp <- aov(COtot ~ Stn + Type %in% Stn * Side %in% Stn, na.action = na.omit,
subset = Stn != "CAN2" \& Stn != "zzzzz", data = MetalsInput.FldTripsHalfDL.)
> summary(temp)
Stn 9 0.005581137 0.0006201264 19.91867
Type %in% Stn 20 0.002099251 0.0001049625 3.37143
Side %in% Stn 17 0.002103171 0.0001237159 3.97380
(Type %in% Stn):(Side %in% Stn) 27 0.001359714 0.0000503598 1.61757
Residuals 50 0.001556646 0.0000311329
Pr(F)
Stn 0.00000000
Type %in% Stn 0.00025329
Side %in% Stn 0.00007135
(Type %in% Stn):(Side %in% Stn) 0.06997234 remove and rerun model
Residuals

```
```

> temp2 <- aov(COtot ~ Stn + Type %in% Stn + Side %in% Stn, na.action = na.omit,
subset = Stn != "CAN2" \& Stn != "zzzzz", data = MetalsInput.FldTripsHalfDL.)
> summary(temp2)
Df Sum of Sq Mean Sq F Value Pr(F)
Stn 9 0.005581137 0.0006201264 16.37306 0.0000000000
Type %in% Stn 20 0.002099251 0.0001049625 2.77130 0.0007314517
Side %in% Stn 17 0.002103171 0.0001237159 3.26644 0.0001965381
Residuals 77 0.002916360 0.0000378748

```


Fitted : Stn + Type \%in\% Stn + Side \%in\% Stn





Fitted : Stn + Type \%in\% Stn + Side \%in\% Stn


\section*{Dissolved Cobalt}
```

> temp <- aov(COdiss ~ Stn + Type %in% Stn * Side %in% Stn, na.action = na.omit,
subset = Stn != "CAN2" \& Stn != "zzzzz", data = MetalsInput.FldTripsHalfDL.)
> summary(temp)
Df Sum of Sq Mean Sq F Value
Stn 9 0.002057793 0.0002286436 19.20770
Type %in% Stn 20 0.000522977 0.0000261489 2.19669
Side %in% Stn 17 0.002127483 0.0001251461 10.51316
(Type %in% Stn):(Side %in% Stn) 27 0.000736339 0.0000272718 2.29103
Residuals 50 0.000595188 0.0000119038
Pr(F)
Stn 0.00000000
Type %in% Stn 0.01260826
Side %in% Stn 0.00000000
(Type \%in\% Stn):(Side \%in\% Stn) 0.00553188
Residuals

```


\section*{Dissolved Cobalt (cont.)}

Left bank only
> temp1 <- aov(COdiss ~ Stn + Type \%in\% Stn, na.action = na.omit, subset = Side == L \& Stn != "CAN2" \& Stn != "zzzzz", data = MetalsInput.FldTripsHalfDL.)
> summary(temp1)
Df Sum of Sq Mean Sq F Value \(\operatorname{Pr}(F)\)
Stn 90.0022123220 .000245813533 .696760 .0000000000
Type \%in\% Stn 200.0006403510 .00003201754 .389050 .0002732274
Residuals 260.0001896670 .0000072949
Mid-channel only
> temp1 <- aov(COdiss ~ Stn + Type \%in\% Stn, na.action = na.omit, subset = Side == M \& Stn != "CAN2" \& Stn != "zzzzz", data = MetalsInput.FldTripsHalfDL.)
> summary(temp1)
Df Sum of Sq Mean Sq F Value \(\operatorname{Pr}(F)\)
Stn 60.00013392420 .000022320713 .7592770 .0441781
Type \%in\% Stn 70.00004554170 .000006505951 .0957390 .4453337
Residuals 80.00004750000 .00000593750
Right bank only
> temp1 <- aov(COdiss ~ Stn + Type \%in\% Stn, na.action = na.omit, subset = Side == R \& Stn != "CAN2" \& Stn != "zzzzz", data = MetalsInput.FldTripsHalfDL.)
> summary(temp1)
Df Sum of Sq Mean Sq F Value \(\operatorname{Pr}(F)\) Stn 90.0017221980 .00019135548 .5516980 .0001259
Type \%in\% Stn 200.0004267810 .00002133900 .9536450 .5463575
Residuals 160.0003580210 .0000223763

Near-bottom only
```

 Min. 1st Qu. Median Mean 3rd Qu. Max.
 0.0125 0.03 0.034 0.03273 0.037 0.042
 > temp2 <- aov(COdiss ~ Stn + Side %in% Stn, na.action = na.omit, subset = Type ==
Bottom \& Stn != "CAN2" \& Stn != "zzzzz", data =
MetalsInput.FldTripsHalfDL.)
> summary(temp1)
Df Sum of Sq Mean Sq F Value Pr(F)
Stn 9 0.001722198 0.0001913554 8.551698 0.0001259
Type %in% Stn 20 0.000426781 0.0000213390 0.953645 0.5463575
Residuals 16 0.000358021 0.0000223763
Nearshore only
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.014 0.02725 0.032 0.03057 0.0365 0.04
> temp2 <- aov(COdiss ~ Stn + Side %in% Stn, na.action = na.omit, subset = Type ==
Shore \& Stn != "CAN2" \& Stn != "zzzzz", data =
MetalsInput.FldTripsHalfDL.)
> summary(temp1)
Df Sum of Sq Mean Sq F Value Pr(F)
Stn 9 0.001722198 0.0001913554 8.551698 0.0001259
Type %in% Stn 20 0.000426781 0.0000213390 0.953645 0.5463575
Residuals 16 0.000358021 0.0000223763
Near-surface only
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0115
> temp2 <- aov(COdiss ~ Stn + Side %in% Stn, na.action = na.omit, subset = Type ==
Surface \& Stn != "CAN2" \& Stn != "zzzzz", data =
MetalsInput.FldTripsHalfDL.)
> summary(temp1)
Df Sum of Sq Mean Sq F Value Pr(F)
Stn 9 0.001722198 0.0001913554 8.551698 0.0001259
Type %in% Stn 20 0.000426781 0.0000213390 0.953645 0.5463575
Residuals 16 0.000358021 0.0000223763

```

\section*{Total Manganese}
```

> temp <- aov(MNtot ~ Stn + Type %in% Stn * Side %in% Stn, na.action = na.omit,
subset = Stn != "CAN2" \& Stn != "zzzzz", data = MetalsInput.FldTripsHalfDL.)
> summary(temp)
Df Sum of Sq Mean Sq F Value Pr(F)
Stn 9 75.18430 8.353811 6.979907 0.0000019
Type %in% Stn 20 74.77819 3.738909 3.123992 0.0005651
Side %in% Stn 17 36.92437 2.172022 1.814801 0.0525853
(Type %in% Stn):(Side %in% Stn) 27 48.81147 1.807832 1.510508 0.1024215 remove and rerun model
Residuals 50 59.84185 1.196837

```
```

> temp2 <- aov(MNtot ~ Stn + Type %in% Stn + Side %in% Stn, na.action = na.omit,
subset = Stn != "CAN2" \& Stn != "zzzzz", data = MetalsInput.FldTripsHalfDL.)
> summary(temp2)
Df Sum of Sq Mean Sq F Value Pr(F)
Stn 9 75.1843 8.353811 5.920145 0.0000030
Type %in% Stn 20 74.7782 3.738909 2.649675 0.0012001
Side %in% Stn 17 36.9244 2.172022 1.539260 0.1034083 remove and rerun model
Residuals 77 108.6533 1.411082

```
```

> temp3 <- aov(MNtot ~ Stn + Type %in% Stn, na.action = na.omit, subset = Stn !=
CAN2 \& Stn != "zzzzz", data = MetalsInput.FldTripsHalfDL.)
> summary(temp3)
Df Sum of Sq Mean Sq F Value Pr(F)
Stn 9 75.1843 8.353811 5.394084 0.000006083
Type %in% Stn 20 74.7782 3.738909 2.414226 0.002377702
Residuals 94 145.5777 1.548699

```







\section*{\(\log _{10}\) (Total Manganese)}
```

> temp <- aov(log10(MNtot) ~ Stn + Type %in% Stn * Side %in% Stn, na.action =
na.omit, subset = Stn != "CAN2" \& Stn != "zzzzz", data = MetalsInput.FldTripsHalfDL.)
> summary(temp)
Mean Sq F Value
Stn 9 1.389466 0.1543851 25.40723 0.00000000
Type %in% Stn 20 0.766828 0.0383414 6.30986 0.00000006
Side %in% Stn 17 0.235022 0.0138248 2.27515 0.01257625
(Type %in% Stn):(Side %in% Stn) 27 0.276164 0.0102283 1.68327 0.05510171 remove and rerun model
Residuals 50 0.303821 0.0060764

```
> temp2 <- aov(log10(MNtot) ~ Stn + Type \%in\% Stn + Side \%in\% Stn, na.action =
    na.omit, subset = Stn != "CAN2" \& Stn != "zzzzz", data = MetalsInput.FldTripsHalfDL.)
> summary(temp2)
            Df Sum of Sq Mean Sq \(F\) Value \(\operatorname{Pr}(F)\)
    Stn 9 1.389466 0.1543851 20.49649 0.00000000
Type \%in\% Stn \(20 \quad 0.7668280 .0383414 \quad 5.090290 .00000009\)
Side \%in\% Stn 170.2350220 .01382481 .835410 .03813187
        Residuals 770.5799850 .0075323


\section*{Dissolved Manganese}
```

> temp <- aov(MNdiss ~ Stn + Type %in% Stn * Side %in% Stn, na.action = na.omit,
subset = Stn != "CAN2" \& Stn != "zzzzz", data = MetalsInput.FldTripsHalfDL.)
> summary(temp)
Df Sum of Sq Mean Sq F Value Pr(F)
Stn 9 0.4399550 0.04888388 4.776241 0.0001312
Type %in% Stn 20 0.3133645 0.01566822 1.530877 0.1123009
Side %in% Stn 17 0.4126372 0.02427278 2.371592 0.0092872
(Type %in% Stn):(Side %in% Stn) 27 0.4565722 0.01691008 1.652214 0.0617167 remove and rerun model
Residuals 50 0.5117401 0.01023480

```
```

> temp2 <- aov(MNdiss ~ Stn + Type %in% Stn + Side %in% Stn, na.action = na.omit,

```
> temp2 <- aov(MNdiss ~ Stn + Type %in% Stn + Side %in% Stn, na.action = na.omit,
    subset = Stn != "CAN2" & Stn != "zzzzz", data = MetalsInput.FldTripsHalfDL.)
    subset = Stn != "CAN2" & Stn != "zzzzz", data = MetalsInput.FldTripsHalfDL.)
> summary(temp2)
> summary(temp2)
            Df Sum of Sq Mean Sq F Value Pr(F)
            Df Sum of Sq Mean Sq F Value Pr(F)
    Stn 9 0.4399550 0.04888388 3.887236 0.0004225
    Stn 9 0.4399550 0.04888388 3.887236 0.0004225
Type %in% Stn 20 0.3133645 0.01566822 1.245934 0.2424382 remove and rerun model
Type %in% Stn 20 0.3133645 0.01566822 1.245934 0.2424382 remove and rerun model
Side %in% Stn 17 0.4126372 0.02427278 1.930166 0.0273241
Side %in% Stn 17 0.4126372 0.02427278 1.930166 0.0273241
    Residuals 77 0.9683124 0.01257549
```

 Residuals 77 0.9683124 0.01257549
    ```
> temp3 <- aov(MNdiss ~ Stn + Side \%in\% Stn, na.action = na.omit, subset = Stn !=
    CAN2 \& Stn != "zzzzz", data = MetalsInput.FldTripsHalfDL.)
> summary(temp3)
            Df Sum of Sq Mean Sq \(F\) Value \(\operatorname{Pr}(F)\)
        Stn 90.4399550 .048883883 .7758570 .00041371
Side \%in\% Stn 170.4385100 .025794701 .9924170 .01884030
    Residuals 971.2558040 .01294643







\section*{\(\log _{10}\) (Dissolved Manganese)}
```

> temp <- aov(log10(MNdiss) ~ Stn + Type %in% Stn * Side %in% Stn, na.action =
na.omit, subset = Stn != "CAN2" \& Stn != "zzzzz", data = MetalsInput.FldTripsHalfDL.
> summary(temp)
Df Sum of Sq Mean Sq F Value Pr(F)
Stn 9 1.344761 0.1494178 9.042455 0.00000006
Type %in% Stn 20 0.526683 0.0263341 1.593687 0.09227570
Side %in% Stn 17 0.771231 0.0453666 2.745489 0.00287442
(Type %in% Stn):(Side %in% Stn) 27 0.823549 0.0305018 1.845906 0.03012881
Residuals 50 0.826202 0.0165240

```


Adzic Marko SPOK
\begin{tabular}{ll} 
From: & Adzic Marko SPOK \\
Sent: & Monday, April 05, 2010 4:45 PM \\
To: & 'Bottcher.Helen@epamail.epa.gov' \\
Cc: & 'Melanie Edwards'; Anne Fairbrother \\
Subject: & Surface Water - Triplicate Sampling Rounds 2 and 3 \\
Attachments: & 04-05-10_Triplicate Sampling_MEdwards.pdf
\end{tabular}

\section*{Helen,}

Please find attached a memorandum as prepared by Ms Melanie Edwards of Exponent which indicates that triplicate sampling, as outlined for the first round of surface water sampling, is not necessary in subsequent sampling rounds. Please note that the memorandum was developed per the QAPP to help us ascertain the need (added statistical power) for additional triplicates per the QAPP. As indicated by the attached, Ms Edwards has identified an alternative and more robust method of data analysis which can, and will, be used to evaluate the data at the completion of all three sampling events. Therefore and consistent with the QAPP, additional triplicate samples are not necessary and will not be collected at transects CAN1, TC3, and TC6 in subsequent sampling events. Please let me know if you have any questions.
Regards,

\footnotetext{
Marko Adzic
Manager, Environmental Engineering
Teck American Incorporated
Direct Phone: +1.509 .892 .2585
Phone: 509.747.6111
Fax:
eMail: Marko.Adzic@teck.com
www.teck.com
}

\section*{}

To: Marko Adzic
From: Melanie Edwards
Date: \(\quad\) April 5, 2010
PRoJect: 0900083.013
SubJECT: Justification for no additional field triplicate sampling

As directed in the approved Surface Water Quality Assurance Project Plan (QAPP), the first round of surface water sample concentrations were evaluated according to the methodology outlined for statistical comparisons. Based on this analysis, it was determined that field triplicate sampling at transects CAN1, TC3, and TC6 is not necessary during subsequent rounds of surface water sampling.

Adhering to the statistical comparison approach outlined in the QAPP, the field triplicate samples collected during the first round of sampling provide the necessary estimates of variability. \({ }^{1}\) It is important to note that a large number of the compounds measured ( 46 percent) were not detected at any location, with even more compounds ( 71 percent) detected in fewer than 10 samples. Given the high proportion of undetected concentrations, statistical comparisons are not anticipated, and variability estimates not necessary, for these compounds. The compounds that do have detected concentrations at multiple transects generally were detected most frequently at the three transects with first round triplicate samples.

An alternative approach for statistical comparisons is based on more commonly used statistical methods (analysis of variance) than the method outlined in the QAPP and does not rely upon variability estimates from the field triplicate samples. This approach identifies significant differences by evaluating differences among depths and locations, as well as transects, using all of the available data in two separate models. Conclusions about differences among samples are drawn from the results of both models and plots of the data. This approach will be used for comparisons following the completion of all surface water sampling events.

\footnotetext{
\({ }^{1}\) The method outlined in the QAPP uses Monte Carlo random sampling from a normal distribution. The field triplicate samples are used to estimate a coefficient of variability (CV), which combined with the average concentration yields the mean and standard deviation estimates necessary to characterize the normal distribution. Specifics on how this method is applied are outlined in the Surface Water QAPP.
}

To: Dr. Laura Buelow, U.S. Environmental Protection Agency (EPA)
From: Kris McCaig, Teck American Incorporated (TAI)
Cc: Helen Bottcher, EPA
Marko Adzic, TAI
Dr. Anne Fairbrother, Exponent, Inc. (Exponent)
Cristy Kessel, Exponent

Date: August 6, 2012

File No.: 01-773180-000

\section*{RE: Upper Columbia River Remedial Investigation Feasibility Study Database Detection Limit Analysis Update}

TAI submitted a memorandum regarding the above-referenced to Helen Bottcher on December 5, 2011 and has since reviewed the information per EPA's request.
The review was conducted by the project database manager (i.e., Exponent) to determine if there was a group of data for certain parameters, within a study program, or done by a certain laboratory in which data were reported inconsistent with requirements of respective quality assurance project plans (QAPPs).

Findings of the review are as follows:
1. When the December 2011 analysis was conducted, information returned from the database included results for lab replicates, field replicates, field triplicates, blank water, and rinse water quality control (QC) samples. Therefore, any non-detects for these analyses were included in the number of results reported to the method detection limit (MDL) or the method reporting limit (MRL). Given that these data are for quality assurance/quality control (QA/QC) purposes only and will not be used in the risk assessment they were inappropriately included in the 2011 analysis. This has been corrected and is detailed within Tables 2 through 8, see attached.
2. The December 2011 analysis enumerated results identified as non-detects based on data validation activities rather than laboratory reporting limits. In other words, results were initially reported by the laboratory at a value above the MRL; but were later flagged as non-detected for QA/QC reasons (e.g., blank contamination). In such instances, these non-detects should not have been considered in the analysis of whether or not the QAPP reporting requirements were met. Therefore, these results are not included in the new Tables 2 through 8 attached to this memorandum.
3. The December 2011 analysis inadvertently miss-counted non-detect results for which the MDL was equal to the MRL. For example, in the Surface Water Study Rounds 1, 2, and

3, all non-detected results for high-resolution gas chromatography/high-resolution mass spectrometry (HRGC/HRMS) analyses were reported to the MRL and therefore categorized as "Non-detects NOT reported per QAPP". However, for all of these analyses, the MDL was equal to the MRL and therefore were reported consistent with the QAPP (i.e., "Non-detects reported per QAPP"). This is reflected in the attached tables (see Tables 2 through 8).
4. No revision to the information presented in the December 2011 memorandum for the 2009 Fish Tissue data was necessary as all non-detects were reported per the QAPP.

\section*{Attachments (8)}

Table 1 December 5, 2011 Memorandum Table 3 Summary of Non-detect Values Reported from Teck UCR RI/FS Studies
Table 22009 Beach Sediment Data Review of How Non-detect Results Are Reported
Table 32010 Beach Sediment Data Review of How Non-detect Results Are Reported
Table 42011 Beach Sediment Data Review of How Non-detect Results Are Reported
Table 52009 Surface Water Round 1 Data Review of How Non-detect Results Are Reported Table 62010 Surface Water Round 2 Data Review of How Non-detect Results Are Reported Table 72010 Surface Water Round 3 Data Review of How Non-detect Results Are Reported Table 82010 White Sturgeon Sediment Toxicity Testing Data Review of How Non-detect Results Are Reported

Table 1. Summary of Non-detect Values Reported from Teck UCR RI/FS Studies
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Teck Program & \begin{tabular}{l}
NDs \\
Reported at MRL
\end{tabular} & NDs Reported at MDL & NDs Not Reported to MRL or MDL & Explanation Where Nondetect Results are Not Equal to MRL or MDL & Total Count of NDs & QAPP & Number of NDs Results Reported as per QAPP & Number of NDs Results Not Reported as per QAPP \\
\hline 2009 Beach Sediment & 73 & 1,332 & 37 & \(1^{\text {a }}, 34^{\text {b }}, 2^{\text {c }}\) & 1,442 & & & \\
\hline 2010 Beach Sediment & 67 & 2,168 & 33 & \(28^{\text {b }}, 1^{\text {d }}, 4^{\text {c }}\) & 2,268 & & & \\
\hline 2011 Beach Sediment & 510 & 14,686 & 310 & \(220{ }^{\text {b }}, 76^{\text {d }}, 14^{\text {c }}\) & 15,506 & & & \\
\hline Beach Sediment Total & 650 & 18,186 & 380 & & 19,216 & ND=MRL & 650 & 18,566 \\
\hline 2009 Surface Water Round 1 & 3,976 & 26,811 & 307 & \(2^{\text {a }}, 295^{\text {b }}, 10^{\text {c }}\) & 31,094 & & & \\
\hline Non-HRGC/HRMS Data & 3,030 & 15,482 & 10 & & 18,522 & ND=MRL & 3,030 & 15,482 \\
\hline HRGC/HRMS Data & 946 & 11,329 & 297 & & 12,572 & ND=MDL & 11,329 & 946 \\
\hline 2010 Surface Water Round 2 & 11,697 & 13,794 & 16 & \(1^{\text {b }}, 15^{\text {c }}\) & 25,507 & & & \\
\hline Non-HRGC/HRMS Data & 2,077 & 12,584 & 15 & & 14,676 & ND=MRL & 2,077 & 12,584 \\
\hline HRGC/HRMS Data & 9,620 & 1,210 & 1 & & 10,831 & ND=MDL & 1,210 & 9,620 \\
\hline 2010 Surface Water Round 3 & 11,791 & 12,951 & 14 & \(14^{\text {c }}\) & 24,756 & & & \\
\hline Non-HRGC/HRMS Data & 2,180 & 11,679 & 14 & & 13,873 & ND=MRL & 2,180 & 11,679 \\
\hline HRGC/HRMS Data & 9,611 & 1,272 & -- & & 10,883 & ND=MDL & 1,272 & 9,611 \\
\hline Non-HRGC/HRMS Data Total & 7,287 & 39,745 & 39 & & 47,071 & ND=MRL & 7,287 & 39,784 \\
\hline HRGC/HRMS Data Total & 20,177 & 13,811 & 298 & & 34,286 & ND=MDL & 13,811 & 20,475 \\
\hline Surface Water Total & 27,464 & 53,556 & 337 & & 81,357 & & 21,098 & 60,259 \\
\hline 2009 Fish Total & -- & 80,221 & 11 & \(11^{\text {b }}\) & 80,232 & ND=MDL & 80,221 & \(11^{\text {b }}\) \\
\hline 2010 Sturgeon Sediment Toxicity Total & 8,623 & 14,793 & 1,947 & \(1904{ }^{\text {e }}, 43^{\text {d }}\) & 25,363 & ND=MRL & 8,623 & 16,740 \\
\hline All Programs Total & 36,737 & 166,756 & 2,675 & & 206,168 & & 110,592 & 95,565 \\
\hline
\end{tabular}

\section*{Notes:}
\({ }^{\text {a }} U^{\star}\) flag assigned by validator. U* definition: analyte should be considered "not-detected" because it was detected in an associated blank at a similar level.
\({ }^{\text {b }}\) EMPC flag assigned by lab or validator. EMPC definition: the detection limit represents the estimated maximum possible concentration if the compound was present.
\({ }^{\text {c }}\) Pace radionuclides nondetect results - The typical environmental term, method detection limit (MDL) is not applicable to radiochemistry as the detection limit is unique to each sample as well as each method. Therefore following a prescribed methodology such as that described in CFR Part 136 Appendix B would not result in the actual detection limit for the actual sample.
\({ }^{\text {d }}\) These records are CAS grain size results where all of the measured values \(=0\), and there are no detection/reporting/quantification limits for grain size analysis. The validator assigned the "UJ" flag to these records stating "large discrepancies were observed between the results for these particle size fractions in the associated field duplicate analyses".
\({ }^{\mathrm{e}}\) The reported measured value contains the calculated concentration from the DGT probe; see the "comments" field of these records for more details.

Table 2. 2009 Beach Sediment Data Review of How Non-detect Results Are Reported


Table 2. 2009 Beach Sediment Data Review of How Non-detect Results Are Reported


Table 2. 2009 Beach Sediment Data Review of How Non-detect Results Are Reported
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\multirow[t]{3}{*}{}} & \multicolumn{5}{|c|}{December 2011 Summary of 2009 Beach Sediment \({ }^{\text {a }}\)} & \\
\hline & & & QAPP & \multicolumn{2}{|l|}{Number of NDs Results Reported as per QAPP} & \multicolumn{2}{|l|}{Number of NDs Results Not Reported as per QAPP} & \\
\hline & & & ND=MRL & \multicolumn{2}{|l|}{73} & \multicolumn{2}{|c|}{1,332} & \\
\hline Analyte Type & Lab Name & Analyte & No. of Measurements \({ }^{\text {b }}\) & No. of Reported Non-detects & \begin{tabular}{l}
QAPP \\
Requirement
\end{tabular} & Non-Detects Reported to MDL? & Non-Detects Reported to MRL? & No. of Measurements Not Reported per QAPP \\
\hline \multicolumn{9}{|l|}{Metals/Metalloids (continued)} \\
\hline & & Sodium & 48 & 0 & MRL & 0 & 0 & 0 \\
\hline & & Thallium & 48 & 10 & MRL & 0 & 10 & 0 \\
\hline & & Uranium & 24 & 0 & MRL & 0 & 0 & 0 \\
\hline & & Vanadium & 48 & 0 & MRL & 0 & 0 & 0 \\
\hline & & Zinc & 48 & 0 & MRL & 0 & 0 & 0 \\
\hline \multicolumn{9}{|l|}{PAHs} \\
\hline \multicolumn{9}{|c|}{Columbia Analytical Services} \\
\hline & & 1,1'-Biphenyl & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & & 2-MethyInaphthalene & 6 & 1 & MRL & 1 & 0 & 1 \\
\hline & & Acenaphthene & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & & Acenaphthylene & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & & Anthracene & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & & Benzo[a]anthracene & 6 & 4 & MRL & 4 & 0 & 4 \\
\hline & & Benzo[a]pyrene & 6 & 5 & MRL & 5 & 0 & 5 \\
\hline & & Benzo[b]fluoranthene & 6 & 4 & MRL & 4 & 0 & 4 \\
\hline & & Benzo[g,h,i]perylene & 6 & 5 & MRL & 5 & 0 & 5 \\
\hline & & Benzo[k]fluoranthene & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & & Chrysene & 6 & 4 & MRL & 4 & 0 & 4 \\
\hline & & Dibenzo[a,h]anthracene & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & & Dibenzofuran & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & & Fluoranthene & 6 & 3 & MRL & 3 & 0 & 3 \\
\hline & & Fluorene & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & & Indeno[1,2,3-cd]pyrene & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & & Naphthalene & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & & Phenanthrene & 6 & 3 & MRL & 3 & 0 & 3 \\
\hline & & Pyrene & 6 & 4 & MRL & 4 & 0 & 4 \\
\hline \multicolumn{9}{|l|}{PBDEs} \\
\hline \multicolumn{9}{|c|}{SGS NC} \\
\hline & & 2,2',3,3',4,4',5,5',6-Nonabromodiphenyl ether & 1 & 1 & MRL & 0 & 1 & 0 \\
\hline & & 2,2',3,3',4,4'-Hexabromodiphenyl ether & 1 & 1 & MRL & 0 & 1 & 0 \\
\hline & & 2,2',3,4,4',5,5',6-Octabromodiphenyl ether & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',3,4,4',5',6-Heptabromodiphenyl ether & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',3,4,4',6,6'-Heptabromodiphenyl ether & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',3,4,4'-Pentabromodiphenyl ether & 1 & 1 & MRL & 0 & 1 & 0 \\
\hline & & 2,2',4,4',5,5'-Hexabromodiphenyl ether & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',4,4',5,6'-Hexabromodiphenyl ether & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',4,4',5-Pentabromodiphenyl ether & 1 & 1 & MRL & 0 & 1 & 0 \\
\hline & & 2,2',4,4',6-Pentabromodiphenyl ether & 1 & 1 & MRL & 0 & 1 & 0 \\
\hline & & 2,2',4,4'-Tetrabromodiphenyl ether & 1 & 1 & MRL & 0 & 1 & 0 \\
\hline & & 2,2',4,5'-Tetrabromodiphenyl ether & 1 & 1 & MRL & 0 & 1 & 0 \\
\hline & & 2,3,3',4,4',5',6-Heptabromodiphenyl ether & 1 & 1 & MRL & 0 & 1 & 0 \\
\hline
\end{tabular}

Table 2. 2009 Beach Sediment Data Review of How Non-detect Results Are Reported
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{ December 2011 Summary of 2009 Beach Sediment \({ }^{\text {a }}\)} \\
\hline QAPP & \begin{tabular}{c} 
Number of NDs Results Reported \\
as per QAPP
\end{tabular} & \begin{tabular}{c} 
Number of NDs Results Not Reported as \\
per QAPP
\end{tabular} \\
\hline ND=MRL & 73 & 1,332 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Analyte Type & \begin{tabular}{l}
Lab \\
Name
\end{tabular} & Analyte & No. of Measurements \({ }^{\text {b }}\) & No. of Reported Non-detects & \begin{tabular}{l}
QAPP \\
Requirement
\end{tabular} & Non-Detects Reported to MDL? & Non-Detects Reported to MRL? & No. of Measurements Not Reported per QAPP \\
\hline \multicolumn{9}{|l|}{PBDEs (continued)} \\
\hline & & 2,3,3',4,4',5,6-Heptabromodiphenyl ether & 1 & 1 & MRL & 0 & 1 & 0 \\
\hline & & 2,3',4,4'-Tetrabromodiphenyl ether & 1 & 1 & MRL & 0 & 1 & 0 \\
\hline & & 2,3',4',6-Tetrabromodiphenyl ether & 1 & 1 & MRL & 0 & 1 & 0 \\
\hline & & Coelution of PBDE 138 and 166 & 1 & 1 & MRL & 0 & 1 & 0 \\
\hline & & Coelution of PBDE 17 and 25 & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & Coelution of PBDE 28 and 33 & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & Decabromodiphenyl ether & 1 & 1 & MRL & 0 & 1 & 0 \\
\hline \multicolumn{9}{|l|}{PCBs} \\
\hline \multicolumn{9}{|c|}{Columbia Analytical Services} \\
\hline & & Aroclor 1016 & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & & Aroclor 1221 & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & & Aroclor 1232 & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & & Aroclor 1242 & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & & Aroclor 1248 & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & & Aroclor 1254 & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & & Aroclor 1260 & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & & Aroclor 1262 & 5 & 5 & MRL & 5 & 0 & 5 \\
\hline & & Aroclor 1268 & 5 & 5 & MRL & 5 & 0 & 5 \\
\hline \multicolumn{9}{|c|}{SGS NC} \\
\hline & & 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl & 1 & 1 & MRL & 0 & 0 & 0 \\
\hline & & 2,2',3,3',4,4',5,5'-Octachlorobiphenyl & 1 & 0 & MRL & 0 & 0 & 0 \\
\hline & & 2,2',3,3',4,4',5,6,6'-Nonachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',3,3',4,4',5,6'-Octachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',3,3',4,4',5,6-Octachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',3,3',4,4',5-Heptachlorobiphenyl & 1 & 1 & MRL & 0 & 0 & 0 \\
\hline & & 2,2',3,3',4,4',6,6'-Octachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',3,3',4,4',6-Heptachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',3,3',4,4'-Hexachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',3,3',4,5,5',6,6'-Nonachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',3,3',4,5,5',6-Octachlorobiphenyl & 1 & 1 & MRL & 0 & 0 & 0 \\
\hline & & 2,2',3,3',4,5,5'-Heptachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',3,3',4,5',6,6'-Octachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',3,3',4,5',6'-Heptachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',3,3',4,5',6-Heptachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',3,3',4,5,6'-Heptachlorobiphenyl & 1 & 0 & MRL & 0 & 0 & 0 \\
\hline & & 2,2',3,3',4, \(5^{\prime}\)-Hexachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',3,3',4,5-Hexachlorobiphenyl & 1 & 0 & MRL & 0 & 0 & 0 \\
\hline & & 2,2',3,3',4,6,6'-Heptachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',3,3',4,6'-Hexachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',3,3',4,6-Hexachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',3,3',4-Pentachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline
\end{tabular}

Table 2. 2009 Beach Sediment Data Review of How Non-detect Results Are Reported
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{ December 2011 Summary of 2009 Beach Sediment \({ }^{\text {a }}\)} \\
\hline QAPP & \begin{tabular}{c} 
Number of NDs Results Reported \\
as per QAPP
\end{tabular} & \begin{tabular}{c} 
Number of NDs Results Not Reported as \\
per QAPP
\end{tabular} \\
\hline ND=MRL & 73 & 1,332 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Analyte Type & Lab Name & Analyte & No. of Measurements \({ }^{\text {b }}\) & No. of Reported Non-detects & \begin{tabular}{l}
QAPP \\
Requirement
\end{tabular} & Non-Detects Reported to MDL? & Non-Detects Reported to MRL? & No. of Measurements Not Reported per QAPP \\
\hline \multicolumn{9}{|l|}{PCBs (continued)} \\
\hline & & 2,2',3,3',5,5',6,6'-Octachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',3,3',5,5',6-Heptachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',3,3',5,5'-Hexachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',3,3',5,6,6'-Heptachlorobiphenyl & 1 & 0 & MRL & 0 & 0 & 0 \\
\hline & & 2,2',3,3',5,6'-Hexachlorobiphenyl & 1 & 1 & MRL & 0 & 0 & 0 \\
\hline & & 2,2',3,3',5,6-Hexachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',3,3',5-Pentachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',3,3',6,6'-Hexachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',3,3',6-Pentachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',3,3'-Tetrachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',3,4,4',5,5',6-Octachlorobiphenyl & 1 & 1 & MRL & 0 & 0 & 0 \\
\hline & & 2,2',3,4,4',5,5'-Heptachlorobiphenyl & 1 & 0 & MRL & 0 & 0 & 0 \\
\hline & & 2,2',3,4,4',5,6,6'-Octachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',3,4,4',5',6-Heptachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',3,4,4',5,6'-Heptachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',3,4,4',5,6-Heptachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',3,4,4',5-Hexachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',3,4,4',6,6'-Heptachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',3,4,4',6-Hexachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',3,4,4'-Pentachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',3,4',5,5',6-Heptachlorobiphenyl & 1 & 0 & MRL & 0 & 0 & 0 \\
\hline & & 2,2',3,4',5,5'-Hexachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',3,4,5,5'-Hexachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',3,4',5,6,6'-Heptachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',3,4,5,6,6'-Heptachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',3,4',5,6'-Hexachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',3,4',5,6-Hexachlorobiphenyl & 1 & 0 & MRL & 0 & 0 & 0 \\
\hline & & 2,2',3,4,5',6-Hexachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',3,4,5,6'-Hexachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',3,4,5,6-Hexachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',3,4',5-Pentachlorobiphenyl & 1 & 0 & MRL & 0 & 0 & 0 \\
\hline & & 2,2',3,4,5-Pentachlorobiphenyl & 1 & 1 & MRL & 0 & 0 & 0 \\
\hline & & 2,2',3,4',6,6'-Hexachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',3,4,6,6'-Hexachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',3,4',6'-Pentachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',3,4,6'-Pentachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',3,4,6-Pentachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',3,4'-Tetrachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',3,4-Tetrachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',3,5,5'-Pentachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',3,5,6,6'-Hexachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline
\end{tabular}

Table 2. 2009 Beach Sediment Data Review of How Non-detect Results Are Reported
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{ December 2011 Summary of 2009 Beach Sediment \({ }^{\text {a }}\)} \\
\hline QAPP & \begin{tabular}{c} 
Number of NDs Results Reported \\
as per QAPP
\end{tabular} & \begin{tabular}{c} 
Number of NDs Results Not Reported as \\
per QAPP
\end{tabular} \\
\hline ND=MRL & 73 & 1,332 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Analyte Type & \begin{tabular}{l}
Lab \\
Name
\end{tabular} & Analyte & No. of Measurements \({ }^{\text {b }}\) & No. of Reported Non-detects & \begin{tabular}{l}
QAPP \\
Requirement
\end{tabular} & Non-Detects Reported to MDL? & Non-Detects Reported to MRL? & No. of Measurements Not Reported per QAPP \\
\hline \multicolumn{9}{|l|}{PCBs (continued)} \\
\hline & & 2,2',3,5',6-Pentachlorobiphenyl & 1 & 1 & MRL & 0 & 0 & 0 \\
\hline & & 2,2',3,5,6'-Pentachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',3,5,6-Pentachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',3,5'-Tetrachlorobiphenyl & 1 & 0 & MRL & 0 & 0 & 0 \\
\hline & & 2,2',3,5-Tetrachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',3,6,6'-Pentachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',3,6'-Tetrachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',3,6-Tetrachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',3-Trichlorobiphenyl & 1 & 1 & MRL & 0 & 0 & 0 \\
\hline & & 2,2',4,4',5,5'-Hexachlorobiphenyl & 1 & 0 & MRL & 0 & 0 & 0 \\
\hline & & 2,2',4,4',5,6'-Hexachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',4,4',5-Pentachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',4,4',6,6'-Hexachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',4,5',6-Pentachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',4,5'-Tetrachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',4,5-Tetrachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',4,6,6'-Pentachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',4,6-Tetrachlorobiphenyl & 1 & 1 & MRL & 0 & 0 & 0 \\
\hline & & 2,2',4-Trichlorobiphenyl & 1 & 0 & MRL & 0 & 0 & 0 \\
\hline & & 2,2',5,5'-Tetrachlorobiphenyl & 1 & 0 & MRL & 0 & 0 & 0 \\
\hline & & 2,2',5-Trichlorobiphenyl & 1 & 0 & MRL & 0 & 0 & 0 \\
\hline & & 2,2',6,6'-Tetrachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',6-Trichlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2'-Dichlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,3,3',4,4',5,5',6-Octachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,3,3',4,4',5,5'-Heptachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,3,3',4,4',5',6-Heptachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,3,3',4,4',5,6-Heptachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,3,3',4,4',5-Hexachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,3,3',4,4',6-Hexachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,3,3',4,4'-Pentachlorobiphenyl & 1 & 1 & MRL & 0 & 0 & 0 \\
\hline & & 2,3,3',4,5,5',6-Heptachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,3,3',4',5,5'-Hexachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,3,3',4,5,5'-Hexachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,3,3',4',5',6-Hexachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,3,3',4,5',6-Hexachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,3,3',4,5,6-Hexachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,3,3',4',5'-Pentachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,3,3',4',5-Pentachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,3,3',4,5-Pentachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,3,3',4',6-Pentachlorobiphenyl & 1 & 0 & MRL & 0 & 0 & 0 \\
\hline
\end{tabular}

Table 2. 2009 Beach Sediment Data Review of How Non-detect Results Are Reported
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{ December 2011 Summary of 2009 Beach Sediment \({ }^{\text {a }}\)} \\
\hline QAPP & \begin{tabular}{c} 
Number of NDs Results Reported \\
as per QAPP
\end{tabular} & \begin{tabular}{c} 
Number of NDs Results Not Reported as \\
per QAPP
\end{tabular} \\
\hline ND=MRL & 73 & 1,332 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Analyte Type & Lab Name & Analyte & No. of Measurements \({ }^{\text {b }}\) & No. of Reported Non-detects & \begin{tabular}{l}
QAPP \\
Requirement
\end{tabular} & Non-Detects Reported to MDL? & Non-Detects Reported to MRL? & No. of Measurements Not Reported per QAPP \\
\hline \multicolumn{9}{|l|}{PCBs (continued)} \\
\hline & & 2,3,3',4,6-Pentachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,3,3',4'-Tetrachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,3,3',4-Tetrachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,3,3',5,5',6-Hexachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,3,3',5,5'-Pentachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,3,3',5,6-Pentachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,3,3',5'-Tetrachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,3,3',5-Tetrachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,3,3',6-Tetrachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,3,3'-Trichlorobiphenyl & 1 & 1 & MRL & 0 & 1 & 0 \\
\hline & & 2,3',4,4',5,5'-Hexachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,3',4,4',5'-Pentachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,3',4,4',5-Pentachlorobiphenyl & 1 & 0 & MRL & 0 & 0 & 0 \\
\hline & & 2,3,4,4',5-Pentachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,3',4,4'-Tetrachlorobiphenyl & 1 & 0 & MRL & 0 & 0 & 0 \\
\hline & & 2,3,4,4'-Tetrachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,3',4,5,5'-Pentachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,3',4,5',6-Pentachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,3',4,5'-Tetrachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,3',4,5-Tetrachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,3,4',5-Tetrachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,3,4,5-Tetrachlorobiphenyl & 1 & 1 & MRL & 0 & 1 & 0 \\
\hline & & 2,3,4',6-Tetrachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,3',4-Trichlorobiphenyl & 1 & 1 & MRL & 0 & 0 & 0 \\
\hline & & 2,3,4'-Trichlorobiphenyl & 1 & 0 & MRL & 0 & 0 & 0 \\
\hline & & 2,3,4-Trichlorobiphenyl & 1 & 1 & MRL & 0 & 1 & 0 \\
\hline & & 2,3',5,5'-Tetrachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,3',5',6-Tetrachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,3',5'-Trichlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,3',5-Trichlorobiphenyl & 1 & 1 & MRL & 0 & 0 & 0 \\
\hline & & 2,3,5-Trichlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,3',6-Trichlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,3,6-Trichlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,3'-Dichlorobiphenyl & 1 & 1 & MRL & 0 & 0 & 0 \\
\hline & & 2,3-Dichlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,4',5-Trichlorobiphenyl & 1 & 1 & MRL & 0 & 1 & 0 \\
\hline & & 2,4',6-Trichlorobiphenyl & 1 & 1 & MRL & 0 & 0 & 0 \\
\hline & & 2,4'-Dichlorobiphenyl & 1 & 1 & MRL & 0 & 1 & 0 \\
\hline & & 2,4-Dichlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,5-Dichlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,6-Dichlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline
\end{tabular}

Table 2. 2009 Beach Sediment Data Review of How Non-detect Results Are Reported
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{ December 2011 Summary of 2009 Beach Sediment \({ }^{\text {a }}\)} \\
\hline QAPP & \begin{tabular}{c} 
Number of NDs Results Reported \\
as per QAPP
\end{tabular} & \begin{tabular}{c} 
Number of NDs Results Not Reported as \\
per QAPP
\end{tabular} \\
\hline ND=MRL & 73 & 1,332 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Analyte Type & Lab Name & Analyte & No. of Measurements \({ }^{\text {b }}\) & No. of Reported Non-detects & \begin{tabular}{l}
QAPP \\
Requirement
\end{tabular} & Non-Detects Reported to MDL? & Non-Detects Reported to MRL? & No. of Measurements Not Reported per QAPP \\
\hline \multicolumn{9}{|l|}{PCBs (continued)} \\
\hline & & 3,3',4,4',5,5'-Hexachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 3,3',4,4',5-Pentachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 3,3',4,4'-Tetrachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 3,3',4,5,5'-Pentachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 3,3',4,5'-Tetrachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 3,3',4,5-Tetrachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 3,3',4-Trichlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 3,3',5,5'-Tetrachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 3,3',5-Trichlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 3,3'-Dichlorobiphenyl & 1 & 1 & MRL & 0 & 1 & 0 \\
\hline & & 3,4,4',5-Tetrachlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 3,4,4'-Trichlorobiphenyl & 1 & 1 & MRL & 0 & 1 & 0 \\
\hline & & 3,4',5-Trichlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 3,4,5-Trichlorobiphenyl & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 3,4-Dichlorobiphenyl & 1 & 1 & MRL & 0 & 0 & 0 \\
\hline & & Decachlorobiphenyl (PCB 209) & 1 & 0 & MRL & 0 & 0 & 0 \\
\hline & & PCB congener 1 & 1 & 0 & MRL & 0 & 0 & 0 \\
\hline & & PCB congener 14 & 1 & 1 & MRL & 1 & 0 & 1 \\
\hline & & PCB congener 15 & 1 & 1 & MRL & 0 & 1 & 0 \\
\hline & & PCB congener 2 & 1 & 1 & MRL & 0 & 0 & 0 \\
\hline & & PCB congener 3 & 1 & 1 & MRL & 0 & 0 & 0 \\
\hline & & PCB TEQ using WHO 2005 TEFs ND=0 DL & 1 & 0 & MRL & 0 & 0 & 0 \\
\hline & & PCB TEQ using WHO 2005 TEFs ND=1/2 DL & 1 & 0 & MRL & 0 & 0 & 0 \\
\hline \multicolumn{9}{|l|}{Pesticides/Herbicides} \\
\hline \multicolumn{9}{|c|}{Columbia Analytical Services} \\
\hline & & 2,4'-DDD & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & & 2,4'-DDE & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & & 2,4'-DDT & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & & 4,4'-DDD & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & & 4,4'-DDE & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & & 4,4'-DDT & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & & Aldrin & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & & alpha-Benzenehexachloride & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & & alpha-Chlordane & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & & beta-BHC & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & & Chlordane & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & & cis-Nonachlor & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & & delta-BHC & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & & Dieldrin & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & & Endosulfan I & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & & Endosulfan II & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline
\end{tabular}

Table 2. 2009 Beach Sediment Data Review of How Non-detect Results Are Reported
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\multirow[t]{3}{*}{}} & \multicolumn{5}{|c|}{December 2011 Summary of 2009 Beach Sediment \({ }^{\text {a }}\)} & \\
\hline & & & QAPP & \multicolumn{2}{|l|}{Number of NDs Results Reported as per QAPP} & \multicolumn{2}{|l|}{Number of NDs Results Not Reported as per QAPP} & \\
\hline & & & ND=MRL & \multicolumn{2}{|l|}{73} & \multicolumn{2}{|c|}{1,332} & \\
\hline Analyte Type & Lab Name & Analyte & No. of Measurements \({ }^{\text {b }}\) & No. of Reported Non-detects & \begin{tabular}{l}
QAPP \\
Requirement
\end{tabular} & Non-Detects Reported to MDL? & Non-Detects Reported to MRL? & No. of Measurements Not Reported per QAPP \\
\hline \multicolumn{9}{|l|}{Pesticides/Herbicides (continued)} \\
\hline & & Endosulfan sulfate & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & & Endrin & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & & Endrin aldehyde & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & & Endrin ketone & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & & gamma-BHC & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & & gamma-Chlordane & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & & Heptachlor & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & & Heptachlor epoxide & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & & Methoxychlor & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & & Mirex & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & & Oxychlordane & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & & Toxaphene & 6 & 6 & MRL & 5 & 1 & 5 \\
\hline & & trans-Nonachlor & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline \multicolumn{9}{|l|}{Radionuclides} \\
\hline \multicolumn{9}{|c|}{Pace Analytical} \\
\hline & & Radium-226 & 1 & 0 & MRL & 0 & 0 & 0 \\
\hline & & Uranium-238 & 1 & 0 & MRL & 0 & 0 & 0 \\
\hline \multicolumn{9}{|l|}{SVOCs} \\
\hline \multicolumn{9}{|c|}{Columbia Analytical Services} \\
\hline & & 1,2,4-Trichlorobenzene & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & & 1,2-Dichlorobenzene & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & & 1,3-Dichlorobenzene & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & & 1,4-Dichlorobenzene & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & & 2,2'-oxybis(1-Chloropropane) & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & & 2,4,5-Trichlorophenol & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & & 2,4,6-Trichlorophenol & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & & 2,4-Dichlorophenol & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & & 2,4-Dimethylphenol & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & & 2,4-Dinitrophenol & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & & 2,4-Dinitrotoluene & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & & 2,6-Dinitrotoluene & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & & 2-Chloronaphthalene & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & & 2-Chlorophenol & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & & 2-Methylphenol & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & & 2-Nitroaniline & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & & 2-Nitrophenol & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & & 3,3'-Dichlorobenzidine & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & & 3-Nitroaniline & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & & 4,6-Dinitro-2-methylphenol & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & & 4-Bromophenyl-phenylether & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & & 4-Chloro-3-methylphenol & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline
\end{tabular}

Table 2. 2009 Beach Sediment Data Review of How Non-detect Results Are Reported


Notes:
\({ }^{\text {a }}\) The December 2011 analysis and summary included results for lab replicates, field replicates, field triplicates, blank water, rinse water/QC samples whereas the current table does not
\({ }^{\mathrm{b}}\) Excludes all duplicate/triplicate/replicate/blank and rinsewater QC sample results
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\multirow[t]{3}{*}{}} & \multicolumn{5}{|c|}{December 2011 Summary of 2010 Beach Sediment \({ }^{\text {a }}\)} & \\
\hline & & & QAPP & \multicolumn{2}{|l|}{Number of NDs Results Reported as per QAPP} & \multicolumn{2}{|l|}{Number of NDs Results Not Reported as per QAPP} & \\
\hline & & & ND=MRL & \multicolumn{2}{|l|}{67} & \multicolumn{2}{|c|}{2,168} & \\
\hline Analyte Type & \begin{tabular}{l}
Lab \\
Name
\end{tabular} & Analyte & No. of Measurements \({ }^{\text {b }}\) & No. of Reported Non-detects & QAPP Requirement & Non-Detects Reported to MDL? & Non-Detects Reported to MRL? & No. of Measurements Not Reported per QAPP \\
\hline \multicolumn{9}{|l|}{Conventionals} \\
\hline \multicolumn{9}{|c|}{Columbia Analytical Services} \\
\hline & & Organic carbon & 33 & 1 & MRL & 1 & 0 & 1 \\
\hline & & pH & 33 & 0 & MRL & 0 & 0 & 0 \\
\hline & & Solids & 113 & 0 & MRL & 0 & 0 & 0 \\
\hline & & Sulfide & 33 & 8 & MRL & 8 & 0 & 8 \\
\hline \multicolumn{9}{|l|}{Dioxins/Furans} \\
\hline \multicolumn{9}{|c|}{SGS NC} \\
\hline & & 1,2,3,4,6,7,8-Heptachlorodibenzodioxin & 2 & 0 & MRL & 0 & 0 & 0 \\
\hline & & 1,2,3,4,6,7,8-Heptachlorodibenzofuran & 2 & 2 & MRL & 0 & 2 & 0 \\
\hline & & 1,2,3,4,7,8,9-Heptachlorodibenzofuran & 2 & 2 & MRL & 2 & 0 & 2 \\
\hline & & 1,2,3,4,7,8-Hexachlorodibenzodioxin & 2 & 2 & MRL & 2 & 0 & 2 \\
\hline & & 1,2,3,4,7,8-Hexachlorodibenzofuran & 2 & 2 & MRL & 2 & 0 & 2 \\
\hline & & 1,2,3,6,7,8-Hexachlorodibenzodioxin & 2 & 2 & MRL & 2 & 0 & 2 \\
\hline & & 1,2,3,6,7,8-Hexachlorodibenzofuran & 2 & 2 & MRL & 2 & 0 & 2 \\
\hline & & 1,2,3,7,8,9-Hexachlorodibenzodioxin & 2 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 1,2,3,7,8,9-Hexachlorodibenzofuran & 2 & 2 & MRL & 2 & 0 & 2 \\
\hline & & 1,2,3,7,8-Pentachlorodibenzofuran & 2 & 2 & MRL & 2 & 0 & 2 \\
\hline & & 1,2,3,7,8-Pentachlorodibenzo-p-dioxin & 2 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,3,4,6,7,8-Hexachlorodibenzofuran & 2 & 2 & MRL & 2 & 0 & 2 \\
\hline & & 2,3,4,7,8-Pentachlorodibenzofuran & 2 & 2 & MRL & 2 & 0 & 2 \\
\hline & & 2,3,7,8-Tetrachlorodibenzodioxin & 2 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,3,7,8-Tetrachlorodibenzofuran & 2 & 0 & MRL & 0 & 0 & 0 \\
\hline & & Heptachlorodibenzodioxin (Total) & 2 & 0 & MRL & 0 & 0 & 0 \\
\hline & & Heptachlorodibenzofuran (Total) & 2 & 0 & MRL & 0 & 0 & 0 \\
\hline & & Hexachlorodibenzodioxin (Total) & 2 & 0 & MRL & 0 & 0 & 0 \\
\hline & & Hexachlorodibenzofuran (Total) & 2 & 0 & MRL & 0 & 0 & 0 \\
\hline & & Octachlorodibenzodioxin & 2 & 1 & MRL & 0 & 1 & 0 \\
\hline & & Octachlorodibenzofuran & 2 & 2 & MRL & 1 & 1 & 1 \\
\hline & & Pentachlorodibenzodioxin (Total) & 2 & 0 & MRL & 0 & 0 & 0 \\
\hline & & Pentachlorodibenzofuran (Total) & 2 & 0 & MRL & 0 & 0 & 0 \\
\hline & & Tetrachlorodibenzodioxin (Total) & 2 & 0 & MRL & 0 & 0 & 0 \\
\hline & & Tetrachlorodibenzofuran (Total) & 2 & 0 & MRL & 0 & 0 & 0 \\
\hline
\end{tabular}

Table 3. 2010 Beach Sediment Data Review of How Non-detect Results Are Reported


Table 3. 2010 Beach Sediment Data Review of How Non-detect Results Are Reported
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{ December 2011 Summary of 2010 Beach Sediment \({ }^{\text {a }}\)} \\
\hline QAPP & \begin{tabular}{c} 
Number of NDs Results \\
Reported as per QAPP
\end{tabular} & \begin{tabular}{c} 
Number of NDs Results Not Reported as \\
per QAPP
\end{tabular} \\
\hline ND=MRL & 67 & 2,168 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Analyte Type & Lab Name & Analyte & No. of Measurements \({ }^{\text {b }}\) & No. of Reported Non-detects & \begin{tabular}{l}
QAPP \\
Requirement
\end{tabular} & Non-Detects Reported to MDL? & Non-Detects Reported to MRL? & No. of Measurements Not Reported per QAPP \\
\hline \multicolumn{9}{|l|}{Metals/Metalloids (continued)} \\
\hline & & Thallium & 101 & 3 & MRL & 0 & 3 & 0 \\
\hline & & Uranium & 53 & 0 & MRL & 0 & 0 & 0 \\
\hline & & Vanadium & 101 & 0 & MRL & 0 & 0 & 0 \\
\hline & & Zinc & 101 & 0 & MRL & 0 & 0 & 0 \\
\hline \multicolumn{9}{|l|}{PAHs} \\
\hline \multicolumn{9}{|c|}{Columbia Analytical Services} \\
\hline & & 1,1'-Biphenyl & 12 & 12 & MRL & 12 & 0 & 12 \\
\hline & & 2-Methylnaphthalene & 12 & 5 & MRL & 5 & 0 & 5 \\
\hline & & Acenaphthene & 12 & 12 & MRL & 12 & 0 & 12 \\
\hline & & Acenaphthylene & 12 & 12 & MRL & 12 & 0 & 12 \\
\hline & & Anthracene & 12 & 12 & MRL & 12 & 0 & 12 \\
\hline & & Benzo[a]anthracene & 12 & 9 & MRL & 9 & 0 & 9 \\
\hline & & Benzo[a]pyrene & 12 & 9 & MRL & 9 & 0 & 9 \\
\hline & & Benzo[b]fluoranthene & 12 & 7 & MRL & 7 & 0 & 7 \\
\hline & & Benzo[g,h,i]perylene & 12 & 8 & MRL & 8 & 0 & 8 \\
\hline & & Benzo[k]fluoranthene & 12 & 11 & MRL & 11 & 0 & 11 \\
\hline & & Chrysene & 12 & 6 & MRL & 6 & 0 & 6 \\
\hline & & Dibenzo[a,h]anthracene & 12 & 12 & MRL & 12 & 0 & 12 \\
\hline & & Dibenzofuran & 12 & 11 & MRL & 11 & 0 & 11 \\
\hline & & Fluoranthene & 12 & 7 & MRL & 7 & 0 & 7 \\
\hline & & Fluorene & 12 & 12 & MRL & 12 & 0 & 12 \\
\hline & & Indeno[1,2,3-cd]pyrene & 12 & 10 & MRL & 10 & 0 & 10 \\
\hline & & Naphthalene & 12 & 3 & MRL & 2 & 1 & 2 \\
\hline & & Phenanthrene & 12 & 5 & MRL & 5 & 0 & 5 \\
\hline & & Pyrene & 12 & 7 & MRL & 7 & 0 & 7 \\
\hline \multicolumn{9}{|l|}{PBDEs} \\
\hline \multicolumn{9}{|c|}{SGS NC} \\
\hline & & 2,2',3,3',4,4',5,5',6-Nonabromodiphenyl ether & 2 & 2 & MRL & 2 & 0 & 2 \\
\hline & & 2,2',3,3',4,4'-Hexabromodiphenyl ether & 2 & 2 & MRL & 2 & 0 & 2 \\
\hline & & 2, ', 3, 4, 4', 5, 5',6-Octabromodiphenyl ether & 2 & 2 & MRL & 2 & 0 & 2 \\
\hline & & 2,2',3,4,4',5',6-Heptabromodiphenyl ether & 2 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',3,4,4',6,6'-Heptabromodiphenyl ether & 2 & 2 & MRL & 2 & 0 & 2 \\
\hline & & 2,2',3,4,4'-Pentabromodiphenyl ether & 2 & 2 & MRL & 1 & 1 & 1 \\
\hline & & 2,2',4,4',5,5'-Hexabromodiphenyl ether & 2 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',4,4',5,6'-Hexabromodiphenyl ether & 2 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',4,4',5-Pentabromodiphenyl ether & 2 & 2 & MRL & 0 & 2 & 0 \\
\hline & & 2,2',4,4',6-Pentabromodiphenyl ether & 2 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',4,4'-Tetrabromodiphenyl ether & 2 & 1 & MRL & 0 & 1 & 0 \\
\hline & & 2,2',4,5'-Tetrabromodiphenyl ether & 2 & 0 & MRL & 0 & 0 & 0 \\
\hline & & 2,3,3',4,4',5',6-Heptabromodiphenyl ether & 2 & 2 & MRL & 2 & 0 & 2 \\
\hline & & 2,3,3',4,4',5,6-Heptabromodiphenyl ether & 2 & 2 & MRL & 2 & 0 & 2 \\
\hline & & 2,3',4,4'-Tetrabromodiphenyl ether & 2 & 1 & MRL & 1 & 0 & 1 \\
\hline
\end{tabular}

Table 3. 2010 Beach Sediment Data Review of How Non-detect Results Are Reported
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{ December 2011 Summary of 2010 Beach Sediment \({ }^{\text {a }}\)} \\
\hline QAPP & \begin{tabular}{c} 
Number of NDs Results \\
Reported as per QAPP
\end{tabular} & \begin{tabular}{c} 
Number of NDs Results Not Reported as \\
per QAPP
\end{tabular} \\
\hline ND=MRL & 67 & 2,168 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Analyte Type & Lab Name & Analyte & No. of Measurements \({ }^{\text {b }}\) & No. of Reported Non-detects & \begin{tabular}{l}
QAPP \\
Requirement
\end{tabular} & Non-Detects Reported to MDL? & Non-Detects Reported to MRL? & No. of Measurements Not Reported per QAPP \\
\hline \multicolumn{9}{|l|}{PBDEs (continued)} \\
\hline & & 2,3',4',6-Tetrabromodiphenyl ether & 2 & 2 & MRL & 2 & 0 & 2 \\
\hline & & Coelution of PBDE 138 and 166 & 2 & 2 & MRL & 2 & 0 & 2 \\
\hline & & Coelution of PBDE 17 and 25 & 2 & 2 & MRL & 2 & 0 & 2 \\
\hline & & Coelution of PBDE 28 and 33 & 2 & 2 & MRL & 2 & 0 & 2 \\
\hline & & Decabromodiphenyl ether & 2 & 2 & MRL & 1 & 0 & 1 \\
\hline \multicolumn{9}{|l|}{PCBs} \\
\hline \multicolumn{9}{|c|}{Columbia Analytical Services} \\
\hline & & Aroclor 1016 & 12 & 12 & MRL & 12 & 0 & 12 \\
\hline & & Aroclor 1221 & 12 & 12 & MRL & 12 & 0 & 12 \\
\hline & & Aroclor 1232 & 12 & 12 & MRL & 12 & 0 & 12 \\
\hline & & Aroclor 1242 & 12 & 12 & MRL & 12 & 0 & 12 \\
\hline & & Aroclor 1248 & 12 & 12 & MRL & 12 & 0 & 12 \\
\hline & & Aroclor 1254 & 12 & 12 & MRL & 12 & 0 & 12 \\
\hline & & Aroclor 1260 & 12 & 12 & MRL & 12 & 0 & 12 \\
\hline & & Aroclor 1262 & 12 & 12 & MRL & 12 & 0 & 12 \\
\hline & & Aroclor 1268 & 12 & 12 & MRL & 12 & 0 & 12 \\
\hline \multicolumn{9}{|c|}{SGS NC} \\
\hline & & 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl & 2 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',3,3',4,4',5,5'-Octachlorobiphenyl & 2 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',3,3',4,4',5,6,6'-Nonachlorobiphenyl & 2 & 2 & MRL & 2 & 0 & 2 \\
\hline & & 2,2',3,3',4,4',5,6'-Octachlorobiphenyl & 2 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',3,3',4,4',5,6-Octachlorobiphenyl & 2 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',3,3',4,4',5-Heptachlorobiphenyl & 2 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',3,3',4,5,5',6,6'-Nonachlorobiphenyl & 2 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',3,3',4,5,5'-Heptachlorobiphenyl & 2 & 2 & MRL & 2 & 0 & 2 \\
\hline & & 2,2',3,3',4,5',6,6'-Octachlorobiphenyl & 2 & 2 & MRL & 2 & 0 & 2 \\
\hline & & 2,2',3,3',4, \({ }^{\prime}\), \(6^{\prime}\) '-Heptachlorobiphenyl & 2 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',3,3',4,5',6-Heptachlorobiphenyl & 2 & 2 & MRL & 2 & 0 & 2 \\
\hline & & 2,2',3,3',4,5,6'-Heptachlorobiphenyl & 2 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',3,3',4,5'-Hexachlorobiphenyl & 2 & 2 & MRL & 2 & 0 & 2 \\
\hline & & 2,2',3,3',4,6,6'-Heptachlorobiphenyl & 2 & 2 & MRL & 2 & 0 & 2 \\
\hline & & 2,2',3,3',4,6'-Hexachlorobiphenyl & 2 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',3,3',4,6-Hexachlorobiphenyl & 2 & 2 & MRL & 2 & 0 & 2 \\
\hline & & 2,2',3,3',4-Pentachlorobiphenyl & 2 & 2 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',3,3',5,5',6,6'-Octachlorobiphenyl & 2 & 2 & MRL & 2 & 0 & 2 \\
\hline & & 2,2',3,3',5,5',6-Heptachlorobiphenyl & 2 & 2 & MRL & 2 & 0 & 2 \\
\hline & & 2,2',3,3',5,5'-Hexachlorobiphenyl & 2 & 2 & MRL & 2 & 0 & 2 \\
\hline & & 2,2',3,3',5,6,6'-Heptachlorobiphenyl & 2 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',3,3',5,6-Hexachlorobiphenyl & 2 & 2 & MRL & 2 & 0 & 2 \\
\hline & & 2,2',3,3',5-Pentachlorobiphenyl & 2 & 2 & MRL & 2 & 0 & 2 \\
\hline & & 2,2',3,3',6,6'-Hexachlorobiphenyl & 2 & 1 & MRL & 1 & 0 & 1 \\
\hline & & 2,2',3,3',6-Pentachlorobiphenyl & 2 & 2 & MRL & 1 & 0 & 1 \\
\hline
\end{tabular}

Table 3. 2010 Beach Sediment Data Review of How Non-detect Results Are Reported


Table 3. 2010 Beach Sediment Data Review of How Non-detect Results Are Reported
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{}} & \multicolumn{5}{|c|}{December 2011 Summary of 2010 Beach Sediment \({ }^{\text {a }}\)} & \\
\hline & & QAPP & \multicolumn{2}{|l|}{Number of NDs Results Reported as per QAPP} & \multicolumn{2}{|l|}{Number of NDs Results Not Reported as per QAPP} & \\
\hline & & ND=MRL & \multicolumn{2}{|l|}{67} & \multicolumn{2}{|c|}{2,168} & \\
\hline Analyte Type & Lab
Name & No. of Measurements \({ }^{\text {b }}\) & No. of Reported Non-detects & \begin{tabular}{l}
QAPP \\
Requirement
\end{tabular} & Non-Detects Reported to MDL? & Non-Detects Reported to MRL? & No. of Measurements Not Reported per QAPP \\
\hline \multicolumn{8}{|l|}{PCBs (continued)} \\
\hline \multicolumn{2}{|r|}{2,3,3',4,4',5,5'-Heptachlorobiphenyl} & 2 & 2 & MRL & 2 & 0 & 2 \\
\hline \multicolumn{2}{|r|}{2,3,3',4,4',5',6-Heptachlorobiphenyl} & 2 & 2 & MRL & 2 & 0 & 2 \\
\hline \multicolumn{2}{|r|}{2,3,3',4,4',5,6-Heptachlorobiphenyl} & 2 & 1 & MRL & 1 & 0 & 1 \\
\hline \multicolumn{2}{|r|}{2,3,3',4,4',5-Hexachlorobiphenyl} & 2 & 2 & MRL & 1 & 0 & 1 \\
\hline \multicolumn{2}{|r|}{2,3,3',4,4',6-Hexachlorobiphenyl} & 2 & 1 & MRL & 1 & 0 & 1 \\
\hline \multicolumn{2}{|r|}{2,3,3',4,4'-Pentachlorobiphenyl} & 2 & 0 & MRL & 0 & 0 & 0 \\
\hline \multicolumn{2}{|r|}{2,3,3',4,5,5',6-Heptachlorobiphenyl} & 2 & 2 & MRL & 2 & 0 & 2 \\
\hline \multicolumn{2}{|r|}{2,3,3',4',5,5'-Hexachlorobiphenyl} & 2 & 2 & MRL & 2 & 0 & 2 \\
\hline \multicolumn{2}{|r|}{2,3,3',4,5,5'-Hexachlorobiphenyl} & 2 & 2 & MRL & 2 & 0 & 2 \\
\hline \multicolumn{2}{|r|}{2,3,3', \(\mathbf{4}^{\prime}, 5^{\prime}, 6\)-Hexachlorobiphenyl} & 2 & 2 & MRL & 2 & 0 & 2 \\
\hline \multicolumn{2}{|r|}{2,3,3',4,5',6-Hexachlorobiphenyl} & 2 & 2 & MRL & 2 & 0 & 2 \\
\hline \multicolumn{2}{|r|}{2,3,3, 4, 5,6-Hexachlorobiphenyl} & 2 & 2 & MRL & 2 & 0 & 2 \\
\hline \multicolumn{2}{|r|}{2,3,3',4',5'-Pentachlorobiphenyl} & 2 & 2 & MRL & 2 & 0 & 2 \\
\hline \multicolumn{2}{|r|}{2,3,3',4,5-Pentachlorobiphenyl} & 2 & 2 & MRL & 2 & 0 & 2 \\
\hline \multicolumn{2}{|r|}{2,3,3',4,6-Pentachlorobiphenyl} & 2 & 2 & MRL & 2 & 0 & 2 \\
\hline \multicolumn{2}{|r|}{2,3,3',4'-Tetrachlorobiphenyl} & 2 & 1 & MRL & 0 & 0 & 0 \\
\hline \multicolumn{2}{|r|}{2,3,3',4-Tetrachlorobiphenyl} & 2 & 2 & MRL & 2 & 0 & 2 \\
\hline \multicolumn{2}{|r|}{2,3,3',5,5',6-Hexachlorobiphenyl} & 2 & 2 & MRL & 2 & 0 & 2 \\
\hline \multicolumn{2}{|r|}{2,3,3',5,5'-Pentachlorobiphenyl} & 2 & 2 & MRL & 2 & 0 & 2 \\
\hline \multicolumn{2}{|r|}{2,3,3',5,6-Pentachlorobiphenyl} & 2 & 2 & MRL & 2 & 0 & 2 \\
\hline \multicolumn{2}{|r|}{2,3,3',5'-Tetrachlorobiphenyl} & 2 & 2 & MRL & 2 & 0 & 2 \\
\hline \multicolumn{2}{|r|}{2,3,3',5-Tetrachlorobiphenyl} & 2 & 2 & MRL & 2 & 0 & 2 \\
\hline \multicolumn{2}{|r|}{2,3,3',6-Tetrachlorobiphenyl} & 2 & 2 & MRL & 2 & 0 & 2 \\
\hline \multicolumn{2}{|r|}{2,3',4,4',5,5'-Hexachlorobiphenyl} & 2 & 2 & MRL & 2 & 0 & 2 \\
\hline \multicolumn{2}{|r|}{2,3',4,4',5'-Pentachlorobiphenyl} & 2 & 2 & MRL & 2 & 0 & 2 \\
\hline \multicolumn{2}{|r|}{2,3',4,4',5-Pentachlorobiphenyl} & 2 & 0 & MRL & 0 & 0 & 0 \\
\hline \multicolumn{2}{|r|}{2,3,4,4',5-Pentachlorobiphenyl} & 2 & 2 & MRL & 2 & 0 & 2 \\
\hline \multicolumn{2}{|r|}{2,3',4,4'-Tetrachlorobiphenyl} & 2 & 0 & MRL & 0 & 0 & 0 \\
\hline \multicolumn{2}{|r|}{2,3,4,4'-Tetrachlorobiphenyl} & 2 & 1 & MRL & 0 & 0 & 0 \\
\hline \multicolumn{2}{|r|}{2,3',4,5,5'-Pentachlorobiphenyl} & 2 & 2 & MRL & 2 & 0 & 2 \\
\hline \multicolumn{2}{|r|}{2,3',4,5',6-Pentachlorobiphenyl} & 2 & 2 & MRL & 2 & 0 & 2 \\
\hline \multicolumn{2}{|r|}{2,3',4,5'-Tetrachlorobiphenyl} & 2 & 2 & MRL & 2 & 0 & 2 \\
\hline \multicolumn{2}{|r|}{2,3',4,5-Tetrachlorobiphenyl} & 2 & 2 & MRL & 2 & 0 & 2 \\
\hline \multicolumn{2}{|r|}{2,3,4',5-Tetrachlorobiphenyl} & 2 & 2 & MRL & 2 & 0 & 2 \\
\hline \multicolumn{2}{|r|}{2,3,4',6-Tetrachlorobiphenyl} & 2 & 1 & MRL & 0 & 0 & 0 \\
\hline \multicolumn{2}{|r|}{2,3',4-Trichlorobiphenyl} & 2 & 1 & MRL & 1 & 0 & 1 \\
\hline \multicolumn{2}{|r|}{2,3,4'-Trichlorobiphenyl} & 2 & 1 & MRL & 0 & 1 & 0 \\
\hline \multicolumn{2}{|r|}{2,3',5,5'-Tetrachlorobiphenyl} & 2 & 2 & MRL & 2 & 0 & 2 \\
\hline \multicolumn{2}{|r|}{2,3',5',6-Tetrachlorobiphenyl} & 2 & 2 & MRL & 2 & 0 & 2 \\
\hline \multicolumn{2}{|r|}{2,3',5'-Trichlorobiphenyl} & 2 & 2 & MRL & 2 & 0 & 2 \\
\hline \multicolumn{2}{|r|}{2,3,5-Trichlorobiphenyl} & 2 & 1 & MRL & 1 & 0 & 1 \\
\hline \multicolumn{2}{|r|}{2,3',6-Trichlorobiphenyl} & 2 & 2 & MRL & 2 & 0 & 2 \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{}} & \multicolumn{5}{|c|}{December 2011 Summary of 2010 Beach Sediment \({ }^{\text {a }}\)} & \\
\hline & & QAPP & \multicolumn{2}{|l|}{Number of NDs Results Reported as per QAPP} & \multicolumn{2}{|l|}{Number of NDs Results Not Reported as per QAPP} & \\
\hline & & ND=MRL & \multicolumn{2}{|l|}{67} & \multicolumn{2}{|c|}{2,168} & \\
\hline Analyte Type & Lab
Name & No. of Measurements \({ }^{\text {b }}\) & No. of Reported Non-detects & \begin{tabular}{l}
QAPP \\
Requirement
\end{tabular} & Non-Detects Reported to MDL? & Non-Detects Reported to MRL? & No. of Measurements Not Reported per QAPP \\
\hline \multicolumn{8}{|l|}{Pesticides/Herbicides (continued)} \\
\hline & Heptachlor epoxide & 12 & 12 & MRL & 12 & 0 & 12 \\
\hline & Methoxychlor & 12 & 12 & MRL & 12 & 0 & 12 \\
\hline & Mirex & 12 & 12 & MRL & 12 & 0 & 12 \\
\hline & Oxychlordane & 12 & 12 & MRL & 12 & 0 & 12 \\
\hline & Toxaphene & 12 & 12 & MRL & 12 & 0 & 12 \\
\hline & trans-Nonachlor & 12 & 12 & MRL & 12 & 0 & 12 \\
\hline \multicolumn{8}{|l|}{Radionuclides} \\
\hline \multicolumn{8}{|c|}{Pace Analytical} \\
\hline & Radium-226 & 2 & 0 & MRL & 0 & 0 & 0 \\
\hline & Uranium-238 & 2 & 0 & MRL & 0 & 0 & 0 \\
\hline \multicolumn{8}{|l|}{SVOCs} \\
\hline \multicolumn{8}{|l|}{Columbia Analytical Services} \\
\hline & 1,2,4-Trichlorobenzene & 12 & 12 & MRL & 12 & 0 & 12 \\
\hline & 1,2-Dichlorobenzene & 12 & 12 & MRL & 12 & 0 & 12 \\
\hline & 1,3-Dichlorobenzene & 12 & 12 & MRL & 12 & 0 & 12 \\
\hline & 1,4-Dichlorobenzene & 12 & 12 & MRL & 12 & 0 & 12 \\
\hline & 2,2'-oxybis(1-Chloropropane) & 12 & 12 & MRL & 12 & 0 & 12 \\
\hline & 2,4,5-Trichlorophenol & 12 & 12 & MRL & 12 & 0 & 12 \\
\hline & 2,4,6-Trichlorophenol & 12 & 12 & MRL & 12 & 0 & 12 \\
\hline & 2,4-Dichlorophenol & 12 & 12 & MRL & 12 & 0 & 12 \\
\hline & 2,4-Dimethylphenol & 12 & 12 & MRL & 12 & 0 & 12 \\
\hline & 2,4-Dinitrophenol & 12 & 12 & MRL & 12 & 0 & 12 \\
\hline & 2,4-Dinitrotoluene & 12 & 12 & MRL & 12 & 0 & 12 \\
\hline & 2,6-Dinitrotoluene & 12 & 12 & MRL & 12 & 0 & 12 \\
\hline & 2-Chloronaphthalene & 12 & 12 & MRL & 12 & 0 & 12 \\
\hline & 2-Chlorophenol & 12 & 12 & MRL & 12 & 0 & 12 \\
\hline & 2-Methylphenol & 12 & 12 & MRL & 12 & 0 & 12 \\
\hline & 2-Nitroaniline & 12 & 12 & MRL & 12 & 0 & 12 \\
\hline & 2-Nitrophenol & 12 & 12 & MRL & 12 & 0 & 12 \\
\hline & 3,3'-Dichlorobenzidine & 12 & 12 & MRL & 12 & 0 & 12 \\
\hline & 3-Nitroaniline & 12 & 12 & MRL & 12 & 0 & 12 \\
\hline & 4,6-Dinitro-2-methylphenol & 12 & 12 & MRL & 12 & 0 & 12 \\
\hline & 4-Bromophenyl-phenylether & 12 & 12 & MRL & 12 & 0 & 12 \\
\hline & 4-Chloro-3-methylphenol & 12 & 12 & MRL & 12 & 0 & 12 \\
\hline & 4-Chloroaniline & 12 & 12 & MRL & 12 & 0 & 12 \\
\hline & 4-Chlorophenyl-phenyl ether & 12 & 12 & MRL & 12 & 0 & 12 \\
\hline & 4-Methylphenol & 12 & 12 & MRL & 12 & 0 & 12 \\
\hline & 4-Nitroaniline & 12 & 12 & MRL & 12 & 0 & 12 \\
\hline & 4-Nitrophenol & 12 & 12 & MRL & 12 & 0 & 12 \\
\hline & Acetophenone & 12 & 12 & MRL & 11 & 1 & 11 \\
\hline & Benzaldehyde & 12 & 11 & MRL & 11 & 0 & 11 \\
\hline & Benzoic acid & 12 & 12 & MRL & 12 & 0 & 12 \\
\hline
\end{tabular}

Table 3. 2010 Beach Sediment Data Review of How Non-detect Results Are Reported
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{ December 2011 Summary of 2010 Beach Sediment \({ }^{\text {a }}\)} \\
\hline QAPP & \begin{tabular}{c} 
Number of NDs Results \\
Reported as per QAPP
\end{tabular} & \begin{tabular}{c} 
Number of NDs Results Not Reported as \\
per QAPP
\end{tabular} \\
\hline ND=MRL & 67 & 2,168 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Analyte Type & Lab Name & Analyte & No. of Measurements \({ }^{\text {b }}\) & No. of Reported Non-detects & \begin{tabular}{l}
QAPP \\
Requirement
\end{tabular} & Non-Detects Reported to MDL? & Non-Detects Reported to MRL? & No. of Measurements Not Reported per QAPP \\
\hline \multicolumn{9}{|l|}{SVOCs (continued)} \\
\hline & & Benzyl alcohol & 12 & 12 & MRL & 12 & 0 & 12 \\
\hline & & Benzyl n-butyl phthalate & 12 & 10 & MRL & 10 & 0 & 10 \\
\hline & & bis(2-Chloroethoxy)methane & 12 & 12 & MRL & 12 & 0 & 12 \\
\hline & & Bis(2-chloroethyl)ether & 12 & 12 & MRL & 12 & 0 & 12 \\
\hline & & bis(2-Ethylhexyl)phthalate & 12 & 3 & MRL & 3 & 0 & 3 \\
\hline & & Caprolactam & 12 & 12 & MRL & 12 & 0 & 12 \\
\hline & & Carbazole & 12 & 12 & MRL & 12 & 0 & 12 \\
\hline & & Diethyl phthalate & 12 & 12 & MRL & 12 & 0 & 12 \\
\hline & & Dimethyl phthalate & 12 & 12 & MRL & 12 & 0 & 12 \\
\hline & & Di-n-butyl phthalate & 12 & 12 & MRL & 12 & 0 & 12 \\
\hline & & Di-n-octylphthalate & 12 & 12 & MRL & 2 & 10 & 2 \\
\hline & & Hexachlorobenzene & 12 & 11 & MRL & 11 & 0 & 11 \\
\hline & & Hexachlorobutadiene & 12 & 12 & MRL & 12 & 0 & 12 \\
\hline & & Hexachlorocyclopentadiene & 12 & 12 & MRL & 12 & 0 & 12 \\
\hline & & Hexachloroethane & 12 & 12 & MRL & 12 & 0 & 12 \\
\hline & & Isophorone & 12 & 12 & MRL & 12 & 0 & 12 \\
\hline & & Nitrobenzene & 12 & 12 & MRL & 12 & 0 & 12 \\
\hline & & N-Nitrosodi-n-propylamine & 12 & 12 & MRL & 12 & 0 & 12 \\
\hline & & N -Nitrosodiphenylamine & 12 & 12 & MRL & 12 & 0 & 12 \\
\hline & & Pentachlorophenol & 12 & 12 & MRL & 12 & 0 & 12 \\
\hline & & Phenol & 12 & 12 & MRL & 12 & 0 & 12 \\
\hline \multicolumn{3}{|r|}{2010 Beach Sediment \({ }^{\text {b }}\)} & 4,816 & 1,608 & MRL & 1,523 & 60 & 1,523 \\
\hline
\end{tabular}

\footnotetext{
\({ }^{\text {a }}\) The December 2011 analysis and summary included results for lab replicates, field replicates, field triplicates, blank water, rinse water/QC samples whereas the current table does not.
}
\({ }^{\text {b }}\) Excludes all duplicate/triplicate/replicate/blank and rinsewater QC sample results

Table 4. 2011 Beach Sediment Data Review of How Non-detect Results Are Reported


Table 4. 2011 Beach Sediment Data Review of How Non-detect Results Are Reported


Table 4. 2011 Beach Sediment Data Review of How Non-detect Results Are Reported

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Analyte Type & Lab Name & Analyte & No. of Measurements \({ }^{\text {b }}\) & No. of Reported Non-detects & \begin{tabular}{l}
QAPP \\
Requirement
\end{tabular} & Non-Detects Reported to MDL? & Non-Detects Reported to MRL? & No. of Measurements Not Reported per QAPP \\
\hline \multicolumn{9}{|l|}{Metals/Metalloids (continued)} \\
\hline & & Silver & 623 & 100 & MRL & 2 & 98 & 2 \\
\hline & & Sodium & 623 & 0 & MRL & 0 & 0 & 0 \\
\hline & & Thallium & 629 & 55 & MRL & 0 & 55 & 0 \\
\hline & & Uranium & 312 & 0 & MRL & 0 & 0 & 0 \\
\hline & & Vanadium & 629 & 0 & MRL & 0 & 0 & 0 \\
\hline & & Zinc & 623 & 0 & MRL & 0 & 0 & 0 \\
\hline \multicolumn{9}{|l|}{PAHs} \\
\hline \multicolumn{9}{|c|}{Columbia Analytical Services} \\
\hline & & 1,1'-Biphenyl & 78 & 71 & MRL & 71 & 0 & 71 \\
\hline & & 2-Methylnaphthalene & 78 & 57 & MRL & 57 & 0 & 57 \\
\hline & & Acenaphthene & 78 & 78 & MRL & 78 & 0 & 78 \\
\hline & & Acenaphthylene & 78 & 75 & MRL & 75 & 0 & 75 \\
\hline & & Anthracene & 78 & 71 & MRL & 71 & 0 & 71 \\
\hline & & Benzo[a]anthracene & 78 & 61 & MRL & 61 & 0 & 61 \\
\hline & & Benzo[a]pyrene & 78 & 62 & MRL & 62 & 0 & 62 \\
\hline & & Benzo[b]fluoranthene & 78 & 60 & MRL & 60 & 0 & 60 \\
\hline & & Benzo[g,h,i]perylene & 78 & 61 & MRL & 61 & 0 & 61 \\
\hline & & Benzo[k]fluoranthene & 78 & 67 & MRL & 67 & 0 & 67 \\
\hline & & Chrysene & 78 & 61 & MRL & 61 & 0 & 61 \\
\hline & & Dibenzo[a, h]anthracene & 78 & 74 & MRL & 74 & 0 & 74 \\
\hline & & Dibenzofuran & 78 & 67 & MRL & 67 & 0 & 67 \\
\hline & & Fluoranthene & 78 & 59 & MRL & 59 & 0 & 59 \\
\hline & & Fluorene & 78 & 67 & MRL & 67 & 0 & 67 \\
\hline & & Indeno[1,2,3-cd]pyrene & 78 & 64 & MRL & 64 & 0 & 64 \\
\hline & & Naphthalene & 78 & 45 & MRL & 45 & 0 & 45 \\
\hline & & Phenanthrene & 78 & 62 & MRL & 59 & 3 & 59 \\
\hline & & Pyrene & 78 & 53 & MRL & 53 & 0 & 53 \\
\hline \multicolumn{9}{|l|}{PBDEs} \\
\hline \multicolumn{9}{|c|}{SGS NC} \\
\hline & & 2,2',3,3',4, 4',5,5',6-Nonabromodiphenyl ether & 6 & 6 & MRL & 0 & 4 & 0 \\
\hline & & 2,2',3,3',4,4'-Hexabromodiphenyl ether & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & & 2,2',3,4,4',5,5',6-Octabromodiphenyl ether & 6 & 5 & MRL & 3 & 0 & 3 \\
\hline & & 2,2',3,4,4',5',6-Heptabromodiphenyl ether & 6 & 2 & MRL & 0 & 0 & 0 \\
\hline & & 2,2',3,4,4',6,6'-Heptabromodiphenyl ether & 6 & 5 & MRL & 4 & 0 & 4 \\
\hline
\end{tabular}

Table 4. 2011 Beach Sediment Data Review of How Non-detect Results Are Reported
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{ December 2011 Summary of 2011 Beach Sediment \({ }^{\text {a }}\)} \\
\hline QAPP & \begin{tabular}{c} 
Number of NDs Results Reported \\
as per QAPP
\end{tabular} & \begin{tabular}{c} 
Number of NDs Results Not Reported \\
as per QAPP
\end{tabular} \\
\hline ND=MRL & 510 & 14,686 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Analyte Type & Lab Name & Analyte & No. of Measurements \({ }^{\text {b }}\) & No. of Reported Non-detects & \begin{tabular}{l}
QAPP \\
Requirement
\end{tabular} & Non-Detects Reported to MDL? & Non-Detects Reported to MRL? & No. of Measurements Not Reported per QAPP \\
\hline \multicolumn{9}{|l|}{PBDEs (continued)} \\
\hline & & 2,2',3,4,4'-Pentabromodiphenyl ether & 6 & 1 & MRL & 0 & 0 & 0 \\
\hline & & 2,2',4,4',5,5'-Hexabromodiphenyl ether & 6 & 0 & MRL & 0 & 0 & 0 \\
\hline & & 2,2',4,4',5,6'-Hexabromodiphenyl ether & 6 & 0 & MRL & 0 & 0 & 0 \\
\hline & & 2,2',4,4',5-Pentabromodiphenyl ether & 6 & 0 & MRL & 0 & 0 & 0 \\
\hline & & 2,2',4,4',6-Pentabromodiphenyl ether & 6 & 0 & MRL & 0 & 0 & 0 \\
\hline & & 2,2',4,4'-Tetrabromodiphenyl ether & 6 & 0 & MRL & 0 & 0 & 0 \\
\hline & & 2,2',4,5'-Tetrabromodiphenyl ether & 6 & 1 & MRL & 0 & 0 & 0 \\
\hline & & 2,3,3',4,4',5',6-Heptabromodiphenyl ether & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & & 2,3,3',4,4',5,6-Heptabromodiphenyl ether & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & & 2,3',4,4'-Tetrabromodiphenyl ether & 6 & 3 & MRL & 0 & 0 & 0 \\
\hline & & 2,3',4',6-Tetrabromodiphenyl ether & 6 & 3 & MRL & 2 & 0 & 2 \\
\hline & & Coelution of PBDE 138 and 166 & 6 & 4 & MRL & 1 & 0 & 1 \\
\hline & & Coelution of PBDE 17 and 25 & 6 & 3 & MRL & 0 & 0 & 0 \\
\hline & & Coelution of PBDE 28 and 33 & 6 & 6 & MRL & 4 & 0 & 4 \\
\hline & & Decabromodiphenyl ether & 6 & 4 & MRL & 0 & 1 & 0 \\
\hline \multicolumn{9}{|l|}{PCBs} \\
\hline \multicolumn{9}{|c|}{Columbia Analytical Services} \\
\hline & & Aroclor 1016 & 78 & 78 & MRL & 78 & 0 & 78 \\
\hline & & Aroclor 1221 & 78 & 78 & MRL & 78 & 0 & 78 \\
\hline & & Aroclor 1232 & 78 & 78 & MRL & 78 & 0 & 78 \\
\hline & & Aroclor 1242 & 78 & 78 & MRL & 78 & 0 & 78 \\
\hline & & Aroclor 1248 & 78 & 78 & MRL & 78 & 0 & 78 \\
\hline & & Aroclor 1254 & 78 & 77 & MRL & 77 & 0 & 77 \\
\hline & & Aroclor 1260 & 78 & 74 & MRL & 74 & 0 & 74 \\
\hline & & Aroclor 1262 & 78 & 78 & MRL & 78 & 0 & 78 \\
\hline & & Aroclor 1268 & 78 & 78 & MRL & 78 & 0 & 78 \\
\hline \multicolumn{9}{|c|}{SGS NC} \\
\hline & & 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl & 6 & 0 & MRL & 0 & 0 & 0 \\
\hline & & 2,2',3,3',4,4',5,5'-Octachlorobiphenyl & 6 & 0 & MRL & 0 & 0 & 0 \\
\hline & & 2,2',3,3',4,4',5,6,6'-Nonachlorobiphenyl & 6 & 0 & MRL & 0 & 0 & 0 \\
\hline & & 2,2',3,3',4,4',5,6'-Octachlorobiphenyl & 6 & 0 & MRL & 0 & 0 & 0 \\
\hline & & 2,2',3,3',4,4',5,6-Octachlorobiphenyl & 6 & 0 & MRL & 0 & 0 & 0 \\
\hline & & 2,2',3,3',4,4',5-Heptachlorobiphenyl & 6 & 0 & MRL & 0 & 0 & 0 \\
\hline & & 2,2',3,3',4,5,5',6,6'-Nonachlorobiphenyl & 6 & 0 & MRL & 0 & 0 & 0 \\
\hline
\end{tabular}

Table 4. 2011 Beach Sediment Data Review of How Non-detect Results Are Reported
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{}} & \multicolumn{5}{|c|}{December 2011 Summary of 2011 Beach Sediment \({ }^{\text {a }}\)} & \multirow[b]{4}{*}{Not} \\
\hline & & QAPP & \multicolumn{2}{|l|}{Number of NDs Results Reported as per QAPP} & \multicolumn{2}{|l|}{Number of NDs Results Not Reported as per QAPP} & \\
\hline & & ND=MRL & \multicolumn{2}{|l|}{510} & \multicolumn{2}{|c|}{14,686} & \\
\hline Analyte Type & Lab
Name & No. of Measurements \({ }^{\text {b }}\) & No. of Reported Non-detects & \begin{tabular}{l}
QAPP \\
Requirement
\end{tabular} & Non-Detects Reported to MDL? & Non-Detects Reported to MRL? & \\
\hline \multicolumn{8}{|l|}{PCBs (continued)} \\
\hline \multicolumn{2}{|l|}{2,2',3,3',4,5,5'-Heptachlorobiphenyl} & 6 & 0 & MRL & 0 & 0 & 0 \\
\hline \multicolumn{2}{|r|}{2,2',3,3',4,5',6,6'-Octachlorobiphenyl} & 6 & 0 & MRL & 0 & 0 & 0 \\
\hline \multicolumn{2}{|r|}{2,2',3,3',4,5',6'-Heptachlorobiphenyl} & 6 & 0 & MRL & 0 & 0 & 0 \\
\hline \multicolumn{2}{|r|}{2,2',3,3',4, \({ }^{\prime}, 6\)-Heptachlorobiphenyl} & 6 & 0 & MRL & 0 & 0 & 0 \\
\hline \multicolumn{2}{|r|}{2,2',3,3',4,5,6'-Heptachlorobiphenyl} & 6 & 0 & MRL & 0 & 0 & 0 \\
\hline \multicolumn{2}{|r|}{2,2',3,3',4, \({ }^{\prime}\)-Hexachlorobiphenyl} & 6 & 0 & MRL & 0 & 0 & 0 \\
\hline \multicolumn{2}{|r|}{2,2',3,3',4,6,6'-Heptachlorobiphenyl} & 6 & 0 & MRL & 0 & 0 & 0 \\
\hline \multicolumn{2}{|r|}{2,2',3,3',4,6'-Hexachlorobiphenyl} & 6 & 0 & MRL & 0 & 0 & 0 \\
\hline \multicolumn{2}{|r|}{2,2',3,3',4,6-Hexachlorobiphenyl} & 6 & 0 & MRL & 0 & 0 & 0 \\
\hline \multicolumn{2}{|r|}{2,2',3,3',4-Pentachlorobiphenyl} & 6 & 0 & MRL & 0 & 0 & 0 \\
\hline \multicolumn{2}{|r|}{2,2',3,3',5,5',6,6'-Octachlorobiphenyl} & 6 & 0 & MRL & 0 & 0 & 0 \\
\hline \multicolumn{2}{|r|}{2,2',3,3',5,5',6-Heptachlorobiphenyl} & 6 & 0 & MRL & 0 & 0 & 0 \\
\hline \multicolumn{2}{|r|}{2,2',3,3',5,5'-Hexachlorobiphenyl} & 6 & 0 & MRL & 0 & 0 & 0 \\
\hline \multicolumn{2}{|r|}{2,2',3,3',5,6,6'-Heptachlorobiphenyl} & 6 & 0 & MRL & 0 & 0 & 0 \\
\hline \multicolumn{2}{|r|}{2,2',3,3',5,6-Hexachlorobiphenyl} & 6 & 0 & MRL & 0 & 0 & 0 \\
\hline \multicolumn{2}{|r|}{2,2',3,3',5-Pentachlorobiphenyl} & 6 & 1 & MRL & 0 & 0 & 0 \\
\hline \multicolumn{2}{|r|}{2,2',3,3',6,6'-Hexachlorobiphenyl} & 6 & 0 & MRL & 0 & 0 & 0 \\
\hline \multicolumn{2}{|r|}{2,2',3,3',6-Pentachlorobiphenyl} & 6 & 0 & MRL & 0 & 0 & 0 \\
\hline \multicolumn{2}{|r|}{2,2',3,4,4',5,5',6-Octachlorobiphenyl} & 6 & 0 & MRL & 0 & 0 & 0 \\
\hline \multicolumn{2}{|r|}{2,2',3,4,4',5,6,6'-Octachlorobiphenyl} & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline \multicolumn{2}{|r|}{2,2',3,4,4',5,6'-Heptachlorobiphenyl} & 6 & 5 & MRL & 4 & 0 & 4 \\
\hline \multicolumn{2}{|r|}{2,2',3,4,4',5,6-Heptachlorobiphenyl} & 6 & 5 & MRL & 4 & 0 & 4 \\
\hline \multicolumn{2}{|r|}{2, \({ }^{\prime}, 3,4,4^{\prime}, 5-\mathrm{Hexachlorobiphenyl}\)} & 6 & 0 & MRL & 0 & 0 & 0 \\
\hline \multicolumn{2}{|r|}{2,2',3,4,4',6,6'-Heptachlorobiphenyl} & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline \multicolumn{2}{|r|}{2,2',3,4',5,5',6-Heptachlorobiphenyl} & 6 & 0 & MRL & 0 & 0 & 0 \\
\hline \multicolumn{2}{|r|}{2,2',3,4',5,5'-Hexachlorobiphenyl} & 6 & 0 & MRL & 0 & 0 & 0 \\
\hline \multicolumn{2}{|r|}{2,2',3,4,5,5'-Hexachlorobiphenyl} & 6 & 0 & MRL & 0 & 0 & 0 \\
\hline \multicolumn{2}{|r|}{2,2',3,4',5,6,6'-Heptachlorobiphenyl} & 6 & 5 & MRL & 5 & 0 & 5 \\
\hline \multicolumn{2}{|r|}{2,2',3,4,5,6,6'-Heptachlorobiphenyl} & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline \multicolumn{2}{|r|}{2,2',3,4',5,6'-Hexachlorobiphenyl} & 6 & 5 & MRL & 4 & 0 & 4 \\
\hline \multicolumn{2}{|r|}{2,2',3,4,5',6-Hexachlorobiphenyl} & 6 & 0 & MRL & 0 & 0 & 0 \\
\hline \multicolumn{2}{|r|}{2,2',3,4,5,6'-Hexachlorobiphenyl} & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline \multicolumn{2}{|r|}{2,2',3,4,5,6-Hexachlorobiphenyl} & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline \multicolumn{2}{|r|}{2,2',3,4',6,6'-Hexachlorobiphenyl} & 6 & 5 & MRL & 4 & 0 & 4 \\
\hline
\end{tabular}

Table 4. 2011 Beach Sediment Data Review of How Non-detect Results Are Reported
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{}} & \multicolumn{5}{|c|}{December 2011 Summary of 2011 Beach Sediment \({ }^{\text {a }}\)} & \\
\hline & & QAPP & \multicolumn{2}{|l|}{Number of NDs Results Reported as per QAPP} & \multicolumn{2}{|l|}{Number of NDs Results Not Reported as per QAPP} & \\
\hline & & ND=MRL & \multicolumn{2}{|l|}{510} & \multicolumn{2}{|c|}{14,686} & \\
\hline Analyte Type & Lab
Name & No. of Measurements \({ }^{\text {b }}\) & No. of Reported Non-detects & \begin{tabular}{l}
QAPP \\
Requirement
\end{tabular} & Non-Detects Reported to MDL? & Non-Detects Reported to MRL? & No. of Measurements Not Reported per QAPP \\
\hline \multicolumn{8}{|l|}{PCBs (continued)} \\
\hline & 2,2',3,4,6,6'-Hexachlorobiphenyl & 6 & 6 & MRL & 5 & 0 & 5 \\
\hline & 2,2',3,4,6'-Pentachlorobiphenyl & 6 & 2 & MRL & 1 & 0 & 1 \\
\hline & 2,2',3,4'-Tetrachlorobiphenyl & 6 & 2 & MRL & 0 & 2 & 0 \\
\hline & 2,2',3,4-Tetrachlorobiphenyl & 6 & 1 & MRL & 0 & 0 & 0 \\
\hline & 2,2',3,5,5'-Pentachlorobiphenyl & 6 & 0 & MRL & 0 & 0 & 0 \\
\hline & 2,2',3,5,6,6'-Hexachlorobiphenyl & 6 & 5 & MRL & 4 & 0 & 4 \\
\hline & 2,2',3,5',6-Pentachlorobiphenyl & 6 & 0 & MRL & 0 & 0 & 0 \\
\hline & 2,2',3,5,6'-Pentachlorobiphenyl & 6 & 3 & MRL & 2 & 0 & 2 \\
\hline & 2,2',3,5-Tetrachlorobiphenyl & 6 & 2 & MRL & 1 & 0 & 1 \\
\hline & 2,2',3,6,6'-Pentachlorobiphenyl & 6 & 1 & MRL & 0 & 0 & 0 \\
\hline & 2,2',3,6-Tetrachlorobiphenyl & 6 & 4 & MRL & 0 & 0 & 0 \\
\hline & 2,2',3-Trichlorobiphenyl & 6 & 5 & MRL & 0 & 4 & 0 \\
\hline & 2,2',4,4',5,6'-Hexachlorobiphenyl & 6 & 2 & MRL & 0 & 0 & 0 \\
\hline & 2,2',4,4',5-Pentachlorobiphenyl & 6 & 0 & MRL & 0 & 0 & 0 \\
\hline & 2,2',4,4',6,6'-Hexachlorobiphenyl & 6 & 5 & MRL & 5 & 0 & 5 \\
\hline & 2,2',4,5',6-Pentachlorobiphenyl & 6 & 4 & MRL & 2 & 0 & 2 \\
\hline & 2,2',4,5-Tetrachlorobiphenyl & 6 & 1 & MRL & 0 & 0 & 0 \\
\hline & 2,2',4,6,6'-Pentachlorobiphenyl & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & 2,2',4-Trichlorobiphenyl & 6 & 0 & MRL & 0 & 0 & 0 \\
\hline & 2,2',5,5'-Tetrachlorobiphenyl & 6 & 0 & MRL & 0 & 0 & 0 \\
\hline & 2,2',6,6'-Tetrachlorobiphenyl & 6 & 3 & MRL & 3 & 0 & 3 \\
\hline & 2,2',6-Trichlorobiphenyl & 6 & 2 & MRL & 0 & 0 & 0 \\
\hline & 2,2'-Dichlorobiphenyl & 6 & 6 & MRL & 0 & 6 & 0 \\
\hline & 2,3,3',4,4',5,5',6-Octachlorobiphenyl & 6 & 1 & MRL & 0 & 0 & 0 \\
\hline & 2,3,3',4,4',5,5'-Heptachlorobiphenyl & 6 & 0 & MRL & 0 & 0 & 0 \\
\hline & 2,3,3',4,4',5',6-Heptachlorobiphenyl & 6 & 0 & MRL & 0 & 0 & 0 \\
\hline & 2,3,3',4,4',5,6-Heptachlorobiphenyl & 6 & 0 & MRL & 0 & 0 & 0 \\
\hline & 2,3,3',4,4',6-Hexachlorobiphenyl & 6 & 0 & MRL & 0 & 0 & 0 \\
\hline & 2,3,3',4,4'-Pentachlorobiphenyl & 6 & 0 & MRL & 0 & 0 & 0 \\
\hline & 2,3,3',4,5,5',6-Heptachlorobiphenyl & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & 2,3,3',4',5,5'-Hexachlorobiphenyl & 6 & 6 & MRL & 5 & 0 & 5 \\
\hline & 2,3,3',4,5,5'-Hexachlorobiphenyl & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & 2,3,3',4',5',6-Hexachlorobiphenyl & 6 & 0 & MRL & 0 & 0 & 0 \\
\hline & 2,3,3',4,5',6-Hexachlorobiphenyl & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline
\end{tabular}

Table 4. 2011 Beach Sediment Data Review of How Non-detect Results Are Reported

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Analyte Type & Lab Name & Analyte & No. of Measurements \({ }^{\text {b }}\) & No. of Reported Non-detects & \begin{tabular}{l}
QAPP \\
Requirement
\end{tabular} & Non-Detects Reported to MDL? & Non-Detects Reported to MRL? & No. of Measurements Not Reported per QAPP \\
\hline \multicolumn{9}{|l|}{PCBs (continued)} \\
\hline & & 2,3,3',4,5,6-Hexachlorobiphenyl & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & & 2,3,3',4',5'-Pentachlorobiphenyl & 6 & 2 & MRL & 0 & 0 & 0 \\
\hline & & 2,3,3',4,5-Pentachlorobiphenyl & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & & 2,3,3',4,6-Pentachlorobiphenyl & 6 & 0 & MRL & 0 & 0 & 0 \\
\hline & & 2,3,3',4'-Tetrachlorobiphenyl & 6 & 1 & MRL & 0 & 1 & 0 \\
\hline & & 2,3,3',4-Tetrachlorobiphenyl & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & & 2,3,3',5,5',6-Hexachlorobiphenyl & 6 & 4 & MRL & 4 & 0 & 4 \\
\hline & & 2,3,3',5,5'-Pentachlorobiphenyl & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & & 2,3,3',5,6-Pentachlorobiphenyl & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & & 2,3,3',5'-Tetrachlorobiphenyl & 6 & 5 & MRL & 5 & 0 & 5 \\
\hline & & 2,3,3',5-Tetrachlorobiphenyl & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & & 2,3',4,4',5,5'-Hexachlorobiphenyl & 6 & 0 & MRL & 0 & 0 & 0 \\
\hline & & 2,3',4,4',5'-Pentachlorobiphenyl & 6 & 1 & MRL & 0 & 0 & 0 \\
\hline & & 2,3',4,4',5-Pentachlorobiphenyl & 6 & 0 & MRL & 0 & 0 & 0 \\
\hline & & 2,3,4,4',5-Pentachlorobiphenyl & 6 & 1 & MRL & 0 & 0 & 0 \\
\hline & & 2,3',4,4'-Tetrachlorobiphenyl & 6 & 1 & MRL & 0 & 1 & 0 \\
\hline & & 2,3,4,4'-Tetrachlorobiphenyl & 6 & 0 & MRL & 0 & 0 & 0 \\
\hline & & 2,3',4,5,5'-Pentachlorobiphenyl & 6 & 5 & MRL & 3 & 0 & 3 \\
\hline & & 2,3',4,5',6-Pentachlorobiphenyl & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & & 2,3',4,5'-Tetrachlorobiphenyl & 6 & 4 & MRL & 3 & 0 & 3 \\
\hline & & 2,3',4,5-Tetrachlorobiphenyl & 6 & 2 & MRL & 0 & 0 & 0 \\
\hline & & 2,3,4',5-Tetrachlorobiphenyl & 6 & 2 & MRL & 0 & 0 & 0 \\
\hline & & 2,3,4',6-Tetrachlorobiphenyl & 6 & 1 & MRL & 0 & 1 & 0 \\
\hline & & 2,3',4-Trichlorobiphenyl & 6 & 0 & MRL & 0 & 0 & 0 \\
\hline & & 2,3,4'-Trichlorobiphenyl & 6 & 5 & MRL & 0 & 5 & 0 \\
\hline & & 2,3',5,5'-Tetrachlorobiphenyl & 6 & 4 & MRL & 3 & 0 & 3 \\
\hline & & 2,3',5',6-Tetrachlorobiphenyl & 6 & 5 & MRL & 5 & 0 & 5 \\
\hline & & 2,3',5'-Trichlorobiphenyl & 6 & 6 & MRL & 5 & 0 & 5 \\
\hline & & 2,3,5-Trichlorobiphenyl & 6 & 6 & MRL & 5 & 0 & 5 \\
\hline & & 2,3',6-Trichlorobiphenyl & 6 & 6 & MRL & 5 & 1 & 5 \\
\hline & & 2,3,6-Trichlorobiphenyl & 6 & 5 & MRL & 4 & 0 & 4 \\
\hline & & 2,3'-Dichlorobiphenyl & 6 & 6 & MRL & 0 & 3 & 0 \\
\hline & & 2,3-Dichlorobiphenyl & 6 & 6 & MRL & 5 & 0 & 5 \\
\hline & & 2,4',5-Trichlorobiphenyl & 6 & 5 & MRL & 0 & 5 & 0 \\
\hline
\end{tabular}

Table 4. 2011 Beach Sediment Data Review of How Non-detect Results Are Reported

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Analyte Type & Lab Name & Analyte & No. of Measurements \({ }^{\text {b }}\) & No. of Reported Non-detects & \begin{tabular}{l}
QAPP \\
Requirement
\end{tabular} & Non-Detects Reported to MDL? & Non-Detects Reported to MRL? & No. of Measurements Not Reported per QAPP \\
\hline \multicolumn{9}{|l|}{PCBs (continued)} \\
\hline & & 2,4',6-Trichlorobiphenyl & 6 & 5 & MRL & 0 & 5 & 0 \\
\hline & & 2,4'-Dichlorobiphenyl & 6 & 5 & MRL & 0 & 5 & 0 \\
\hline & & 2,4-Dichlorobiphenyl & 6 & 5 & MRL & 4 & 0 & 4 \\
\hline & & 2,5-Dichlorobiphenyl & 6 & 6 & MRL & 3 & 0 & 3 \\
\hline & & 2,6-Dichlorobiphenyl & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & & 3,3',4,4',5,5'-Hexachlorobiphenyl & 6 & 5 & MRL & 4 & 0 & 4 \\
\hline & & 3,3',4,4',5-Pentachlorobiphenyl & 6 & 3 & MRL & 2 & 0 & 2 \\
\hline & & 3,3',4,4'-Tetrachlorobiphenyl & 6 & 0 & MRL & 0 & 0 & 0 \\
\hline & & 3,3',4,5,5'-Pentachlorobiphenyl & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & & 3,3',4,5'-Tetrachlorobiphenyl & 6 & 5 & MRL & 5 & 0 & 5 \\
\hline & & 3,3',4,5-Tetrachlorobiphenyl & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & & 3,3',4-Trichlorobiphenyl & 6 & 6 & MRL & 5 & 1 & 5 \\
\hline & & 3,3',5,5'-Tetrachlorobiphenyl & 6 & 5 & MRL & 4 & 0 & 4 \\
\hline & & 3,3',5-Trichlorobiphenyl & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & & 3,3'-Dichlorobiphenyl & 6 & 6 & MRL & 0 & 6 & 0 \\
\hline & & 3,4,4',5-Tetrachlorobiphenyl & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & & 3,4,4'-Trichlorobiphenyl & 6 & 5 & MRL & 0 & 5 & 0 \\
\hline & & 3,4',5-Trichlorobiphenyl & 6 & 6 & MRL & 6 & 0 & 6 \\
\hline & & 3,4,5-Trichlorobiphenyl & 6 & 5 & MRL & 5 & 0 & 5 \\
\hline & & Coelution of PCB 107 and 124 & 6 & 0 & MRL & 0 & 0 & 0 \\
\hline & & Coelution of PCB 110 and 115 & 6 & 0 & MRL & 0 & 0 & 0 \\
\hline & & Coelution of PCB 12 and 13 & 6 & 2 & MRL & 1 & 0 & 1 \\
\hline & & Coelution of PCB 128 and 166 & 6 & 0 & MRL & 0 & 0 & 0 \\
\hline & & Coelution of PCB 135 and 151 & 6 & 0 & MRL & 0 & 0 & 0 \\
\hline & & Coelution of PCB 139 and 140 & 6 & 1 & MRL & 0 & 0 & 0 \\
\hline & & Coelution of PCB 147 and 149 & 6 & 0 & MRL & 0 & 0 & 0 \\
\hline & & Coelution of PCB 153 and 168 & 6 & 0 & MRL & 0 & 0 & 0 \\
\hline & & Coelution of PCB 156 and 157 & 6 & 0 & MRL & 0 & 0 & 0 \\
\hline & & Coelution of PCB 171 and 173 & 6 & 0 & MRL & 0 & 0 & 0 \\
\hline & & Coelution of PCB 18 and 30 & 6 & 5 & MRL & 0 & 5 & 0 \\
\hline & & Coelution of PCB 180 and 193 & 6 & 0 & MRL & 0 & 0 & 0 \\
\hline & & Coelution of PCB 183 and 185 & 6 & 0 & MRL & 0 & 0 & 0 \\
\hline & & Coelution of PCB 197 and 200 & 6 & 0 & MRL & 0 & 0 & 0 \\
\hline & & Coelution of PCB 198 and 199 & 6 & 0 & MRL & 0 & 0 & 0 \\
\hline
\end{tabular}

Table 4. 2011 Beach Sediment Data Review of How Non-detect Results Are Reported


Table 4. 2011 Beach Sediment Data Review of How Non-detect Results Are Reported
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{ December 2011 Summary of 2011 Beach Sediment \({ }^{\text {a }}\)} \\
\hline QAPP & \begin{tabular}{c} 
Number of NDs Results Reported \\
as per QAPP
\end{tabular} & \begin{tabular}{c} 
Number of NDs Results Not Reported \\
as per QAPP
\end{tabular} \\
\hline ND=MRL & 510 & 14,686 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Analyte Type & Lab Name & Analyte & No. of Measurements \({ }^{\text {b }}\) & No. of Reported Non-detects & \begin{tabular}{l}
QAPP \\
Requirement
\end{tabular} & Non-Detects Reported to MDL? & Non-Detects Reported to MRL? & No. of Measurements Not Reported per QAPP \\
\hline \multicolumn{9}{|l|}{Pesticides/Herbicides} \\
\hline \multicolumn{9}{|c|}{Columbia Analytical Services} \\
\hline & & 2,4'-DDD & 78 & 78 & MRL & 77 & 1 & 77 \\
\hline & & 2,4'-DDE & 78 & 78 & MRL & 77 & 1 & 77 \\
\hline & & 2,4'-DDT & 78 & 75 & MRL & 75 & 0 & 75 \\
\hline & & 4,4'-DDD & 78 & 78 & MRL & 74 & 4 & 74 \\
\hline & & 4,4'-DDE & 78 & 71 & MRL & 48 & 23 & 48 \\
\hline & & 4,4'-DDT & 78 & 74 & MRL & 73 & 1 & 73 \\
\hline & & Aldrin & 78 & 78 & MRL & 78 & 0 & 78 \\
\hline & & alpha-Benzenehexachloride & 78 & 78 & MRL & 78 & 0 & 78 \\
\hline & & alpha-Chlordane & 78 & 77 & MRL & 67 & 10 & 67 \\
\hline & & beta-BHC & 78 & 78 & MRL & 78 & 0 & 78 \\
\hline & & Chlordane & 78 & 78 & MRL & 78 & 0 & 78 \\
\hline & & cis-Nonachlor & 78 & 78 & MRL & 78 & 0 & 78 \\
\hline & & delta-BHC & 78 & 78 & MRL & 78 & 0 & 78 \\
\hline & & Dieldrin & 78 & 78 & MRL & 78 & 0 & 78 \\
\hline & & Endosulfan I & 78 & 78 & MRL & 78 & 0 & 78 \\
\hline & & Endosulfan II & 78 & 78 & MRL & 78 & 0 & 78 \\
\hline & & Endosulfan sulfate & 78 & 78 & MRL & 76 & 2 & 76 \\
\hline & & Endrin & 78 & 78 & MRL & 78 & 0 & 78 \\
\hline & & Endrin aldehyde & 78 & 78 & MRL & 78 & 0 & 78 \\
\hline & & Endrin ketone & 78 & 78 & MRL & 78 & 0 & 78 \\
\hline & & gamma-BHC & 78 & 77 & MRL & 77 & 0 & 77 \\
\hline & & gamma-Chlordane & 78 & 76 & MRL & 76 & 0 & 76 \\
\hline & & Heptachlor & 78 & 78 & MRL & 78 & 0 & 78 \\
\hline & & Heptachlor epoxide & 78 & 78 & MRL & 78 & 0 & 78 \\
\hline & & Methoxychlor & 78 & 78 & MRL & 77 & 1 & 77 \\
\hline & & Oxychlordane & 78 & 78 & MRL & 74 & 4 & 74 \\
\hline & & Toxaphene & 78 & 78 & MRL & 77 & 1 & 77 \\
\hline & & trans-Nonachlor & 78 & 78 & MRL & 78 & 0 & 78 \\
\hline \multicolumn{9}{|l|}{Radionuclides} \\
\hline \multicolumn{9}{|c|}{Pace Analytical} \\
\hline & & Radium-226 & 5 & 0 & MRL & 0 & 0 & 0 \\
\hline & & Uranium-238 & 5 & 0 & MRL & 0 & 0 & 0 \\
\hline
\end{tabular}

Table 4. 2011 Beach Sediment Data Review of How Non-detect Results Are Reported
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{ December 2011 Summary of 2011 Beach Sediment \({ }^{\text {a }}\)} \\
\hline QAPP & \begin{tabular}{c} 
Number of NDs Results Reported \\
as per QAPP
\end{tabular} & \begin{tabular}{c} 
Number of NDs Results Not Reported \\
as per QAPP
\end{tabular} \\
\hline ND=MRL & 510 & 14,686 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Analyte Type & \begin{tabular}{l|l} 
Lab \\
Name & Analyte
\end{tabular} & No. of Measurements \({ }^{\text {b }}\) & No. of Reported Non-detects & \begin{tabular}{l}
QAPP \\
Requirement
\end{tabular} & Non-Detects Reported to MDL? & Non-Detects Reported to MRL? & No. of Measurements Not Reported per QAPP \\
\hline \multicolumn{8}{|l|}{SVOCs} \\
\hline \multicolumn{8}{|c|}{Columbia Analytical Services} \\
\hline & 1,2,4-Trichlorobenzene & 78 & 78 & MRL & 78 & 0 & 78 \\
\hline & 1,2-Dichlorobenzene & 78 & 78 & MRL & 78 & 0 & 78 \\
\hline & 1,3-Dichlorobenzene & 78 & 78 & MRL & 78 & 0 & 78 \\
\hline & 1,4-Dichlorobenzene & 78 & 78 & MRL & 78 & 0 & 78 \\
\hline & 2,2'-oxybis(1-Chloropropane) & 78 & 78 & MRL & 78 & 0 & 78 \\
\hline & 2,4,5-Trichlorophenol & 78 & 78 & MRL & 78 & 0 & 78 \\
\hline & 2,4,6-Trichlorophenol & 78 & 78 & MRL & 78 & 0 & 78 \\
\hline & 2,4-Dichlorophenol & 78 & 78 & MRL & 78 & 0 & 78 \\
\hline & 2,4-Dimethylphenol & 78 & 60 & MRL & 60 & 0 & 60 \\
\hline & 2,4-Dinitrophenol & 78 & 78 & MRL & 78 & 0 & 78 \\
\hline & 2,4-Dinitrotoluene & 78 & 78 & MRL & 78 & 0 & 78 \\
\hline & 2,6-Dinitrotoluene & 78 & 78 & MRL & 78 & 0 & 78 \\
\hline & 2-Chloronaphthalene & 78 & 78 & MRL & 78 & 0 & 78 \\
\hline & 2-Chlorophenol & 78 & 78 & MRL & 78 & 0 & 78 \\
\hline & 2-Methylphenol & 78 & 78 & MRL & 78 & 0 & 78 \\
\hline & 2-Nitroaniline & 78 & 78 & MRL & 78 & 0 & 78 \\
\hline & 2-Nitrophenol & 78 & 78 & MRL & 78 & 0 & 78 \\
\hline & 3,3'-Dichlorobenzidine & 78 & 78 & MRL & 78 & 0 & 78 \\
\hline & 3-Nitroaniline & 78 & 78 & MRL & 78 & 0 & 78 \\
\hline & 4,6-Dinitro-2-methylphenol & 78 & 78 & MRL & 78 & 0 & 78 \\
\hline & 4-Bromophenyl-phenylether & 78 & 78 & MRL & 78 & 0 & 78 \\
\hline & 4-Chloro-3-methylphenol & 78 & 78 & MRL & 78 & 0 & 78 \\
\hline & 4-Chloroaniline & 78 & 78 & MRL & 78 & 0 & 78 \\
\hline & 4-Chlorophenyl-phenyl ether & 78 & 78 & MRL & 78 & 0 & 78 \\
\hline & 4-Methylphenol & 78 & 72 & MRL & 72 & 0 & 72 \\
\hline & 4-Nitroaniline & 78 & 78 & MRL & 78 & 0 & 78 \\
\hline & 4-Nitrophenol & 78 & 78 & MRL & 78 & 0 & 78 \\
\hline & Acetophenone & 78 & 70 & MRL & 70 & 0 & 70 \\
\hline & Benzaldehyde & 78 & 69 & MRL & 69 & 0 & 69 \\
\hline & Benzoic acid & 78 & 76 & MRL & 76 & 0 & 76 \\
\hline & Benzyl alcohol & 78 & 77 & MRL & 77 & 0 & 77 \\
\hline & Benzyl n-butyl phthalate & 78 & 73 & MRL & 73 & 0 & 73 \\
\hline & bis(2-Chloroethoxy)methane & 78 & 78 & MRL & 78 & 0 & 78 \\
\hline
\end{tabular}

Table 4. 2011 Beach Sediment Data Review of How Non-detect Results Are Reported

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Analyte Type & Lab Name & Analyte & No. of Measurements \({ }^{b}\) & No. of Reported Non-detects & \begin{tabular}{l}
QAPP \\
Requirement
\end{tabular} & Non-Detects Reported to MDL? & Non-Detects Reported to MRL? & No. of Measurements Not Reported per QAPP \\
\hline \multicolumn{9}{|l|}{SVOCs (continued)} \\
\hline & & Bis(2-chloroethyl)ether & 78 & 78 & MRL & 78 & 0 & 78 \\
\hline & & bis(2-Ethylhexyl)phthalate & 78 & 76 & MRL & 76 & 0 & 76 \\
\hline & & Caprolactam & 78 & 78 & MRL & 78 & 0 & 78 \\
\hline & & Carbazole & 78 & 74 & MRL & 74 & 0 & 74 \\
\hline & & Diethyl phthalate & 78 & 75 & MRL & 75 & 0 & 75 \\
\hline & & Dimethyl phthalate & 78 & 66 & MRL & 66 & 0 & 66 \\
\hline & & Di-n-butyl phthalate & 78 & 78 & MRL & 78 & 0 & 78 \\
\hline & & Di-n-octylphthalate & 78 & 78 & MRL & 78 & 0 & 78 \\
\hline & & Hexachlorobenzene & 78 & 76 & MRL & 76 & 0 & 76 \\
\hline & & Hexachlorobutadiene & 78 & 78 & MRL & 78 & 0 & 78 \\
\hline & & Hexachlorocyclopentadiene & 78 & 78 & MRL & 72 & 6 & 72 \\
\hline & & Hexachloroethane & 78 & 78 & MRL & 78 & 0 & 78 \\
\hline & & Isophorone & 78 & 78 & MRL & 78 & 0 & 78 \\
\hline & & Nitrobenzene & 78 & 78 & MRL & 78 & 0 & 78 \\
\hline & & N-Nitrosodi-n-propylamine & 78 & 78 & MRL & 78 & 0 & 78 \\
\hline & & N -Nitrosodiphenylamine & 78 & 78 & MRL & 78 & 0 & 78 \\
\hline & & Pentachlorophenol & 78 & 78 & MRL & 78 & 0 & 78 \\
\hline & & Phenol & 78 & 41 & MRL & 41 & 0 & 41 \\
\hline & & 2011 Beach Sediment \({ }^{\text {b }}\) & 28,926 & 9,437 & MRL & 8,862 & 412 & 8,862 \\
\hline
\end{tabular}

\footnotetext{
\({ }^{\text {a }}\) The December 2011 analysis and summary included results for lab replicates, field replicates, field triplicates, blank water, rinse water/QC samples whereas the current table does not.
\({ }^{\mathrm{b}}\) Excludes all duplicate/triplicate/replicate/blank and rinsewater QC sample results
}

Table 5. 2009 Surface Water Round 1 Data Review of How Non-detect Results Are Reported
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{4}{*}{}} & \multicolumn{6}{|c|}{December 2011 Summary of 2009 Surface Water Round \(1{ }^{\text {a }}\)} & \\
\hline & & 2009 Surface Water Round 1 & QAPP & \multicolumn{2}{|l|}{Number of NDs Results Reported as per QAPP} & \multicolumn{2}{|l|}{Number of NDs Results Not Reported as per QAPP} & \\
\hline & & Non-HRGC/HRMS Data & ND=MRL & \multicolumn{2}{|l|}{3,030} & \multicolumn{2}{|c|}{15,482} & \\
\hline & & HRGC/HRMS Data & ND=MDL & \multicolumn{2}{|l|}{11,329} & \multicolumn{2}{|c|}{946} & \\
\hline Analyte Type & Lab Name & Analyte & No. of Measurements \({ }^{b}\) & No. of Reported Non-detects & \begin{tabular}{l}
QAPP \\
Requirement
\end{tabular} & Non-Detects Reported to MDL? & Non-Detects Reported to MRL? & No. of Measurements Not Reported per QAPP \\
\hline \multicolumn{9}{|l|}{Conventionals} \\
\hline \multicolumn{9}{|c|}{Columbia Analytical Services} \\
\hline \multicolumn{3}{|r|}{Alkalinity} & 87 & 0 & MRL & 0 & 0 & 0 \\
\hline \multicolumn{3}{|r|}{Fluoride} & 87 & 0 & MRL & 0 & 0 & 0 \\
\hline \multicolumn{3}{|r|}{Hardness as CaCO3} & 94 & 0 & MRL & 0 & 0 & 0 \\
\hline \multicolumn{3}{|r|}{Organic carbon} & 174 & 174 & MRL & 0 & 174 & 0 \\
\hline \multicolumn{3}{|r|}{pH} & 87 & 0 & MRL & 0 & 0 & 0 \\
\hline \multicolumn{3}{|r|}{Sulfate} & 87 & 0 & MRL & 0 & 0 & 0 \\
\hline \multicolumn{3}{|r|}{Total dissolved solids} & 87 & 2 & MRL & 0 & 2 & 0 \\
\hline \multicolumn{3}{|r|}{Total Suspended Solids} & 93 & 89 & MRL & 0 & 89 & 0 \\
\hline \multicolumn{9}{|l|}{Metals/Metalloids} \\
\hline \multicolumn{9}{|c|}{Columbia Analytical Services} \\
\hline \multicolumn{3}{|r|}{Aluminum} & 200 & 149 & MRL & 0 & 149 & 0 \\
\hline \multicolumn{3}{|r|}{Antimony} & 200 & 12 & MRL & 12 & 0 & 12 \\
\hline \multicolumn{3}{|r|}{Arsenic} & 200 & 172 & MRL & 57 & 115 & 57 \\
\hline \multicolumn{3}{|r|}{Barium} & 200 & 0 & MRL & 0 & 0 & 0 \\
\hline \multicolumn{3}{|r|}{Beryllium} & 200 & 192 & MRL & 192 & 0 & 192 \\
\hline \multicolumn{3}{|r|}{Bismuth} & 122 & 112 & MRL & 112 & 0 & 112 \\
\hline \multicolumn{3}{|r|}{Boron} & 122 & 122 & MRL & 122 & 0 & 122 \\
\hline \multicolumn{3}{|r|}{Cadmium} & 200 & 27 & MRL & 17 & 10 & 17 \\
\hline \multicolumn{3}{|r|}{Calcium} & 200 & 0 & MRL & 0 & 0 & 0 \\
\hline \multicolumn{3}{|r|}{Cerium} & 122 & 60 & MRL & 60 & 0 & 60 \\
\hline \multicolumn{3}{|r|}{Cesium} & 122 & 5 & MRL & 5 & 0 & 5 \\
\hline \multicolumn{3}{|r|}{Chloride ion} & 87 & 44 & MRL & 0 & 44 & 0 \\
\hline \multicolumn{3}{|r|}{Chromium} & 200 & 194 & MRL & 177 & 17 & 177 \\
\hline \multicolumn{3}{|r|}{Cobalt} & 200 & 9 & MRL & 0 & 9 & 0 \\
\hline \multicolumn{3}{|r|}{Copper} & 200 & 117 & MRL & 0 & 117 & 0 \\
\hline \multicolumn{3}{|r|}{Dysprosium} & 122 & 118 & MRL & 118 & 0 & 118 \\
\hline \multicolumn{3}{|r|}{Erbium} & 122 & 122 & MRL & 122 & 0 & 122 \\
\hline \multicolumn{3}{|r|}{Europium} & 122 & 69 & MRL & 69 & 0 & 69 \\
\hline \multicolumn{3}{|r|}{Gadolinium} & 122 & 119 & MRL & 119 & 0 & 119 \\
\hline \multicolumn{3}{|r|}{Gallium} & 122 & 119 & MRL & 119 & 0 & 119 \\
\hline \multicolumn{3}{|r|}{Germanium} & 122 & 120 & MRL & 116 & 4 & 116 \\
\hline \multicolumn{3}{|r|}{Gold} & 122 & 122 & MRL & 106 & 16 & 106 \\
\hline
\end{tabular}

Table 5. 2009 Surface Water Round 1 Data Review of How Non-detect Results Are Reported


Table 5. 2009 Surface Water Round 1 Data Review of How Non-detect Results Are Reported


Table 5. 2009 Surface Water Round 1 Data Review of How Non-detect Results Are Reported


Table 5. 2009 Surface Water Round 1 Data Review of How Non-detect Results Are Reported


Table 5. 2009 Surface Water Round 1 Data Review of How Non-detect Results Are Reported


Table 5. 2009 Surface Water Round 1 Data Review of How Non-detect Results Are Reported


Table 5. 2009 Surface Water Round 1 Data Review of How Non-detect Results Are Reported


Table 5. 2009 Surface Water Round 1 Data Review of How Non-detect Results Are Reported


Table 5. 2009 Surface Water Round 1 Data Review of How Non-detect Results Are Reported


Table 5. 2009 Surface Water Round 1 Data Review of How Non-detect Results Are Reported


Table 5. 2009 Surface Water Round 1 Data Review of How Non-detect Results Are Reported


\footnotetext{
Notes:
\({ }^{\text {a }}\) The December 2011 analysis and summary included results for lab replicates, field replicates, field triplicates, blank water, rinse water/QC samples whereas the current table does not.
}
\({ }^{\text {b }}\) Excludes all duplicate/triplicate/replicate/blank and rinsewater QC sample results

Table 6. 2010 Surface Water Round 2 Data Review of How Non-detect Results Are Reported
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{4}{*}{}} & \multicolumn{6}{|c|}{December 2011 Summary of 2010 Surface Water Round 2} & \\
\hline & & 2010 Surface Water Round 2 & QAPP & \multicolumn{2}{|l|}{Number of NDs Results Reported as per QAPP} & \multicolumn{2}{|l|}{Number of NDs Results Not Reported as per QAPP} & \\
\hline & & Non-HRGC/HRMS Data & ND=MRL & \multicolumn{2}{|l|}{2,077} & \multicolumn{2}{|c|}{12,584} & \\
\hline & & HRGC/HRMS Data & ND=MDL & \multicolumn{2}{|l|}{1,210} & \multicolumn{2}{|c|}{9,620} & \\
\hline Analyte Type & Lab Name & Analyte & No. of Measurements \({ }^{\text {b }}\) & No. of Reported Non-detects & \begin{tabular}{l}
QAPP \\
Requirement
\end{tabular} & Non-Detects Reported to MDL? & Non-Detects Reported to MRL? & No. of Measurements Not Reported per QAPP \\
\hline \multicolumn{9}{|l|}{Conventionals} \\
\hline \multicolumn{9}{|c|}{Columbia Analytical Services} \\
\hline & & Alkalinity & 83 & 0 & MRL & 0 & 0 & 0 \\
\hline & & Fluoride & 83 & 0 & MRL & 0 & 0 & 0 \\
\hline & & Hardness as CaCO 3 & 96 & 0 & MRL & 0 & 0 & 0 \\
\hline & & Organic carbon & 166 & 119 & MRL & 0 & 119 & 0 \\
\hline & & pH & 83 & 0 & MRL & 0 & 0 & 0 \\
\hline & & Sulfate & 83 & 0 & MRL & 0 & 0 & 0 \\
\hline & & Total dissolved solids & 83 & 6 & MRL & 0 & 6 & 0 \\
\hline & & Total Suspended Solids & 89 & 79 & MRL & 0 & 79 & 0 \\
\hline \multicolumn{9}{|l|}{Metals/Metalloids} \\
\hline \multicolumn{9}{|l|}{Columbia Analytical Services} \\
\hline & & Aluminum & 196 & 98 & MRL & 16 & 82 & 16 \\
\hline & & Antimony & 196 & 0 & MRL & 0 & 0 & 0 \\
\hline & & Arsenic & 196 & 76 & MRL & 23 & 53 & 23 \\
\hline & & Barium & 196 & 0 & MRL & 0 & 0 & 0 \\
\hline & & Beryllium & 196 & 181 & MRL & 181 & 0 & 181 \\
\hline & & Bismuth & 100 & 89 & MRL & 89 & 0 & 89 \\
\hline & & Boron & 101 & 87 & MRL & 87 & 0 & 87 \\
\hline & & Cadmium & 196 & 70 & MRL & 23 & 47 & 23 \\
\hline & & Calcium & 196 & 0 & MRL & 0 & 0 & 0 \\
\hline & & Cerium & 100 & 48 & MRL & 48 & 0 & 48 \\
\hline & & Cesium & 100 & 2 & MRL & 2 & 0 & 2 \\
\hline & & Chloride ion & 83 & 18 & MRL & 0 & 18 & 0 \\
\hline & & Chromium & 196 & 177 & MRL & 162 & 15 & 162 \\
\hline & & Cobalt & 196 & 87 & MRL & 0 & 87 & 0 \\
\hline & & Copper & 196 & 59 & MRL & 0 & 59 & 0 \\
\hline & & Dysprosium & 100 & 91 & MRL & 91 & 0 & 91 \\
\hline & & Erbium & 100 & 99 & MRL & 99 & 0 & 99 \\
\hline & & Europium & 100 & 26 & MRL & 26 & 0 & 26 \\
\hline & & Gadolinium & 100 & 94 & MRL & 94 & 0 & 94 \\
\hline & & Gallium & 100 & 97 & MRL & 97 & 0 & 97 \\
\hline & & Germanium & 100 & 40 & MRL & 39 & 1 & 39 \\
\hline & & Gold & 100 & 100 & MRL & 99 & 1 & 99 \\
\hline & & Holmium & 100 & 100 & MRL & 100 & 0 & 100 \\
\hline & & Indium & 100 & 100 & MRL & 100 & 0 & 100 \\
\hline & & Iron & 196 & 143 & MRL & 87 & 56 & 87 \\
\hline & & Lanthanum & 100 & 13 & MRL & 13 & 0 & 13 \\
\hline & & Lead & 196 & 98 & MRL & 32 & 66 & 32 \\
\hline & & Lithium & 101 & 99 & MRL & 99 & 0 & 99 \\
\hline & & Lutetium & 100 & 100 & MRL & 100 & 0 & 100 \\
\hline
\end{tabular}

Table 6. 2010 Surface Water Round 2 Data Review of How Non-detect Results Are Reported
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|c|}{ December 2011 Summary of 2010 Surface Water Round 2 } \\
\hline 2010 Surface Water Round 2 & QAPP & \begin{tabular}{c} 
Number of NDs Results Reported \\
as per QAPP
\end{tabular} & \begin{tabular}{c} 
Number of NDs Results Not Reported as \\
per QAPP
\end{tabular} \\
\hline Non-HRGC/HRMS Data & ND=MRL & 2,077 & 12,584 \\
\hline HRGC/HRMS Data & ND=MDL & 1,210 & 9,620 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte Type & Lab Name & & Analyte & No. of Measurements \({ }^{\text {b }}\) & No. of Reported Non-detects & \begin{tabular}{l}
QAPP \\
Requirement
\end{tabular} & Non-Detects Reported to MDL? & Non-Detects Reported to MRL? & No. of Measurements Not Reported per QAPP \\
\hline \multicolumn{10}{|l|}{Metals/Metalloids (continued)} \\
\hline & & Magnesium & & 196 & 0 & MRL & 0 & 0 & 0 \\
\hline & & Manganese & & 196 & 47 & MRL & 0 & 47 & 0 \\
\hline & & Mercury & & 196 & 143 & MRL & 138 & 5 & 138 \\
\hline & & Molybdenum & & 196 & 26 & MRL & 0 & 26 & 0 \\
\hline & & Neodymium & & 100 & 70 & MRL & 70 & 0 & 70 \\
\hline & & Nickel & & 196 & 65 & MRL & 0 & 65 & 0 \\
\hline & & Niobium & & 100 & 99 & MRL & 96 & 3 & 96 \\
\hline & & Potassium & & 196 & 0 & MRL & 0 & 0 & 0 \\
\hline & & Praseodymium & & 100 & 74 & MRL & 74 & 0 & 74 \\
\hline & & Rubidium & & 100 & 0 & MRL & 0 & 0 & 0 \\
\hline & & Samarium & & 100 & 94 & MRL & 94 & 0 & 94 \\
\hline & & Scandium & & 100 & 3 & MRL & 0 & 3 & 0 \\
\hline & & Selenium & & 196 & 145 & MRL & 145 & 0 & 145 \\
\hline & & Silica & & 83 & 0 & MRL & 0 & 0 & 0 \\
\hline & & Silicon & & 101 & 0 & MRL & 0 & 0 & 0 \\
\hline & & Silver & & 196 & 177 & MRL & 177 & 0 & 177 \\
\hline & & Sodium & & 196 & 0 & MRL & 0 & 0 & 0 \\
\hline & & Strontium & & 101 & 0 & MRL & 0 & 0 & 0 \\
\hline & & Tantalum & & 100 & 98 & MRL & 98 & 0 & 98 \\
\hline & & Tellurium & & 100 & 100 & MRL & 100 & 0 & 100 \\
\hline & & Terbium & & 100 & 100 & MRL & 100 & 0 & 100 \\
\hline & & Thallium & & 196 & 159 & MRL & 89 & 70 & 89 \\
\hline & & Thorium & & 100 & 91 & MRL & 90 & 1 & 90 \\
\hline & & Thulium & & 41 & 41 & MRL & 41 & 0 & 41 \\
\hline & & Tin & & 100 & 99 & MRL & 99 & 0 & 99 \\
\hline & & Titanium & & 101 & 76 & MRL & 61 & 15 & 61 \\
\hline & & Tungsten & & 100 & 99 & MRL & 78 & 21 & 78 \\
\hline & & Uranium & & 196 & 0 & MRL & 0 & 0 & 0 \\
\hline & & Vanadium & & 196 & 89 & MRL & 64 & 25 & 64 \\
\hline & & Ytterbium & & 100 & 98 & MRL & 98 & 0 & 98 \\
\hline & & Yttrium & & 100 & 0 & MRL & 0 & 0 & 0 \\
\hline & & Zinc & & 196 & 126 & MRL & 0 & 126 & 0 \\
\hline & & Zirconium & & 100 & 61 & MRL & 61 & 0 & 61 \\
\hline \multicolumn{10}{|c|}{Frontier GeoSciences} \\
\hline & & Inorganic Arsenic & & 196 & 24 & MRL & 0 & 24 & 0 \\
\hline
\end{tabular}

Nutrients
Columbia Analytical Services
Ammonia as Nitrogen
Nitrate plus nitrite
83
83
83
82
11

MRL
MRL
82
0

82
Phosphorus
11
64
MRL
64
64

Table 6. 2010 Surface Water Round 2 Data Review of How Non-detect Results Are Reported
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{4}{*}{}} & \multicolumn{6}{|c|}{December 2011 Summary of 2010 Surface Water Round 2} & \\
\hline & & 2010 Surface Water Round 2 & QAPP & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{|c}
\begin{tabular}{c} 
Number of NDs Results Reported \\
as per QAPP
\end{tabular} \\
\hline 2,077 \\
\hline 1,210 \\
\hline
\end{tabular}}} & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{Number of NDs Results Not Reported as}} & \\
\hline & & Non-HRGC/HRMS Data & ND=MRL & & & & & \\
\hline & & HRGC/HRMS Data & ND=MDL & & & & & \\
\hline Analyte Type & \begin{tabular}{l}
Lab \\
Name
\end{tabular} & Analyte & No. of Measurements \({ }^{\text {b }}\) & No. of Reported Non-detects & \begin{tabular}{l}
QAPP \\
Requirement
\end{tabular} & Non-Detects Reported to MDL? & Non-Detects Reported to MRL? & No. of Measurements Not Reported per QAPP \\
\hline \multicolumn{9}{|l|}{PAHs} \\
\hline \multicolumn{9}{|c|}{Columbia Analytical Services} \\
\hline & & 1,1'-Biphenyl & 38 & 38 & MRL & 38 & 0 & 38 \\
\hline & & 2-Methylnaphthalene & 38 & 38 & MRL & 37 & 1 & 37 \\
\hline & & Acenaphthene & 38 & 35 & MRL & 35 & 0 & 35 \\
\hline & & Acenaphthylene & 38 & 36 & MRL & 36 & 0 & 36 \\
\hline & & Anthracene & 38 & 36 & MRL & 36 & 0 & 36 \\
\hline & & Benzo(e)pyrene & 38 & 36 & MRL & 36 & 0 & 36 \\
\hline & & Benzo[a]anthracene & 38 & 35 & MRL & 35 & 0 & 35 \\
\hline & & Benzo[a]pyrene & 38 & 37 & MRL & 37 & 0 & 37 \\
\hline & & Benzo[b]fluoranthene & 38 & 36 & MRL & 36 & 0 & 36 \\
\hline & & Benzo[g,h,i]perylene & 38 & 35 & MRL & 35 & 0 & 35 \\
\hline & & Benzo[k]fluoranthene & 38 & 36 & MRL & 36 & 0 & 36 \\
\hline & & Chrysene & 38 & 36 & MRL & 36 & 0 & 36 \\
\hline & & Dibenzo[a,h]anthracene & 38 & 36 & MRL & 36 & 0 & 36 \\
\hline & & Dibenzofuran & 38 & 38 & MRL & 38 & 0 & 38 \\
\hline & & Fluoranthene & 38 & 38 & MRL & 37 & 1 & 37 \\
\hline & & Fluorene & 38 & 32 & MRL & 32 & 0 & 32 \\
\hline & & Indeno[1,2,3-cd]pyrene & 38 & 36 & MRL & 36 & 0 & 36 \\
\hline & & Naphthalene & 38 & 33 & MRL & 0 & 33 & 0 \\
\hline & & Perylene & 38 & 37 & MRL & 37 & 0 & 37 \\
\hline & & Phenanthrene & 38 & 38 & MRL & 35 & 3 & 35 \\
\hline & & Pyrene & 38 & 37 & MRL & 37 & 0 & 37 \\
\hline \multicolumn{9}{|c|}{Vista Analytical Laboratory} \\
\hline & & 2,2',3,3',4,4',5,5',6-Nonabromodiphenyl ether & 38 & 35 & MDL & 35 & 0 & 0 \\
\hline & & 2,2',3,3',4,4'-Hexabromodiphenyl ether & 38 & 38 & MDL & 38 & 0 & 0 \\
\hline & & 2,2',3,4,4',5'-Hexabromodiphenyl ether & 38 & 36 & MDL & 36 & 0 & 0 \\
\hline \multicolumn{9}{|l|}{PBDEs} \\
\hline \multicolumn{3}{|l|}{2,2',3,4,4',6,6'-Heptabromodiphenyl ether} & 38 & 38 & MDL & 38 & 0 & 0 \\
\hline & & 2,2',3,4,4'-Pentabromodiphenyl ether & 38 & 34 & MDL & 34 & 0 & 0 \\
\hline & & 2,2',4,4',5,5'-Hexabromodiphenyl ether & 38 & 34 & MDL & 34 & 0 & 0 \\
\hline & & 2,2',4,4',5,6'-Hexabromodiphenyl ether & 38 & 29 & MDL & 29 & 0 & 0 \\
\hline & & 2,2',4,4',5-Pentabromodiphenyl ether & 38 & 36 & MDL & 36 & 0 & 0 \\
\hline & & 2,2',4,4',6-Pentabromodiphenyl ether & 38 & 34 & MDL & 34 & 0 & 0 \\
\hline & & 2,2',4,4'-Tetrabromodiphenyl ether & 38 & 34 & MDL & 34 & 0 & 0 \\
\hline & & 2,2',4,5'-Tetrabromodiphenyl ether & 38 & 27 & MDL & 27 & 0 & 0 \\
\hline & & 2,2',4-Tribromodiphenyl ether & 38 & 32 & MDL & 32 & 0 & 0 \\
\hline & & 2,3,3',4,4',5',6-Heptabromodiphenyl ether & 38 & 38 & MDL & 38 & 0 & 0 \\
\hline & & 2,3',4,4'-Tetrabromodiphenyl ether & 38 & 26 & MDL & 26 & 0 & 0 \\
\hline & & 2,3',4',6-Tetrabromodiphenyl ether & 38 & 38 & MDL & 38 & 0 & 0 \\
\hline & & Coelution of PBDE 183 and 176 & 38 & 37 & MDL & 37 & 0 & 0 \\
\hline
\end{tabular}

Table 6. 2010 Surface Water Round 2 Data Review of How Non-detect Results Are Reported
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{4}{*}{}} & \multicolumn{6}{|c|}{December 2011 Summary of 2010 Surface Water Round 2} & \\
\hline & & 2010 Surface Water Round 2 & QAPP & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{|c|}
\begin{tabular}{c} 
Number of NDs Results Reported \\
as per QAPP
\end{tabular} \\
\hline 2,077 \\
1,210
\end{tabular}}} & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{c}
\begin{tabular}{c} 
Number of NDs Results Not Reported as \\
per QAPP
\end{tabular} \\
\hline 12,584 \\
\hline 9,620 \\
\hline
\end{tabular}}} & \\
\hline & & Non-HRGC/HRMS Data & ND=MRL & & & & & \\
\hline & & HRGC/HRMS Data & ND=MDL & & & & & \\
\hline Analyte Type & Lab Name & Analyte & No. of Measurements \({ }^{\text {b }}\) & No. of Reported Non-detects & \begin{tabular}{l}
QAPP \\
Requirement
\end{tabular} & Non-Detects Reported to MDL? & Non-Detects Reported to MRL? & No. of Measurements Not Reported per QAPP \\
\hline \multicolumn{9}{|l|}{PBDEs (continued)} \\
\hline & & Coelution of PBDE 190 and 171 & 38 & 38 & MDL & 38 & 0 & 0 \\
\hline & & Coelution of PBDE 200 and 203 & 38 & 38 & MDL & 38 & 0 & 0 \\
\hline & & Coelution of PBDE 28 and 33 & 38 & 38 & MDL & 38 & 0 & 0 \\
\hline & & Decabromodiphenyl ether & 38 & 34 & MDL & 33 & 0 & 0 \\
\hline \multicolumn{9}{|l|}{PCBs} \\
\hline \multicolumn{9}{|l|}{Vista Analytical Laboratory} \\
\hline & & 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl & 38 & 36 & MDL & 36 & 0 & 0 \\
\hline & & 2,2',3,3',4,4',5,5'-Octachlorobiphenyl & 38 & 34 & MDL & 34 & 0 & 0 \\
\hline & & 2,2',3,3',4,4',5,6,6'-Nonachlorobiphenyl & 38 & 38 & MDL & 38 & 0 & 0 \\
\hline & & 2,2',3,3',4,4',5,6'-Octachlorobiphenyl & 38 & 34 & MDL & 34 & 0 & 0 \\
\hline & & 2,2',3,3',4,4',5,6-Octachlorobiphenyl & 38 & 35 & MDL & 35 & 0 & 0 \\
\hline & & 2,2',3,3',4,4',5-Heptachlorobiphenyl & 38 & 33 & MDL & 33 & 0 & 0 \\
\hline & & 2,2',3,3',4,4',6,6'-Octachlorobiphenyl & 38 & 38 & MDL & 38 & 0 & 0 \\
\hline & & 2,2',3,3',4,5,5',6,6'-Nonachlorobiphenyl & 38 & 36 & MDL & 36 & 0 & 0 \\
\hline & & 2,2',3,3',4,5,5'-Heptachlorobiphenyl & 38 & 37 & MDL & 37 & 0 & 0 \\
\hline & & 2,2',3,3',4,5',6,6'-Octachlorobiphenyl & 38 & 36 & MDL & 36 & 0 & 0 \\
\hline & & 2,2',3,3',4,5,6,6'-Octachlorobiphenyl & 38 & 37 & MDL & 37 & 0 & 0 \\
\hline & & 2,2',3,3',4,5',6'-Heptachlorobiphenyl & 38 & 35 & MDL & 35 & 0 & 0 \\
\hline & & 2,2',3,3',4,5',6-Heptachlorobiphenyl & 38 & 38 & MDL & 38 & 0 & 0 \\
\hline & & 2,2',3,3',4,5,6'-Heptachlorobiphenyl & 38 & 34 & MDL & 34 & 0 & 0 \\
\hline & & 2,2',3,3',4,5'-Hexachlorobiphenyl & 38 & 37 & MDL & 37 & 0 & 0 \\
\hline & & 2,2',3,3',4,6,6'-Heptachlorobiphenyl & 38 & 37 & MDL & 37 & 0 & 0 \\
\hline & & 2,2',3,3',4,6'-Hexachlorobiphenyl & 38 & 30 & MDL & 30 & 0 & 0 \\
\hline & & 2,2',3,3',4,6-Hexachlorobiphenyl & 38 & 38 & MDL & 38 & 0 & 0 \\
\hline & & 2,2',3,3',4-Pentachlorobiphenyl & 38 & 37 & MDL & 37 & 0 & 0 \\
\hline & & 2,2',3,3',5,5',6,6'-Octachlorobiphenyl & 38 & 36 & MDL & 36 & 0 & 0 \\
\hline & & 2,2',3,3',5,5',6-Heptachlorobiphenyl & 38 & 37 & MDL & 37 & 0 & 0 \\
\hline & & 2,2',3,3',5,5'-Hexachlorobiphenyl & 38 & 38 & MDL & 38 & 0 & 0 \\
\hline & & 2,2',3,3',5,6,6'-Heptachlorobiphenyl & 38 & 35 & MDL & 35 & 0 & 0 \\
\hline & & 2,2',3,3',6,6'-Hexachlorobiphenyl & 38 & 36 & MDL & 36 & 0 & 0 \\
\hline & & 2,2',3,3',6-Pentachlorobiphenyl & 38 & 33 & MDL & 33 & 0 & 0 \\
\hline & & 2,2',3,4,4',5,5',6-Octachlorobiphenyl & 38 & 34 & MDL & 34 & 0 & 0 \\
\hline & & 2,2',3,4,4',5,6,6'-Octachlorobiphenyl & 38 & 38 & MDL & 38 & 0 & 0 \\
\hline & & 2,2',3,4,4',5,6'-Heptachlorobiphenyl & 38 & 38 & MDL & 38 & 0 & 0 \\
\hline & & 2,2',3,4,4',5,6-Heptachlorobiphenyl & 38 & 38 & MDL & 38 & 0 & 0 \\
\hline & & 2,2',3,4,4',5-Hexachlorobiphenyl & 38 & 36 & MDL & 36 & 0 & 0 \\
\hline & & 2,2',3,4,4',6,6'-Heptachlorobiphenyl & 38 & 38 & MDL & 38 & 0 & 0 \\
\hline & & 2,2',3,4',5,5',6-Heptachlorobiphenyl & 38 & 31 & MDL & 31 & 0 & 0 \\
\hline & & 2,2',3,4',5,5'-Hexachlorobiphenyl & 38 & 34 & MDL & 34 & 0 & 0 \\
\hline & & 2,2',3,4,5,5'-Hexachlorobiphenyl & 38 & 33 & MDL & 33 & 0 & 0 \\
\hline
\end{tabular}

Table 6. 2010 Surface Water Round 2 Data Review of How Non-detect Results Are Reported
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{4}{*}{}} & \multicolumn{6}{|c|}{December 2011 Summary of 2010 Surface Water Round 2} & \\
\hline & & 2010 Surface Water Round 2 & QAPP & \multicolumn{2}{|l|}{Number of NDs Results Reported as per QAPP} & \multicolumn{2}{|l|}{Number of NDs Results Not Reported as per QAPP} & \\
\hline & & Non-HRGC/HRMS Data & ND=MRL & \multicolumn{2}{|l|}{2,077} & \multicolumn{2}{|c|}{12,584} & \\
\hline & & HRGC/HRMS Data & ND=MDL & \multicolumn{2}{|l|}{1,210} & \multicolumn{2}{|c|}{9,620} & \\
\hline Analyte Type & \begin{tabular}{l}
Lab \\
Name
\end{tabular} & Analyte & No. of Measurements \({ }^{\text {b }}\) & No. of Reported Non-detects & \begin{tabular}{l}
QAPP \\
Requirement
\end{tabular} & Non-Detects Reported to MDL? & Non-Detects Reported to MRL? & No. of Measurements Not Reported per QAPP \\
\hline \multicolumn{9}{|l|}{PCBs (continued)} \\
\hline \multicolumn{3}{|r|}{2,2',3,4',5,6,6'-Heptachlorobiphenyl} & 38 & 38 & MDL & 38 & 0 & 0 \\
\hline \multicolumn{3}{|r|}{2,2',3,4,5,6,6'-Heptachlorobiphenyl} & 38 & 38 & MDL & 38 & 0 & 0 \\
\hline \multicolumn{3}{|r|}{2,2',3,4',5,6'-Hexachlorobiphenyl} & 38 & 38 & MDL & 38 & 0 & 0 \\
\hline \multicolumn{3}{|r|}{2,2',3,4,5',6-Hexachlorobiphenyl} & 38 & 37 & MDL & 37 & 0 & 0 \\
\hline \multicolumn{3}{|r|}{2,2',3,4,5,6-Hexachlorobiphenyl} & 38 & 38 & MDL & 38 & 0 & 0 \\
\hline \multicolumn{3}{|r|}{2,2',3,4',6,6'-Hexachlorobiphenyl} & 38 & 38 & MDL & 38 & 0 & 0 \\
\hline \multicolumn{3}{|r|}{2,2',3,4,6,6'-Hexachlorobiphenyl} & 38 & 38 & MDL & 38 & 0 & 0 \\
\hline \multicolumn{3}{|r|}{2,2',3,4,6'-Pentachlorobiphenyl} & 38 & 38 & MDL & 38 & 0 & 0 \\
\hline \multicolumn{3}{|r|}{2,2',3,4'-Tetrachlorobiphenyl} & 38 & 38 & MDL & 38 & 0 & 0 \\
\hline \multicolumn{3}{|r|}{2,2',3,5,5'-Pentachlorobiphenyl} & 38 & 35 & MDL & 35 & 0 & 0 \\
\hline \multicolumn{3}{|r|}{2,2',3,5,6,6'-Hexachlorobiphenyl} & 38 & 38 & MDL & 38 & 0 & 0 \\
\hline \multicolumn{3}{|r|}{2,2',3,5',6-Pentachlorobiphenyl} & 38 & 22 & MDL & 22 & 0 & 0 \\
\hline \multicolumn{3}{|r|}{2,2',3,5,6'-Pentachlorobiphenyl} & 38 & 38 & MDL & 38 & 0 & 0 \\
\hline \multicolumn{3}{|r|}{2,2',3,5-Tetrachlorobiphenyl} & 38 & 38 & MDL & 38 & 0 & 0 \\
\hline \multicolumn{3}{|r|}{2,2',3,6,6'-Pentachlorobiphenyl} & 38 & 38 & MDL & 38 & 0 & 0 \\
\hline \multicolumn{3}{|r|}{2,2',3,6'-Tetrachlorobiphenyl} & 38 & 38 & MDL & 38 & 0 & 0 \\
\hline \multicolumn{3}{|r|}{2,2',3-Trichlorobiphenyl} & 38 & 34 & MDL & 34 & 0 & 0 \\
\hline \multicolumn{3}{|r|}{2,2',4,4',5,6'-Hexachlorobiphenyl} & 38 & 38 & MDL & 38 & 0 & 0 \\
\hline \multicolumn{3}{|r|}{2,2',4,4',6,6'-Hexachlorobiphenyl} & 38 & 38 & MDL & 38 & 0 & 0 \\
\hline \multicolumn{3}{|r|}{2,2',4,5',6-Pentachlorobiphenyl} & 38 & 38 & MDL & 38 & 0 & 0 \\
\hline \multicolumn{3}{|r|}{2,2',4,5-Tetrachlorobiphenyl} & 38 & 37 & MDL & 37 & 0 & 0 \\
\hline \multicolumn{3}{|r|}{2,2',4,6,6'-Pentachlorobiphenyl} & 38 & 38 & MDL & 38 & 0 & 0 \\
\hline \multicolumn{3}{|r|}{2,2',4-Trichlorobiphenyl} & 38 & 30 & MDL & 30 & 0 & 0 \\
\hline \multicolumn{3}{|r|}{2,2',5,5'-Tetrachlorobiphenyl} & 38 & 24 & MDL & 24 & 0 & 0 \\
\hline \multicolumn{3}{|r|}{2,2',6,6'-Tetrachlorobiphenyl} & 38 & 38 & MDL & 38 & 0 & 0 \\
\hline \multicolumn{3}{|r|}{2,2',6-Trichlorobiphenyl} & 38 & 38 & MDL & 38 & 0 & 0 \\
\hline \multicolumn{3}{|r|}{2,2'-Dichlorobiphenyl} & 38 & 38 & MDL & 38 & 0 & 0 \\
\hline \multicolumn{3}{|r|}{2,3,3',4,4',5,5',6-Octachlorobiphenyl} & 38 & 38 & MDL & 38 & 0 & 0 \\
\hline \multicolumn{3}{|r|}{2,3,3',4,4',5,5'-Heptachlorobiphenyl} & 38 & 38 & MDL & 38 & 0 & 0 \\
\hline \multicolumn{3}{|r|}{2,3,3',4, \({ }^{\prime}, 5^{\prime}, 6\)-Heptachlorobiphenyl} & 38 & 37 & MDL & 37 & 0 & 0 \\
\hline \multicolumn{3}{|r|}{2,3,3',4,4',5,6-Heptachlorobiphenyl} & 38 & 36 & MDL & 36 & 0 & 0 \\
\hline \multicolumn{3}{|r|}{2,3,3',4,4',6-Hexachlorobiphenyl} & 38 & 36 & MDL & 36 & 0 & 0 \\
\hline \multicolumn{3}{|r|}{2,3,3',4,4'-Pentachlorobiphenyl} & 38 & 26 & MDL & 26 & 0 & 0 \\
\hline \multicolumn{3}{|r|}{2,3,3',4,5,5',6-Heptachlorobiphenyl} & 38 & 38 & MDL & 38 & 0 & 0 \\
\hline \multicolumn{3}{|r|}{2,3,3',4',5,5'-Hexachlorobiphenyl} & 38 & 38 & MDL & 38 & 0 & 0 \\
\hline \multicolumn{3}{|r|}{2,3,3',4,5,5'-Hexachlorobiphenyl} & 38 & 37 & MDL & 37 & 0 & 0 \\
\hline \multicolumn{3}{|r|}{2,3,3', \(\mathbf{4}^{\prime}, 5^{\prime}, 6\)-Hexachlorobiphenyl} & 38 & 37 & MDL & 37 & 0 & 0 \\
\hline \multicolumn{3}{|r|}{2,3,3',4,5',6-Hexachlorobiphenyl} & 38 & 38 & MDL & 38 & 0 & 0 \\
\hline \multicolumn{3}{|r|}{2,3,3',4',5'-Pentachlorobiphenyl} & 38 & 38 & MDL & 38 & 0 & 0 \\
\hline \multicolumn{3}{|r|}{2,3,3',4,5-Pentachlorobiphenyl} & 38 & 38 & MDL & 38 & 0 & 0 \\
\hline
\end{tabular}

Table 6. 2010 Surface Water Round 2 Data Review of How Non-detect Results Are Reported
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{4}{*}{}} & \multicolumn{6}{|c|}{December 2011 Summary of 2010 Surface Water Round 2} & \\
\hline & & 2010 Surface Water Round 2 & QAPP & \multicolumn{2}{|l|}{Number of NDs Results Reported as per QAPP} & \multicolumn{2}{|l|}{Number of NDs Results Not Reported as per QAPP} & \\
\hline & & Non-HRGC/HRMS Data & ND=MRL & \multicolumn{2}{|l|}{2,077} & \multicolumn{2}{|c|}{12,584} & \\
\hline & & HRGC/HRMS Data & ND=MDL & \multicolumn{2}{|l|}{1,210} & \multicolumn{2}{|c|}{9,620} & \\
\hline Analyte Type & Lab Name & Analyte & No. of Measurements \({ }^{\text {b }}\) & No. of Reported Non-detects & \begin{tabular}{l}
QAPP \\
Requirement
\end{tabular} & Non-Detects Reported to MDL? & Non-Detects Reported to MRL? & No. of Measurements Not Reported per QAPP \\
\hline \multicolumn{9}{|l|}{PCBs (continued)} \\
\hline \multicolumn{3}{|r|}{2,3,3',4,6-Pentachlorobiphenyl} & 38 & 38 & MDL & 38 & 0 & 0 \\
\hline \multicolumn{3}{|l|}{} & 38 & 31 & MDL & 31 & 0 & 0 \\
\hline & & 2,3,3',4-Tetrachlorobiphenyl
2,3,3',4-Tetrachlorobiphenyl & 38 & 38 & MDL & 38 & 0 & 0 \\
\hline & & 2,3,3',5,5',6-Hexachlorobiphenyl & 38 & 38 & MDL & 38 & 0 & 0 \\
\hline & & 2,3,3',5,5'-Pentachlorobiphenyl & 38 & 38 & MDL & 38 & 0 & 0 \\
\hline & & 2,3,3',5,6-Pentachlorobiphenyl & 38 & 38 & MDL & 38 & 0 & 0 \\
\hline & & 2,3,3',5'-Tetrachlorobiphenyl & 38 & 38 & MDL & 38 & 0 & 0 \\
\hline & & 2,3,3',5-Tetrachlorobiphenyl & 38 & 38 & MDL & 38 & 0 & 0 \\
\hline & & 2,3',4,4',5,5'-Hexachlorobiphenyl & 38 & 37 & MDL & 37 & 0 & 0 \\
\hline & & 2,3',4,4',5'-Pentachlorobiphenyl & 38 & 38 & MDL & 38 & 0 & 0 \\
\hline & & 2,3',4,4',5-Pentachlorobiphenyl & 38 & 25 & MDL & 25 & 0 & 0 \\
\hline & & 2,3,4,4',5-Pentachlorobiphenyl & 38 & 38 & MDL & 38 & 0 & 0 \\
\hline & & 2,3',4,4'-Tetrachlorobiphenyl & 38 & 25 & MDL & 25 & 0 & 0 \\
\hline & & 2,3,4,4'-Tetrachlorobiphenyl & 38 & 36 & MDL & 36 & 0 & 0 \\
\hline & & 2,3',4,5,5'-Pentachlorobiphenyl & 38 & 38 & MDL & 38 & 0 & 0 \\
\hline & & 2,3',4, \({ }^{\prime}\),6-Pentachlorobiphenyl & 38 & 38 & MDL & 38 & 0 & 0 \\
\hline & & 2,3',4,5'-Tetrachlorobiphenyl & 38 & 31 & MDL & 31 & 0 & 0 \\
\hline & & 2,3',4,5-Tetrachlorobiphenyl & 38 & 38 & MDL & 38 & 0 & 0 \\
\hline & & 2,3,4',5-Tetrachlorobiphenyl & 38 & 38 & MDL & 38 & 0 & 0 \\
\hline & & 2,3,4, 6-Tetrachlorobiphenyl & 38 & 31 & MDL & 31 & 0 & 0 \\
\hline & & 2,3',4-Trichlorobiphenyl & 38 & 37 & MDL & 37 & 0 & 0 \\
\hline & & 2,3,4'-Trichlorobiphenyl & 38 & 32 & MDL & 32 & 0 & 0 \\
\hline & & 2,3',5,5'-Tetrachlorobiphenyl & 38 & 38 & MDL & 38 & 0 & 0 \\
\hline & & 2,3',5',6-Tetrachlorobiphenyl & 38 & 38 & MDL & 38 & 0 & 0 \\
\hline & & 2,3',5'-Trichlorobiphenyl & 38 & 38 & MDL & 38 & 0 & 0 \\
\hline & & 2,3,5-Trichlorobiphenyl & 38 & 38 & MDL & 38 & 0 & 0 \\
\hline & & 2,3',6-Trichlorobiphenyl & 38 & 38 & MDL & 38 & 0 & 0 \\
\hline & & 2,3,6-Trichlorobiphenyl & 38 & 38 & MDL & 38 & 0 & 0 \\
\hline & & 2,3'-Dichlorobiphenyl & 38 & 38 & MDL & 38 & 0 & 0 \\
\hline & & 2,3-Dichlorobiphenyl & 38 & 38 & MDL & 38 & 0 & 0 \\
\hline & & 2,4',5-Trichlorobiphenyl & 38 & 36 & MDL & 36 & 0 & 0 \\
\hline & & 2,4',6-Trichlorobiphenyl & 38 & 33 & MDL & 33 & 0 & 0 \\
\hline & & 2,4'-Dichlorobiphenyl & 38 & 38 & MDL & 38 & 0 & 0 \\
\hline & & 2,4-Dichlorobiphenyl & 38 & 38 & MDL & 38 & 0 & 0 \\
\hline & & 2,5-Dichlorobiphenyl & 38 & 38 & MDL & 38 & 0 & 0 \\
\hline & & 2,6-Dichlorobiphenyl & 38 & 38 & MDL & 38 & 0 & 0 \\
\hline & & 3,3',4,4',5,5'-Hexachlorobiphenyl & 38 & 38 & MDL & 38 & 0 & 0 \\
\hline & & 3,3',4,4',5-Pentachlorobiphenyl & 38 & 38 & MDL & 38 & 0 & 0 \\
\hline & & 3,3',4,4'-Tetrachlorobiphenyl & 38 & 37 & MDL & 37 & 0 & 0 \\
\hline & & 3,3',4,5,5'-Pentachlorobiphenyl & 38 & 38 & MDL & 38 & 0 & 0 \\
\hline
\end{tabular}

Table 6. 2010 Surface Water Round 2 Data Review of How Non-detect Results Are Reported


Table 6. 2010 Surface Water Round 2 Data Review of How Non-detect Results Are Reported
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{4}{*}{}} & \multicolumn{6}{|c|}{December 2011 Summary of 2010 Surface Water Round 2} & \\
\hline & & 2010 Surface Water Round 2 & QAPP & \multicolumn{2}{|l|}{Number of NDs Results Reported as per QAPP} & \multicolumn{2}{|l|}{Number of NDs Results Not Reported as per QAPP} & \\
\hline & & Non-HRGC/HRMS Data & ND=MRL & \multicolumn{2}{|l|}{2,077} & \multicolumn{2}{|c|}{12,584} & \\
\hline & & HRGC/HRMS Data & ND=MDL & \multicolumn{2}{|l|}{1,210} & \multicolumn{2}{|c|}{9,620} & \\
\hline Analyte Type & Lab Name & Analyte & No. of Measurements \({ }^{\text {b }}\) & No. of Reported Non-detects & \begin{tabular}{l}
QAPP \\
Requirement
\end{tabular} & Non-Detects Reported to MDL? & Non-Detects Reported to MRL? & No. of Measurements Not Reported per QAPP \\
\hline \multicolumn{9}{|l|}{PCBs (continued)} \\
\hline \multicolumn{3}{|r|}{Coelution of PCB 90, 101, and 113} & 38 & 18 & MDL & 18 & 0 & 0 \\
\hline \multicolumn{3}{|r|}{Coelution of PCB 93, 98, 100 and 102} & 38 & 38 & MDL & 38 & 0 & 0 \\
\hline \multicolumn{3}{|r|}{Decachlorobiphenyl (PCB 209)} & 38 & 33 & MDL & 33 & 0 & 0 \\
\hline \multicolumn{3}{|r|}{Dichlorobiphenyl homologs} & 38 & 20 & MDL & 20 & 0 & 0 \\
\hline \multicolumn{3}{|r|}{Heptachlorobiphenyl homologs} & 38 & 17 & MDL & 17 & 0 & 0 \\
\hline \multicolumn{3}{|r|}{Hexachlorobiphenyl homologs} & 38 & 7 & MDL & 7 & 0 & 0 \\
\hline \multicolumn{3}{|r|}{Monochlorobiphenyl homologs} & 38 & 31 & MDL & 31 & 0 & 0 \\
\hline \multicolumn{3}{|r|}{Nonachlorobiphenyl homologs} & 38 & 36 & MDL & 36 & 0 & 0 \\
\hline \multicolumn{3}{|r|}{Octachlorobiphenyl homologs} & 38 & 31 & MDL & 31 & 0 & 0 \\
\hline \multicolumn{3}{|r|}{PCB congener 1} & 38 & 32 & MDL & 32 & 0 & 0 \\
\hline \multicolumn{3}{|r|}{PCB congener 14} & 38 & 38 & MDL & 38 & 0 & 0 \\
\hline \multicolumn{3}{|r|}{PCB congener 15} & 38 & 37 & MDL & 37 & 0 & 0 \\
\hline \multicolumn{3}{|r|}{PCB congener 2} & 38 & 38 & MDL & 38 & 0 & 0 \\
\hline & & PCB congener 3 & 38 & 36 & MDL & 36 & 0 & 0 \\
\hline & & Pentachlorobiphenyl homologs & 38 & 11 & MDL & 11 & 0 & 0 \\
\hline & & Tetrachlorobiphenyl homologs & 38 & 6 & MDL & 6 & 0 & 0 \\
\hline & & Total PCBs & 38 & 2 & MDL & 2 & 0 & 0 \\
\hline & & Trichlorobiphenyl homologs & 38 & 4 & MDL & 4 & 0 & 0 \\
\hline \multicolumn{9}{|l|}{Pesticides/Herbicides} \\
\hline \multicolumn{9}{|c|}{Columbia Analytical Services} \\
\hline \multicolumn{3}{|r|}{2,4'-DDD} & 38 & 38 & MRL & 35 & 3 & 35 \\
\hline \multicolumn{3}{|r|}{2,4'-DDE} & 38 & 38 & MRL & 37 & 1 & 37 \\
\hline \multicolumn{3}{|r|}{2,4'-DDT} & 38 & 38 & MRL & 34 & 4 & 34 \\
\hline \multicolumn{3}{|r|}{4,4'-DDD} & 38 & 37 & MRL & 18 & 19 & 18 \\
\hline \multicolumn{3}{|r|}{4,4'-DDE} & 38 & 38 & MRL & 24 & 14 & 24 \\
\hline \multicolumn{3}{|r|}{4,4'-DDT} & 38 & 37 & MRL & 34 & 3 & 34 \\
\hline & & Aldrin & 38 & 35 & MRL & 26 & 9 & 26 \\
\hline & & alpha-Benzenehexachloride & 38 & 38 & MRL & 37 & 1 & 37 \\
\hline & & alpha-Chlordane & 38 & 37 & MRL & 33 & 4 & 33 \\
\hline & & beta-BHC & 38 & 38 & MRL & 37 & 1 & 37 \\
\hline & & Chlordane & 38 & 38 & MRL & 22 & 16 & 22 \\
\hline & & cis-Nonachlor & 38 & 38 & MRL & 22 & 16 & 22 \\
\hline & & delta-BHC & 38 & 38 & MRL & 37 & 1 & 37 \\
\hline & & Dieldrin & 38 & 37 & MRL & 34 & 3 & 34 \\
\hline & & Endosulfan I & 38 & 38 & MRL & 35 & 3 & 35 \\
\hline & & Endosulfan II & 38 & 37 & MRL & 30 & 7 & 30 \\
\hline & & Endosulfan sulfate & 38 & 38 & MRL & 38 & 0 & 38 \\
\hline & & Endrin & 38 & 31 & MRL & 13 & 18 & 13 \\
\hline & & Endrin aldehyde & 38 & 30 & MRL & 22 & 8 & 22 \\
\hline & & Endrin ketone & 38 & 38 & MRL & 38 & 0 & 38 \\
\hline
\end{tabular}

Table 6. 2010 Surface Water Round 2 Data Review of How Non-detect Results Are Reported


Table 6. 2010 Surface Water Round 2 Data Review of How Non-detect Results Are Reported


Notes:
\({ }^{\text {a }}\) The December 2011 analysis and summary included results for lab replicates, field replicates, field triplicates, blank water, rinse water/QC samples whereas the current table does not.
\({ }^{\text {b }}\) Excludes all duplicate/triplicate/replicate/blank and rinsewater QC sample results

Table 7. 2010 Surface Water Round 3 Data Review of How Non-detect Results Are Reported
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{4}{*}{}} & \multicolumn{6}{|c|}{December 2011 Summary of 2010 Surface Water Round 3} & \\
\hline & & 2010 Surface Water Round 3 & QAPP & \multicolumn{2}{|l|}{Number of NDs Results Reported as per QAPP} & \multicolumn{2}{|l|}{Number of NDs Results Not Reported as per QAPP} & \\
\hline & & Non-HRGC/HRMS Data & ND=MRL & \multicolumn{2}{|l|}{2,180} & \multicolumn{2}{|c|}{11,679} & \\
\hline & & HRGC/HRMS Data & ND=MDL & \multicolumn{2}{|l|}{1,272} & \multicolumn{2}{|c|}{9,611} & \\
\hline Analyte Type & \begin{tabular}{l}
Lab \\
Name
\end{tabular} & Analyte & No. of Measurements \({ }^{\text {b }}\) & No. of Reported Non-detects & \begin{tabular}{l}
QAPP \\
Requirement
\end{tabular} & Non-Detects Reported to MDL? & Non-Detects Reported to MRL? & No. of Measurements Not Reported per QAPP \\
\hline \multicolumn{9}{|l|}{Conventionals} \\
\hline \multicolumn{9}{|c|}{Columbia Analytical Services} \\
\hline & & Alkalinity & 82 & 0 & MRL & 0 & 0 & 0 \\
\hline & & Fluoride & 82 & 3 & MRL & 3 & 0 & 3 \\
\hline & & Hardness as CaCO3 & 94 & 0 & MRL & 0 & 0 & 0 \\
\hline & & Organic carbon & 164 & 75 & MRL & 0 & 75 & 0 \\
\hline & & pH & 82 & 0 & MRL & 0 & 0 & 0 \\
\hline & & Sulfate & 82 & 0 & MRL & 0 & 0 & 0 \\
\hline & & Total dissolved solids & 82 & 6 & MRL & 0 & 6 & 0 \\
\hline & & Total Suspended Solids & 88 & 81 & MRL & 0 & 81 & 0 \\
\hline \multicolumn{9}{|l|}{Metals/Metalloids} \\
\hline \multicolumn{9}{|c|}{Columbia Analytical Services} \\
\hline & & Aluminum & 192 & 44 & MRL & 0 & 44 & 0 \\
\hline & & Antimony & 192 & 21 & MRL & 0 & 21 & 0 \\
\hline & & Arsenic & 192 & 56 & MRL & 32 & 24 & 32 \\
\hline & & Barium & 192 & 0 & MRL & 0 & 0 & 0 \\
\hline & & Beryllium & 192 & 171 & MRL & 171 & 0 & 171 \\
\hline & & Bismuth & 98 & 94 & MRL & 94 & 0 & 94 \\
\hline & & Boron & 98 & 98 & MRL & 98 & 0 & 98 \\
\hline & & Cadmium & 192 & 113 & MRL & 64 & 49 & 64 \\
\hline & & Calcium & 192 & 0 & MRL & 0 & 0 & 0 \\
\hline & & Cerium & 98 & 4 & MRL & 4 & 0 & 4 \\
\hline & & Cesium & 98 & 14 & MRL & 14 & 0 & 14 \\
\hline & & Chloride ion & 82 & 45 & MRL & 0 & 45 & 0 \\
\hline & & Chromium & 192 & 169 & MRL & 149 & 20 & 149 \\
\hline & & Cobalt & 192 & 110 & MRL & 0 & 110 & 0 \\
\hline & & Copper & 192 & 53 & MRL & 0 & 53 & 0 \\
\hline & & Dysprosium & 98 & 56 & MRL & 56 & 0 & 56 \\
\hline & & Erbium & 98 & 97 & MRL & 97 & 0 & 97 \\
\hline & & Europium & 98 & 15 & MRL & 15 & 0 & 15 \\
\hline & & Gadolinium & 98 & 66 & MRL & 66 & 0 & 66 \\
\hline & & Gallium & 98 & 84 & MRL & 84 & 0 & 84 \\
\hline & & Germanium & 98 & 81 & MRL & 33 & 48 & 33 \\
\hline & & Gold & 98 & 96 & MRL & 80 & 16 & 80 \\
\hline & & Holmium & 98 & 98 & MRL & 98 & 0 & 98 \\
\hline & & Indium & 98 & 98 & MRL & 98 & 0 & 98 \\
\hline & & Iron & 192 & 121 & MRL & 64 & 57 & 64 \\
\hline & & Lanthanum & 98 & 0 & MRL & 0 & 0 & 0 \\
\hline & & Lead & 192 & 111 & MRL & 19 & 92 & 19 \\
\hline & & Lithium & 98 & 69 & MRL & 69 & 0 & 69 \\
\hline & & Lutetium & 98 & 98 & MRL & 98 & 0 & 98 \\
\hline
\end{tabular}

Table 7. 2010 Surface Water Round 3 Data Review of How Non-detect Results Are Reported


Table 7. 2010 Surface Water Round 3 Data Review of How Non-detect Results Are Reported
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{4}{*}{}} & \multicolumn{6}{|c|}{December 2011 Summary of 2010 Surface Water Round 3} & \\
\hline & & 2010 Surface Water Round 3 & QAPP & \multicolumn{2}{|l|}{Number of NDs Results Reported as per QAPP} & \multicolumn{2}{|l|}{Number of NDs Results Not Reported as per QAPP} & \\
\hline & & Non-HRGC/HRMS Data & ND=MRL & \multicolumn{2}{|l|}{2,180} & \multicolumn{2}{|c|}{11,679} & \\
\hline & & HRGC/HRMS Data & ND=MDL & \multicolumn{2}{|l|}{1,272} & \multicolumn{2}{|c|}{9,611} & \\
\hline Analyte Type & \begin{tabular}{l}
Lab \\
Name
\end{tabular} & Analyte & No. of Measurements \({ }^{\text {b }}\) & No. of Reported Non-detects & \begin{tabular}{l}
QAPP \\
Requirement
\end{tabular} & Non-Detects Reported to MDL? & Non-Detects Reported to MRL? & No. of Measurements Not Reported per QAPP \\
\hline \multicolumn{9}{|l|}{Nutrients} \\
\hline \multicolumn{9}{|c|}{Columbia Analytical Services} \\
\hline & & Ammonia as Nitrogen & 82 & 72 & MRL & 71 & 1 & 71 \\
\hline & & Nitrate plus nitrite & 82 & 70 & MRL & 24 & 46 & 24 \\
\hline & & Phosphorus & 82 & 16 & MRL & 6 & 10 & 6 \\
\hline \multicolumn{9}{|l|}{PAHs} \\
\hline \multicolumn{9}{|c|}{Columbia Analytical Services} \\
\hline & & 1,1'-Biphenyl & 37 & 37 & MRL & 37 & 0 & 37 \\
\hline & & 2-Methylnaphthalene & 37 & 37 & MRL & 37 & 0 & 37 \\
\hline & & Acenaphthene & 37 & 29 & MRL & 29 & 0 & 29 \\
\hline & & Acenaphthylene & 37 & 36 & MRL & 36 & 0 & 36 \\
\hline & & Anthracene & 37 & 37 & MRL & 37 & 0 & 37 \\
\hline & & Benzo(e)pyrene & 37 & 35 & MRL & 35 & 0 & 35 \\
\hline & & Benzo[a]anthracene & 37 & 37 & MRL & 37 & 0 & 37 \\
\hline & & Benzo[a]pyrene & 37 & 36 & MRL & 36 & 0 & 36 \\
\hline & & Benzo[b]fluoranthene & 37 & 33 & MRL & 33 & 0 & 33 \\
\hline & & Benzo[g,h,i]perylene & 37 & 34 & MRL & 34 & 0 & 34 \\
\hline & & Benzo[k]fluoranthene & 37 & 35 & MRL & 35 & 0 & 35 \\
\hline & & Chrysene & 37 & 36 & MRL & 36 & 0 & 36 \\
\hline & & Dibenzo[a,h]anthracene & 37 & 36 & MRL & 36 & 0 & 36 \\
\hline & & Dibenzofuran & 37 & 37 & MRL & 37 & 0 & 37 \\
\hline & & Fluoranthene & 37 & 37 & MRL & 37 & 0 & 37 \\
\hline & & Fluorene & 37 & 36 & MRL & 36 & 0 & 36 \\
\hline & & Indeno[1,2,3-cd]pyrene & 37 & 34 & MRL & 34 & 0 & 34 \\
\hline & & Naphthalene & 37 & 37 & MRL & 1 & 36 & 1 \\
\hline & & Perylene & 37 & 36 & MRL & 36 & 0 & 36 \\
\hline & & Phenanthrene & 37 & 37 & MRL & 36 & 1 & 36 \\
\hline & & Pyrene & 37 & 36 & MRL & 36 & 0 & 36 \\
\hline \multicolumn{9}{|l|}{PBDEs} \\
\hline \multicolumn{9}{|l|}{Vista Analytical Laboratory} \\
\hline & & 2,2',3,3',4,4',5,5',6-Nonabromodiphenyl ether & 37 & 33 & MDL & 33 & 0 & 0 \\
\hline & & 2,2',3,3',4,4'-Hexabromodiphenyl ether & 37 & 34 & MDL & 34 & 0 & 0 \\
\hline & & 2,2',3,4,4',5'-Hexabromodiphenyl ether & 37 & 34 & MDL & 34 & 0 & 0 \\
\hline & & 2,2',3,4,4',6,6'-Heptabromodiphenyl ether & 37 & 34 & MDL & 34 & 0 & 0 \\
\hline & & 2,2',3,4,4'-Pentabromodiphenyl ether & 37 & 27 & MDL & 27 & 0 & 0 \\
\hline & & 2,2',4,4',5,5'-Hexabromodiphenyl ether & 37 & 34 & MDL & 34 & 0 & 0 \\
\hline & & 2,2',4,4',5,6'-Hexabromodiphenyl ether & 37 & 27 & MDL & 27 & 0 & 0 \\
\hline & & 2,2',4,4',5-Pentabromodiphenyl ether & 37 & 34 & MDL & 34 & 0 & 0 \\
\hline & & 2,2',4,4',6-Pentabromodiphenyl ether & 37 & 33 & MDL & 33 & 0 & 0 \\
\hline & & 2,2',4,4'-Tetrabromodiphenyl ether & 37 & 36 & MDL & 36 & 0 & 0 \\
\hline & & 2,2',4,5'-Tetrabromodiphenyl ether & 37 & 24 & MDL & 24 & 0 & 0 \\
\hline
\end{tabular}

Table 7. 2010 Surface Water Round 3 Data Review of How Non-detect Results Are Reported


Table 7. 2010 Surface Water Round 3 Data Review of How Non-detect Results Are Reported


Table 7. 2010 Surface Water Round 3 Data Review of How Non-detect Results Are Reported


Table 7. 2010 Surface Water Round 3 Data Review of How Non-detect Results Are Reported


Table 7. 2010 Surface Water Round 3 Data Review of How Non-detect Results Are Reported


Table 7. 2010 Surface Water Round 3 Data Review of How Non-detect Results Are Reported


Table 7. 2010 Surface Water Round 3 Data Review of How Non-detect Results Are Reported
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{4}{*}{}} & \multicolumn{6}{|c|}{December 2011 Summary of 2010 Surface Water Round 3} & \\
\hline & & 2010 Surface Water Round 3 & QAPP & \multicolumn{2}{|l|}{Number of NDs Results Reported as per QAPP} & \multicolumn{2}{|l|}{Number of NDs Results Not Reported as per QAPP} & \\
\hline & & Non-HRGC/HRMS Data & ND=MRL & \multicolumn{2}{|l|}{2,180} & \multicolumn{2}{|c|}{11,679} & \\
\hline & & HRGC/HRMS Data & ND=MDL & \multicolumn{2}{|l|}{1,272} & \multicolumn{2}{|c|}{9,611} & \\
\hline Analyte Type & \begin{tabular}{l}
Lab \\
Name
\end{tabular} & Analyte & No. of Measurements \({ }^{\text {b }}\) & No. of Reported Non-detects & \begin{tabular}{l}
QAPP \\
Requirement
\end{tabular} & Non-Detects Reported to MDL? & Non-Detects Reported to MRL? & No. of Measurements Not Reported per QAPP \\
\hline \multicolumn{9}{|l|}{SVOCs (continued)} \\
\hline \multicolumn{3}{|r|}{3-Nitroaniline} & 37 & 37 & MRL & 37 & 0 & 37 \\
\hline \multicolumn{3}{|r|}{4,6-Dinitro-2-methylphenol} & 37 & 37 & MRL & 37 & 0 & 37 \\
\hline \multicolumn{3}{|r|}{4-Bromophenyl-phenylether} & 37 & 37 & MRL & 37 & 0 & 37 \\
\hline \multicolumn{3}{|r|}{4-Chloro-3-methylphenol} & 37 & 37 & MRL & 37 & 0 & 37 \\
\hline \multicolumn{3}{|r|}{4-Chloroaniline} & 37 & 36 & MRL & 36 & 0 & 36 \\
\hline \multicolumn{3}{|r|}{4-Chlorophenyl-phenyl ether} & 37 & 37 & MRL & 37 & 0 & 37 \\
\hline \multicolumn{3}{|r|}{4-Methylphenol} & 37 & 37 & MRL & 37 & 0 & 37 \\
\hline \multicolumn{3}{|r|}{4-Nitroaniline} & 37 & 37 & MRL & 37 & 0 & 37 \\
\hline \multicolumn{3}{|r|}{4-Nitrophenol} & 37 & 37 & MRL & 37 & 0 & 37 \\
\hline \multicolumn{3}{|r|}{Acetophenone} & 37 & 37 & MRL & 37 & 0 & 37 \\
\hline \multicolumn{3}{|r|}{Benzaldehyde} & 37 & 37 & MRL & 37 & 0 & 37 \\
\hline \multicolumn{3}{|r|}{Benzoic acid} & 37 & 28 & MRL & 28 & 0 & 28 \\
\hline & & Benzyl alcohol & 37 & 37 & MRL & 37 & 0 & 37 \\
\hline & & Benzyl n-butyl phthalate & 37 & 36 & MRL & 36 & 0 & 36 \\
\hline & & bis(2-Chloroethoxy)methane & 37 & 37 & MRL & 37 & 0 & 37 \\
\hline & & Bis(2-chloroethyl)ether & 37 & 37 & MRL & 37 & 0 & 37 \\
\hline & & bis(2-Ethylhexyl)phthalate & 37 & 35 & MRL & 34 & 1 & 34 \\
\hline & & Caprolactam & 37 & 37 & MRL & 37 & 0 & 37 \\
\hline & & Carbazole & 74 & 74 & MRL & 74 & 0 & 74 \\
\hline & & Dibenzothiophene & 37 & 37 & MRL & 37 & 0 & 37 \\
\hline & & Diethyl phthalate & 37 & 37 & MRL & 37 & 0 & 37 \\
\hline & & Dimethyl phthalate & 37 & 32 & MRL & 32 & 0 & 32 \\
\hline & & Di-n-butyl phthalate & 37 & 37 & MRL & 37 & 0 & 37 \\
\hline & & Di-n-octylphthalate & 37 & 37 & MRL & 37 & 0 & 37 \\
\hline & & Hexachlorobenzene & 37 & 35 & MRL & 35 & 0 & 35 \\
\hline & & Hexachlorobutadiene & 37 & 37 & MRL & 37 & 0 & 37 \\
\hline & & Hexachlorocyclopentadiene & 37 & 37 & MRL & 37 & 0 & 37 \\
\hline & & Hexachloroethane & 37 & 37 & MRL & 37 & 0 & 37 \\
\hline & & Isophorone & 37 & 37 & MRL & 37 & 0 & 37 \\
\hline & & Nitrobenzene & 37 & 37 & MRL & 37 & 0 & 37 \\
\hline & & N-Nitrosodi-n-propylamine & 37 & 37 & MRL & 37 & 0 & 37 \\
\hline & & N-Nitrosodiphenylamine & 37 & 37 & MRL & 37 & 0 & 37 \\
\hline & & Pentachlorophenol & 37 & 37 & MRL & 37 & 0 & 37 \\
\hline & & Phenol & 37 & 37 & MRL & 37 & 0 & 37 \\
\hline \multicolumn{3}{|l|}{\multirow[t]{3}{*}{2010 Surface Water R3 \({ }^{\text {b }}\)}} & 13,524 & 8,099 & MRL & 6,631 & 1,461 & 6,631 \\
\hline & & & 7,104 & 6,379 & MDL & 6,379 & 0 & 0 \\
\hline & & & 20,628 & 14,478 & ALL & 13,010 & 1,461 & 6,631 \\
\hline
\end{tabular}

\section*{Notes:}
\({ }^{\text {a }}\) The December 2011 analysis and summary included results for lab replicates, field replicates, field triplicates, blank water, rinse water/QC samples whereas the current table does not.
\({ }^{\mathrm{b}}\) Excludes all duplicate/triplicate/replicate/blank and rinsewater QC sample results

Table 8. 2010 White Sturgeon Sediment Toxicity Testing Data Review of How Non-detect Results are Reported
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\multirow[t]{3}{*}{}} & \multicolumn{5}{|l|}{December 2011 Summary of 2010 White Sturgeon Sediment Toxicity Testing \({ }^{\text {a }}\)} & \\
\hline & & & QAPP & \multicolumn{2}{|l|}{Number of NDs Results Reported as per QAPP} & \multicolumn{2}{|l|}{Number of NDs Results Not Reported as per QAPP} & \\
\hline & & & ND=MRL & \multicolumn{2}{|c|}{8,623} & \multicolumn{2}{|r|}{16,740} & \\
\hline Analyte Type & \begin{tabular}{l}
Lab \\
Name
\end{tabular} & Analyte & \[
\begin{gathered}
\text { No. of } \\
\text { Measurements }^{\text {b }}
\end{gathered}
\] & No. of Reported Non-detects & \begin{tabular}{l}
QAPP \\
Requirement
\end{tabular} & Non-Detects Reported to MDL? & Non-Detects Reported to MRL? & No. of Measurements not Reported per QAPP \\
\hline \multicolumn{9}{|l|}{Conventionals} \\
\hline \multicolumn{9}{|c|}{Columbia Analytical Services} \\
\hline & & Alkalinity & 818 & 9 & MRL & 7 & 2 & 7 \\
\hline & & Fluoride & 1395 & 58 & MRL & 58 & 0 & 58 \\
\hline & & Hardness as CaCO3 & 1670 & 46 & MRL & 1 & 21 & 1 \\
\hline & & Organic carbon & 1458 & 317 & MRL & 1 & 316 & 1 \\
\hline & & pH & 58 & 0 & MRL & 0 & 0 & 0 \\
\hline & & Solids & 54 & 0 & MRL & 0 & 0 & 0 \\
\hline & & Sulfate & 1395 & 7 & MRL & 7 & 0 & 7 \\
\hline & & Sulfide & 20 & 4 & MRL & 4 & 0 & 4 \\
\hline & & Sulfide-AVS & 34 & 9 & MRL & 9 & 0 & 9 \\
\hline & & Total dissolved solids & 659 & 100 & MRL & 0 & 100 & 0 \\
\hline & & Total Suspended Solids & 4 & 4 & MRL & 0 & 4 & 0 \\
\hline \multicolumn{9}{|c|}{University of Saskatchewan} \\
\hline & & Alkalinity & 930 & 0 & MRL & 0 & 0 & 0 \\
\hline & & Conductivity & 3797 & 0 & MRL & 0 & 0 & 0 \\
\hline & & Dissolved oxygen & 137 & 0 & MRL & 0 & 0 & 0 \\
\hline & & Dissolved oxygen - \% saturation adjusted for temperature & 3662 & 0 & MRL & 0 & 0 & 0 \\
\hline & & Hardness & 1543 & 0 & MRL & 0 & 0 & 0 \\
\hline & & pH & 3800 & 0 & MRL & 0 & 0 & 0 \\
\hline \multicolumn{9}{|l|}{Grain Size} \\
\hline \multicolumn{9}{|c|}{Columbia Analytical Services} \\
\hline & & Clay & 23 & 0 & MRL & 0 & 0 & 0 \\
\hline & & Coarse Gravel & 23 & 6 & MRL & 0 & 0 & 0 \\
\hline & & Coarse sand & 23 & 0 & MRL & 0 & 0 & 0 \\
\hline & & Cobbles & 23 & 6 & MRL & 0 & 0 & 0 \\
\hline & & Fine Gravel & 23 & 6 & MRL & 0 & 0 & 0 \\
\hline & & Fine Sand & 23 & 0 & MRL & 0 & 0 & 0 \\
\hline & & Med. Sand & 23 & 0 & MRL & 0 & 0 & 0 \\
\hline & & Medium Gravel & 23 & 7 & MRL & 0 & 0 & 0 \\
\hline & & Silt & 23 & 0 & MRL & 0 & 0 & 0 \\
\hline & & Very Coarse Gravel & 23 & 6 & MRL & 0 & 0 & 0 \\
\hline & & Very Coarse Sand & 23 & 0 & MRL & 0 & 0 & 0 \\
\hline & & Very Fine Gravel & 23 & 1 & MRL & 0 & 0 & 0 \\
\hline & & Very fine sand & 23 & 0 & MRL & 0 & 0 & 0 \\
\hline \multicolumn{9}{|l|}{Metals/Metalloids} \\
\hline \multicolumn{9}{|c|}{Columbia Analytical Services} \\
\hline & & Aluminum & 2100 & 629 & MRL & 150 & 411 & 150 \\
\hline & & Antimony & 2154 & 522 & MRL & 321 & 201 & 321 \\
\hline & & Arsenic & 2153 & 996 & MRL & 949 & 47 & 949 \\
\hline & & Barium & 2100 & 246 & MRL & 7 & 239 & 7 \\
\hline & & Beryllium & 2100 & 1941 & MRL & 1937 & 4 & 1937 \\
\hline & & Cadmium & 2296 & 1403 & MRL & 660 & 530 & 660 \\
\hline & & Calcium & 2242 & 17 & MRL & 14 & 3 & 14 \\
\hline & & Chloride ion & 1395 & 48 & MRL & 5 & 43 & 5 \\
\hline & & Chromium & 2154 & 1361 & MRL & 203 & 949 & 203 \\
\hline & & Cobalt & 2100 & 984 & MRL & 264 & 575 & 264 \\
\hline
\end{tabular}

Table 8. 2010 White Sturgeon Sediment Toxicity Testing Data Review of How Non-detect Results are Reported


Table 8. 2010 White Sturgeon Sediment Toxicity Testing Data Review of How Non-detect Results are Reported


Columbia Analytical Services
2,2',3,3',4,4',5,5',6-Nonachlorobipheny
2,2',3,3',4,4',5,5'-Octachlorobiphenyl
2,2',3,3',4,4',5,6-Octachlorobiphenyl 2,2',3,3',4,4',5-Heptachlorobipheny 2,2',3,3',4,4'-Hexachlorobiphenyl 2,2',3,3',4,5',6,6'-Octachlorobiphenyl 2,2',3,3',4,5',6'-Heptachlorobiphenyl 2,2',3,3',4,5,6'-Heptachlorobiphenyl 2,2',3,3',4,6'-Hexachlorobiphenyl 2,2',3,4,4',5,5',6-Octachlorobiphenyl 2,2',3,4,4',5,5'-Heptachlorobiphenyl 2,2',3,4,4',5',6-Heptachlorobiphenyl 2,2',3,4,4',5'-Hexachlorobiphenyl 2,2',3,4,4',6,6'-Heptachlorobiphenyl 2,2',3,4',5,5',6-Heptachlorobiphenyl 2,2',3,4,5,5'-Hexachlorobiphenyl 2,2',3,4',5',6-Hexachlorobiphenyl 2,2',3,4',5'-Pentachlorobiphenyl 2,2',3,4',5-Pentachlorobiphenyl 2,2',3,4,5'-Pentachlorobiphenyl 2,2',3,5,5',6-Hexachlorobiphenyl 2,2',3,5',6-Pentachlorobiphenyl 2,2',3,5'-Tetrachlorobiphenyl 2,2',4,4',5,5'-Hexachlorobipheny 2,2',4,4',5-Pentachlorobiphenyl 2,2',4,5,5'-Pentachlorobiphenyl 2,2',4,5'-Tetrachlorobiphenyl 2,2',5,5'-Tetrachlorobiphenyl 2,2',5-Trichlorobiphenyl
2,3,3',4,4',5,5'-Heptachlorobiphenyl
2,3,3',4,4',5'-Hexachlorobiphenyl 2,3,3',4,4',5-Hexachlorobipheny 2,3,3',4,4',6-Hexachlorobipheny 2,3,3',4,4'-Pentachlorobiphenyl 2,3,3',4',6-Pentachlorobiphenyl 2,3,3',4'-Tetrachlorobiphenyl 2,3',4,4',5,5'-Hexachlorobipheny 2,3',4,4',5',6-Hexachlorobiphenyl
\[
-
\]
MRL
\(M R L\)
\(M\)

2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2 16
16 2
2 2
2 2
2
2 2
2
2 2
2
2 2
2 2
2
2 2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
0
0
0

2 2
\(\square\)
\(\square\)
2
0
0
.

Table 8. 2010 White Sturgeon Sediment Toxicity Testing Data Review of How Non-detect Results are Reported

\({ }^{\text {a }}\) The December 2011 analysis and summary included results for lab replicates, field replicates, field triplicates, blank water, rinse water/QC samples whereas the current table does not.
\({ }^{\mathrm{b}}\) Excludes all duplicate/triplicate/replicate/blank and rinsewater QC sample results.
\begin{tabular}{|c|c|c|}
\hline Memorandum & \begin{tabular}{l}
Teck American Incorporated 501 North Riverpoint Boulevard Suite 300 \\
Spokane, WA 99202 USA
\end{tabular} & +1 5097476111 Tel +1 5099228767 Fax www.teck.com \\
\hline
\end{tabular}

To: Helen Bottcher, U.S. Environmental Protection Agency (EPA) Region 10 (R10)

From: Kris McCaig, Teck American Incorporated (TAI)
Cc: Marko Adzic, TAI
Anne Fairbrother, Exponent, Inc.

\section*{RE: Upper Columbia River Remedial Investigation Feasibility Study (UCR RI/FS) Database Detection Limit Analysis Summary and Results}

As you know, Maja Tritt identified a discrepancy between reporting limits listed in approved Quality Assurance Project Plans (QAPPs) and the database. Specifically, M. Tritt noted that "It appears that Teck is reporting non-detects at the MDL (method detection limit) in their database rather than the MRL (method reporting limit). According to the QAPP (i.e., Surface Water Study as referenced below), non-detects should be reported at the MRL. This affects risk assessments to the extent that non-detects are used to calculate risks. MDLs may be reported for non-detects for the entire database, though I only checked the surface water data."

As requested, we have conducted an analysis for the above-mentioned discrepancy. To that end, approved QAPPs (e.g., 2009 Beach Sediment Study) were reviewed for clarification of requirements for reporting non-detected values in the database. Table 1 below identifies requirements and specific citations found in each QAPP:

Table 1 - UCR RI/FS QAPP Requirements
\begin{tabular}{|c|c|c|}
\hline QAPP & Requirement & Citation \\
\hline \begin{tabular}{l}
2009 Beach \\
Sediment \\
Study
\end{tabular} & Nondetected values will be reported at the MRL and will be adjusted by the laboratory as necessary to reflect sample dilution or matrix interference. & Page A-23, third full paragraph \\
\hline \multirow[t]{2}{*}{2009/2010 Surface Water Study} & Nondetected values will be reported at the MRL and will be adjusted by the laboratory as necessary to reflect sample dilution or matrix interference. & Page B-19, third full paragraph \\
\hline & For HRGC/HRMS methods non-detects will be reported to the sample specific detection limit (SDL). For all other methods non-detects will be reported to the MRL. & Table B-2, Note c (table page 6 of 6 ) \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& 2009 \text { Fish } \\
& \text { Tissue Study }
\end{aligned}
\]} & Nondetected values will be reported at the MDL and will be adjusted by the laboratory as necessary to reflect sample dilution or matrix interference. & Page B-16, third full paragraph \\
\hline & For high-resolution gas chromatography/high-resolution mass spectrometry (HRGC/HRMS) analyses (i.e., Dioxins/Furans, PCB Congeners, and PBDEs) the analytes will be reported to an estimated detection limit (EDL). The EDL is sample and analyte specific and is based on the signal and noise on the instrument. & Table B-2, Note i (table page 10 of 10) \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
2010 White \\
Sturgeon \\
Sediment \\
Toxicity Study
\end{tabular}} & Nondetected values will be reported at the MRL and will be adjusted by the laboratory as necessary to reflect sample dilution or matrix interference. & Page B-24, second bullet and continued on B-25 \\
\hline & For HRGC/HRMS methods non-detects will be reported to the SDL. For all other methods non-detects will be reported to the MRL. & Table A-2, Note c (table page 6 of 6) \\
\hline
\end{tabular}

The database manager (i.e., Exponent) ran a query for all records associated with "Teck" studies in the database to return all records where the undetected field = TRUE. Once the initial review was complete, questions were identified in certain data sets and TAI worked with the respective analytical laboratories to obtain answers and make appropriate updates to the database. Table 2 below is a download from the database webtool under the database history notes tab where updates made to the database regarding the above referenced are recorded based on our work with the laboratories and the validator (i.e., Environmental Standards, Inc.) to clarify or correct data records.

Table 2 - Database History Notes Relating to Non-Detect Reporting
\begin{tabular}{|l|l|l|}
\hline Comments & \begin{tabular}{l} 
Data \\
Manager
\end{tabular} & \begin{tabular}{l} 
Change \\
Date
\end{tabular} \\
\hline \begin{tabular}{l} 
For the Teck 2009 sturgeon toxicity studies, 247 pH results records \\
updated by the removal of the "U*" validation flag. The U* flags were \\
originally assigned based on review of the measured values only, and \\
an undetected flag is not appropriate for a pH measurement.
\end{tabular} & C. Kessel & \(9 / 12 / 2011\) \\
\hline \begin{tabular}{l} 
For the Teck 2009 fish study lab sample K0911736-005 mercury \\
analysis of rinse water, updated the detection limit from 0.2 to 0.02 per \\
review of EDD and lab report.
\end{tabular} & C. Kessel & \(9 / 13 / 2011\) \\
\hline \begin{tabular}{l} 
For the Teck 2009 fish study, 5 non-detect result records were updated \\
per correction from Vista; the 5 records have the following note added \\
to the comments field: "Missing detection limit added, and meas_value \\
updated from reporting_limit to detection_limit on 10/4/2011 per \\
correction from Vista.".
\end{tabular} & C. Kessel & \(10 / 4 / 2011\) \\
\hline \begin{tabular}{l} 
For the Teck 2009 fish study and 3 rounds of surface water, undetected, \\
estimated and validator_flags fields were updated for 37 records per \\
corrections from validator. All affected records contains details of \\
updates made plus "...per validation correction, 10/4/11." in the \\
comments field.
\end{tabular} & C. Kessel & \(10 / 4 / 2011\) \\
\hline \begin{tabular}{l} 
For the Teck 2010 Sturgeon Toxicity study, updated 990 undetected \\
results detection limit field to equal the measured value per review by \\
M. Hecker, 9/26/11. Updated measured values for 4 nitrite results from \\
<0.02 to <0.25; and removed the "<" lab flag from 7 records per review \\
by D. Vardy, 10/6/11 \& 10/7/11.
\end{tabular} & C. Kessel & \(10 / 7 / 2011\) \\
\hline \begin{tabular}{l} 
For the Teck 2009 and 2010 Beach Sediment and 2009 round 1 Surface \\
Water, 1339 undetected results records were updated for the reporting \\
limit, detection limit, and/or measured value per updates received from \\
SGS NC. See the lab report addendums for specific details.
\end{tabular} & C. Kessel & \(11 / 14 / 2011\) \\
\hline \begin{tabular}{l} 
For the Teck 2009 fish, and 2010 Round 2 and 3 Surface Water studies, \\
15 non-detect records measured value and/or detection limit fields \\
updated per review by CAS and Vista. See lab results comments field \\
for specific details.
\end{tabular} & C. Kessel & \(11 / 16 / 2011\) \\
\hline
\end{tabular}

Once the above listed items were addressed and all updates made to the database, the summary shown in Table 3 below was prepared to compare non-detect reporting in the database with requirements of the program QAPPs as listed above in Table 1.

Table 3 - Summary of Non-detect Values Reported from Teck UCR RI/FS Studies
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Teck Program & NDs reported at MRL & NDs reported at MDL & NDs not reported at MRL or MDL & Notes - NDs not reported at MRL or MDL & Total count of NDs & QAPP requirement & NDs
reported
as per
QAPP & NDs NOT reported as per QAPP \\
\hline 2009 Beach Sediment & 73 & 1,332 & 37 & \(1^{\text {a }}, 34^{\text {b }}, 2^{\text {e }}\) & 1,442 & & & \\
\hline 2010 Beach Sediment & 67 & 2,168 & 33 & \(28^{\text {b }}, 1^{\text {d }}, 4^{\text {e }}\) & 2,268 & & & \\
\hline 2011 Beach Sediment & 510 & 14,686 & 310 & \(220^{\text {b }}, 76^{\text {d }}, 14^{\text {e }}\) & 15,506 & & & \\
\hline Beach Sediment Total & 650 & 18,186 & 380 & & 19,216 & ND=MRL & 650 & 18,566 \\
\hline 2009 Surface Water Round 1 & 3,976 & 26,811 & 307 & \(2^{\text {a }}, 295^{\text {b }}, 10^{\text {e }}\) & 31,094 & & & \\
\hline Non-HRGC/HRMS Data & 3,030 & 15,482 & 10 & & 18,522 & ND=MRL & 3,030 & 15,482 \\
\hline HRGC/HRMS Data & 946 & 11,329 & 297 & & 12,572 & ND=MDL & 11,329 & 946 \\
\hline 2010 Surface Water Round 2 & 11,697 & 13,794 & 16 & \(1^{\mathrm{b}}, 15^{\mathrm{e}}\) & 25,507 & & & \\
\hline Non-HRGC/HRMS Data & 2,077 & 12,584 & 15 & & 14,676 & ND=MRL & 2,077 & 12,584 \\
\hline HRGC/HRMS Data & 9,620 & 1,210 & 1 & & 10,831 & ND=MDL & 1,210 & 9,620 \\
\hline 2010 Surface Water Round 3 & 11,791 & 12,951 & 14 & \(14^{\text {e }}\) & 24,756 & & & \\
\hline Non-HRGC/HRMS Data & 2,180 & 11,679 & 14 & & 13,873 & ND=MRL & 2,180 & 11,679 \\
\hline HRGC/HRMS Data & 9,611 & 1,272 & -- & & 10,883 & ND=MDL & 1,272 & 9,611 \\
\hline Non-HRGC/HRMS Data Total & 7,287 & 39,745 & 39 & & 47,071 & ND=MRL & 7,287 & 39,784 \\
\hline HRGC/HRMS Data Total & 20,177 & 13,811 & 298 & & 34,286 & ND=MDL & 13,811 & 20,475 \\
\hline Surface Water Total & 27,464 & 53,556 & 337 & & 81,357 & & 21,098 & 60,259 \\
\hline 2009 Fish Total & -- & 80,221 & 11 & \(11^{\text {b }}\) & 80,232 & ND=MDL & 80,221 & \(11^{\text {b }}\) \\
\hline 2010 Sturgeon Sediment Toxicity Total & 8,623 & 14,793 & 1,947 & \(1,904^{\text {c }}, 43^{\text {d }}\) & 25,363 & ND=MRL & 8,623 & 16,740 \\
\hline All Programs Total & 36,737 & 166,756 & 2,675 & & 206,168 & & 110,592 & 95,565 \\
\hline
\end{tabular}
a - U* flag assigned by validator. U* definition: analyte should be considered "not-detected" because it was detected in an associated blank at a similar level.
b-EMPC flag assigned by lab or validator. EMPC definition: the detection limit represents the estimated maximum possible concentration if the compound was present.
c - The reported measured value contains the calculated concentration from the DGT probe; see the "comments" field of these records for more details.
d - These records are CAS grain size results where all of the measured values \(=0\), and there are no detection/reporting/quantification limits for grain size analysis. The validator assigned the "UJ" flag to these records stating "large discrepancies were observed between the results for these particle size fractions in the associated field duplicate analyses".
e - Pace radionuclides non-detect results: The typical environmental term, method detection limit (MDL) is not applicable to radiochemistry as the detection limit is unique to each sample as well as each method. Therefore following a prescribed methodology such as that described in CFR Part 136 Appendix B would not result in the actual detection limit for the actual sample.









\section*{Round 1: September - October 2009}

Lab




LEGEND

\(\begin{array}{ll}\Delta & \text { Near-botom } \quad R=\text { Right bank (blit) } \\ \diamond \text { Not detected (shown at the detection limit) }\end{array}\)

Round 2: February - April 2010



\(\begin{array}{ccccccccc}\text { LR } & \text { L } & \text { LR } & \text { LR } & \text { LMR } \\ \text { CAN1 } & \text { LAN2 } & \text { LMR } \\ \text { CC10 } & \text { TC9 } & \text { TC1 } & \text { TC2 } & \text { TC3 } & \text { TC4 } & \text { TC5 } & \text { TC6 } & \text { TC7 }\end{array}\)
DWS (P) Drinking water standard, EPA primary maximum contaminant leve \begin{tabular}{ll} 
DWS (S) \\
DWS (AL) & Drinking water standard, EPA secondary standard \\
\hline
\end{tabular} DWS (AL) Drining water standard, EPA action leve
DWS (HA,C)
 DWS (HA,NC) Drinking water standard, EPA heath advisory, lifetime
DWS (DWEL)

Round 3: April - June 2010



Drinking water standard, EPA heath-based level for individuals on a \(500 \mathrm{mg} / \mathrm{day}\) restricted sodium diet Drinking water standard, EPA taste threshold
EPA national s recommenmended waster quatirhy criterion, chronic exposure
NRWQC (CCC)
NRWOC (CMC)
NRWQC (CMC)
NRWQC (B)








Round 1: September - October 2009


Dissolved


LEGEND


Note: Disturbed samples are not shown. Y -axes are on \(\log _{10}\) scale.

Round 2: February - April 2010



\(\begin{array}{ccccccccc}\text { LR } & \text { L } & \text { LR } & \text { LR } & \text { LMR } \\ \text { CAN1 } & \text { CAN2 } & \text { TC10 } & \text { LMR } \\ \text { TC9 } & \text { TC1 } & \text { TC2 } & \text { TC3 } & \text { TC4 } & \text { TC5 } & \text { TC6 } & \text { TC7 }\end{array}\)
\begin{tabular}{|c|c|}
\hline Dws (P) & Drinking water standard, EPA primary maximum contaminant level \\
\hline DWs (s) & Drinking water standard, EPA secondary standard \\
\hline DWS (AL) & Drinking water standard, EPA action level \\
\hline DWs (HA,C) & Drinking water standard, EPA health advis \\
\hline ( \(\mathrm{HA}, \mathrm{NC}\) ) & \\
\hline
\end{tabular}
\(\begin{array}{ll}\text { DWS (AL) } & \begin{array}{l}\text { Drinking water standard, EPA action level } \\ \text { DWS ( } A \text { AA,C) } \\ \text { Dinkking water standard, }\end{array} \text {, PPA heath advisory, 10E-4 cancer risk }\end{array}\)
DWS (HA,NC) Drinking water standard, EPA heath advisory, Ififtime no
DWS (DWEL) Drinking water standard, drinking water equivalent tevel

Round 3: April - June 2010



ows (HB) DWS (T) NRWQC (CCC) NRWQC (CCC)
NRWQC (CMC) NRWQC (B)

Drinking water standard, EPA health-based level for individuals on a 500 mg/day restricted sodium diet Drinking water standard, EPA taste threshold
EPA national recommended water quality criterion, chronic exposure
EPA national recommended water quality criterion, chronic exposure
EPA national recommended anter quaity
EPational recommended water quality criterion, cutu exp exposure



Round 1: September - October 2009


LEGEND
\[
\begin{array}{ll}
\nabla & \text { Near-surface } \\
O & L=\text { Left bank (orange) } \\
\text { Neaershore } & M=\text { Mid-chanene (green) } \\
\triangle \text { Near-bottom } & R=\text { Right bank ( (lue) }
\end{array}
\]

Not detected (shown at the detection limit)

Disturbed samples are not shown
\(Y\)-axes are on \(\log _{10}\) scale.

Round 2: February - April 2010



\(\begin{array}{ccccccccc}\text { LR } & \text { L } & \text { LR } & \text { LR } & \text { LMR } \\ \text { CANR1 } & \text { CAN2 } & \text { TC10 } & \text { TC9 } & \text { TC1 } & \text { TC2 } & \text { TC3 } & \text { TC4 } & \text { TC5 } \\ \text { TC6 } & \text { TC7 }\end{array}\)
\begin{tabular}{|c|c|}
\hline Dws (P) & Drinking water standard, EPA primary maximum cos \\
\hline DWs (s) & Drinking water standard, EPA secondary standard \\
\hline DWs (AL) & Drinking water standard, EPA action level \\
\hline DWS (HA,C) & Drinking water standard, EPA health ad \\
\hline DWS (HA,NC) & Drinking water standard, EPA heath advisory, lifetime nonca \\
\hline
\end{tabular}

Round 3: April - June 2010


Drinking water standard, EPA heath-based level for individuals on a 500 mg/day restricted sodium diet
DWS (T)
NRWQC (CCC) \(\begin{aligned} & \text { Drinking water standard, EPA taste threshold } \\ & \text { EPA national recommended water quality criterion, chronic exposure }\end{aligned}\)

DWS (DWEL) Drinking water standard, drinking water equivalent level

Round 1: September - October 2009


Dissolved


LEGEND
\(\mathrm{L}=\) Leff bank (orange)
\(M=\) Mid-channel (green)
\(R=\) Right bank (blue)
\(\nabla\) Near-surface
O Nearshore
\(\triangle\) Near-botoon
Disturbed samples are no
\(Y\)-axes are on \(Y\)-axes are on \(\log _{10}\) scale.

Round 2: February - April 2010



\(\begin{array}{ccccccccc}\text { LR } & \text { L } & \text { LR } & \text { LR } & \text { LMR } \\ \text { CANR1 } & \text { CAN2 } & \text { TC10 } & \text { TC9 } & \text { TC1 } & \text { TC2 } & \text { TC3 } & \text { TC4 } & \text { TC5 } \\ \text { TC6 } & \text { TC7 }\end{array}\)
DWS (P) Drinking water standard, EPA primary maximum contaminant level
\(\begin{array}{ll}\text { DWS (P) } & \text { Drinking water standard, EPA primary maximum } \\ \text { OWS } \\ \text { Dr } \\ \text { Drikning water standard, PEA secondary standard }\end{array}\)
\(\begin{array}{ll}\text { DWS (AL) } & \text { Drinking water standara, EPA secondary sind } \\ \text { Dring water standard, EPA action level }\end{array}\)
\(\begin{array}{lll}\text { DWW (AL) } & \text { Drinking water standard, EPA action level } \\ \text { DWS (AA,C) } \\ \text { Dirinking water standard, } \\ \text { PPA health advisory, 10E-4 cancer risk }\end{array}\) DWS (HA,NC) Dinking water standard, EPA health advisory, lifetime no
DWS (DWEL) Drinking water standard, drinking water equivalent level

Round 3: April - June 2010


 DWs (T) NRWQC (CCC) NRWQC (CCC)
NRWQC (CMC) NRWQC (B)

Drinking water standard, EPA health-based level for individuals on a 500 mg/day restricted sodium diet Drinking water standard, EPA taste threshold
EPA national recommended water quality criterion, chronic exposure
EPA national recommended water quality criterion, acute exposure
EPA national recommended water quality criterion, BLM calculation


Round 1: September - October 2009
Total



Round 2: February - April 2010



\(\begin{array}{ccccccccc}\text { LR } & \text { L } & \text { LR } & \text { LR } & \text { LMR } \\ \text { CANR1 } & \text { CAN2 } & \text { TC10 } & \text { TC9 } & \text { TC1 } & \text { TC2 } & \text { TC3 } & \text { TC4 } & \text { TC5 } \\ \text { TC6 } & \text { TC7 }\end{array}\)
DWS (P) Drinking water standard, EPA primary maximum contaminant level DWS (S) Drinking water standard, EPA secondary standard
\(\begin{array}{ll}\text { DWS (AL) } & \text { Driking water standard, EPA action level } \\ \text { DWS (HA,C) } & \text { Drinking water standard, EPA heath advisory, 10E-4 cancer risk }\end{array}\) DWS (HA,NC) \()\) Drinkking waterer standardard, EPA heaathth advisisory, lifetime nonconcancer effect
DWS (WWEL) Dinking

Round 3: April - June 2010



DWS (HB) DWS (T)
NRWQC (CCC) NRWQC (CCC)
NRWQC (CMC) NRWQC (B)
Drinking water standard, EPA tastete threshold

Drinking water standard, EPA taste threshold
EPA national recommended water uuality criterion, chronic exposure
EPA antional recommended water quaulitit critererion, a cute exposure
EPA national recommended water quality criterion BLM Cacylation
EPA national recommended water quality criterion, BLM calculation


Round 1: September - October 2009


Dissolved


Round 3: April - June 2010

\(\begin{array}{ccccccccc}\text { LR } & \text { L } & \text { LR } & \text { LR } & \text { LMR } \\ \text { CAN1 } & \text { CAN2 } & \text { TC10 } & \text { LMR } \\ \text { TC9 } & \text { TC1 } & \text { TC2 } & \text { TC3 } & \text { TC4 } & \text { TC5 } & \text { TC6 } & \text { TC7 }\end{array}\)
Drinking water standard, EPA heath-based level for individuals on a \(500 \mathrm{mg} / \mathrm{day}\) restricted sodium diet Drinking water standard, EPA taste threshold
DWS (HB)
DWS (T)
DWS (T)
NRWQC (CcC)
NRWQC CMC)
NRWQC (CMC)
NRWQC (B)
EPA national recommended water quality criterion, chronic exposure
EPA national recommended water quality criterion, acute exposure
EPA national recommended water quality criterion, BLM calculation

Round 1: September - October 2009


Dissolved


Round 3: April - June 2010



Drinking water standard, EPA health-based level for individuals on a 500 mg g/day restricted sodium diet DWS (T) Drinking water standard, EPA taste threshold
NRWOC (CCC) EPA A national recommenended waster quality criterion, chronic exposure
NRWQC (CMC) EPA national recommended water quality criterion, acute exposure
NRWQC (B)

Round 1: September - October 2009


Dissolved
 DWS (DWEL) Drinking water standard, drinking water equivalent level

Round 3: April - June 2010


\(\begin{array}{ccccccccc}\text { LR } & \text { L } & \text { LR } & \text { LR } & \text { LMR } \\ \text { CAN1 } & \text { CAN2 } & \text { TC10 } & \text { TC9 } & \text { TC1 } & \text { TC2 } & \text { TC3 } & \text { TC4 } & \text { TC5 } \\ \text { TC6 } & \text { TC7 }\end{array}\)
Drinking water standard, EPA heath-based level for individuals on a 500 mg/day restricted sodium diet Drinking water standard, EPA taste threshold
DWS (HB)
DWS (T) NRWOC (Ccc) NRWQC (CCC)
NRWQC (CMC) NRWQC (B)

EPA national recommended water quality criterion, chronic exposure
EPA national recommended water quality criterion, acute expolity criterion, BLM calculation


Dissolved


Round 2: February - April 2010



\begin{tabular}{|c|c|}
\hline DWS (P) & Drinking water standard, EPA primary maximum contaminant level \\
\hline Dws (S) & Drinking water standard, EPA secondary standard \\
\hline DWS (AL) & Drinking water standard, EPA action level \\
\hline DWS (HA,C) & Drinking water standard, EPA health advisory, 10E-4 cancern \\
\hline DWS (HA,NC) & Drinking water standard, EPA health advisory, life \\
\hline DWs (DWEL) & nking water standard, drinking water equival \\
\hline
\end{tabular}

Round 3: April - June 2010



Round 1: September - October 2009


Dissolved

\(\begin{array}{cccccccccc}\text { LR } & \text { L } & \text { LR } & \text { LR } & \text { LMR } \\ \text { CANR1 } & \text { CAN2 } & \text { TC10 } & \text { TC9 } & \text { TC1 } & \text { TC2 } & \text { TC3 } & \text { TC4 } & \text { TC5 } & \text { TC6 } \\ \text { TC7 }\end{array}\)

LEGEND \(\qquad\)
\(\nabla\) Near-surface
O Nearshore
\(\triangle\) Near-bato
\(\triangle\) Near-bottom \(M=\) Mid-channel (green) \(M=\) Mid-channel (gree
\(R=\) Right bank (blue)

Round 2: February - April 2010




\begin{tabular}{|c|c|}
\hline ws (P) & ng water standard, EPA primary max \\
\hline DWs (S) & Drinking water standard, EPA secondary standard \\
\hline DWS (AL) & Drinking water standard, EPA action level \\
\hline DWs (HA,C) & Drinking water standard, EPA health a \\
\hline DWS (HA,NC) & Drinking water standard, EPA health advisory, lifetime noncancer effect \\
\hline & \\
\hline
\end{tabular}

Round 3: April - June 2010



DWs (HB) Dws (T) NRWQC (CcC) NRWQC(CCC)
NRWQC (CMC)
NRWQC (B)

Drinking water standard, EPA health-based level for individuals on a \(500 \mathrm{mg} / \mathrm{day}\) restricted sodium diet Drinking water standard, EPA taste threshold
EPA national recommended water quality criter
EPA national recommmended wated quality criterion, chronic exposure
EPA national recommmended water quality criterion, acult exposure

Round 1: September - October 2009



Round 3: April - June 2010


Round 1: September - October 2009


\[
\begin{aligned}
& \text { LEGEND } \\
& M=\text { Mid-channel (gree } \\
& \text { Note: Disturbed samples are not sho } \\
& Y \text {-axes are on } \log _{10} \text { scale. }
\end{aligned}
\]


Round 2: February - April 2010



 DWS (HA,NC) Drinking water standard, EPA heath advisory, ifietime non
DWS (DWEL) Drinking water standard, drinking water equivalent level

Round 3: April - June 2010



Drinking water standard, EPA heath-based level for individuals on a 500 mg/day restricted sodium diet
DWS (T) \(\quad\) Drinking water standard, EPA taste threshold
NRWCC (CCC)
EPA national recommended water quality y citerion, chronic exposure
NRWWQC (CMC) EPA national recommended water quatity criterino, chronic exposure
NRWQC (B)
A national recommended water quality citerion BLM Calculation

Round 1: September - October 2009
Total



Round 3: April - June 2010



Round 1: September - October 2009


Dissolved


Round 3: April - June 2010



Drinking water standard, EPA heath-based level for individuals on a \(500 \mathrm{mg} / \mathrm{day}\) restricted sodium diet
DWS (T) \(\quad\) Drinking water standard, EPA taste threshold
NRWQC (CCC) EPA national recommended water quality criterion, chronic exposure

national recommended water quality criterion, BLM calculation
DWS (DWEL) Drinking water standard, drinking water equivalent tevel

\section*{Round 1: September - October 2009}


Dissolved


Round 3: April - June 2010



DWs (HB) Drinking water standard, EPA taste threshold
EPA national recon
EPA national recommended water quality criterion, chronic exposure
EPA national recommended water quality criterion, acute exposure
EPA national recommended water quality criterion, BLM calculation

Round 1: September - October 2009
Total



Round 3: April - June 2010




Dissolved


Round 3: April - June 2010



DWs (HB)
DWs (T) NRWQC (CCC) NRWQC (CCC)
NRWQC ( (MC)
NRWQC (B)

Drinking water standard, EPA health-based level for individuals on a 500 mg/day restricted sodium diet Drinking water standard, EPA taste threshold
EPA national recommended water quality criterion, chronic exposure
EPA national recommended water quality criterion, acute exposure
EPA national recommended water quality criterion, BLM calculation

Round 1: September - October 2009
Total


Dissolved


Note: Disturbed samples are not shown. \(Y\)-axes are on \(\log _{10}\) scale.

Round 2: February - April 2010



\(\begin{array}{ccccccccc}\text { LR } & \text { L } & \text { LR } & \text { LR } & \text { LMR } \\ \text { CAN1 } & \text { CAN2 } & \text { TC10 } & \text { LMR } \\ \text { TC9 } & \text { TC1 } & \text { TC2 } & \text { TC3 } & \text { TC4 } & \text { TC5 } & \text { TC6 } & \text { TC7 }\end{array}\)


Round 3: April - June 2010


ows (HB) DWS (T)
NRWQC (CCC) NRWQC (CCC)
NRWQC ( ( \(M\) )
NRWQC

Drinking water standard, EPA heath-based level for individuals on a 500 mg/day restricted sodium diet Drinking water standard, EPA taste threshold
EPA national rece
EPA national recommended water quality criterion, chronic exposure
EPA national recommended water quality criterion, acute exposure
EPA national recommended water quality criterion, BLM calculation

\section*{Round 1: September - October 2009}


Dissolved


Note: Disturbed samples are not shown. \(Y\)-axes are on \(\log _{10}\) scale.

Round 2: February - April 2010




 DWS (HA,NC) Dinking water standard, EPA heath advisory, lifetime no
DWS (DWEL) Drinking water standard, drinking water equivalent level

Round 3: April - June 2010



Round 1: September - October 2009


Dissolved


Round 2: February - April 2010




DWS (P) Drinking water standard, EPA primary maximum contaminant leve OWS (S) Drinking water standard, EPA secondary standard DWS (AL) Drinking water standard, EPA seceonda action leve DWS (HA,NC) ) Drinkking water standard, EPA heath advisory, 10 E -4 cancer istand DWS (HA,NC) Drinking water standard, EPA health advisory, lifetime
DWS (DWEL) Drinking water standard, drinking water equivalent level

Round 3: April - June 2010


Dws (HI) DWS (T) NRWOC (CCC) NRWWQC (CMC)
NRWQ (B) NRWQC (B)
Drinking water standard, EPA taste threshold
    EPA national recommended water quality criterion, chronic exposure
        EPA national recommended water quality criterion, acute exposure

Round 1: September - October 2009
Total


Dissolved


Round 3: April - June 2010



Round 1: September - October 2009


Dissolved


Round 2: February - April 2010



\(\begin{array}{ccccccccccc}\text { LR } & \text { L } & \text { LR } & \text { LR } & \text { LMR } & \text { LMR } & \text { LMR } & \text { LMMR } & \text { LMR } & \text { LMR } & \text { LMR } \\ \text { CAN1 } & \text { CAN2 } & \text { TC10 } & \text { TC9 } & \text { TC1 } & \text { TC2 } & \text { TC3 } & \text { TC4 } & \text { TC5 } & \text { TC6 } & \text { TC7 }\end{array}\)
 DWS (HA,NC) Dinking water standard, EPA Aealth advisory, ifietime non
DWS (DWEL) Drinking water standard, drinking water equivalent evel

Round 3: April - June 2010




Round 1: September - October 2009
Total


Dissolved


Round 2: February - April 2010



\(\begin{array}{ccccccccc}\text { LR } & \text { L } & \text { LR } & \text { LR } & \text { LMR } \\ \text { CANR1 } & \text { CAN2 } & \text { TC10 } & \text { TC9 } & \text { TC1 } & \text { TC2 } & \text { TC3 } & \text { TC4 } & \text { TC5 } \\ \text { TC6 } & \text { TC7 }\end{array}\)
DWS (P) Drinking water standard, EPA primary maximum contaminant leve DWS (S) Drinking water standard, EPA secondary standard \(\begin{array}{ll}\text { DWS (AL) } & \text { Drinking water standard, EPA secondary } \\ \text { Drinking water standard, EPA action level }\end{array}\) \(\begin{array}{lll}\text { DWS (AL),C) } & \text { Drinking water standard, EPA action level } \\ \text { Dinking water standard, EPA heath advisory, } 10 \mathrm{E}-4 \text { cancer risk }\end{array}\) DWS (HA,NC) Dinking water standard, EPA health advisory, lifetime no
DWS (DWEL) Drinking water standard, drinking water equivalent level

Round 3: April - June 2010





Round 1: September - October 2009




LEGEND \(\qquad\)
O Nearashorface
\(M=\) Mid-channel (gree
\(M=\) Mid-channel (gree \()\)
\(R=\) Right tank (blue)
\(\diamond\) Not detected (shown at the detection limit)

Note: Disturbed samples are not shown. \(Y\)-axes are on \(\log _{10}\) scale.

Round 2: February - April 2010


Round 3: April - June 2010


\(\begin{array}{ccccccccc}\text { LR } & \text { L } & \text { LR } & \text { LR } & \text { LMR } \\ \text { CANR1 } & \text { CAN2 } & \text { TC10 } & \text { TC9 } & \text { TC1 } & \text { TC2 } & \text { TC3 } & \text { TC4 } & \text { TC5 } \\ \text { TC6 } & \text { TC7 }\end{array}\)
DWS (P) Drinking water standard, EPA primary maximum contaminant level \(\begin{array}{ll}\text { DWS (S) } & \text { Drinking wateet statandard, EPA secencondry standard } \\ \text { DWS (AL) } & \text { Drinking water standard, EPA action leyel }\end{array}\)
\(\begin{array}{lll}\text { DWS (AL) } & \text { Drinking water standard, EPA action level } \\ \text { DWS (HA,C) } & \text { Drinking water standard, EPA health advisory, 10E-4 cancer risk }\end{array}\) DWS (HA,NC) Drikning waterer standardard, EPA heaeath advisory, Ifeetime noncancer effect
DWS (WWEL) Dink

\(\begin{array}{cccccccccc}\text { LR } & \text { L } & \text { LR } & \text { LR } & \text { LMR } \\ \text { CANR } \\ \text { CAN2 } & \text { TC10 } & \text { TC9 } & \text { TC1 } & \text { TC2 } & \text { TC3 } & \text { TC4 } & \text { TC5 } & \text { TC6 } & \text { TC7 }\end{array}\)
Drinking water standard, EPA health-based level for individuals on a 500 mg g/day restricted sodium diet Drinking water standard, EPA taste threshold
DWS (HB)
DWs (T) NRWQC (CCC)
NRWQC (CMC) NRWQC (B)

EPA national recommended water quality criterion, chronic exposure
EPA national recommended water quality criterion, acute exposure
EPA national recommended water quality criterion, BLM calculation


Round 1: September - October 2009


Dissolved


Round 2: February - April 2010




 DWS (HA,NC)
DWS (Dinking water standard, , PrA heath advisory, lifetime no
Drind

Round 3: April - June 2010



\section*{Round 1: September - October 2009}


Round 2: February - April 2010



\(\begin{array}{cccccccccc}\text { LR } & \text { L } & \text { LR } & \text { LR } & \text { LMR } \\ \text { CAN1 } & \text { CAN2 } \\ \text { TC10 } & \text { TC9 } & \text { TC1 } & \text { TC2 } & \text { TC3 } & \text { TC4 } & \text { TC5 } & \text { TC6 } & \text { TC7 }\end{array}\)
\begin{tabular}{|c|c|}
\hline DWs (P) & Drinking water standard, EPA primary maximum contaminant level \\
\hline Dws (s) & Drinking water standard, EPA secondary standard \\
\hline DWS (AL) & Drinking water standard, EPA action level \\
\hline DWS (HA,C) & Drinking water standard, EPA health advis \\
\hline & \\
\hline
\end{tabular}


Disturbed samples are not shown \(Y\)-axes are on \(\log _{10}\) scale.
\(L=\) Left bank ( orange)
\(M=\) Mid-channel (gree \(M=\) Mid-channel (gree)
\(R=\) Right bank (blue) \(\nabla\) Near-surface
0 Nearshore
\(\triangle\) Near-bottom
\(\checkmark\) Noar-dotiom (shown at the detection limit)

Round 3: April - June 2010




DWs(HB) DWS (T) NRWQC (CCC) NRWWOC (CMC)
NRWM NRWQC (B)

Drinking water standard, EPA health-based level for individuals on a 500 mg/day restricted sodium diet Drinking water standard, EPA taste threshold
EPA national recommended water quality criterion, chronic exposure
EPA national recommended water quality criterion, acute exposure
EPA national recommended water quality criterion, BLM calculation

Round 1: September - October 2009
Total


    DWS (HA,NC) Drinking water standard, EPA Aeath advisory, irietime
DWS (DWEL) Drinking water standard, drinking water equivalent evel

Round 3: April - June 2010



Dws (HB)
DWs (T)
NRWOC (Ccc)
NRWOC (CCC)
NRWQC (CMC)
NRWQC (B)
Drinking water standard, EPA taste threshold
In standard, EPA health-based level for individuals on a 500 mg /day restricted sodium diet
    Diriking water standard, EPA taste thresthold 1 ,
    EPA national I ceommended water quaulity critierion, a cute exposure
EPA national recommended water quality citerion


Round 1: September - October 2009


Dissolved


    \(\begin{array}{lll}\nabla & \text { Near-surface } & L=\text { Left bank (orange) } \\ O & \text { Nearshore } & M=\text { Mid-channel (green } \\ & R=\text { Right bank (bue) }\end{array}\)
    \(\quad \mathrm{R}=\) Right bank (b)
        Disturbed samples are not si


Round 3: April - June 2010



Drinking water standard, EPA heath-based level for individuals on a \(500 \mathrm{mg} / \mathrm{day}\) restricted sodium diet Drinking water standard, EPA taste threshold
DWS (HB)
DWS (T) DWS (T)
NRWQC (CCC NRWOC (CCC)
NRWQC (CMC) NRWQC (B)
EPA national recommended water quality criterion, chronic exposure
EPA national recommended water quality criterion, chronic exposure
EPA nation I ceommended water quatity yiterion, catu exposure
EPa



Round 1: September - October 2009
Total



Round 3: April - June 2010


DWs (HB) DWs (T) NRWOC (Ccc) NRWOC (CCC)
NRWQC (CMC) NRWQC (B)

Drinking water standard EPA health-based level for individuals on a \(500 \mathrm{mg} /\) day restricted sodium diet Drinking water standard, EPA taste threshold
EPA national recommended water quality criterion, chronic exposure
EPA national recommended water quality criterion, acute exposure
EPA national recommended water quality criterion, BLM calculation


Round 1: September - October 2009


Dissolved


Round 2: February - April 2010


Round 3: April - June 2010


\(\begin{array}{ccccccccc}\text { LR } & \text { L } & \text { LR } & \text { LR } & \text { LMR } \\ \text { CAMR1 } & \text { LAN2 } & \text { TC10 } & \text { TC9 } & \text { TC1 } & \text { TC2 } & \text { TC3 } & \text { TC4 } & \text { TC5 } \\ \text { TC6 } & \text { TC7 }\end{array}\)
Drinking water standard, EPA health-based level for individuals on a \(500 \mathrm{mg} / \mathrm{day}\) restricted sodium diet
DWs (HB)
DWS (T) DWS (T)
NRWQC (CCC) NRWQC (CCC)
NRWQC (CMC)
NRWQC (B)

Drinking water standard, EPA taste threshold
EPA antional recommended water quality criterion, chronic exposure
EPA national recommended water quality criterion, acute exposure
EPA national recommended water quality criterion, BLM calculation

Round 1: September - October 2009


Dissolved


Note: Disturbed samples are not shown.
\(Y\)-axes are on \(\log _{10}\) scale.

Round 2: February - April 2010



 DWS (HA,NC) Drinking water standard, EPA health advisory, lifetime no
DWS (DWEL) Drinking water standard, drinking water equivalent level

Round 3: April - June 2010



Round 1: September - October 2009


Dissolved

 LEGEND
\[
\begin{array}{ll}
\text { LEGEND } & L=\text { Left bank ( (range) } \\
\hline \nabla \text { Near-surface } & M=\text { Mid-channel ( (reen } \\
O & \text { Nearshore } \\
\triangle \text { Near-bottom } & R=\text { Right bank (blue) }
\end{array}
\]

Not detected (shown at the detection limit)

Note: Disturbed samples are not shown.
\(Y\)-axes are on \(\log _{10}\) scale.

Round 2: February - April 2010



\(\begin{array}{ccccccccc}\text { LR } & \text { L } & \text { LR } & \text { LR } & \text { LMR } \\ \text { CANR1 } & \text { CAN2 } & \text { TC10 } & \text { TC9 } & \text { TC1 } & \text { TC2 } & \text { TC3 } & \text { TC4 } & \text { TC5 } \\ \text { TC6 } & \text { TC7 }\end{array}\)
\begin{tabular}{|c|c|}
\hline DWs (P) & Drinking water standard, EPA primary maximum contaminant level \\
\hline DWs (s) & ing water standard, EPA seconday \\
\hline Dws (AL) & Drinking water standard, EPA action level \\
\hline DWS (HA,C) & Drinking water standard, EPA health ad \\
\hline S (HA,NC) & \\
\hline
\end{tabular}
\(\begin{array}{lll}\text { DWS (AL) } & \text { Drinking water standard, EPA action level } \\ \text { OWS (HA,C) } & \text { Drinking water standard, } \\ \text { EPA health advisory, } 10 \mathrm{E}-4 \text { cancer risk }\end{array}\) DWS (HA,NC) Dinking water standard, EPA heath advisory, lifetime no
DWS (DWEL) Drinking water standard, drinking water equivalent level

Round 3: April - June 2010



ows (HB) DWS (T)
NRWQC (CCC) NRWQC (CCC)
NRWQC (CMC) NRWQC (B) Drinking water standard, EPA health-based Iest
Drink ng water standard, EPA taste threshold
A national recommended water quality criterion, BLM calculation

Round 1: September - October 2009
Total


Dissolved


Round 3: April - June 2010



Round 1: September - October 2009



Round 3: April - June 2010



Dws (HB)
DWS (T) NRWOC (Ccc) NRWQC (CCC)
NRWQC (CMC)
NRWQC (B) Drinking water standardard, EPPA heath-basesed
Drinking water standard, EPA taste threshold ,
EPA anationar I Iecommenended water quaulitit crititerion, cirontic expososure
EPA national recommended water quality criterion, BLM calculation


Dissolved


Round 2: February - April 2010




 DWS (HA,NC) Drinking water standara, EPA headtht avvisisyry, IIEe-4ime cancer noncancer effect
DWS (DWEL) Drinking water standard, , drinking water equivientent evel

Round 3: April - June 2010




Round 1: September - October 2009



LEGEND
\(\circ\) Nearshore
\(\Delta\) Near-botom
\(=\) Leff bank (orange)
\(M=\) Mid-channel (gree
\(L=\) Mid-channel (green)
\(R=\) Right tank (due)
\(R=\operatorname{Right}\) bank (blu)
Not detected (shown at the detection limit)

Note: Disturbed samples are not shown \(Y\)-axes are on \(\log _{10}\) scale.

Round 2: February - April 2010



\(\begin{array}{cccccccccc}\text { LR } & \text { L } & \text { LR } & \text { LR } & \text { LMR } \\ \text { CAN } & \text { LAN2 } & \text { TC10 } & \text { TC9 } & \text { TC1 } & \text { TC2 } & \text { TC3 } & \text { TC4 } & \text { TC5 } & \text { TC6 } \\ \text { TC7 }\end{array}\)
DWS (P) Drinking water standard, EPA primary maximum contaminant level DWS (S)
DWS (AL) \(\begin{array}{lll}\text { DWS (AL) } & \text { Dinking water standard, EPA section leve } \\ \text { DWS (HA,C) } & \text { Drinking water standard }\end{array}\) DWS (HA,NC) ) Drink ing water standard, EPA heath advisory, 10 E-4 cancer risk


Round 3: April - June 2010



Round 1: September - October 2009


\[
\begin{array}{lllllllllll}
L R & L & L R & L R & L M R & L M R & L M R & L M R & \text { LMR } & \text { LMR } & \text { LMR } \\
\text { CAN1 } & \text { CAN2 } & \text { TC10 } & \text { TC9 } & \text { TC1 } & \text { TC2 } & \text { TC3 } & \text { TC4 } & \text { TC5 } & \text { TC6 } & \text { TC7 }
\end{array}
\]


Note: Disturbed samples are not shown. \(Y\)-axes are on \(\log _{10}\) scale.

Round 2: February - April 2010



\(\begin{array}{ccccccccc}\text { LR } & \text { L } & \text { LR } & \text { LR } & \text { LMR } \\ \text { CANR1 } & \text { CAN2 } & \text { TC10 } & \text { TC9 } & \text { TC1 } & \text { TC2 } & \text { TC3 } & \text { TC4 } & \text { TC5 } \\ \text { TC6 } & \text { TC7 }\end{array}\)



Round 3: April - June 2010


\(\begin{array}{cccccccccc}\text { LR } & \text { L } & \text { LR } & \text { LR } & \text { LMR } \\ \text { CAN1 } & \text { CAN2 } & \text { TC10 } & \text { TC9 } & \text { TC1 } & \text { TC2 } & \text { TC3 } & \text { TC4 } & \text { TC5 } & \text { TC6 } \\ \text { TC7 }\end{array}\)
Drinking water standard, EPA heath-based level for individuals on a 500 mg/day restricted sodium diet DWS (T) NRWQC (CCC) NRWQC (CCC)
NRWQC ( (MC)
NRWQC (B)
Drinking water standard, EPA taste threshold
EPA national recommended water quality criterion, chronic exposure
\(\begin{array}{lll}\text { NRWQC (CCC) } & \text { EPA national recommended water quality criterion, chronic exposure } \\ \text { RWQC (CMC) } & \text { EPA antionar Iecommended water quatit citirion, catue exposure } \\ \text { NRWQC (B) } & \text { EPA national recommended water quality criterion, BLM calculation }\end{array}\)



Round 1: September - October 2009
Total


Dissolved


Round 2: February - April 2010



\(\begin{array}{ccccccccccc}L R & L & \text { LR } & \text { LR } & \text { LMR } \\ \text { CAN1 } & \text { CAN2 } & \text { TC10 } & \text { TC9 } & \text { TC1 } & \text { TC2 } & \text { TC3 } & \text { TC4 } & \text { TC5 } & \text { TC6 } & \text { TC7 }\end{array}\)
DWS (P) Drinking water standard, EPA primary maximum contaminant leve DWS (S) Drinking water standard, EPA secondary standard \(\begin{array}{ll}\text { DWS (AL) } & \text { Drinking water standard, EPA action level } \\ \text { DWS (HA,C) } & \text { Dirinking water standard, EPA heath advisor, 10E-4 cancer risk }\end{array}\) DWS (HA,NC) Drinking water standard, EPA health advisory, Ififtime non
DWS (DWEL) Drinking water standard, drinking wate equivalent level

Round 3: April - June 2010



DWs (HB) DWS (T)
NRWQC (CcC) NRWQC (CCC)
NRWQC (CMC) NRWQC (CMC)
NRWQC (B)

Prinking water standard, EPA health-based level for individuals on a 500 mg/day restricted sodium diet Drinking water standard, EPA taste threshold
EPA national recommended water quality criterion, chronic exposure
EPA national recommended water quality criterion, acute exposure
EPA national recommended water quality criterion, BLM calculation




Round 1: September - October 2009


Dissolved


Round 2: February - April 2010




DWS (P) Drinking water standard, EPA primary maximum contaminant leve \(\begin{array}{ll}\text { DWS (P) } & \text { Drinking water standard, EPA primary maximum } \\ \text { DWS }(S) & \text { Drinking water standard, EPA secondary standard }\end{array}\) DWS (AL) Drinking water standardard, EPA seccondary \(\begin{array}{lll}\text { DWS (AL) } & \text { Drinking water standard, EPA action level } \\ \text { DWS (HA,C) } \\ \text { Dinkking water standard, EPA heath advisory, } 10 \mathrm{E}-4 \text { cancer risk }\end{array}\) DWS (HA,NC) Drinking water standard, EPA health advisory, lifetime no
DWS (DWEL)

Round 3: April - June 2010





Round 1: September - October 2009


Dissolved


Round 3: April - June 2010



Round 1: September - October 2009
Total



Round 3: April - June 2010


Round 1: September - October 2009
Total

 DWS (HA,NC) Drinking water standard, EPA heath a avisory, lifetime no
DWS (DWEL) Drinking water standard, drinking water equivalent level

Round 3: April - June 2010



DWS (HB)
DWs (T) NRWOC (Ccc) NRWQC (CCC)
NRWaC (CMC) NRWQC (CMC)
NRWQC (B)

Drinking water standard, EPA heath-based level for individuals on a 500 mg/day restricted sodium diet Drinking water standard, EPA taste threshold
EPA national recommended water quality criterion, chronic exposure
EPA national recommenmended water quality criterion, aculte exposure

Round 1: September - October 2009
Total


Dissolved


Round 2: February - April 2010




 DWS (HA,NC) Dinking water standard, EPA health advisory, lifetime no
DWS (DWEL) Drinking water standard, drinking water equivalent level

Round 3: April - June 2010



DWs (HB) DWS (T)
NRWQC (CCC) NRWQC (CCC)
NRWQC (CMC) NRWQC (CMC)
NRWQC (B)

Drinking water standard, EPA taste threshold
EPA national recommended water quality criterion, chronic exposure
EPA national recommended water quality criterion, acute exposure
EPA national recommended water quality criterion, BLM calculation

Round 1: September - October 2009


Dissolved


Round 3: April - June 2010

































































































Round 1: September - October 2009



Note: Disturbed samples are not shown. \(Y\)-axes are on \(\log _{10}\) scale.

Round 2: February - April 2010


Round 3: April - June 2010


DWs (HB) NRWQC (CCC)
NRWOC (CMC) NRWQC (CCC)
NRWQC (CMC) NRWQC (B)

Drinking water standard, EPA heath-based level for individuals on a 500 mq/day restricted sodium diet Drinking water standard, EPA taste threshold
EPA national recommended water quality criterion, chronic exposure
EPA national recommended water quality criterion, acute exposure
EPA national recommended water quality criterion, BLM calculation





























Surface Water - 2,2',4,4',6-Pentabromodiphenyl ether (PBDE-100)


Surface Water - 2, 2', 3, \(3^{\prime}, 4,4^{\prime}\)-Hexabromodiphenyl ether (PBDE-128)



Surface Water - 2, \(\mathbf{2}^{\prime}, 4,4^{\prime}, 5,5^{\prime}\)-Hexabromodiphenyl ether (PBDE-153)


Surface Water - 2, 2',4,4', 5',6-Hexabromodiphenyl ether (PBDE-154)





















Round 1: September - October 2009


Dissolved


\(\begin{array}{ll}\Delta \text { Neashore } & \begin{array}{l}M=\text { Mid-channel (green) } \\ \mathrm{R}\end{array} \mathrm{R}=\text { Right tank (blue) }\end{array}\)
Not detected (shown at the detection limit)

Round 2: February - April 2010



Round 3: April - June 2010



DWS (HA,NC) D
Dinking water standard, EPA healt advisory, Ifetime noncancer effect
OWEL)
DWS (DWEL) ows (T) Dink water standard, EPA healt-based


Round 1: September - October 2009


Dissolved


LEGEND
\begin{tabular}{|c|c|c|}
\hline \(\nabla\) & Near-surface & Left bank (ora \\
\hline \(\bigcirc\) & Nearshore & \(M=\) Mid-channel (green) \\
\hline \(\triangle\) & Near-botom & \(\mathrm{R}=\) Right bank (blue) \\
\hline
\end{tabular}
\(R=\) Right bank (blue)
\(\diamond\) Not detected (shown at the detection limi)

Round 2: February - April 2010



Round 3: April - June 2010



DWS (HA,NC)
DWS (DWEL) Dws (HB) DWs (T)

Drinking water standard, EPA heath advisory, Ifetime \(n\)
Drinking water standard, drinking water equivalent tevel
Drinking waier standard, EPA heaath-based level for individuals on a 500 mg/day restricted sodium diet Dinine

Round 1: September - October 2009


Dissolved


Round 2: February - April 2010


Round 3: April - June 2010



LEGEND
\(\begin{array}{lll}\nabla & \text { Near--surface } & L=\text { Left bank (orange) } \\ \text { O } & \text { Nearshore } & M=\text { Mid-channel (green) } \\ \triangle & \text { Near-bottom } & R=\text { Right } \\ \diamond & \text { Not detected (shown at the detection limit) }\end{array}\)
\(\diamond\) Not detected (shown at the detection limi)

Note: Non-disturbed samples are not shown. \(Y\)-axes are on \(\log _{10}\) scale.

Round 1: September - October 2009


Dissolved


\begin{tabular}{ll}
\(\Delta\) Nearshore & \(\begin{array}{l}M=\text { Mid-channel (green) } \\
R=\text { Right bank (blue) }\end{array}\) \\
\hline Near-botom &
\end{tabular}
\(\delta\) Not detected (shown at the detection linit)

Round 2: February - April 2010



Round 3: April - June 2010



DWS (HA,NC) Drinking water standard, EPA heath advisory, lifetime noncancer effect
DWS (DWEL) Drinking water standard, drinking water equivalent level ows (T) . 1

Round 1: September - October 2009


Dissolved

\begin{tabular}{|lll|}
\(\nabla\) & Near-surface & \(L=\) Left bank (orange) \\
\(O\) & Nearshore & \(M=\) Mid-channel (green) \\
\(\triangle\) & Near-botoon & \(\mathrm{R}=\) Right bank (blue) \\
\(\diamond\) & Not detected (shown at the detection \\
\hline
\end{tabular}

Note: Non-disturbed samples are not shown. \(Y\)-axes are on \(\log _{10}\) scale.

Round 2: February - April 2010



Round 3: April - June 2010



DWS (HA,NC) Drinking water standard, EPA health advisory, lifetime noncancer effect
\(\begin{array}{ll}\text { DWS (DWEL) } & \text { Drinking water standard, drinking water equivalent level } \\ \text { DWS (HB) } & \text { Drinking water sandard }\end{array}\) ows (T) Drinking water standardard, EPA haste the theshold


Round 1: September - October 2009


Dissolved


LEGEND

\(R=\operatorname{Right~bank~(blue)~}\)
Not detected (shown at the detection limit)

Round 2: February - April 2010



Round 3: April - June 2010



DWS (HA,NC) Drinking water standard, EPA health advisory, lifetime noncancer effect DWs (T)
\(\begin{array}{ll}\text { DWS (DWEL) } & \text { Drinking water standard, drinking water equivalent tevel } \\ \text { DWS (HB) } \\ \text { Drinking w water standard }\end{array}\)
Drinking water standard, EPA heath-based level for indivividuals on a 500 mglday restricted sodium die Drinking water standard. EPA taste threshold

Round 1: September - October 2009


\section*{Dissolved}


\(\begin{array}{ll}\Delta \text { Near-botom } & \mathrm{M}=\text { Mid-channel (green) } \\ \mathrm{R}=\text { Right tank (blue) }\end{array}\)
Not detected (shown at the detection limit)

Round 2: February - April 2010



Round 3: April - June 2010



DWS (HA,NC) Drinking water standard, EPA heath advisory, lifetime noncancer effect
DWS (DWEL) Drinking water standard, drinking water equivalent level


Round 1: September - October 2009


Dissolved

\begin{tabular}{|ll|}
\hline\(\nabla\) & Near-surface
\end{tabular}\(\quad \mathrm{L}=\) Left bank (orange)

Note: Non-disturbed samples are not shown \(Y\)-axes are on \(\log _{10}\) scale.

Round 2: February - April 2010



Round 3: April - June 2010



DWS (HA,NC)

Drinking water standard, EPA heath advisory, lifetime \(n\)
Drinking water standard, drinking water equivalent tevel
Drinking waiter standardard, EPA heaath-based level for individuals on a 500 mg/day restricted sodium diet Drinking water stand EPA taste theshod


Round 1: September - October 2009


Dissolved

 \begin{tabular}{ll}
\(\Delta\) Near-bottom & \(\quad \begin{array}{ll}\mathrm{M}=\text { Mid-chananel (green) } \\
\mathrm{R}=\text { Right bank ( (glue) }\end{array}\) \\
\hline
\end{tabular}
Not detected (shown at the detection limit)

Round 2: February - April 2010



Round 3: April - June 2010



DWS (HA,NC) Drinking water standard, EPA health advisory, lifetime noncancer effect
\(\begin{array}{lll}\text { OWS (DWEL) } & \text { Drinking water standard, drinking water equivient level } \\ \text { DWS (HB) } & \text { Drinking water standard, EPA heath-based level for ind }\end{array}\)
DWs (T) Drinking water standard, EPA taste thested

Round 1: September - October 2009


Dissolved

 \(\begin{array}{ll}\Delta \text { Near-bottom } & \quad \begin{array}{l}M=\text { Mid-channel (green } \\ R=\text { Right tank (blue) }\end{array}\end{array}\)
Not detected (shown at the detection limit)

Round 2: February - April 2010



Round 3: April - June 2010



DWS (HA,NC) Drinking water standard, EPA heath advisory, lifetime noncancer effect
DWS (DWEL) Drinking water standard, drinking water equivalent level Drinking water standardard, EPA EPeath-based

Round 1: September - October 2009


Dissolved

\begin{tabular}{ll}
\(\nabla\) Near-surface & \(L=\) Left bank (orange) \\
\(O\) Nearshore & \(M=\) Mid-channel (green) \\
\(\triangle\) Near-botom & \(R=\) Right bank (blue)
\end{tabular}
Note: Non-disturbed samples are not shown. \(Y\)-axes are on \(\log _{10}\) scale.

Round 2: February - April 2010



Round 3: April - June 2010



Not detected (shown at the detection limit)

Dws (P) DWs (S)
DWS (AL) Drinking water standarar, EPA PR secenondary maximundarday DWS (HA,C) Drinking water standard, EPA action nevel \(\begin{aligned} & \text { Drinking water standard, EPA heath advisory, 10E-4 cancer risk }\end{aligned}\)

DWS (HA,NC)
DWS (DWEL) Dws (HB) DWs (T)

Drinking water standard, EPA heath advisory, lifetime \(n\) n
Drinking water standard, drinking water equivalent level
Drinking water standardard, ERPA heaether-basedi level for for individuals on a \(500 \mathrm{mg} / \mathrm{day}\) restricted sodium diet

Round 1: September - October 2009


Dissolved

\begin{tabular}{|c|c|c|}
\hline \(\nabla\) & Near- & L= Left bank (orange) \\
\hline \(\bigcirc\) & Nearshore & \(\mathrm{M}=\) Mid-channel (green) \\
\hline \(\triangle\) & Near-botom & \(\mathrm{R}=\) Right bank (blue) \\
\hline & Not dete & detection limit) \\
\hline
\end{tabular}
Round 2: February - April 2010



DWs (P) DWs (S)
DWs (AL) \(\begin{array}{ll}\text { DWS (P) } & \text { Drining water standard, EPA primary maximum } \\ \text { DWS (S) } & \text { Drikning water standard, PPA secondary standa } \\ \text { DWS (AL) } & \text { Drikning water standard, EPA action evel } \\ \text { DWS }\end{array}\)

DWS (HA,NC)
DWS (DWEL) Dws (HB) bws (T)

Round 1: September - October 2009


Dissolved

\begin{tabular}{|c|c|c|}
\hline \(\nabla\) & Near- & L= Left bank (orange) \\
\hline \(\bigcirc\) & Nearshore & \(\mathrm{M}=\) Mid-channel (green) \\
\hline \(\triangle\) & Near-botom & \(\mathrm{R}=\) Right bank (blue) \\
\hline & Not dete & detection limit) \\
\hline
\end{tabular}
Note: Non-disturbed samples are not shown \(Y\)-axes are on \(\log _{10}\) scale.

Round 2: February - April 2010



DWs (P) DWs (S)
DWS (AL)


DWS (HA,NC)
DWS (DWEL) Dws (HB) DWs (T)

Drinking water standard, EPA heath advisory, lifetime \(n\) n
Drinking water standard, drinking water equivalent level
Drinking water standard, EPA health-based level for individuals on a \(500 \mathrm{mg} / \mathrm{day}\) restricted sodium diet Drinking water standard EPA taste theshol

Round 1: September - October 2009


Dissolved

 \(\begin{array}{ll}\Delta \text { Near-bottom } & R=\text { Midid-channel tank (green) } \\ \text { (glue) }\end{array}\)
Not detected (shown at the detection limit)

Round 2: February - April 2010



Round 3: April - June 2010



OWS (HA,NC) Drinking water standard, EPA health advisory, lifetime noncancer effect
\(\begin{array}{ll}\text { DWS (DWEL) } & \text { Drinking water standard, drinking water equivalent level } \\ \text { DWS (HB) } & \text { Drinking water standard, EPA heatheased vel }\end{array}\)

Round 1: September - October 2009


Dissolved

 \begin{tabular}{ll}
\(\Delta\) Near-bottom & \(\begin{array}{l}M=\text { Mid-channel (green) } \\
R=\text { Right bank (blue) }\end{array}\) \\
\hline
\end{tabular}
- Not detected (shown at the detection limit)

Round 2: February - April 2010



Round 3: April - June 2010



DWS (HA,NC) Drinking water standard, EPA heath advisory, lifetime noncancer effect
DWS (DWEL) Drinking water standard, drinking water equivalent level bws (T) Dinking water standard, EPA heath-based

Round 1: September - October 2009


\section*{Dissolved}

 \begin{tabular}{ll}
\(\Delta\) Nearshore & \(\begin{array}{l}M=\text { Mid-channel (green } \\
\mathrm{R}=\text { Right bank (blue) }\end{array}\) \\
\hline Near-botom &
\end{tabular}

Not detected (shown at the detection limit)

Round 2: February - April 2010



Round 3: April - June 2010



DWS (HAANC) Drinking water standard, EPA health advisory, lifetime noncancer effect
\(\begin{array}{ll}\text { DWS (DWEL) } & \text { Drinking water standard, drinking water equivalent tevel } \\ \text { DWS (HB) } & \text { Drinking water standard, EPA }\end{array}\) Dinking water standard, EPA hastlth-based

Round 1: September - October 2009


Dissolved


\begin{tabular}{ll}
\(\Delta\) Near-bottom & \(\begin{array}{l}M=\text { Mid-channel (green) } \\
R=\text { Right bank (blue) }\end{array}\) \\
\hline
\end{tabular}
Not detected (shown at the detection limit)

Round 2: February - April 2010



Round 3: April - June 2010



DWS (HA,NC) Drinking water standard, EPA heath advisory, lifetime noncancer effect
DWS (DWEL) Drinking water standard, drinking water equivalent level bws (T) Dinking water standard EPA tatith-based

Round 1: September - October 2009


Dissolved


\(\begin{array}{ll}\Delta \text { Near-bottom } & \left.\quad \begin{array}{l}M \\ R=\text { Mid--hannel (green } \\ R=\text { Rigt tank (bue) }\end{array}\right)\end{array}\)
\(\diamond\) Not detected (shown at the detection limit)

Round 2: February - April 2010



Round 3: April - June 2010



DWS (HA,NC) Drinking water standard, EPA heath advisory, lifetime noncancer effect
DWS (DWEL) Drinking water standard, drinking water equivalent level Drinking water standardard, EPA EPeath-based

Round 1: September - October 2009
Total


Dissolved

 \begin{tabular}{ll}
\(\Delta\) Near-bottom & \(\begin{array}{l}M=\text { Mid-channel (green } \\
R=\text { Right bank (blue) }\end{array}\) \\
\hline
\end{tabular}
\(\diamond\) Not detected (shown at the detection limit)

Round 2: February - April 2010



Round 3: April - June 2010



DWS (HA,NC) Drinking water standard, EPA health advisory, lifetime noncancer effect
\(\begin{array}{ll}\text { DWS (HA,NC) } & \text { Drinking water standard, EPA hearth advisory, ilieime no } \\ \text { OWS (DWEL) } & \text { Drinking water standard, drinking water equivalent level } \\ \text { DWS }\end{array}\) ows (T) Dinking water standard, EPA heath-based

Round 1: September - October 2009


Dissolved



\(\Delta\) Not detected (shown at the detection linit)

Round 2: February - April 2010



Round 3: April - June 2010



DWS (HA,NC) Drinking water standard, EPA heatth advisory, lifetime noncancer effect
\(\begin{array}{ll}\text { DWS (DWEL) } & \text { Drinking water standard, drinking water equivalent level } \\ \text { DWS (HB) } & \text { Drinking water standard EPA heatheased vel }\end{array}\) Dinking water standard, EPA hastele threshol

Round 1: September - October 2009


Dissolved

\begin{tabular}{ll}
\(\nabla\) Near-surface & \(\mathrm{L}=\) Leff bank (orange) \\
O Nearshore & \(\mathrm{M}=\) Mid-channel (green) \\
\(\mathrm{R}=\) Right bank (blue)
\end{tabular}\(\quad\) Note: \begin{tabular}{l} 
Non-disturbed samples \\
Y-axes are on \(\log _{10}\) scal
\end{tabular}
\(\begin{array}{ll}\Delta \text { Near-bottom } & \mathrm{R}=\text { Right tank (blue) }\end{array}\)
Not detected (shown at the detection limit)

Round 2: February - April 2010



Round 3: April - June 2010



DWS (HA,NC) Drinking water standard, EPA health advisory, lifetime noncancer effect
DWS (DWEL) DWs (T) Drinking water standardard. EPA A heath-based taste threshol

Round 1: September - October 2009


Dissolved

\begin{tabular}{ll}
\(\nabla\) Near-surface & \(L=\) Leff bank (orange) \\
O Nearshore & \(M=\) Mid-channel (green) \\
R \(=\) Right bank (blue)
\end{tabular}\(\quad\) Note: Non-disturbed samples \(\begin{array}{ll}\Delta \text { Near-bottom } & \left.\begin{array}{l}M=\text { Mid-channel (green } \\ R=\text { Right tank (blue) }\end{array}\right)\end{array}\)
Not detected (shown at the detection limit)

Round 2: February - April 2010



Round 3: April - June 2010



DWS (HA,NC) Drinking water standard, EPA health advisory, lifetime noncancer effect
DWS (DWEL) DWs (T) Drinking water standardard. EPA A teath-based


Round 1: September - October 2009


\section*{Dissolved}

 \begin{tabular}{ll}
\(\Delta\) Near-bottom & \(\begin{array}{l}M=\text { Mid-channel (green) } \\
R=\text { Right bank (blue) }\end{array}\) \\
\hline
\end{tabular}
Not detected (shown at the detection limit)

Round 2: February - April 2010



Round 3: April - June 2010



DWS (HA,NC) Drinking water standard, EPA health advisory, lifetime noncancer effect
\(\begin{array}{ll}\text { DWS (DWEL) } & \text { Drinking water standard, drinking water equivalent level } \\ \text { DWS (HB) } & \text { Drinking water standard EPA heatheased vel }\end{array}\)



Round 1: September - October 2009


\section*{Dissolved}

\begin{tabular}{ll}
\(\nabla\) Near-surface & \(\mathrm{L}=\) Leff bank (orange) \\
O Nearshore & \(\mathrm{M}=\) Mid-channel (green) \\
\(\mathrm{R}=\) Right bank (blue)
\end{tabular}\(\quad\) Note: \begin{tabular}{l} 
Non-disturbed samples \\
Y-axes are on \(\log _{10}\) scale
\end{tabular}
\(\begin{array}{ll}\Delta \text { Near-bottom } & \mathrm{R}=\text { Right tank (blue) }\end{array}\)
Not detected (shown at the detection limit)

Round 2: February - April 2010



Round 3: April - June 2010



DWS (HA,NC) Drinking water standard, EPA heath advisory, lifetime noncancer effect
DWS (DWEL) Drinking water standard, drinking water equivalent level

Round 1: September - October 2009


Dissolved

\begin{tabular}{ll}
\(\nabla\) & Near-surface
\end{tabular}\(\quad\) L= Left bank (orange)

Round 2: February - April 2010



Round 3: April - June 2010



DWS (HA,NC) Drinking water standard, EPA heath advisory, lifetime noncancer effect
OWS (DWEL) Drinking water standard, drinking water equivalent level
\(\begin{array}{lll}\text { DWS (DWEL) } & \text { Drinking water standard, drinking water equivalent level } \\ \text { DWS (HB) } & \text { Drinking water standard, EPA heath-based level for individuals on a } 500 \mathrm{mg} \text { m/day restricted sodium diet } \\ \text { DWS (T) } & \text { Drinking water standard, EPA taste threshold }\end{array}\)


Round 1: September - October 2009


Dissolved

\begin{tabular}{ll}
\(\nabla\) Near-surface & L \(=\) Left bank (orange) \\
O Nearshore & \(M=\) Mid-channel (green) \\
\(\Delta\) Near-botom & \(R=\) Right bank \\
\(\diamond\) (bue) \\
\(\diamond\) Not detected (shown at the detection limit)
\end{tabular}

Round 2: February - April 2010


                            Drinking water standard, EPA primary maximum contaminant leve
                            Drinking water standard, EPA secondary standard
                    Drinking water standard, EPA secondary sta
Drinking water standard, EPA action level
DWs (S)
DWS (AL)
\(\begin{array}{ll}\text { DWS (AL) } & \text { Dinking water standard, EPA action level } \\ \text { DWS (HA,C) } & \text { Drinking water standard, EPA heath advisory, 10E-4 cancer risk }\end{array}\)
DWS (HA,NC)
DWS (WEL)
DWS (HB)

Round 1: September - October 2009


Dissolved

\begin{tabular}{|c|c|c|}
\hline \(\nabla\) & Near- & L= Left bank (orange) \\
\hline \(\bigcirc\) & Nearshore & \(\mathrm{M}=\) Mid-channel (green) \\
\hline \(\triangle\) & Near-botom & \(\mathrm{R}=\) Right bank (blue) \\
\hline & Not dete & detection limit) \\
\hline
\end{tabular}

Round 2: February - April 2010



Round 3: April - June 2010



DWS (HA,NC) Drinking water standard, EPA heath advisory, lifetime noncancer effect
DWS (DWEL) Drinking water standard, drinking water equivivent level
\(\begin{array}{lll}\text { DWS (DWEL) } & \text { Drinking water standard, drinking water equivalent level } \\ \text { DWS (HB) } & \text { Drinking water standard, EPA heath-based level for individuals on a } 500 \mathrm{mg} \text { m/day restricted sodium diet } \\ \text { DWS (T) } & \text { Drinking water standard, EPA taste threshold }\end{array}\)

Round 1: September - October 2009


Dissolved

\begin{tabular}{|c|c|c|}
\hline \(\nabla\) & Near & Left ba \\
\hline \(\bigcirc\) & Nearshore & M = Mid-channel (green) \\
\hline \(\triangle\) & Near-botom & \(\mathrm{R}=\) Right bank (blue) \\
\hline & Not detec & etectiot \\
\hline
\end{tabular}
Note: Non-disturbed samples are not shown \(Y\)-axes are on \(\log _{10}\) scale.

Round 2: February - April 2010



Round 3: April - June 2010



DWS (HA,NC) Drinking water standard, EPA heath advisory, lifetime noncancer effect
OWS (DWEL) Drinking water standard, drinking water equivialent level DWs (T) Drinking water standardard, EPA EPeath-based

Round 1: September - October 2009


Dissolved

\begin{tabular}{ll}
\(\nabla\) Near-surface & \(\mathrm{L}=\) Left bank (orange) \\
\(O\) Nearshore & \(M=\) Mid-channel (green) \\
\(\Delta\) Near-bottom & \(\mathrm{R}=\) Right bank (blue)
\end{tabular}
\(\triangle\) Near-botiom \(\quad \mathrm{R}=\) Right bank (ble (beted

Round 2: February - April 2010



Round 3: April - June 2010



Round 1: September - October 2009


Dissolved


\(\Delta\) Near-botom \(\quad \begin{array}{ll}\mathrm{M}=\text { Mid-chanane (green) } \\ \mathrm{R}=\text { Right bank ( (glue) }\end{array}\)
- Not detected (shown at the detection limit)

Round 2: February - April 2010



Round 3: April - June 2010



DWS (HA,NC) Drinking water standard, EPA heatth advisory, lifetime noncancer effect
\(\begin{array}{ll}\text { DWS (DWEL) } & \text { Drinking water standard, drinking water equivalent level } \\ \text { DWS (HB) } & \text { Drinking water standard EPA heatheased vel }\end{array}\) DWs (T) Dinking water standard, EPA heath-based

Round 1: September - October 2009


Dissolved


Note: Non-disturbed samples are not shown. \(Y\)-axes are on \(\log _{10}\) scale.

Round 2: February - April 2010



Round 3: April - June 2010


LEGEN
\(\begin{array}{ll}\text { O } & \text { Nearshore } \\ \Delta \text { Near-bottom } & \text { Leff bank (orange } \\ \text { R }=\text { Midochannel (green) } \\ \text { R Right bank (blue) }\end{array}\)
Not detected (shown at the detection limit)

Dws (P) DWs (S)
DWS (AL) DWS (HA.C) Drinking water standardard, EPA sectondary stand level \({ }^{\text {Drard }}\)

DWs (HA,NC)
DWS (DWEL) DWs (HB)
DWS (T)

Drinking water standardard, EEP heaath-based level for ind ividuals on a \(500 \mathrm{mg} / \mathrm{day}\) restricted sodium diet Drinking water standard. EPA taste threshold


Round 1: September - October 2009


Dissolved


\(\begin{array}{ll}\nabla \text { Nearshore } & M=\text { Mid-channel (green }) \\ \Delta \text { Near-bottom } & R=\text { Right bank (blue) }\end{array}\)
\(\diamond\) Not detected (shown at the detection limit)

Round 2: February - April 2010


Round 3: April - June 2010




Round 1: September - October 2009


\section*{Dissolved}

\begin{tabular}{ll}
\(\nabla\) & Near-surface \\
\(O\) & \(L=\) Left bank (orange) \\
Nearshore & \(M=\) Mid-channel (green) \\
\(R=\) Right bank (blue)
\end{tabular}\(\quad\) Note: Non-disturbed sample \begin{tabular}{ll}
\(\Delta\) Near-bottom & \(\begin{array}{l}M=\text { Mid--hanalel (green) } \\
R=\text { Right bank (blue) }\end{array}\) \\
\hline
\end{tabular}
Not detected (shown at the detection limit)

Round 2: February - April 2010



Round 3: April - June 2010



DWS (HA,NC) D
Dinking water standard, EPA health advisory, IIfetime noncancer effect
OWEL)
DWS (DWEL) DWs (T) Drinking water standard, EPA healt-based

Round 1: September - October 2009


Dissolved


\(\triangle\) Nearshore
\(M=\) Mid-channel (green)
\(R=\) Right bank (blue)
Not detected (shown at the detection limit)

Round 2: February - April 2010


Round 3: April - June 2010



DWS (HA,NC) Drinking water standard, EPA health advisory, lifetime noncancer effect
\(\begin{array}{ll}\text { DWS (DWEL) } & \text { Drinking water standard, drinking water equivalent level } \\ \text { DWS (HB) } & \text { Drinking water standard, EPA heatheased vel }\end{array}\) Dinking water standard, EPA hastlth-based

Round 1: September - October 2009


Dissolved



Round 3: April - June 2010



Round 1: September - October 2009


Dissolved

 \(\begin{array}{ll}\Delta \text { Nearshore } & M=\text { Mid-channel (green } \\ \Delta \text { Near-bottom } & R=\text { Right bank (lue) }\end{array}\)
Not detected (shown at the detection limit)

Round 2: February - April 2010


                            Drinking water standard, EPA primary maximum co
                            Drinking water standard, EPA secondary standard
                    Drinking water standard, EPA secondary sta
Drinking water standard, EPA action level
DWs (S)
DWS (AL)
\(\begin{array}{ll}\text { DWS (AL) } & \text { Drinking water standard, EPA action level } \\ \text { DWS (HA,C) } & \text { Drinking water standard, EPA heath advisory, 10E-4 cancer risk }\end{array}\)
DWS (DWEL)


Round 1: September - October 2009


\section*{Dissolved}


Round 2: February - April 2010


Round 3: April - June 2010


\begin{tabular}{|c|c|c|}
\hline \(\nabla\) & Near-surface & L= Left bank (orange) \\
\hline \(\bigcirc\) & Nearshore & \(\mathrm{M}=\) Mid-channel (green) \\
\hline \(\triangle\) & Near-botom & \(\mathrm{R}=\) Right bank (blue) \\
\hline & Not detecte & e detection lim \\
\hline
\end{tabular}
\(\begin{array}{ll}\nabla \text { Near-surface } & \text { L }=\text { Leff bank ( (orange) } \\ \text { O Nearsore } & \text { M }=\text { Mild-channel (green) } \\ \triangle \text { Near-bottom } & \mathrm{R}=\text { Right bank (blue) }\end{array}\)
Not detected (shown at the detection linit)


DWS (HA,NC)
DWS (DWEL)
DWS (S) Drinking water standard, EPA peceondary standard
DWS (AL) Drinking water standard, EPA secondary
\(\begin{array}{lll}\text { DWS (HA,C) } & \text { Drinking water standard, EPA action level } \\ \text { Drinking water standard, EPA heath advisory, 10E-4 cancer risk }\end{array}\)
Drinking water standarard, drinking water equivivalent level
Dinking water standard, drinking water equivielent level
Drinking water standard, ERA heath-ased level for individuals on a 500 mg g/day restricted sodium diet
Drinking water standard, EPA taste threshold

Round 1: September - October 2009


\section*{Dissolved}


\(\begin{array}{ll}\Delta \text { Near-botom } & \mathrm{M}=\text { Mid-channel (green) } \\ \mathrm{R}=\text { Right tank (blue) }\end{array}\)
Not detected (shown at the detection limit)

Round 2: February - April 2010



Round 3: April - June 2010



DWS (HA,NC) Drinking water standard, EPA heath advisory, lifetime noncancer effect
DWS (DWEL) Drinking water standard, drinking water equivalent level

Round 1: September - October 2009


Dissolved


\(\Delta\) Near-botom \(\quad \begin{array}{ll}\mathrm{R}=\text { Migight bankel (glue) }\end{array}\)
\(\diamond\) Not detected (shown at the detection limit)

Round 2: February - April 2010



Round 3: April - June 2010



DWS (HA,NC) Drinking water standard, EPA health advisory, lifetime noncancer effect
\(\begin{array}{ll}\text { DWS (DWEL) } & \text { Drinking water standard, drinking water equivalent level } \\ \text { DWS (HB) } & \text { Drinking water standard, EPA heatheased vel }\end{array}\) DWs (T) Dinking water standard, EPA heath-based

Round 1: September - October 2009


\section*{Dissolved}


\(\begin{array}{ll}\Delta \text { Near-bottom } & \mathrm{R}=\text { Right tank (blue) }\end{array}\)
Not detected (shown at the detection limit)

Round 2: February - April 2010



Round 3: April - June 2010



DWS (HA,NC) Drinking water standard, EPA health advisory, lifetime noncancer effect
DWS (DWEL) DWs (T) Drinking water standardard. EPA A teath-based threshol

Round 1: September - October 2009


Dissolved


\(\mathrm{R}=\) Right bank (bluee)
\(\checkmark\) Not detected (shown at the detection limit)

Round 2: February - April 2010



Round 3: April - June 2010



DWS (HA,NC) Drinking water standard, EPA healt advisory, lifetime noncancer effect
\(\begin{array}{ll}\text { OWS (DWEL) } & \text { Drinking water standard, drinking water equivalent level } \\ \text { Drink (HB) }\end{array}\) DWs (T) Diving water standard, EPA toaste threshold

\section*{Round 1: September - October 2009}


\section*{Dissolved}

\begin{tabular}{ll}
\(\nabla\) & Near-surface \\
\(O\) & \(L=\) Left bank (orange) \\
Nearshore & \(M=\) Mid-channel (green) \\
\(R=\) Right bank (blue)
\end{tabular}\(\quad\) Note: Non-disturbed samples \(\quad\) Y-axes are on \(\log _{10}\) scal \begin{tabular}{ll}
\(\Delta\) Near-bottom & \(\begin{array}{l}M=\text { Mid-channel (green } \\
R=\text { Right tank (blue) }\end{array}\) \\
\hline
\end{tabular}

Not detected (shown at the detection limit)

Round 2: February - April 2010



Round 3: April - June 2010



DWS (HA,NC) Drinking water standard, EPA health advisory, lifetime noncancer effect
\(\begin{array}{ll}\text { DWS (HA,NC) } & \text { Drinking water standard, EPA hearth advisory, ilieime no } \\ \text { OWS (DWEL) } & \text { Drinking water standard, drinking water equivalent level } \\ \text { DWS }\end{array}\) ows (T) Dinking water standard, EPA heath-based

Round 1: September - October 2009


\section*{Dissolved}

\begin{tabular}{ll}
\(\nabla\) Near-surface & \(\mathrm{L}=\) Leff bank (orange) \\
O Nearshore & \(\mathrm{M}=\) Mid-channel (green) \\
\(\mathrm{R}=\) Right bank (blue)
\end{tabular}\(\quad\) Note: \begin{tabular}{l} 
Non-disturbed samples \\
Y-axes are on \(\log _{10}\) scal
\end{tabular}
\(\begin{array}{ll}\Delta \text { Near-bottom } & \mathrm{R}=\text { Right tank (blue) }\end{array}\)
Not detected (shown at the detection limit)

Round 2: February - April 2010



Round 3: April - June 2010



DWS (HA,NC) Drinking water standard, EPA health advisory, lifetime noncancer effect
DWS (DWEL) DWs (T) Ding wast EPA toast threshod

Round 1: September - October 2009


Dissolved

\begin{tabular}{ll}
\(\nabla\) & Near-surface \\
\(O\) & \(L=\) Left bank (orange) \\
Nearshore
\end{tabular}\(\quad\)\begin{tabular}{l}
\(M=\) Mid-channel (green) \\
\(R=\) Right bank (blue)
\end{tabular}\(\quad\) Note: Nor-disturbed samples \begin{tabular}{ll}
\(\Delta\) Near-bottom & \(\begin{array}{l}M=\text { Mid-channel (green) } \\
R=\text { Right bank (blue) }\end{array}\) \\
\hline
\end{tabular}
Not detected (shown at the detection linit)

Round 2: February - April 2010



Round 3: April - June 2010



DWS (HA,NC) Drinking water standard, EPA heath advisory, lifetime noncancer effect
DWS (DWEL) Drinking water standard, drinking water equivalent level DWs (T) Drinking water standardard, EPA EPeath-based

Round 1: September - October 2009


\section*{Dissolved}


\section*{Round 2: February - April 2010}

Drinking water standard, EPA secondary standard
\(\begin{array}{ll}\text { DWS (AL) } & \text { Dinking water standard, EPA action evel } \\ \text { DWS (HA,C) } & \text { Drinking water standard, EPA heath advisory, } 10 \mathrm{E}-4 \text { cancer risk }\end{array}\)
\(\nabla\) Near-surfac

Not detected (shown at the detection limit)

DWS (HA,NC)
DWS (DWEL) Dws (HB) DWs (T)

Round 3: April - June 2010



Round 1: September - October 2009
Total


Dissolved

 \begin{tabular}{ll}
\(\Delta\) Near-bottom & \(\begin{array}{l}M=\text { Mid-channel (green } \\
R=\text { Right bank (blue) }\end{array}\) \\
\hline
\end{tabular}
- Not detected (shown at the detection limit)

Round 2: February - April 2010



Round 3: April - June 2010



DWS (HA,NC) Drinking water standard, EPA health advisory, lifetime noncancer effect
DWS (DWEL) Drinking water standard, drinking water equivalent level
\(\begin{array}{ll}\text { OWS (DWEL) } & \text { Drinking water standard, drinking water equivalent level } \\ \text { OWS (HB) } & \text { Drinking water standard, EPA heath-based level for individuals on a } 500 \mathrm{mg} / \mathrm{day} \text { restricted sodium diet } \\ \text { DWS (T) } & \text { Drinking water standard, EPA taste threshold }\end{array}\)

Round 1: September - October 2009


Dissolved

\begin{tabular}{ll}
\(\nabla\) Near-surface & \(L=\) Leff bank ( (orange) \\
\(O\) & Nearshore \\
\(\triangle\) & \(M=\) Mid-chananel (green) \\
\(\Delta\) Near-botom & \(R=\) Right bank (Dlue)
\end{tabular}
Note: Non-disturbed samples are not shown \(Y\)-axes are on \(\log _{10}\) scale.

Round 2: February - April 2010



Round 3: April - June 2010



DWS (HA,NC) Drinking water standard, EPA heath advisory, lifetime noncancer effect
DWS (DWEL) Drinking water standard, drinking water equivivent level
\(\begin{array}{lll}\text { DWS (DWEL) } & \text { Drinking water standard, drinking water equivalent level } \\ \text { DWS (HB) } & \text { Drinking water standard, EPA heath-based level for individuals on a } 500 \mathrm{mg} \text { m/day restricted sodium diet } \\ \text { DWS (T) } & \text { Drinking water standard, EPA taste threshold }\end{array}\)

Round 1: September - October 2009


Dissolved

\begin{tabular}{lll}
\(\nabla\) & Near-surface & \(L=\) Left bank (orange) \\
O & Nearshore & \(M=\) Mid-channel (green) \\
\(\triangle\) & Near-bottom & \(R=\) Right \\
\(\diamond\) & Not detected (shown at the (tue) \\
\hline
\end{tabular}

Round 2: February - April 2010


                            Drinking water standard, EPA primary maximum contaminant level
                            Drinking waier standard, EPA primary maximum
Drinking water standard, EPA secondary standard
                    Drinking water standard, EPA secondary stan
Drinking water standard, EPA action level
    DWs (S)
DWS (AL)
        \begin{tabular}{lll} 
DWS (HA,C) & \(\begin{array}{ll}\text { Drinking water standard, EPA action level } \\
\text { Drinking water standard, EPA heath advisory, } 10 \mathrm{E}-4 \text { cancer risk }\end{array}\) \\
\hline
\end{tabular}
DWS (HA,NC)
DWS (WWEL)
DWS (HB)

Round 1: September - October 2009


Dissolve


\begin{tabular}{ll}
\(\Delta\) Near-bottom & \(\begin{array}{l}M=\text { Mid--hannel (green } \\
R=\text { Right tank (bue) }\end{array}\) \\
\hline
\end{tabular}
Not detected (shown at the detection limit)

Round 2: February - April 2010



Round 3: April - June 2010



DWS (HAANC) Drinking water standard, EPA health advisory, lifetime noncancer effect
DWS (DWEL) Drinking water standard, drinking water equivielent level

Round 1: September - October 2009


Dissolved

 \(\begin{array}{ll}\Delta \text { Near-bottom } & \quad \begin{array}{ll}\mathrm{M}=\text { Mid-channel (green) } \\ R=\text { Right tank (blue) }\end{array}\end{array}\)
\(\diamond\) Not detected (shown at the detection limit)

Round 2: February - April 2010



Round 3: April - June 2010



DWS (HA,NC) Drinking water standard, EPA heath advisory, lifetime noncancer effect
DWS (DWEL) Drinking water standard, drinking water equivalent level
DWS (HB)
Drinking water standard, EPA heathened DWs (T) Dinking water standard, EPA heath-based taste threshold

Round 1: September - October 2009


Dissolved

Note: Non-disturbed samples are not shown \(Y\)-axes are on \(\log _{10}\) scale.

Round 2: February - April 2010



\begin{tabular}{ll}
\(\nabla\) & Near-surface \\
\(O\) & \(L=\) Leff bank (orange) \\
Nearshore & \(M=\) Mid-channel (green) \\
\(\Delta\) & Near-botom \\
\hline & \(R=\) Right bank (blue)
\end{tabular}
\(\begin{array}{ll}\nabla & \text { Near-surface }\end{array} \quad L=\) Left bank (orange)

DWs (P) DWs (S)
DWS (AL) Drining water standard, EPA secondary standa \(\begin{array}{ll}\text { DWS (HA,C) } & \text { Dinking water standard, EPA a cation level } \\ \text { Drinking water standard, } \\ \text { EPA heath advisory, } 10 \mathrm{E}-4 \text { cancer risk }\end{array}\)

DWs (HA,NC)
DWS (DWEL) ows (HB) ows (T)

Drinking water standard, EPA heath advisory, lifetime \(n\) n
Drinking water standard, drinking water equivalent level
Drinking water standard, EPA heaath-based level for individuals on a \(500 \mathrm{mg} / \mathrm{d}\) ay restricted sodium diet
















































































Round 1: September - October 2009


Round 2: February - April 2010


Round 3: April - June 2010


Legend

\(\Delta\) Near-bottom
\(=\) Right bank (blue)
Not detected (shown at the detection linit)

Note: Non-disturbed samples are not shown Non-disturbed samples are
\(Y\)-axes are on \(\log _{10}\) scale.

DWs (P)
DWS (S) \(\begin{array}{ll}\text { DWS (AL) } & \begin{array}{l}\text { Dinking water standard, EPA A action level }\end{array} \\ \text { DWS (HA,C) }\end{array}\) DWS (HA,C) Drinking water standard, EPA health advisory, 10E-4 cancer risk

DWS (HA NC) Dinking water standard EPA heath advisory Ifetime noncancer effed

DWS (T)

DWS (DWEL) Drinking water standard, drinking water equivalent tevel Drinking water standard, EPA heath-based lev
Drinking water standard, EPA taste threshold


































Round 1: September - October 2009


Round 2: February - April 2010


Round 3: April - June 2010


Legend

\(\Delta\) Near-bottom
\(R=\) Right bank (blue)
\(\diamond\) Not detected (shown at the detection limit)

Note: Non-disturbed samples are not shown \(Y\)-axes are on \(\log _{10}\) scale.

Dws (P)
DWS (S) Dink water standard, EPA primary maximum contaminant lev \(\begin{array}{ll}\text { DWS (AL) } & \begin{array}{ll}\text { Dinkking water standard, EPA action level }\end{array} \\ \text { DWS (HA,C) } & \\ \text { Drinking water }\end{array}\) DWS (HA,C) Drinking water standard, EPA health advisory, 10E-4 cancer risk

DWS (HA, NC) Drinking water standard. EPA heath advisory, lifetime noncancer effect

DWS (T)

DWS (DWEL) Drinking water standard, drinking water equivalent teve Drinking water standard, EPA heath-based lev
Drinking water standard, EPA taste threshold

Round 1: September - October 2009


Round 2: February - April 2010


Round 3: April - June 2010


Legend

\(\triangle\) Near-bottom
\(R=\) Right bank (blue)
Not detected (shown at the detection limit)

Note: Non-disturbed samples are not shown. \(Y\)-axes are on \(\log _{10}\) scale.

Dws (P)
DWS (S) Dink water standard, EPA primary maximum contaminant leve \(\begin{array}{ll}\text { DWS (AL) } & \begin{array}{ll}\text { Dinkking water standard, EPA action level }\end{array} \\ \text { DWS (HA,C) } & \\ \text { Drinking water }\end{array}\) DWS (HA,C) Drinking water standard, EPA heatth advisory, 10E-4 cancer risk

DWS (HA, NC) Drinking water standard. EPA heath advisory, lifetime noncancer effect

DWS (T)

DWS (DWEL) Drinking water standard, drinking water equivalent teve Drinking water standard, EPA heath-based lev
Drinking water standard, EPA taste threshold



Round 1: September - October 2009


Round 2: February - April 2010


Round 3: April - June 2010


Legend

\(\Delta\) Near-bottom
\(R=\) Right bank (blue)
Not detected (shown at the detection limit)

Note: Non-disturbed samples are not shown -an-axss are on \(\log _{10}\) scale.

DWs (P)
DWS (S) \(\begin{array}{ll}\text { DWS (AL) } & \begin{array}{ll}\text { Dinkking water standard, EPA action level }\end{array} \\ \text { DWS (HA,C) } & \\ \text { Drinking water }\end{array}\) DWS (HA,C) Drinking water standard, EPA heatth advisory, 10E-4 cancer risk

DWS (HA, NC) Drinking water standard. EPA heath advisory, lifetime noncancer effect

DWS (T)

DWS (DWEL) Drinking water standard, drinking water equivalent teve Drinking water standard, EPA heath-based lev
Drinking water standard, EPA taste threshold

Disturbed Surface Water - 2, 3', 4',6-Tetrabromodiphenyl ether (PBDE-71)

Round 1: September - October 2009


Round 2: February - April 2010


Round 3: April - June 2010


Legend
\begin{tabular}{|c|c|}
\hline \(\nabla\) Near-surface & L= Left bank (orange) \\
\hline O Nearshore & \(\mathrm{M}=\) Mid-channel (green) \\
\hline \(\triangle\) Near-bottom & \(\mathrm{R}=\) Right bank (blue) \\
\hline
\end{tabular}
\(\Delta\) Near-bottom
\(R=\) Right bank (blue)
Not detected (shown at the detection limit)

Note: Non-disturbed samples are not shown. \(Y\)-axes are on \(\log _{10}\) scale.

DWs (P)
DWS (S) \(\begin{array}{ll}\text { DWS (AL) } & \begin{array}{ll}\text { Dinkking water standard, EPA action level }\end{array} \\ \text { DWS (HA,C) } & \\ \text { Drinking water }\end{array}\) DWS (HA,C) Drinking water standard, EPA heatth advisory, 10E-4 cancer risk

DWS (HA, NC) Drinking water standard. EPA heath advisory, lifetime noncancer effect

DWS (T)

DWS (DWEL) Drinking water standard, drinking water equivalent tevel Drinking water standard, EPA heath-based lev
Drinking water standard, EPA taste threshold

Round 1: September - October 2009


Round 2: February - April 2010


Round 3: April - June 2010


Legend
\begin{tabular}{|c|c|}
\hline \(\nabla\) Near-surface & L= Left bank (orange) \\
\hline O Nearshore & \(\mathrm{M}=\) Mid-channel (green) \\
\hline \(\triangle\) Near-bottom & \(\mathrm{R}=\) Right bank (blue) \\
\hline
\end{tabular}
\(\Delta\) Near-bottom
\(=\) Right bank (blue)
Not detected (shown at the detection linit)

Note: Non-disturbed samples are not shown \(Y\)-axes are on \(\log _{10}\) scale.

DWs (P)
DWS (S) \(\begin{array}{ll}\text { DWS (AL) } & \begin{array}{ll}\text { Dinkking water standard, EPA action level }\end{array} \\ \text { DWS (HA,C) } & \\ \text { Drinking water }\end{array}\) DWS (HA,C) Drinking water standard, EPA health advisory, 10E-4 cancer risk

DWS (HA, NC) Drinking water standard. EPA heath advisory, lifetime noncancer effect
DWS (HB)
DWS (T)

DWS (DWEL) Drinking water standard, drinking water equivalent tevel Drinking water standard, EPA heath-based lev
Drinking water standard, EPA taste threshold

Round 1: September - October 2009


Round 2: February - April 2010


Round 3: April - June 2010


Legend

\(\triangle\) Near-bottom
\(R=\) Right bank (blue)
Not detected (shown at the detection limit)

Note: Non-disturbed samples are not shown. Y-axes are on log \(\mathrm{log}_{10}\) scale

DWs (P)
DWS (S) Dinking water standard, EPA primary maximum contaminant leve \(\begin{array}{ll}\text { DWS (AL) } & \begin{array}{ll}\text { Dinkking water standard, EPA action level }\end{array} \\ \text { DWS (HA,C) } & \\ \text { Drinking water }\end{array}\) DWS (HA,C) Drinking water standard, EPA heatth advisory, 10E-4 cancer risk

DWS (HA, NC) Drinking water standard. EPA heath advisory, lifetime noncancer effect

DWS (T)

DWS (DWEL) Drinking water standard, drinking water equivalent tevel Drinking water standard, EPA heath-based lev
Drinking water standard, EPA taste threshold

Round 1: September - October 2009


Round 2: February - April 2010


Round 3: April - June 2010


Legend

\(\Delta\) Near-bottom
\(R=\) Right bank (blue)
Not detected (shown at the detection linit)

Note: Non-disturbed samples are not shown. \(Y\)-axes are on log log scales ale

DWs (P)
DWS (S) \(\begin{array}{ll}\text { DWS (AL) } & \begin{array}{ll}\text { Dinkking water standard, EPA action level }\end{array} \\ \text { DWS (HA,C) } & \\ \text { Drinking water }\end{array}\) DWS (HA,C) Drinking water standard, EPA heatth advisory, 10E-4 cancer risk

DWS (HA, NC) Drinking water standard. EPA heath advisory, lifetime noncancer effect

DWS (T)

DWS (DWEL) Drinking water standard, drinking water equivalent tevel Drinking water standard, EPA heath-based lev
Drinking water standard, EPA taste threshold

Round 1: September - October 2009


Round 2: February - April 2010


Round 3: April - June 2010


Legend
\begin{tabular}{|c|c|}
\hline \(\nabla\) Near-surface & L= Left bank (orange) \\
\hline O Nearshore & \(\mathrm{M}=\) Mid-channel (green) \\
\hline \(\triangle\) Near-bottom & \(\mathrm{R}=\) Right bank (blue) \\
\hline
\end{tabular}
\(\Delta\) Near-bottom
\(R=\) Right bank (blue)
Not detected (shown at the detection limit)

Note: Non-disturbed samples are not shown. \(Y\)-axes are on \(\log _{10}\) scale.

Dws (P)
DWS (S) Dining water standard, EPA primary maximum contaminant leve \(\begin{array}{ll}\text { DWS (AL) } & \begin{array}{ll}\text { Dinkking water standard, EPA action level }\end{array} \\ \text { DWS (HA,C) } & \\ \text { Drinking water }\end{array}\) DWS (HA,C) Drinking water standard, EPA heatth advisory, 10E-4 cancer risk

DWS (HA, NC) Drinking water standard. EPA heath advisory, lifetime noncancer effect

DWS (T)

DWS (DWEL) Drinking water standard, drinking water equivalent leve Drinking water standard, EPA heath-based lev
Drinking water standard, EPA taste threshold


Round 1: September - October 2009


Round 2: February - April 2010


Round 3: April - June 2010


Legend
\begin{tabular}{|c|c|}
\hline \(\nabla\) Near-surface & L= Left bank (orange) \\
\hline O Nearshore & \(\mathrm{M}=\) Mid-channel (green) \\
\hline \(\triangle\) Near-bottom & \(\mathrm{R}=\) Right bank (blue) \\
\hline
\end{tabular}
\(\Delta\) Near-bottom
\(R=\) Right bank (blue)
\(\checkmark\) Not detected (shown at the detection limit)

Note: Non-disturbed samples are not shown. \(Y\)-axes are on \(\log _{10}\) scale.

DWs (P)
DWS (S) Dining water standard, EPA primary maximum contaninant leve \(\begin{array}{ll}\text { DWS (AL) } & \begin{array}{ll}\text { Dinkking water standardard, EPA action level }\end{array} \\ \text { DWS (HA,C) } & \end{array}\) DWS (HA,C) Drinking water standard, EPA heath advisory, 10E-4 cancer risk

DWS (HA, NC) Drinking water standard. EPA heath advisory, lifetime noncancer effect

DWS (T)

DWS (DWEL) Drinking water standard, drinking water equivalent leve Drinking water standard, EPA heath-based lev
Drinking water standard, EPA taste threshold


Round 1: September - October 2009


Round 2: February - April 2010


Round 3: April - June 2010


Legend

\(\triangle\) Near-bottom
\(R=\) Right bank (blue)
Not detected (shown at the detection limit)

Note: Non-disturbed samples are not shown \(Y\)-axes are on \(\log _{10}\) scale.

DWs (P)
DWS (S) Dinking water standard, EPA primary maximum contaminant leve \(\begin{array}{ll}\text { OWS (AL) } & \begin{array}{l}\text { Dinking water standard, EPA A action level }\end{array} \\ \text { DWS (HA,C) }\end{array}\) DWS (HA,C) Drinking water standard, EPA heath advisory, 10E-4 cancer risk

DWS (HA, NC) Drinking water standard. EPA heath advisory, lifetime noncancer effect
ows (T)

DWS (DWEL) Drinking water standard, drinking water equivalent teve Drinking water standard, EPA heath-based lev
Drinking water standard, EPA taste threshold

Round 1: September - October 2009


Round 2: February - April 2010


Round 3: April - June 2010


Legend
\begin{tabular}{|ll|}
\hline\(\nabla\) & Near-surface \\
\(O\) & \(L=\) Left bank (orange) \\
O Nearshore & \(M=\) Mid-chanen (green) \\
\(\Delta\) Near-bottom & \(R=\) Right bank (llue) \\
\hline
\end{tabular}
\(\triangle\) Near-bottom
\(R=\) Right bank (blue)
Not detected (shown at the detection linit)

Note: Non-disturbed samples are not shown \(Y\)-axes are on \(\log _{10}\) scale.

DWs (P)
DWS (S) Dinking water standard, EPA primary maximum contaminant leve \(\begin{array}{ll}\text { DWS (AL) } & \begin{array}{ll}\text { Dinkking water standard, EPA action level }\end{array} \\ \text { DWS (HA,C) } & \\ \text { Drinking water }\end{array}\) DWS (HA,C) Drinking water standard, EPA heath advisory, \(10 \mathrm{E}-4\) cancer risk

DWS (HA, NC) Drinking water standard. EPA heath advisory, lifetime noncancer effect

DWS (T)

DWS (DWEL) Drinking water standard, drinking water equivalent teve Drinking water standard, EPA heath-based lev
Drinking water standard, EPA taste threshold



Round 1: September - October 2009


Round 2: February - April 2010


Round 3: April - June 2010


Legend

\(\triangle\) Near-bottom
\(R=\) Right bank (blue)
Not detected (shown at the detection linit)

Note: Non-disturbed samples are not shown \(Y\)-axes are on \(\log _{10}\) scale.

DWs (P)
DWS (S) \(\quad\) Iming water standard, EPA primary maximum contaminant leve \(\begin{array}{ll}\text { DWS (AL) } & \begin{array}{ll}\text { Dinkking water standard, EPA action level }\end{array} \\ \text { DWS (HA,C) } & \\ \text { Drinking water }\end{array}\) DWS (HA,C) Drinking water standard, EPA heatth advisory, 10E-4 cancer risk

DWS (HA, NC) Drinking water standard. EPA heath advisory, lifetime noncancer effect

DWS (T)

DWS (DWEL) Drinking water standard, drinking water equivalent teve Drinking water standard, EPA heath-based lev
Drinking water standard, EPA taste threshold

Round 1: September - October 2009


Round 2: February - April 2010


Round 3: April - June 2010


Legend
\begin{tabular}{|c|c|}
\hline \(\nabla\) Near-surface & L= Left bank (orange) \\
\hline O Nearshore & \(\mathrm{M}=\) Mid-channel (green) \\
\hline \(\triangle\) Near-bottom & \(\mathrm{R}=\) Right bank (blue) \\
\hline
\end{tabular}
\(\triangle\) Near-bottom
\(=\) Right bank (blue)
\(\diamond\) Not detected (shown at the detection limit)

Note: Non-disturbed samples are not shown. \(Y\)-axes are on \(\log _{10}\) scale.

Dws (P)
DWS (S) Drinking water standard, EPA primary maximum contaminant lev \(\begin{array}{ll}\text { DWS (AL) } & \begin{array}{ll}\text { Drinking water stanandard, EPA Aecoction level }\end{array} \\ \text { DWS (HA,C) } & \\ \text { Drinking water standat }\end{array}\) DWS (HA,C) Drinking water standard, EPA health advisory, 10E-4 cancer risk
dws (HA,NC) DWs (DWEL) DWS (T)

Sinking water standard EPA heath advisory, Ifetime noncancer effect Drinking water standard, drinking water equivalent level Drinking water standard, EPA heath-based level
Drinking water standard, EPA taste threshold




\section*{Appendix G - Statistical Approach}

This Appendix provides necessary details about how the statistical analysis was conducted to compare sampling transects and the depths and sides sampled within each transect. This approach differs from what was in the Surface Water QAPP (TAI 2009), which specified a stepwise approach using triplicate samples from TC3, TC6, and CAN1 as a measure of variability. During discussions between TAI and EPA (April 5 - April 15, 2010), EPA identified that the currently available field triplicate samples represented an agreed upon level of effort and, therefore, could be used as the residual variability when assessing significant differences between locations and depths within a transect. Appendix D to this Surface Water Data Summary and Data Gap Report provides these communications. Therefore, triplicate sampling in Rounds 2 and 3 was not necessary, and for purposes of evaluating the data in the future, an Analysis of Variance (ANOVA) approach (or equivalent nonparametric statistic, if necessary) with the entire data set (data from Rounds 1, 2, and 3) would be appropriate.

\section*{Summary of Approach from the Surface Water QAPP}

The comparison approach outlined in Section A7.6 of the QAPP (TAI 2009) systematically compares samples from each transect. First the left bank, mid-channel, and right bank nearsurface and nearshore \({ }^{1}\) samples are evaluated. If a statistical difference is concluded, then the evaluation is repeated with the nearshore samples excluded. The same evaluation is conducted for the near-bottom samples separately. If both of these evaluations conclude that samples are equivalent (i.e., not statistically significantly different) then the near-surface and near-bottom samples are pooled, and the evaluation repeated. This process is repeated for both dissolved and total results of each chemical of interest (COI), adjusting the significance level to account for the multiple comparisons conducted.

The statistical evaluation performed on each subset of identified samples compares the observed range (maximum minus minimum) to the distribution of ranges likely observed from a normal distribution fit to the data set. The distribution of ranges derives from randomly drawn samples from a normal distribution (i.e., Monte Carlo process) characterized by the average measured concentration of the subset being evaluated and the coefficient of variation (CV) defined by triplicate samples. \({ }^{2}\) The range is calculated for each randomly drawn sample of the same size as the data subset being compared, (i.e., \(\mathrm{N}=3-6\) for the initial comparisons of nearsurface and near-bottom samples). Significance of the comparison is based on the percentile of

\footnotetext{
\({ }^{1}\) Nearshore samples were only collected at the left and right banks, not mid-channel.
\({ }^{2}\) A normal distribution is characterized by a mean and standard deviation. Standard deviation can be calculated by multiplying the coefficient of variation by the mean.
}
the observed range within the distribution. If the observed range is above the appropriate percentile \({ }^{3}\) then a significant difference is concluded and samples are not combined for further analysis.

Conclusions from this method rely on the variability of field triplicate samples collected at one of three locations: the riverine segment of the river (TC3), the reservoir segment of the river (TC6), and upriver from Trail, B.C. (CAN1). Each comparison depends upon the CV of the applicable location and sample type, for each COI. It is unclear why the variability at these transects should be expected at other transects. Also, within each of these transects there appears to be a fairly wide range of CV estimates with no guidance for selecting the most appropriate CV for use in the calculations.

Calculated CV estimates of the triplicate samples from TC3, TC6, and CAN1, based on detected concentrations, indicated that within sample type (left, right, and mid-channel near-surface, for example), the CVs for each transect generally do not vary substantially. However, between sample types (near-surface compared to near-bottom, for example) the CVs are more variable. This variability is not surprising, as the CV estimates are based on only three results. This comparison method is further complicated for COIs that were not detected in samples from the three transects with field replicates or not detected in all samples at the transect being compared. Either of these conditions makes statistical comparisons using this approach unreliable because neither the CV nor the observed range can be estimated.

Therefore, the method described in the QAPP does not provide robust conclusions; they are reliant upon the variability observed among three results from a different location (TC3, TC6, or CAN1). The method implies that variability at these locations should be representative of the variability expected at another transect. Further, the CV estimates from these locations vary substantially, yet the determination of significance depends entirely on those estimates.

\section*{Methods Used for Data Summary Report}

Analysis excluded disturbed water samples, focusing only on the balanced design of the nondisturbed water samples. Most transects provided replicate samples at five depth-side categories, including left, right, and middle for near surface and near bottom, and left and right near shore. CAN1, TC10, and TC9 were not sampled mid-channel and CAN2 was sampled repeatedly only on the left shore. Additional replicate samples were collected at TC3, TC4, TC5,

\footnotetext{
\({ }^{3}\) The percentile is selected to achieve the equivalence of an overall 0.05 significance level across all COIs. Using a Bonferonni adjustment for the number of COIs (m) would result in a percentile of (100-0.05/m) for each comparison.
}
and TC6 , in addition to triplicate samples collected during Round 1 and Round 2 at TC3, TC6, and CAN 1. All of the field replicate samples were included in the statistical evaluation.

Because of the large number of analytes for which a majority of results were undetected, analytes were screened based on the overall percentage of detected results as well as the percentage for each round of sampling. Analytes with more than \(30 \%\) detected results across all rounds of sampling and more than \(10 \%\) detected results within each of the three sampling rounds were retained for statistical evaluation. The higher percentage of undetected results skews the statistical comparisons as a result of the variability in detection limits, which is generally much lower than the measured variability in detected concentrations. Statistical comparisons included all undetected concentrations at half the detection limit.

ANOVA followed by Tukey's multiple comparison test provided an assessment of differences between transects, as well as between depths and sides within each transect. The fitted model included factors for depth and side and an interaction term nested within each transect in addition to a transect main-effect factor. When the underlying assumptions of ANOVA (normality and homogeneity of variance) could not be met by the data, either as reported or transformed, the non-parametric Kruskal-Wallis test was used followed by Wilcoxon tests to assess the multiple comparisons between transects. Differences between depths or sides within each transect were also evaluated based on Kruskal-Wallis tests. Following standard statistical procedure, only factors significant in the initial overall evaluation (ANOVA or Kruskal-Wallis test) were carried forward for the multiple comparison assessment. Significance was determined after a Bonferroni adjustment for the number of comparisons. All statistical evaluations were conducted at an overall 0.05 significance level, i.e., 95 percent confidence level.

Underlying assumptions to ANOVA were tested using Levene's test for variability between groups and the Shapiro-Wilks test for the assessment of normality. \(\log _{10}\) transformed concentrations were also evaluated. Non-parametric methods were used for conclusions only when the equal variance assumption (homoscedasticity) could not be met because the standard, parametric ANOVA method is quite robust to departures from normality. Parametric methods are generally more powerful for detecting differences than non-parametric methods.

\section*{Appendix Materials}

Materials in this Appendix include complete output for the initial tests and quantile-to-quantile plots. Boxplots by depth and side and by transect are also included for information. Also provided is the complete statistical output for the multiple comparison assessments of differences between transects and between depths and sides within each transect, where appropriate.

Appendix G1a.
Tukey's multiple comparisons and Wilcoxon tests to identify specific transect differences

Levene's test by Transect
data: Conc
Test Statistic \(=3.194, \mathrm{p}\)-value \(=0.0007119\)
data: \(\log 10(C o n c)\)
Test Statistic \(=3.4224, \mathrm{p}\)-value \(=0.0003264\)

Levene's test by Depth
data: Conc
Test Statistic \(=0.4848, \mathrm{p}\)-value \(=0.6164\)
data: \(\log 10(C o n c)\)
Test Statistic \(=0.5178, \mathrm{p}\)-value \(=0.5965\)

Levene's test by Side
data: Conc
Test Statistic \(=0.3156, \mathrm{p}\)-value \(=0.7296\)
data: \(\log 10(C o n c)\)
Test Statistic \(=0.2658\), \(p-\) value \(=0.7668\)

Kruskal-Wallis rank sum test
data: Conc and Transect
Kruskal-Wallis chi-squared \(=46.2241, d f=10, p\)-value \(=1.306 e-06\)
```

Dependent Variable Alkalinity
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.152
The p-value is 0.927 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 2.000
The p-value is 0.368 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.288
The p-value is 0.866 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 0.235
The p-value is 0.889 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 0.281
The p-value is 0.869 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 0.072
The p-value is 0.965 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 0.395
The p-value is 0.821 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 0.063
The p-value is 0.969 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 1.339
The p-value is 0.512 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 0.871
The p-value is 0.647 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).
```

Dependent Variable Alkalinity
Grouping Variable SIDE\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.002
The p-value is 0.965 assuming chi-square distribution with 1 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 1.190
The p-value is 0.275 assuming chi-square distribution with 1 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 7.762
The p-value is 0.021 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 0.463
The p-value is 0.793 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 0.235
The p-value is 0.889 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 1.002
The p-value is 0.606 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 0.593
The p-value is 0.744 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 0.972
The p-value is 0.615 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 0.202
The p-value is 0.904 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 3.343
The p-value is 0.068 assuming chi-square distribution with 1 df.

```

P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).

Levene's test by Transect
data: Conc
Test Statistic \(=1.7421, \mathrm{p}\)-value \(=0.07223\)
data: \(\log 10(C o n c)\)
Test Statistic \(=2.0339, p\)-value \(=0.03071\)

Levene's test by Depth
data: Conc
Test Statistic \(=0.4571, \mathrm{p}\)-value \(=0.6336\)
data: \(\log 10(\) Conc)
Test Statistic \(=0.0196, \mathrm{p}\)-value \(=0.9806\)

Levene's test by Side
data: Conc
Test Statistic \(=0.5024, \mathrm{p}\)-value \(=0.6057\)
data: log10(Conc)
Test Statistic \(=0.5065, \mathrm{p}\)-value \(=0.6032\)

Kruskal-Wallis rank sum test
data: Conc and Transect
Kruskal-Wallis chi-squared \(=29.8026, \mathrm{df}=10, \mathrm{p}\)-value \(=0.0009227\)
```

Dependent Variable Chloride ion
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.322
The p-value is 0.851 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 2.500
The p-value is 0.287 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.236
The p-value is 0.889 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 0.409
The p-value is 0.815 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 3.395
The p-value is 0.183 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 0.454
The p-value is 0.797 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 10.807
The p-value is 0.005 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 4.838
The p-value is 0.089 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 4.760
The p-value is 0.093 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 0.232
The p-value is 0.890 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).

Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.333
The p-value is 0.564 assuming chi-square distribution with 1 df .
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 0.000
The p-value is 1.000 assuming chi-square distribution with 1 df .
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.648
The p-value is 0.723 assuming chi-square distribution with 2 df .
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 0.142
The p-value is 0.931 assuming chi-square distribution with 2 df .
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 0.078
The p-value is 0.962 assuming chi-square distribution with 2 df .
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 0.292
The p-value is 0.864 assuming chi-square distribution with 2 df .
Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 0.367
The p-value is 0.832 assuming chi-square distribution with 2 df .
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 0.238
The \(p\)-value is 0.888 assuming chi-square distribution with 2 df .
Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 0.091
The p-value is 0.956 assuming chi-square distribution with 2 df .
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 0.038
The p-value is 0.845 assuming chi-square distribution with 1 df .

P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).

Levene's test by Transect
data: Conc
Test Statistic \(=1.353, \mathrm{p}\)-value \(=0.2031\)
data: \(\log 10(\) Conc)
Test Statistic \(=1.6562\), \(p\)-value \(=0.09183\)

Levene's test by Depth
data: Conc
Test Statistic \(=0.1437, \mathrm{p}\)-value \(=0.8662\)
data: \(\log 10(\) Conc)
Test Statistic \(=0.0199, \mathrm{p}\)-value \(=0.9803\)

Levene's test by Side
data: Conc
Test Statistic \(=2.154, p\)-value \(=0.1182\)
data: \(\log 10(C o n c)\)
Test Statistic \(=2.3639, p\)-value \(=0.09615\)

Standard ANOVA - full model
\begin{tabular}{lrrrrr} 
& Df & Sum Sq & Mean Sq F value & \(\operatorname{Pr}(>F)\) \\
Transect & 10 & 0.004610 & \(4.61 e-04\) & 4.923 & \(2.77 \mathrm{e}-06\) *** \\
Transect:Depth & 20 & 0.000756 & \(3.78 \mathrm{e}-05\) & 0.404 & 0.990 \\
Transect:Side & 17 & 0.001602 & \(9.43 \mathrm{e}-05\) & 1.007 & 0.453 \\
Transect:Depth:Side & 27 & 0.001537 & \(5.69 \mathrm{e}-05\) & 0.608 & 0.936 \\
Residuals & 178 & 0.016667 & \(9.36 e-05\) & &
\end{tabular}
\begin{tabular}{lrrrrr} 
& Df & Sum Sq & Mean Sq & \(F\) value & \(\operatorname{Pr}(>F)\) \\
Transect & 10 & 0.004610 & \(4.61 e-04\) & 5.191 & \(8.85 e-07\)
\end{tabular} ***

Levene's test by Transect
data: Conc
Test Statistic \(=2.1554, \mathrm{p}\)-value \(=0.02131\)
data: \(\log 10(\) Conc)
Test Statistic \(=2.1589, p\)-value \(=0.02108\)

Levene's test by Depth
data: Conc
Test Statistic \(=0.0841, \mathrm{p}\)-value \(=0.9194\)
data: \(\log 10(C o n c)\)
Test Statistic \(=0.1736\), p -value \(=0.8407\)

Levene's test by Side
data: Conc
Test Statistic \(=0.0325, p-\) value \(=0.968\)
data: \(\log 10(C o n c)\)
Test Statistic \(=0.0364, \mathrm{p}\)-value \(=0.9642\)

Kruskal-Wallis rank sum test
data: Conc and Transect
Kruskal-Wallis chi-squared \(=34.0145, \mathrm{df}=10, \mathrm{p}\)-value \(=0.0001837\)
```

Dependent Variable Hardness
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.197
The p-value is 0.906 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 2.571
The p-value is 0.276 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.302
The p-value is 0.860 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 0.359
The p-value is 0.835 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 3.105
The p-value is 0.212 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 0.099
The p-value is 0.952 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 0.508
The p-value is 0.776 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 0.843
The p-value is 0.656 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 2.226
The p-value is 0.329 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 0.716
The p-value is 0.699 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).
```

Dependent Variable Hardness
Grouping Variable SIDE\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.031
The p-value is 0.860 assuming chi-square distribution with 1 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 0.429
The p-value is 0.513 assuming chi-square distribution with 1 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.302
The p-value is 0.860 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 0.302
The p-value is 0.860 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 0.628
The p-value is 0.731 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 0.291
The p-value is 0.864 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 0.217
The p-value is 0.897 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 0.190
The p-value is 0.909 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 0.004
The p-value is 0.998 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 3.177
The p-value is 0.075 assuming chi-square distribution with 1 df.

```

P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).

Levene's test by Transect
data: Conc
Test Statistic \(=1.1448, \mathrm{p}\)-value \(=0.3295\)
data: \(\log 10(C o n c)\)
Test Statistic \(=1.1649, \mathrm{p}\)-value \(=0.3153\)

Levene's test by Depth
data: Conc
Test Statistic \(=0.027, \mathrm{p}\)-value \(=0.9733\)
data: \(\log 10(C o n c)\)
Test Statistic \(=0.0148, \mathrm{p}\)-value \(=0.9853\)

Levene's test by Side
data: Conc
Test Statistic \(=1.3027, p\)-value \(=0.2736\)
data: \(\log 10(C o n c)\)
Test Statistic \(=1.28\), p-value \(=0.2799\)
\begin{tabular}{lrllll}
\(\quad\) Standard ANOVA - full model & & & \\
& Df Sum Sq & Mean Sq & F value & \(\operatorname{Pr}(>F)\) \\
Transect & 10 & 0.1877 & 0.018773 & 1.061 & 0.395 \\
Transect:Depth & 20 & 0.3630 & 0.018149 & 1.026 & 0.434 \\
Transect:Side & 17 & 0.1932 & 0.011365 & 0.642 & 0.854 \\
Transect:Depth:Side & 27 & 0.1457 & 0.005396 & 0.305 & 1.000 \\
Residuals & 178 & 3.1488 & 0.017690 & &
\end{tabular}
\begin{tabular}{lrrrrr} 
& Df Sum Sq Mean Sq F value & \(\operatorname{Pr}(>F)\) \\
Transect & 10 & 0.188 & 0.01877 & 1.168 & 0.314 \\
Transect: Depth & 20 & 0.363 & 0.01815 & 1.129 & 0.322 \\
Transect:Side & 17 & 0.193 & 0.01137 & 0.707 & 0.794 \\
Residuals & 205 & 3.295 & 0.01607 & &
\end{tabular}

Levene's test by Transect
data: Conc
Test Statistic \(=2.2526, p\)-value \(=0.01567\)
data: \(\log 10(C o n c)\)
Test Statistic \(=1.8919, \mathrm{p}\)-value \(=0.04689\)

Levene's test by Depth
data: Conc
Test Statistic \(=2.0351, \mathrm{p}\)-value \(=0.1328\)
data: \(\log 10(C o n c)\)
Test Statistic \(=1.8081, \mathrm{p}\)-value \(=0.1661\)

Levene's test by Side
data: Conc
Test Statistic \(=0.6779, \mathrm{p}\)-value \(=0.5086\)
data: \(\log 10(C o n c)\)
Test Statistic \(=1.3712\), p -value \(=0.2557\)

Kruskal-Wallis rank sum test
data: Conc and Transect
Kruskal-Wallis chi-squared \(=51.4771, \mathrm{df}=10, \mathrm{p}\)-value \(=1.426 \mathrm{e}-07\)
```

Dependent Variable Silica
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.082
The p-value is 0.960 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 3.162
The p-value is 0.206 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.181
The p-value is 0.913 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 0.445
The p-value is 0.801 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 0.356
The p-value is 0.837 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 1.486
The p-value is 0.476 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 0.506
The p-value is 0.776 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 2.633
The p-value is 0.268 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 0.936
The p-value is 0.626 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 1.582
The p-value is 0.453 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).
```

Dependent Variable Silica
Grouping Variable SIDE\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.159
The p-value is 0.690 assuming chi-square distribution with 1 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 0.196
The p-value is 0.658 assuming chi-square distribution with 1 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 1.196
The p-value is 0.550 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 0.578
The p-value is 0.749 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 0.374
The p-value is 0.830 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 0.051
The p-value is 0.975 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 1.071
The p-value is 0.585 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 0.870
The p-value is 0.647 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 0.108
The p-value is 0.947 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 4.083
The p-value is 0.043 assuming chi-square distribution with 1 df.

```

P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).

Levene's test by Transect
```

data: Conc

```
Test Statistic \(=5.2391, \mathrm{p}\)-value \(=2.248 \mathrm{e}-05\)
data: \(\log 10(C o n c)\)
Test Statistic \(=2.8447, \mathrm{p}\)-value \(=0.008139\)

Levene's test by Depth
data: Conc
Test Statistic \(=1.3723, \mathrm{p}\)-value \(=0.2565\)
data: \(\log 10(C o n c)\)
Test Statistic \(=0.6813, \mathrm{p}\)-value \(=0.5074\)

Levene's test by Side
data: Conc
Test Statistic \(=0.3814, \mathrm{p}\)-value \(=0.6836\)
data: \(\log 10(C o n c)\)
Test Statistic \(=1.1811, \mathrm{p}\)-value \(=0.3097\)

Kruskal-Wallis rank sum test
data: Conc and Transect
Kruskal-Wallis chi-squared \(=36.2453, d f=7, p-\) value \(=6.516 e-06\)
```

Dependent Variable Silicon, dissolved
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.232
The p-value is 0.890 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 3.429
The p-value is 0.180 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.008
The p-value is 0.996 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 1.800
The p-value is 0.407 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 0.408
The p-value is 0.816 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 1.175
The p-value is 0.556 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 2.779
The p-value is 0.249 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 1.165
The p-value is 0.559 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 8=0.00625\).

Dependent Variable Silicon, dissolved Grouping Variable SIDE\$

Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.000
The p-value is 1.000 assuming chi-square distribution with 1 df .

Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 0.429
The p-value is 0.513 assuming chi-square distribution with 1 df .

Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 1.757
The p-value is 0.415 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 0.200
The p-value is 0.655 assuming chi-square distribution with 1 df .

Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 0.419
The p-value is 0.811 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 0.709
The p-value is 0.702 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 0.427
The p-value is 0.808 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 4.481
The p-value is 0.034 assuming chi-square distribution with 1 df .

P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 8=0.00625\).

Levene's test by Transect
data: Conc
Test Statistic \(=5.2054, \mathrm{p}\)-value \(=2.442 \mathrm{e}-05\)
data: \(\log 10(\) Conc)
Test Statistic \(=2.6799, \mathrm{p}\)-value \(=0.01208\)

Levene's test by Depth
data: Conc
Test Statistic \(=2.3037, \mathrm{p}\)-value \(=0.1033\)
data: \(\log 10(C o n c)\)
Test Statistic \(=0.98, \mathrm{p}\)-value \(=0.3776\)

Levene's test by Side
data: Conc
Test Statistic \(=0.387, p-\) value \(=0.6798\)
data: log10(Conc)
Test Statistic \(=1.1371, \mathrm{p}\)-value \(=0.3234\)

Kruskal-Wallis rank sum test
data: Conc and Transect
Kruskal-Wallis chi-squared \(=35.5506, d f=7, p\)-value \(=8.811 e-06\)
```

Dependent Variable Silicon, total
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.114
The p-value is 0.944 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 0.286
The p-value is 0.867 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.472
The p-value is 0.790 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 2.250
The p-value is 0.325 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 0.485
The p-value is 0.785 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 0.754
The p-value is 0.686 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 3.644
The p-value is 0.162 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 2.613
The p-value is 0.271 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 8=0.00625\).
```

Dependent Variable Silicon, total

```
Grouping Variable SIDE\$
    Results for TRANSECT\$ = CAN1
    Kruskal-Wallis Test Statistic: 0.002
    The p-value is 0.965 assuming chi-square distribution with 1 df .
    Results for TRANSECT\$ = TC10
    Kruskal-Wallis Test Statistic: 0.048
    The \(p\)-value is 0.827 assuming chi-square distribution with 1 df .
    Results for TRANSECT\$ = TC1
    Kruskal-Wallis Test Statistic: 1.533
    The p-value is 0.465 assuming chi-square distribution with 2 df .
    Results for TRANSECT\$ = TC2
    Kruskal-Wallis Test Statistic: 0.222
    The p-value is 0.637 assuming chi-square distribution with 1 df .
    Results for TRANSECT\$ = TC3
    Kruskal-Wallis Test Statistic: 0.096
    The p-value is 0.953 assuming chi-square distribution with 2 df .
    Results for TRANSECT\$ = TC4
    Kruskal-Wallis Test Statistic: 1.072
    The p-value is 0.585 assuming chi-square distribution with 2 df .
    Results for TRANSECT\$ = TC6
    Kruskal-Wallis Test Statistic: 0.688
    The p-value is 0.709 assuming chi-square distribution with 2 df .
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 4.083
The \(p\)-value is 0.043 assuming chi-square distribution with 1 df .

P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 8=0.00625\).

Levene's test by Transect
data: Conc
Test Statistic \(=2.0834, p\)-value \(=0.02644\)
data: \(\log 10(C o n c)\)
Test Statistic \(=2.2279, \mathrm{p}\)-value \(=0.01693\)

Levene's test by Depth
data: Conc
Test Statistic \(=1.6923, \mathrm{p}\)-value \(=0.1862\)
data: \(\log 10(C o n c)\)
Test Statistic \(=1.4325, \mathrm{p}\)-value \(=0.2407\)

Levene's test by Side
data: Conc
Test Statistic \(=2.4978, p\)-value \(=0.08431\)
data: \(\log 10(C o n c)\)
Test Statistic \(=2.2509, \mathrm{p}\)-value \(=0.1074\)

Kruskal-Wallis rank sum test
data: Conc and Transect
Kruskal-Wallis chi-squared \(=38.5247, d f=10, p-v a l u e=3.074 \mathrm{e}-05\)
```

Dependent Variable Sulfate
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.570
The p-value is 0.752 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 1.250
The p-value is 0.535 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.758
The p-value is 0.684 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 0.139
The p-value is 0.933 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 0.130
The p-value is 0.937 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 0.125
The p-value is 0.939 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 0.173
The p-value is 0.917 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 1.508
The p-value is 0.470 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 2.182
The p-value is 0.336 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 1.452
The p-value is 0.484 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).
```

Dependent Variable Sulfate
Grouping Variable SIDE\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.018
The p-value is 0.894 assuming chi-square distribution with 1 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 0.000
The p-value is 1.000 assuming chi-square distribution with 1 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 3.737
The p-value is 0.154 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 0.032
The p-value is 0.984 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 1.249
The p-value is 0.536 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 0.286
The p-value is 0.867 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 0.249
The p-value is 0.883 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 0.069
The p-value is 0.966 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 0.295
The p-value is 0.863 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 4.498
The p-value is 0.034 assuming chi-square distribution with 1 df.

```

P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).

Levene's test by Transect
data: Conc
Test Statistic \(=0.702, \mathrm{p}\)-value \(=0.7222\)
data: \(\log 10(C o n c)\)
Test Statistic \(=2.0021, \mathrm{p}\)-value \(=0.0338\)

Levene's test by Depth
data: Conc
Test Statistic \(=0.9837, \mathrm{p}\)-value \(=0.3754\)
data: \(\log 10(C o n c)\)
Test Statistic \(=0.0483, \mathrm{p}\)-value \(=0.9529\)

Levene's test by Side
data: Conc
Test Statistic \(=0.7114, \mathrm{p}\)-value \(=0.4919\)
data: \(\log 10(C o n c)\)
Test Statistic \(=0.9312, \mathrm{p}\)-value \(=0.3955\)

Kruskal-Wallis rank sum test
data: Conc and Transect
Kruskal-Wallis chi-squared \(=14.1943, \mathrm{df}=10, \mathrm{p}\)-value \(=0.1643\)
```

Dependent Variable TDS, lab
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 1.696
The p-value is 0.428 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 0.074
The p-value is 0.964 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 2.715
The p-value is 0.257 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 4.076
The p-value is 0.130 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 1.358
The p-value is 0.507 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 0.649
The p-value is 0.723 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 2.395
The p-value is 0.302 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 0.643
The p-value is 0.725 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 0.090
The p-value is 0.956 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 2.814
The p-value is 0.245 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).

Dependent Variable TDS, Lab Grouping Variable SIDE\$

Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 3.456
The p-value is 0.063 assuming chi-square distribution with 1 df .
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 3.971
The p-value is 0.046 assuming chi-square distribution with 1 df .
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 1.879
The p-value is 0.391 assuming chi-square distribution with 2 df .
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 0.665
The p-value is 0.717 assuming chi-square distribution with 2 df .
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 0.338
The p-value is 0.844 assuming chi-square distribution with 2 df .
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 0.229
The p-value is 0.892 assuming chi-square distribution with 2 df .
Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 1.007
The p-value is 0.604 assuming chi-square distribution with 2 df .
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 8.125
The \(p\)-value is 0.017 assuming chi-square distribution with 2 df .
Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 3.150
The p-value is 0.207 assuming chi-square distribution with 2 df .
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 0.232
The \(p\)-value is 0.630 assuming chi-square distribution with 1 df .

P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).

Levene's test by Transect
data: Conc
Test Statistic \(=0.5022, \mathrm{p}\)-value \(=0.8877\)
data: \(\log 10(C o n c)\)
Test Statistic \(=0.7762\), p -value \(=0.6517\)

Levene's test by Depth
data: Conc
Test Statistic \(=8.4033\), p -value \(=0.000294\)
data: \(\log 10(C o n c)\)
Test Statistic \(=5.0243, \mathrm{p}\)-value \(=0.007259\)

Levene's test by Side
data: Conc
Test Statistic \(=1.0168, \mathrm{p}\)-value \(=0.3633\)
data: \(\log 10(C o n c)\)
Test Statistic \(=3.4432, \mathrm{p}\)-value \(=0.03349\)

Kruskal-Wallis rank sum test
data: Conc and Transect
Kruskal-Wallis chi-squared \(=39.7647, \mathrm{df}=10, \mathrm{p}\)-value \(=1.864 \mathrm{e}-05\)

Dependent Variable Aluminum, total
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.079
The p-value is 0.961 assuming chi-square distribution with 2 df .
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 4.571
The \(p\)-value is 0.102 assuming chi-square distribution with 2 df .
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.378
The p-value is 0.828 assuming chi-square distribution with 2 df .
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 1.509
The p-value is 0.470 assuming chi-square distribution with 2 df .
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 7.574
The p-value is 0.023 assuming chi-square distribution with 2 df .
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 4.339
The p-value is 0.114 assuming chi-square distribution with 2 df .
Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 13.498
The \(p\)-value is 0.001 assuming chi-square distribution with 2 df .
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 8.277
The p-value is 0.016 assuming chi-square distribution with 2 df .
Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 6.846
The p-value is 0.033 assuming chi-square distribution with 2 df .
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 1.309
The \(p\)-value is 0.520 assuming chi-square distribution with 2 df .

P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).

Dependent Variable Aluminum, total
Grouping Variable SIDE\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.383
The p-value is 0.536 assuming chi-square distribution with 1 df .

Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 0.429
The p-value is 0.513 assuming chi-square distribution with 1 df .

Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.698
The p-value is 0.705 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 0.591
The p-value is 0.744 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 1.305
The p-value is 0.521 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 2.482
The p-value is 0.289 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 2.862
The p-value is 0.239 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 0.375
The p-value is 0.829 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 0.979
The p-value is 0.613 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 1.235
The p-value is 0.266 assuming chi-square distribution with 1 df .

P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).

Levene's test by Transect
```

data: Conc

```
Test Statistic \(=6.2886, p\)-value \(=1.506 \mathrm{e}-08\)
data: \(\log 10(C o n c)\)
Test Statistic \(=5.4309, p-\) value \(=3.001 \mathrm{e}-07\)

Levene's test by Depth
data: Conc
Test Statistic \(=2.5816, \mathrm{p}\)-value \(=0.0777\)
data: \(\log 10(C o n c)\)
Test Statistic \(=1.5362\), p -value \(=0.2173\)

Levene's test by Side
data: Conc
Test Statistic \(=2.7715, p\)-value \(=0.06453\)
data: log10(Conc)
Test Statistic \(=2.5077\), p-value \(=0.08354\)

Kruskal-Wallis rank sum test
data: Conc and Transect
Kruskal-Wallis chi-squared \(=76.4125, \mathrm{df}=10, \mathrm{p}\)-value \(=2.525 \mathrm{e}-12\)
```

Dependent Variable Antimony, dissolved
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.234
The p-value is 0.889 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 3.429
The p-value is 0.180 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.756
The p-value is 0.685 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 0.202
The p-value is 0.904 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 0.570
The p-value is 0.752 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 3.627
The p-value is 0.163 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 5.143
The p-value is 0.076 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 12.253
The p-value is 0.002 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 0.969
The p-value is 0.616 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 0.518
The p-value is 0.772 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).

Dependent Variable Antimony, dissolved Grouping Variable SIDE\$

Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.025
The p-value is 0.874 assuming chi-square distribution with 1 df .

Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 0.048
The p-value is 0.827 assuming chi-square distribution with 1 df .

Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 2.156
The p-value is 0.340 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 0.363
The p-value is 0.834 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 0.460
The p-value is 0.794 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 0.820
The p-value is 0.664 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 0.528
The p-value is 0.768 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 1.383
The p-value is 0.501 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 0.860
The p-value is 0.651 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 0.454
The p-value is 0.501 assuming chi-square distribution with 1 df .

P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).

Levene's test by Transect
```

data: Conc

```
Test Statistic \(=5.2381, \mathrm{p}\)-value \(=5.893 \mathrm{e}-07\)
data: \(\log 10(C o n c)\)
Test Statistic \(=5.2771, p\)-value \(=5.141 \mathrm{e}-07\)

Levene's test by Depth
data: Conc
Test Statistic \(=0.936, \mathrm{p}\)-value \(=0.3936\)
data: \(\log 10(C o n c)\)
Test Statistic \(=0.2866, \mathrm{p}\)-value \(=0.7511\)

Levene's test by Side
data: Conc
Test Statistic \(=3.2817, p\)-value \(=0.03922\)
data: log10(Conc)
Test Statistic \(=2.5337, \mathrm{p}\)-value \(=0.08144\)

Kruskal-Wallis rank sum test
data: Conc and Transect
Kruskal-Wallis chi-squared \(=76.4365, \mathrm{df}=10, \mathrm{p}\)-value \(=2.498 \mathrm{e}-12\)
```

Dependent Variable Antimony, total
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.492
The p-value is 0.782 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 1.838
The p-value is 0.399 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.116
The p-value is 0.944 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 0.323
The p-value is 0.851 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 0.856
The p-value is 0.652 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 1.634
The p-value is 0.442 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 4.761
The p-value is 0.093 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 13.205
The p-value is 0.001 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 3.253
The p-value is 0.197 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 1.522
The p-value is 0.467 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).

Dependent Variable Antimony, total Grouping Variable SIDE\$

Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.011
The p-value is 0.916 assuming chi-square distribution with 1 df .

Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 0.441
The p-value is 0.507 assuming chi-square distribution with 1 df .

Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 2.608
The p-value is 0.271 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 0.479
The p-value is 0.787 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 0.097
The p-value is 0.953 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 2.007
The p-value is 0.367 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 1.054
The p-value is 0.590 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 3.167
The p-value is 0.205 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 2.091
The p-value is 0.352 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 2.373
The p-value is 0.123 assuming chi-square distribution with 1 df .

P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).

Levene's test by Transect
data: Conc
Test Statistic \(=3.8535, \mathrm{p}\)-value \(=7.359 \mathrm{e}-05\)
data: \(\log 10(\) Conc)
Test Statistic \(=5.9824, p-\) value \(=4.224 \mathrm{e}-08\)

Levene's test by Depth
data: Conc
Test Statistic \(=3.0427, \mathrm{p}\)-value \(=0.04948\)
data: \(\log 10(\) Conc)
Test Statistic \(=3.2855, \mathrm{p}\)-value \(=0.03904\)

Levene's test by Side
data: Conc
Test Statistic \(=1.3326, \mathrm{p}\)-value \(=0.2657\)
data: log10(Conc)
Test Statistic \(=1.4994, \mathrm{p}\)-value \(=0.2253\)

Kruskal-Wallis rank sum test
data: Conc and Transect
Kruskal-Wallis chi-squared \(=118.5655, \mathrm{df}=10, \mathrm{p}\)-value \(<2.2 \mathrm{e}-16\)
```

Dependent Variable Arsenic, dissolved
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.038
The p-value is 0.981 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 2.000
The p-value is 0.368 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 1.970
The p-value is 0.373 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 1.275
The p-value is 0.529 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 0.105
The p-value is 0.949 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 0.808
The p-value is 0.668 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 3.009
The p-value is 0.222 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 8.820
The p-value is 0.012 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 1.543
The p-value is 0.462 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 0.816
The p-value is 0.665 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).

Dependent Variable Arsenic, dissolved Grouping Variable SIDE\$

Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.002
The p-value is 0.964 assuming chi-square distribution with 1 df .

Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 1.000
The p-value is 0.317 assuming chi-square distribution with 1 df .

Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.752
The p-value is 0.687 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 0.368
The p-value is 0.832 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 4.009
The p-value is 0.135 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 3.339
The p-value is 0.188 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 1.622
The p-value is 0.444 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 3.889
The p-value is 0.143 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 0.258
The p-value is 0.879 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 7.993
The \(p\)-value is 0.005 assuming chi-square distribution with 1 df .

P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).

Levene's test by Transect
```

data: Conc

```
Test Statistic \(=3.8326, \mathrm{p}\)-value \(=7.937 \mathrm{e}-05\)
data: \(\log 10(C o n c)\)
Test Statistic \(=4.9891, \mathrm{p}\)-value \(=1.386 \mathrm{e}-06\)

Levene's test by Depth
data: Conc
Test Statistic \(=8.7198, \mathrm{p}\)-value \(=0.0002187\)
data: log10(Conc)
Test Statistic \(=8.7769, \mathrm{p}\)-value \(=0.0002073\)

Levene's test by Side
data: Conc
Test Statistic \(=3.1578, \mathrm{p}\)-value \(=0.04423\)
data: \(\log 10(C o n c)\)
Test Statistic \(=6.0033\), \(p\)-value \(=0.002842\)

Kruskal-Wallis rank sum test
data: Conc and Transect
Kruskal-Wallis chi-squared \(=122.0399, d f=10, p-\) value \(<2.2 e-16\)
```

Dependent Variable Inorganic arsenic, dissolved
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 1.133
The p-value is 0.568 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 3.714
The p-value is 0.156 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 1.869
The p-value is 0.393 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 0.151
The p-value is 0.927 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 0.492
The p-value is 0.782 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 0.615
The p-value is 0.735 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 6.271
The p-value is 0.043 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 3.487
The p-value is 0.175 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 3.069
The p-value is 0.216 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).

Dependent Variable Inorganic arsenic, dissolved Grouping Variable SIDE\$

Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.564
The p-value is 0.453 assuming chi-square distribution with 1 df .

Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 0.048
The p-value is 0.827 assuming chi-square distribution with 1 df .

Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 5.993
The p-value is 0.050 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 0.182
The p-value is 0.913 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 0.011
The p-value is 0.995 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 0.436
The p-value is 0.804 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 4.800
The p-value is 0.091 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 1.330
The p-value is 0.514 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 0.579
The p-value is 0.748 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 9.199
The p-value is 0.002 assuming chi-square distribution with 1 df .

P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).

Levene's test by Transect
data: Conc
Test Statistic \(=5.7172, \mathrm{p}\)-value \(=1.077 \mathrm{e}-07\)
data: \(\log 10(C o n c)\)
Test Statistic \(=4.4464, p\)-value \(=9.311 \mathrm{e}-06\)

Levene's test by Depth
data: Conc
Test Statistic \(=9.1822\), p-value \(=0.000142\)
data: \(\log 10(C o n c)\)
Test Statistic \(=9.3232, \mathrm{p}\)-value \(=0.0001246\)

Levene's test by Side
data: Conc
Test Statistic \(=2.7919, \mathrm{p}\)-value \(=0.06323\)
data: log10(Conc)
Test Statistic \(=5.2764, \mathrm{p}\)-value \(=0.005698\)

Kruskal-Wallis rank sum test
data: Conc and Transect
Kruskal-Wallis chi-squared \(=110.5829, d f=10, p-\) value \(<2.2 e-16\)
```

Dependent Variable Inorganic arsenic, total
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.495
The p-value is 0.781 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 0.000
The p-value is 1.000 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 1.016
The p-value is 0.602 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 1.356
The p-value is 0.508 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 0.320
The p-value is 0.852 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 2.554
The p-value is 0.279 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 4.916
The p-value is 0.086 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 10.030
The p-value is 0.007 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 4.006
The p-value is 0.135 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 4.970
The p-value is 0.083 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).

Dependent Variable Inorganic arsenic, total Grouping Variable SIDE\$

Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 1.643
The p-value is 0.200 assuming chi-square distribution with 1 df .
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 0.048
The \(p\)-value is 0.827 assuming chi-square distribution with 1 df .
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 3.705
The p-value is 0.157 assuming chi-square distribution with 2 df .
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 0.219
The \(p\)-value is 0.896 assuming chi-square distribution with 2 df .
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 0.450
The p-value is 0.799 assuming chi-square distribution with 2 df .
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 0.630
The p-value is 0.730 assuming chi-square distribution with 2 df .
Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 3.796
The p-value is 0.150 assuming chi-square distribution with 2 df .
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 0.736
The \(p\)-value is 0.692 assuming chi-square distribution with 2 df .
Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 0.135
The p-value is 0.935 assuming chi-square distribution with 2 df .
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 5.340
The p-value is 0.021 assuming chi-square distribution with 1 df .

P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).

Levene's test by Transect
```

data: Conc

```
Test Statistic \(=7.8753, \mathrm{p}\)-value \(=6.118 \mathrm{e}-11\)
data: \(\log 10(C o n c)\)
Test Statistic \(=7.2534, \mathrm{p}\)-value \(=5.135 \mathrm{e}-10\)

Levene's test by Depth
data: Conc
Test Statistic \(=6.663, \mathrm{p}\)-value \(=0.001516\)
data: \(\log 10(C o n c)\)
Test Statistic \(=10.632, \mathrm{p}\)-value \(=3.702 \mathrm{e}-05\)

Levene's test by Side
data: Conc
Test Statistic \(=2.0147, \mathrm{p}\)-value \(=0.1355\)
data: \(\log 10(C o n c)\)
Test Statistic \(=3.6318, \mathrm{p}\)-value \(=0.02788\)

Kruskal-Wallis rank sum test
data: Conc and Transect
Kruskal-Wallis chi-squared \(=141.3335, \mathrm{df}=10\), p -value \(<2.2 \mathrm{e}-16\)
```

Dependent Variable Barium, dissolved
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 1.256
The p-value is 0.534 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 3.603
The p-value is 0.165 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.653
The p-value is 0.721 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 0.222
The p-value is 0.895 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 0.114
The p-value is 0.945 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 2.310
The p-value is 0.315 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 4.109
The p-value is 0.128 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 8.874
The p-value is 0.012 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 4.122
The p-value is 0.127 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 0.903
The p-value is 0.637 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).

Dependent Variable Barium, dissolved Grouping Variable SIDE\$

Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.018
The p-value is 0.894 assuming chi-square distribution with 1 df .

Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 0.441
The p-value is 0.507 assuming chi-square distribution with 1 df .

Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 6.322
The p-value is 0.042 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 0.175
The p-value is 0.916 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 0.190
The p-value is 0.909 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 5.003
The p-value is 0.082 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 0.209
The p-value is 0.901 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 2.845
The p-value is 0.241 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 0.160
The p-value is 0.923 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 10.704
The \(p\)-value is 0.001 assuming chi-square distribution with 1 df .

P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).

Levene's test by Transect
data: Conc
Test Statistic \(=9.0002, \mathrm{p}\)-value \(=1.385 \mathrm{e}-12\)
data: \(\log 10(\) Conc)
Test Statistic \(=8.5633, \mathrm{p}\)-value \(=5.973 \mathrm{e}-12\)

Levene's test by Depth
data: Conc
Test Statistic \(=7.4886, \mathrm{p}\)-value \(=0.0006942\)
data: \(\log 10(C o n c)\)
Test Statistic \(=11.2542\), p -value \(=2.089 \mathrm{e}-05\)

Levene's test by Side
data: Conc
Test Statistic \(=1.6631, \mathrm{p}\)-value \(=0.1916\)
data: log10(Conc)
Test Statistic \(=3.0486, \mathrm{p}\)-value \(=0.04919\)

Kruskal-Wallis rank sum test
data: Conc and Transect
Kruskal-Wallis chi-squared \(=139.3329, \mathrm{df}=10, \mathrm{p}\)-value \(<2.2 \mathrm{e}-16\)
```

Dependent Variable Barium, total
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.091
The p-value is 0.955 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 2.721
The p-value is 0.257 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.471
The p-value is 0.790 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 0.182
The p-value is 0.913 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 0.295
The p-value is 0.863 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 2.563
The p-value is 0.278 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 3.584
The p-value is 0.167 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 7.925
The p-value is 0.019 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 3.122
The p-value is 0.210 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 1.348
The p-value is 0.510 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).

Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.951
The p-value is 0.329 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 1.765
The p-value is 0.184 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 5.900
The p-value is 0.052 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 0.237
The p-value is 0.888 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 0.338
The p-value is 0.844 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 7.133
The p-value is 0.028 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 0.912
The p-value is 0.634 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 1.189
The p-value is 0.552 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 0.108
The p-value is 0.947 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 12.000
The \(p\)-value is 0.001 assuming chi-square distribution with 1 df .

P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).

Levene's test by Transect
data: Conc
Test Statistic \(=4.647, \mathrm{p}\)-value \(=4.584 \mathrm{e}-06\)
data: \(\log 10(C o n c)\)
Test Statistic \(=1.8463, p\)-value \(=0.05357\)

Levene's test by Depth
data: Conc
Test Statistic \(=4.3202, \mathrm{p}\)-value \(=0.0143\)
data: \(\log 10(C o n c)\)
Test Statistic \(=2.7802, p\)-value \(=0.06395\)

Levene's test by Side
data: Conc
Test Statistic \(=0.596, p\)-value \(=0.5518\)
data: \(\log 10(C o n c)\)
Test Statistic \(=0.8329, p-\) value \(=0.436\)

Standard ANOVA-log10 - full model
Df Sum Sq Mean Sq F value \(\operatorname{Pr}(>F)\)
Transect \(10 \quad 3.176 \quad 0.3176 \quad 7.8951 .86 \mathrm{e}-10\) ***
Transect:Depth \(20 \quad 1.031 \quad 0.0515 \quad 1.281 \quad 0.197\)
Transect:Side 17 0.311 0.0183 0.455 0.969
Transect:Depth:Side 27 0.652 0.0241 0.600 0.941
Residuals
1787.1610 .0402
\begin{tabular}{lrrrrr} 
& Df & Sum Sq & Mean Sq F value & \(\operatorname{Pr}(>F)\) & \\
Transect & 10 & 3.176 & 0.3176 & 8.334 & \(2.54 \mathrm{e}-11\) \\
*** \\
Transect:Depth & 20 & 1.031 & 0.0515 & 1.353 & 0.15 \\
Transect:Side & 17 & 0.311 & 0.0183 & 0.481 & 0.96 \\
Residuals & 205 & 7.812 & 0.0381 & &
\end{tabular}

Levene's test by Transect
data: Conc
Test Statistic \(=1.8261, \mathrm{p}\)-value \(=0.0568\)
data: \(\log 10(C o n c)\)
Test Statistic \(=1.9093, p\)-value \(=0.04455\)

Levene's test by Depth
data: Conc
Test Statistic \(=5.6294, \mathrm{p}\)-value \(=0.004061\)
data: log10(Conc)
Test Statistic \(=4.6889, \mathrm{p}\)-value \(=0.01002\)

Levene's test by Side
data: Conc
Test Statistic \(=1.7534, \mathrm{p}\)-value \(=0.1753\)
data: log10(Conc)
Test Statistic \(=2.7055\), p-value \(=0.0688\)

Kruskal-Wallis rank sum test
data: Conc and Transect
Kruskal-Wallis chi-squared \(=72.5487, \mathrm{df}=10, \mathrm{p}\)-value \(=1.424 \mathrm{e}-11\)
```

Dependent Variable Cadmium, total
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.047
The p-value is 0.977 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 1.397
The p-value is 0.497 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 1.010
The p-value is 0.603 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 0.492
The p-value is 0.782 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 2.879
The p-value is 0.237 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 1.352
The p-value is 0.509 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 5.102
The p-value is 0.078 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 7.600
The p-value is 0.022 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 0.478
The p-value is 0.787 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 1.203
The p-value is 0.548 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).

Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.008
The p-value is 0.929 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 3.137
The p-value is 0.077 assuming chi-square distribution with 1 df .

Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.886
The p-value is 0.642 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 1.806
The p-value is 0.405 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 0.562
The p-value is 0.755 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 1.223
The p-value is 0.543 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 0.738
The p-value is 0.692 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 0.218
The p-value is 0.897 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 0.902
The p-value is 0.637 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 4.119
The p-value is 0.042 assuming chi-square distribution with 1 df .

P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).

Levene's test by Transect
data: Conc
Test Statistic \(=1.6364, p\)-value \(=0.09699\)
data: \(\log 10(\) Conc)
Test Statistic \(=1.5707, \mathrm{p}\)-value \(=0.1159\)

Levene's test by Depth
data: Conc
Test Statistic \(=0.253, \mathrm{p}\)-value \(=0.7766\)
data: \(\log 10(\) Conc)
Test Statistic \(=0.3889, \mathrm{p}\)-value \(=0.6782\)

Levene's test by Side
data: Conc
Test Statistic \(=0.1434, \mathrm{p}\)-value \(=0.8664\)
data: \(\log 10(C o n c)\)
Test Statistic \(=0.1624, \mathrm{p}\)-value \(=0.8502\)
\begin{tabular}{lrrrrrr} 
Standard ANOVA - full model & & & \\
& Df & Sum Sq & Mean Sq F value & \(\operatorname{Pr}(>F)\) \\
Transect & 10 & 102277583 & 10227758 & 3.523 & 0.000288
\end{tabular} ***
\begin{tabular}{lrrrrr} 
& Df & Sum Sq & Mean Sq F value & \(\operatorname{Pr}(>F)\) \\
Transect & 10 & 102277583 & 10227758 & 3.988 & \(5.36 \mathrm{e}-05\)
\end{tabular} ***

Levene's test by Transect
data: Conc
Test Statistic \(=1.9156, \mathrm{p}\)-value \(=0.04374\)
data: \(\log 10(C o n c)\)
Test Statistic \(=1.8997, p\)-value \(=0.04582\)

Levene's test by Depth
data: Conc
Test Statistic \(=0.4707, \mathrm{p}\)-value \(=0.6251\)
data: \(\log 10(C o n c)\)
Test Statistic \(=0.7059, \mathrm{p}\)-value \(=0.4946\)

Levene's test by Side
data: Conc
Test Statistic \(=0.1751, \mathrm{p}\)-value \(=0.8395\)
data: \(\log 10(C o n c)\)
Test Statistic \(=0.1844, \mathrm{p}\)-value \(=0.8317\)

Kruskal-Wallis rank sum test
data: Conc and Transect
Kruskal-Wallis chi-squared \(=34.0358\), \(d f=10, p\)-value \(=0.0001821\)
```

Dependent Variable Calcium, total
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.225
The p-value is 0.893 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 2.803
The p-value is 0.246 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.839
The p-value is 0.657 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 0.202
The p-value is 0.904 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 0.686
The p-value is 0.710 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 0.174
The p-value is 0.917 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 1.007
The p-value is 0.604 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 1.884
The p-value is 0.390 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 2.012
The p-value is 0.366 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 0.483
The p-value is 0.785 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).

Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.097
The p-value is 0.756 assuming chi-square distribution with 1 df .

Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 1.263
The p-value is 0.261 assuming chi-square distribution with 1 df .

Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.823
The p-value is 0.663 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 0.245
The p-value is 0.885 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 1.160
The p-value is 0.560 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 0.231
The p-value is 0.891 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 0.768
The p-value is 0.681 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 0.870
The \(p\)-value is 0.647 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 0.081
The p-value is 0.960 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 1.822
The p-value is 0.177 assuming chi-square distribution with 1 df .

P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).

Levene's test by Transect
data: Conc
Test Statistic \(=0.5706, p\)-value \(=0.779\)
data: \(\log 10(C o n c)\)
Test Statistic \(=0.9811, \mathrm{p}\)-value \(=0.4471\)

Levene's test by Depth
data: Conc
Test Statistic \(=8.4278, \mathrm{p}\)-value \(=0.0003337\)
data: \(\log 10(C o n c)\)
Test Statistic \(=10.7039, \mathrm{p}\)-value \(=4.387 \mathrm{e}-05\)

Levene's test by Side
data: Conc
Test Statistic \(=0.5319, \mathrm{p}\)-value \(=0.5885\)
data: log10(Conc)
Test Statistic \(=2.3533, \mathrm{p}\)-value \(=0.0984\)

Kruskal-Wallis rank sum test
data: Conc and Transect
Kruskal-Wallis chi-squared \(=30.766, \mathrm{df}=7, \mathrm{p}\)-value \(=6.867 \mathrm{e}-05\)
```

Dependent Variable Cerium, total
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.115
The p-value is 0.944 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 4.333
The p-value is 0.115 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.979
The p-value is 0.613 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 1.800
The p-value is 0.407 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 6.753
The p-value is 0.034 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 7.636
The p-value is 0.022 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 9.529
The p-value is 0.009 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 1.196
The p-value is 0.550 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 8=0.00625\).
```

Dependent Variable Cerium, total

```
Grouping Variable SIDE\$
    Results for TRANSECT\$ = CAN1
    Kruskal-Wallis Test Statistic: 0.566
    The p-value is 0.452 assuming chi-square distribution with 1 df .
    Results for TRANSECT\$ = TC10
    Kruskal-Wallis Test Statistic: 0.222
    The p-value is 0.637 assuming chi-square distribution with 1 df .
    Results for TRANSECT\$ = TC1
    Kruskal-Wallis Test Statistic: 1.697
    The p-value is 0.428 assuming chi-square distribution with 2 df.
    Results for TRANSECT\$ = TC2
    Kruskal-Wallis Test Statistic: 1.800
    The p-value is 0.180 assuming chi-square distribution with 1 df .
    Results for TRANSECT\$ = TC3
    Kruskal-Wallis Test Statistic: 0.973
    The p-value is 0.615 assuming chi-square distribution with 2 df .
    Results for TRANSECT\$ = TC4
    Kruskal-Wallis Test Statistic: 2.003
    The p-value is 0.367 assuming chi-square distribution with 2 df .
    Results for TRANSECT\$ = TC6
    Kruskal-Wallis Test Statistic: 0.641
    The p-value is 0.726 assuming chi-square distribution with 2 df .
    Results for TRANSECT\$ = TC9
    Kruskal-Wallis Test Statistic: 2.527
    The p-value is 0.112 assuming chi-square distribution with 1 df .
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 8=0.00625\).

Levene's test by Transect
data: Conc
Test Statistic \(=4.6963, \mathrm{p}\)-value \(=8.58 \mathrm{e}-05\)
data: \(\log 10(\) Conc)
Test Statistic \(=2.6413, \mathrm{p}\)-value \(=0.01324\)

Levene's test by Depth
data: Conc
Test Statistic \(=0.0579, \mathrm{p}\)-value \(=0.9438\)
data: \(\log 10(C o n c)\)
Test Statistic \(=0.4482, \mathrm{p}\)-value \(=0.6396\)

Levene's test by Side
data: Conc
Test Statistic \(=0.3778\), p -value \(=0.686\)
data: log10(Conc)
Test Statistic \(=0.7658, \mathrm{p}\)-value \(=0.4667\)

Kruskal-Wallis rank sum test
data: Conc and Transect
Kruskal-Wallis chi-squared \(=34.9843, d f=7, p\)-value \(=1.126 e-05\)
```

Dependent Variable Cesium, dissolved
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 1.417
The p-value is 0.492 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 0.000
The p-value is 1.000 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.618
The p-value is 0.734 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 0.000
The p-value is 1.000 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 0.412
The p-value is 0.814 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 0.520
The p-value is 0.771 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 6.562
The p-value is 0.038 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 3.279
The p-value is 0.194 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 8=0.00625\).

Dependent Variable Cesium, dissolved Grouping Variable SIDE\$

Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.944
The p-value is 0.331 assuming chi-square distribution with 1 df .

Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 0.000
The p-value is 1.000 assuming chi-square distribution with 1 df .

Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 2.070
The p-value is 0.355 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 0.000
The p-value is 1.000 assuming chi-square distribution with 1 df .

Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 0.279
The p-value is 0.870 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 0.529
The p-value is 0.767 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 3.263
The p-value is 0.196 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 1.445
The p-value is 0.229 assuming chi-square distribution with 1 df .

P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 8=0.00625\).

Levene's test by Transect
data: Conc
Test Statistic \(=0.7079, \mathrm{p}\)-value \(=0.6654\)
data: \(\log 10(C o n c)\)
Test Statistic \(=1.9455, \mathrm{p}\)-value \(=0.06614\)

Levene's test by Depth
data: Conc
Test Statistic \(=3.4255, \mathrm{p}\)-value \(=0.03498\)
data: \(\log 10(C o n c)\)
Test Statistic \(=2.3371, p\)-value \(=0.09996\)

Levene's test by Side
data: Conc
Test Statistic \(=0.2665, \mathrm{p}\)-value \(=0.7664\)
data: \(\log 10(C o n c)\)
Test Statistic \(=0.0085, \mathrm{p}\)-value \(=0.9916\)

Standard ANOVA-log10 - full model
Df Sum Sq Mean Sq F value \(\operatorname{Pr}(>F)\)
Transect \(70.89430 .12775 \quad 6.0406 .12 \mathrm{e}-06\) ***
Transect:Depth 160.63140 .039461 .8660 .0318 *
Transect:Side 120.33200 .02767 1.308 0.2247
Transect:Depth:Side \(180.41470 .023041 .089 \quad 0.3730\)
Residuals
1062.24200 .02115
\begin{tabular}{lrrrrrr} 
& Df Sum Sq Mean Sq F value & \(\operatorname{Pr}(>F)\) & \\
Transect & 7 & 0.8943 & 0.12775 & 5.963 & \(5.39 \mathrm{e}-06\) *** \\
Transect:Depth & 16 & 0.6314 & 0.03946 & 1.842 & 0.0326 * \\
Transect:Side & 12 & 0.3320 & 0.02767 & 1.291 & 0.2317 & \\
Residuals & 124 & 2.6567 & 0.02142 & & &
\end{tabular}

Levene's test by Transect
data: Conc
Test Statistic \(=0.6353, \mathrm{p}\)-value \(=0.7825\)
data: \(\log 10(\) Conc)
Test Statistic \(=1.5247, \mathrm{p}\)-value \(=0.1326\)

Levene's test by Depth
data: Conc
Test Statistic \(=9.0586, \mathrm{p}\)-value \(=0.0001684\)
data: \(\log 10(\) Conc)
Test Statistic \(=8.9161, \mathrm{p}\)-value \(=0.0001921\)

Levene's test by Side
data: Conc
Test Statistic \(=1.3427, \mathrm{p}\)-value \(=0.2634\)
data: log10(Conc)
Test Statistic \(=1.9724, \mathrm{p}\)-value \(=0.1417\)

Kruskal-Wallis rank sum test
data: Conc and Transect
Kruskal-Wallis chi-squared \(=48.5875, \mathrm{df}=10, \mathrm{p}\)-value \(=4.847 \mathrm{e}-07\)
```

Dependent Variable Cobalt, total
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 1.136
The p-value is 0.567 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 1.397
The p-value is 0.497 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.230
The p-value is 0.891 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 2.451
The p-value is 0.294 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 5.951
The p-value is 0.051 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 6.660
The p-value is 0.036 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 4.995
The p-value is 0.082 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 5.887
The p-value is 0.053 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 0.041
The p-value is 0.980 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 0.386
The p-value is 0.824 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).

Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 1.559
The p-value is 0.212 assuming chi-square distribution with 1 df .

Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 1.225
The p-value is 0.268 assuming chi-square distribution with 1 df .

Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 1.804
The p-value is 0.406 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 2.851
The p-value is 0.240 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 0.913
The p-value is 0.634 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 1.551
The p-value is 0.460 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 0.584
The p-value is 0.747 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 1.046
The p-value is 0.593 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 4.103
The p-value is 0.129 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 2.700
The p-value is 0.100 assuming chi-square distribution with 1 df .

P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).

Levene's test by Transect
data: Conc
Test Statistic \(=1.0059, \mathrm{p}\)-value \(=0.439\)
data: \(\log 10(C o n c)\)
Test Statistic \(=2.2361, p\)-value \(=0.01652\)

Levene's test by Depth
data: Conc
Test Statistic \(=2.7936, \mathrm{p}\)-value \(=0.06312\)
data: \(\log 10(C o n c)\)
Test Statistic \(=2.975, \mathrm{p}\)-value \(=0.05287\)

Levene's test by Side
data: Conc
Test Statistic \(=1.2084, \mathrm{p}\)-value \(=0.3004\)
data: log10(Conc)
Test Statistic \(=1.8871, \mathrm{p}\)-value \(=0.1537\)

Kruskal-Wallis rank sum test
data: Conc and Transect
Kruskal-Wallis chi-squared \(=62.9599, \mathrm{df}=10, \mathrm{p}\)-value \(=9.937 \mathrm{e}-10\)
```

Dependent Variable Copper, total
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 2.878
The p-value is 0.237 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 0.515
The p-value is 0.773 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.406
The p-value is 0.816 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 6.598
The p-value is 0.037 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 4.128
The p-value is 0.127 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 5.565
The p-value is 0.062 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 8.642
The p-value is 0.013 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 3.207
The p-value is 0.201 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 1.757
The p-value is 0.415 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 2.338
The p-value is 0.311 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).

Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.199
The p-value is 0.655 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 3.971
The p-value is 0.046 assuming chi-square distribution with 1 df .

Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 2.018
The p-value is 0.365 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 1.695
The p-value is 0.428 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 0.586
The p-value is 0.746 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 3.044
The p-value is 0.218 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 0.177
The p-value is 0.915 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 1.478
The p-value is 0.478 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 1.306
The p-value is 0.521 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 7.268
The p-value is 0.007 assuming chi-square distribution with 1 df .

P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).

Levene's test by Transect
data: Conc
Test Statistic \(=4.5679, \mathrm{p}\)-value \(=0.0001179\)
data: \(\log 10(\) Conc)
Test Statistic \(=3.9274, \mathrm{p}\)-value \(=0.000575\)

Levene's test by Depth
data: Conc
Test Statistic \(=0.5093, \mathrm{p}\)-value \(=0.6019\)
data: \(\log 10(\) Conc)
Test Statistic \(=0.348, \mathrm{p}\)-value \(=0.7067\)

Levene's test by Side
data: Conc
Test Statistic \(=0.8797, \mathrm{p}\)-value \(=0.417\)
data: log10(Conc)
Test Statistic \(=1.1245, \mathrm{p}\)-value \(=0.3274\)

Kruskal-Wallis rank sum test
data: Conc and Transect
Kruskal-Wallis chi-squared \(=30.4217, \mathrm{df}=7, \mathrm{p}\)-value \(=7.945 \mathrm{e}-05\)
```

Dependent Variable Europium, dissolved
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 2.000
The p-value is 0.368 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 2.000
The p-value is 0.368 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 3.275
The p-value is 0.194 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 2.700
The p-value is 0.259 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 0.585
The p-value is 0.747 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 0.828
The p-value is 0.661 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 4.078
The p-value is 0.130 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 1.406
The p-value is 0.495 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 8=0.00625\).
```

Dependent Variable Europium, dissolved

```
Grouping Variable SIDE\$
    Results for TRANSECT\$ = CAN1
    Kruskal-Wallis Test Statistic: 1.000
    The p-value is 0.317 assuming chi-square distribution with 1 df .
    Results for TRANSECT\$ = TC10
    Kruskal-Wallis Test Statistic: 1.000
    The p-value is 0.317 assuming chi-square distribution with 1 df .
    Results for TRANSECT\$ = TC1
    Kruskal-Wallis Test Statistic: 1.969
    The p-value is 0.374 assuming chi-square distribution with 2 df .
    Results for TRANSECT\$ = TC2
    Kruskal-Wallis Test Statistic: 0.200
    The p-value is 0.655 assuming chi-square distribution with 1 df .
    Results for TRANSECT\$ = TC3
    Kruskal-Wallis Test Statistic: 1.657
    The p-value is 0.437 assuming chi-square distribution with 2 df .
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 0.603
The p-value is 0.740 assuming chi-square distribution with 2 df .
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 0.069
The p-value is 0.966 assuming chi-square distribution with 2 df .
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 7.299
The \(p\)-value is 0.007 assuming chi-square distribution with 1 df .

P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 8=0.00625\).

Levene's test by Transect
data: Conc
Test Statistic \(=2.5785, \mathrm{p}\)-value \(=0.01537\)
data: \(\log 10(C o n c)\)
Test Statistic \(=3.9494, \mathrm{p}\)-value \(=0.0005445\)

Levene's test by Depth
data: Conc
Test Statistic \(=2.7297, \mathrm{p}\)-value \(=0.06833\)
data: log10(Conc)
Test Statistic \(=0.3742, \mathrm{p}\)-value \(=0.6884\)

Levene's test by Side
data: Conc
Test Statistic \(=0.456, p\)-value \(=0.6346\)
data: log10(Conc)
Test Statistic \(=0.901, \mathrm{p}\)-value \(=0.4083\)

Kruskal-Wallis rank sum test
data: Conc and Transect
Kruskal-Wallis chi-squared \(=32.5567, d f=7, p\)-value \(=3.201 e-05\)
```

Dependent Variable Europium, total
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 1.429
The p-value is 0.490 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 2.000
The p-value is 0.368 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.001
The p-value is 0.999 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 3.000
The p-value is 0.223 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 1.985
The p-value is 0.371 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 2.270
The p-value is 0.321 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 3.978
The p-value is 0.137 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 3.497
The p-value is 0.174 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 8=0.00625\).
```

Dependent Variable Europium, total

```
Grouping Variable SIDE\$
    Results for TRANSECT\$ = CAN1
    Kruskal-Wallis Test Statistic: 0.905
    The p-value is 0.341 assuming chi-square distribution with 1 df .
    Results for TRANSECT\$ = TC10
    Kruskal-Wallis Test Statistic: 1.000
    The p-value is 0.317 assuming chi-square distribution with 1 df .
    Results for TRANSECT\$ = TC1
    Kruskal-Wallis Test Statistic: 0.945
    The p-value is 0.623 assuming chi-square distribution with 2 df.
    Results for TRANSECT\$ = TC2
    Kruskal-Wallis Test Statistic: 0.000
    The p-value is 1.000 assuming chi-square distribution with 1 df .
    Results for TRANSECT\$ = TC3
    Kruskal-Wallis Test Statistic: 0.498
    The p-value is 0.780 assuming chi-square distribution with 2 df .
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 1.168
The p-value is 0.558 assuming chi-square distribution with 2 df .
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 0.070
The p-value is 0.965 assuming chi-square distribution with 2 df .
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 6.499
The \(p\)-value is 0.011 assuming chi-square distribution with 1 df .

P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 8=0.00625\).

Levene's test by Transect
data: Conc
Test Statistic \(=0.626, \mathrm{p}\)-value \(=0.7911\)
data: \(\log 10(C o n c)\)
Test Statistic \(=0.5394, \mathrm{p}\)-value \(=0.8612\)

Levene's test by Depth
data: Conc
Test Statistic \(=11.6668, \mathrm{p}\)-value \(=1.435 \mathrm{e}-05\)
data: log10(Conc)
Test Statistic \(=12.0159, p-\) value \(=1.043 e-05\)

Levene's test by Side
data: Conc
Test Statistic \(=1.0453, \mathrm{p}\)-value \(=0.3531\)
data: \(\log 10(C o n c)\)
Test Statistic \(=3.4471, \mathrm{p}\)-value \(=0.03336\)

Kruskal-Wallis rank sum test
data: Conc and Transect
Kruskal-Wallis chi-squared \(=58.1955, \mathrm{df}=10, \mathrm{p}\)-value \(=7.942 \mathrm{e}-09\)
```

Dependent Variable Iron, total
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.292
The p-value is 0.864 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 4.191
The p-value is 0.123 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.364
The p-value is 0.833 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 4.074
The p-value is 0.130 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 5.514
The p-value is 0.063 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 6.855
The p-value is 0.032 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 20.670
The p-value is 0.000 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 8.329
The p-value is 0.016 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 9.592
The p-value is 0.008 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 2.170
The p-value is 0.338 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).

Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.236
The p-value is 0.627 assuming chi-square distribution with 1 df .

Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 0.196
The p-value is 0.658 assuming chi-square distribution with 1 df .

Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.791
The p-value is 0.673 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 0.591
The p-value is 0.744 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 0.269
The p-value is 0.874 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 7.680
The p-value is 0.021 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 1.821
The p-value is 0.402 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 1.345
The p-value is 0.510 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 1.444
The p-value is 0.486 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 7.259
The p-value is 0.007 assuming chi-square distribution with 1 df .

P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).

Levene's test by Transect
data: Conc
Test Statistic \(=0.6844, \mathrm{p}\)-value \(=0.6851\)
data: \(\log 10(C o n c)\)
Test Statistic \(=1.0706, \mathrm{p}\)-value \(=0.3851\)

Levene's test by Depth
data: Conc
Test Statistic \(=7.2497, \mathrm{p}\)-value \(=0.0009739\)
data: log10(Conc)
Test Statistic \(=6.7345, \mathrm{p}\)-value \(=0.001563\)

Levene's test by Side
data: Conc
Test Statistic \(=0.5384, \mathrm{p}\)-value \(=0.5848\)
data: log10(Conc)
Test Statistic \(=1.5385\), p -value \(=0.2179\)

Kruskal-Wallis rank sum test
data: Conc and Transect
Kruskal-Wallis chi-squared \(=26.8334, d f=7, p\)-value \(=0.0003571\)
```

Dependent Variable Lanthanum, total
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.153
The p-value is 0.926 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 2.903
The p-value is 0.234 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.415
The p-value is 0.813 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 0.917
The p-value is 0.632 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 4.151
The p-value is 0.125 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 5.893
The p-value is 0.053 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 6.152
The p-value is 0.046 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 0.953
The p-value is 0.621 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 8=0.00625\).
```

Dependent Variable Lanthanum, total

```

Grouping Variable SIDE\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.708
The p-value is 0.400 assuming chi-square distribution with 1 df .

Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 1.344
The p-value is 0.246 assuming chi-square distribution with 1 df .

Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 1.505
The p-value is 0.471 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 2.000
The p-value is 0.157 assuming chi-square distribution with 1 df .

Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 1.209
The p-value is 0.546 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 2.313
The p-value is 0.315 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 0.307
The p-value is 0.858 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 1.708
The p-value is 0.191 assuming chi-square distribution with 1 df .

P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 8=0.00625\).

Levene's test by Transect
data: Conc
Test Statistic \(=1.352, \mathrm{p}\)-value \(=0.2036\)
data: \(\log 10(C o n c)\)
Test Statistic \(=0.7231, \mathrm{p}\)-value \(=0.7025\)

Levene's test by Depth
data: Conc
Test Statistic \(=5.2394, \mathrm{p}\)-value \(=0.005902\)
data: \(\log 10(C o n c)\)
Test Statistic \(=4.7841, \mathrm{p}\)-value \(=0.009142\)

Levene's test by Side
data: Conc
Test Statistic \(=0.5608, \mathrm{p}\)-value \(=0.5715\)
data: log10(Conc)
Test Statistic \(=1.5893, \mathrm{p}\)-value \(=0.2061\)

Kruskal-Wallis rank sum test
data: Conc and Transect
Kruskal-Wallis chi-squared \(=143.2217, d f=10, p-\) value \(<2.2 e-16\)
```

Dependent Variable Lead, total
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.114
The p-value is 0.944 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 0.000
The p-value is 1.000 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 1.325
The p-value is 0.516 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 3.401
The p-value is 0.183 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 5.309
The p-value is 0.070 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 1.837
The p-value is 0.399 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 5.449
The p-value is 0.066 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 5.087
The p-value is 0.079 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 9.262
The p-value is 0.010 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 1.459
The p-value is 0.482 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).

Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.565
The p-value is 0.452 assuming chi-square distribution with 1 df .

Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 2.333
The p-value is 0.127 assuming chi-square distribution with 1 df .

Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.255
The p-value is 0.880 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 1.916
The p-value is 0.384 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 0.207
The p-value is 0.902 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 6.096
The p-value is 0.047 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 0.142
The p-value is 0.931 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 0.709
The \(p\)-value is 0.701 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 1.612
The p-value is 0.447 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 0.148
The p-value is 0.700 assuming chi-square distribution with 1 df .

P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).

Levene's test by Transect
data: Conc
Test Statistic \(=3.2946, \mathrm{p}\)-value \(=0.0005055\)
data: \(\log 10(C o n c)\)
Test Statistic \(=3.2804, \mathrm{p}\)-value \(=0.0005307\)

Levene's test by Depth
data: Conc
Test Statistic \(=0.3491, \mathrm{p}\)-value \(=0.7057\)
data: \(\log 10(C o n c)\)
Test Statistic \(=0.3754, \mathrm{p}\)-value \(=0.6874\)

Levene's test by Side
data: Conc
Test Statistic \(=0.351, p-\) value \(=0.7043\)
data: \(\log 10(C o n c)\)
Test Statistic \(=0.4557, \mathrm{p}\)-value \(=0.6345\)

Kruskal-Wallis rank sum test
data: Conc and Transect
Kruskal-Wallis chi-squared \(=61.9755, \mathrm{df}=10, \mathrm{p}\)-value \(=1.53 \mathrm{e}-09\)
```

Dependent Variable Magnesium, dissolved
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.504
The p-value is 0.777 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 2.721
The p-value is 0.257 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.736
The p-value is 0.692 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 1.057
The p-value is 0.589 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 0.744
The p-value is 0.689 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 0.205
The p-value is 0.902 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 0.798
The p-value is 0.671 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 0.228
The p-value is 0.892 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 0.269
The p-value is 0.874 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 0.505
The p-value is 0.777 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).

Dependent Variable Magnesium, dissolved Grouping Variable SIDE\$

Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.008
The p-value is 0.930 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 0.784
The p-value is 0.376 assuming chi-square distribution with 1 df .

Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 6.566
The p-value is 0.038 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 0.091
The p-value is 0.956 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 2.410
The p-value is 0.300 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 1.828
The p-value is 0.401 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 0.058
The p-value is 0.971 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 0.152
The p-value is 0.927 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 0.126
The p-value is 0.939 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 6.750
The p-value is 0.009 assuming chi-square distribution with 1 df .

P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).

Levene's test by Transect
data: Conc
Test Statistic \(=2.676, \mathrm{p}\)-value \(=0.004025\)
data: \(\log 10(\) Conc)
Test Statistic \(=2.5056, p\)-value \(=0.00701\)

Levene's test by Depth
data: Conc
Test Statistic \(=0.3286, \mathrm{p}\)-value \(=0.7203\)
data: \(\log 10(C o n c)\)
Test Statistic \(=0.307, p-\) value \(=0.7359\)

Levene's test by Side
data: Conc
Test Statistic \(=0.4292, \mathrm{p}\)-value \(=0.6515\)
data: log10(Conc)
Test Statistic \(=0.5345, \mathrm{p}\)-value \(=0.5866\)

Kruskal-Wallis rank sum test
data: Conc and Transect
Kruskal-Wallis chi-squared \(=61.5134, \mathrm{df}=10, \mathrm{p}\)-value \(=1.872 \mathrm{e}-09\)
```

Dependent Variable Magnesium, total
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.319
The p-value is 0.853 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 0.000
The p-value is 1.000 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.135
The p-value is 0.935 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 0.576
The p-value is 0.750 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 3.518
The p-value is 0.172 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 0.907
The p-value is 0.635 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 1.522
The p-value is 0.467 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 0.022
The p-value is 0.989 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 1.968
The p-value is 0.374 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 1.652
The p-value is 0.438 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).

Dependent Variable Magnesium, total
Grouping Variable SIDE\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.096
The p-value is 0.757 assuming chi-square distribution with 1 df .

Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 0.051
The p-value is 0.822 assuming chi-square distribution with 1 df .

Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 6.031
The p-value is 0.049 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 0.193
The p-value is 0.908 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 1.285
The p-value is 0.526 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 1.052
The p-value is 0.591 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 0.017
The p-value is 0.992 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 0.078
The p-value is 0.962 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 0.104
The p-value is 0.949 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 8.898
The \(p\)-value is 0.003 assuming chi-square distribution with 1 df .

P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).

Levene's test by Transect
data: Conc
Test Statistic \(=0.9701, \mathrm{p}\)-value \(=0.4701\)
data: \(\log 10(C o n c)\)
Test Statistic \(=3.7576, \mathrm{p}\)-value \(=0.0001033\)

Levene's test by Depth
data: Conc
Test Statistic \(=9.4836, \mathrm{p}\)-value \(=0.0001075\)
data: \(\log 10(\) Conc)
Test Statistic \(=5.0952\), p -value \(=0.006783\)

Levene's test by Side
data: Conc
Test Statistic \(=0.4719, \mathrm{p}\)-value \(=0.6244\)
data: log10(Conc)
Test Statistic \(=0.9687, p-\) value \(=0.381\)

Kruskal-Wallis rank sum test
data: Conc and Transect
Kruskal-Wallis chi-squared \(=69.2262, \mathrm{df}=10, \mathrm{p}\)-value \(=6.253 \mathrm{e}-11\)
```

Dependent Variable Manganese, total
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 1.116
The p-value is 0.572 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 0.857
The p-value is 0.651 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.215
The p-value is 0.898 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 4.740
The p-value is 0.093 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 7.078
The p-value is 0.029 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 3.686
The p-value is 0.158 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 18.287
The p-value is 0.000 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 6.179
The p-value is 0.046 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 5.200
The p-value is 0.074 assuming chi-square distribution with 2 df .
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 1.607
The p-value is 0.448 assuming chi-square distribution with 2 df .

```

P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).

Dependent Variable Manganese, total
Grouping Variable SIDE\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.330
The p-value is 0.566 assuming chi-square distribution with 1 df .
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 3.857
The \(p\)-value is 0.050 assuming chi-square distribution with 1 df .
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 2.149
The p-value is 0.342 assuming chi-square distribution with 2 df .
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 2.396
The p-value is 0.302 assuming chi-square distribution with 2 df .
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 0.269
The p-value is 0.874 assuming chi-square distribution with 2 df .
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 5.228
The p-value is 0.073 assuming chi-square distribution with 2 df .
Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 0.238
The p-value is 0.888 assuming chi-square distribution with 2 df .
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 0.430
The \(p\)-value is 0.807 assuming chi-square distribution with 2 df .
Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 1.004
The p-value is 0.605 assuming chi-square distribution with 2 df .
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 8.920
The p-value is 0.003 assuming chi-square distribution with 1 df .

P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).

Molybdenum, dissolved

Levene's test by Transect
data: Conc
Test Statistic \(=2.0142, \mathrm{p}\)-value \(=0.0326\)
data: \(\log 10(C o n c)\)
Test Statistic \(=2.0794, p\)-value \(=0.02676\)

Levene's test by Depth
data: Conc
Test Statistic \(=0.9446, \mathrm{p}\)-value \(=0.3902\)
data: \(\log 10(C o n c)\)
Test Statistic \(=1.2517, \mathrm{p}\)-value \(=0.2878\)

Levene's test by Side
data: Conc
Test Statistic \(=0.9327, p\)-value \(=0.3949\)
data: \(\log 10(C o n c)\)
Test Statistic \(=0.8928, \mathrm{p}\)-value \(=0.4108\)

Kruskal-Wallis rank sum test
data: Conc and Transect
Kruskal-Wallis chi-squared \(=31.7257, \mathrm{df}=10, \mathrm{p}\)-value \(=0.0004448\)
```

Dependent Variable Molybdenum, dissolved
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.856
The p-value is 0.652 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 3.529
The p-value is 0.171 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 1.228
The p-value is 0.541 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 0.610
The p-value is 0.737 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 0.029
The p-value is 0.986 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 0.081
The p-value is 0.960 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 0.551
The p-value is 0.759 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 0.123
The p-value is 0.940 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 0.895
The p-value is 0.639 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 2.264
The p-value is 0.322 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).

Dependent Variable Molybdenum, dissolved Grouping Variable SIDE\$

Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.008
The p-value is 0.930 assuming chi-square distribution with 1 df .

Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 0.784
The p-value is 0.376 assuming chi-square distribution with 1 df .

Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.258
The p-value is 0.879 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 1.538
The p-value is 0.463 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 5.596
The p-value is 0.061 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 0.254
The p-value is 0.881 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 2.025
The p-value is 0.363 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 0.505
The p-value is 0.777 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 0.609
The p-value is 0.737 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 3.004
The p-value is 0.083 assuming chi-square distribution with 1 df .

P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).

Molybdenum, total

Levene's test by Transect
data: Conc
Test Statistic \(=3.27, \mathrm{p}\)-value \(=0.0005497\)
data: \(\log 10(C o n c)\)
Test Statistic \(=3.3696, \mathrm{p}\)-value \(=0.0003911\)

Levene's test by Depth
data: Conc
Test Statistic \(=0.2382, \mathrm{p}\)-value \(=0.7882\)
data: \(\log 10(C o n c)\)
Test Statistic \(=0.7616, \mathrm{p}\)-value \(=0.468\)

Levene's test by Side
data: Conc
Test Statistic \(=3.6866, p\)-value \(=0.02643\)
data: log10(Conc)
Test Statistic \(=3.2464, \mathrm{p}\)-value \(=0.04056\)

Kruskal-Wallis rank sum test
data: Conc and Transect
Kruskal-Wallis chi-squared \(=30.0912, \mathrm{df}=10, \mathrm{p}\)-value \(=0.0008277\)
```

Dependent Variable Molybdenum, total
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 3.287
The p-value is 0.193 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 0.857
The p-value is 0.651 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.899
The p-value is 0.638 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 0.490
The p-value is 0.783 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 0.174
The p-value is 0.917 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 5.000
The p-value is 0.082 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 0.115
The p-value is 0.944 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 1.178
The p-value is 0.555 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 0.822
The p-value is 0.663 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 0.921
The p-value is 0.631 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).

Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.049
The p-value is 0.825 assuming chi-square distribution with 1 df .

Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 0.429
The p-value is 0.513 assuming chi-square distribution with 1 df .

Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 1.640
The p-value is 0.440 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 0.983
The p-value is 0.612 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 12.667
The p-value is 0.002 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 0.081
The p-value is 0.960 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 0.685
The p-value is 0.710 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 0.171
The \(p\)-value is 0.918 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 0.046
The p-value is 0.977 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 3.525
The p-value is 0.060 assuming chi-square distribution with 1 df .

P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).

Levene's test by Transect
data: Conc
Test Statistic \(=0.7127, p-\) value \(=0.6613\)
data: \(\log 10(\) Conc)
Test Statistic \(=1.8013, \mathrm{p}\)-value \(=0.09081\)

Levene's test by Depth
data: Conc
Test Statistic \(=6.4761, \mathrm{p}\)-value \(=0.001984\)
data: \(\log 10(C o n c)\)
Test Statistic \(=2.9714, \mathrm{p}\)-value \(=0.05412\)

Levene's test by Side
data: Conc
Test Statistic \(=0.3416, \mathrm{p}\)-value \(=0.7111\)
data: \(\log 10(C o n c)\)
Test Statistic \(=0.9543, \mathrm{p}\)-value \(=0.3873\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Df & Sum Sq & Mean Sq & F value & \(\operatorname{Pr}(>F)\) \\
\hline Transect & 7 & 2.081 & 0.29732 & 1.912 & 0.0747 \\
\hline Transect:Depth & 16 & 3.052 & 0.19076 & 1.227 & 0.2602 \\
\hline Transect:Side & 12 & 0.835 & 0.06962 & 0.448 & 0.9398 \\
\hline Transect:Depth:Side & 18 & 1.546 & 0.08591 & 0.552 & 0.9249 \\
\hline Residuals & 106 & 16.484 & 0.15551 & & \\
\hline
\end{tabular}
\begin{tabular}{lrrrrr} 
& Df & Sum Sq Mean Sq F value \(\operatorname{Pr}(>F)\) \\
Transect & 7 & 2.081 & 0.29732 & 2.045 & 0.0546 \\
Transect:Depth & 16 & 3.052 & 0.19076 & 1.312 & 0.2002 \\
Transect:Side & 12 & 0.835 & 0.06962 & 0.479 & 0.9239 \\
Residuals & 124 & 18.030 & 0.14540 & &
\end{tabular}

Levene's test by Transect
data: Conc
Test Statistic \(=2.1427, \mathrm{p}\)-value \(=0.02207\)
data: \(\log 10(C o n c)\)
Test Statistic \(=2.8734, \mathrm{p}\)-value \(=0.002102\)

Levene's test by Depth
data: Conc
Test Statistic \(=0.4483, \mathrm{p}\)-value \(=0.6392\)
data: \(\log 10(C o n c)\)
Test Statistic \(=0.5554, \mathrm{p}\)-value \(=0.5745\)

Levene's test by Side
data: Conc
Test Statistic \(=2.4358, p\)-value \(=0.08962\)
data: log10(Conc)
Test Statistic \(=1.9166\), p -value \(=0.1493\)

Kruskal-Wallis rank sum test
data: Conc and Transect
Kruskal-Wallis chi-squared \(=69.7947, \mathrm{df}=10, \mathrm{p}\)-value \(=4.857 \mathrm{e}-11\)
```

Dependent Variable Nickel, dissolved
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.380
The p-value is 0.827 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 4.571
The p-value is 0.102 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.971
The p-value is 0.616 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 1.079
The p-value is 0.583 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 2.282
The p-value is 0.320 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 3.600
The p-value is 0.165 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 7.583
The p-value is 0.023 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 11.809
The p-value is 0.003 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 10.081
The p-value is 0.006 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 1.367
The p-value is 0.505 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).

Dependent Variable Nickel, dissolved Grouping Variable SIDE\$

Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.710
The p-value is 0.400 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 0.048
The p-value is 0.827 assuming chi-square distribution with 1 df .

Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.165
The p-value is 0.921 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 1.483
The p-value is 0.476 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 1.914
The p-value is 0.384 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 4.563
The p-value is 0.102 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 0.433
The p-value is 0.805 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 0.075
The p-value is 0.963 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 0.526
The p-value is 0.769 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 4.740
The p-value is 0.029 assuming chi-square distribution with 1 df .

P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).

Levene's test by Transect
data: Conc
Test Statistic \(=1.121, \mathrm{p}\)-value \(=0.3469\)
data: \(\log 10(C o n c)\)
Test Statistic \(=3.7424, \mathrm{p}\)-value \(=0.0001089\)

Levene's test by Depth
data: Conc
Test Statistic \(=3.2396, \mathrm{p}\)-value \(=0.04084\)
data: \(\log 10(C o n c)\)
Test Statistic \(=0.1517, \mathrm{p}\)-value \(=0.8593\)

Levene's test by Side
data: Conc
Test Statistic \(=2.0148, \mathrm{p}\)-value \(=0.1355\)
data: log10(Conc)
Test Statistic \(=1.4356\), \(p\)-value \(=0.2399\)

Kruskal-Wallis rank sum test
data: Conc and Transect
Kruskal-Wallis chi-squared \(=62.5542, \mathrm{df}=10, \mathrm{p}\)-value \(=1.187 \mathrm{e}-09\)
```

Dependent Variable Nickel, total
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.432
The p-value is 0.806 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 1.591
The p-value is 0.451 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.495
The p-value is 0.781 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 1.498
The p-value is 0.473 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 5.001
The p-value is 0.082 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 8.898
The p-value is 0.012 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 8.168
The p-value is 0.017 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 11.163
The p-value is 0.004 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 9.298
The p-value is 0.010 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 1.964
The p-value is 0.375 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).

Dependent Variable Nickel, total Grouping Variable SIDE\$

Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.635
The p-value is 0.426 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 0.808
The p-value is 0.369 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.373
The p-value is 0.830 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 1.360
The p-value is 0.506 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 0.075
The p-value is 0.963 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 6.975
The p-value is 0.031 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 0.615
The p-value is 0.735 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 0.011
The p-value is 0.994 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 1.030
The p-value is 0.598 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 6.518
The p-value is 0.011 assuming chi-square distribution with 1 df .

P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).

Levene's test by Transect
```

data: Conc

```
Test Statistic \(=8.4403, \mathrm{p}\)-value \(=9.035 \mathrm{e}-12\)
data: \(\log 10(C o n c)\)
Test Statistic \(=8.4994, \mathrm{p}\)-value \(=7.407 \mathrm{e}-12\)

Levene's test by Depth
data: Conc
Test Statistic \(=3.9485, \mathrm{p}\)-value \(=0.0205\)
data: \(\log 10(C o n c)\)
Test Statistic \(=4.0286, \mathrm{p}\)-value \(=0.01897\)

Levene's test by Side
data: Conc
Test Statistic \(=0.148, p\)-value \(=0.8625\)
data: \(\log 10(C o n c)\)
Test Statistic \(=0.0533, \mathrm{p}\)-value \(=0.9481\)

Kruskal-Wallis rank sum test
data: Conc and Transect
Kruskal-Wallis chi-squared \(=82.75, \mathrm{df}=10, \mathrm{p}\)-value \(=1.448 \mathrm{e}-13\)
```

Dependent Variable Potassium, dissolved
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.799
The p-value is 0.671 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 0.857
The p-value is 0.651 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.658
The p-value is 0.720 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 1.273
The p-value is 0.529 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 0.131
The p-value is 0.936 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 3.157
The p-value is 0.206 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 2.711
The p-value is 0.258 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 4.367
The p-value is 0.113 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 2.057
The p-value is 0.358 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 1.099
The p-value is 0.577 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).

Dependent Variable Potassium, dissolved Grouping Variable SIDE\$

Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.008
The p-value is 0.930 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 3.857
The p-value is 0.050 assuming chi-square distribution with 1 df .

Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.076
The p-value is 0.963 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 1.802
The p-value is 0.406 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 0.431
The p-value is 0.806 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 0.738
The p-value is 0.692 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 0.759
The p-value is 0.684 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 0.759
The p-value is 0.684 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 0.111
The p-value is 0.946 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 7.797
The p-value is 0.005 assuming chi-square distribution with 1 df .

P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).

Levene's test by Transect
```

data: Conc

```
Test Statistic \(=8.5946, \mathrm{p}\)-value \(=5.379 \mathrm{e}-12\)
data: \(\log 10(C o n c)\)
Test Statistic \(=8.6019, \mathrm{p}\)-value \(=5.248 \mathrm{e}-12\)

Levene's test by Depth
data: Conc
Test Statistic \(=1.0131, \mathrm{p}\)-value \(=0.3646\)
data: \(\log 10(\) Conc)
Test Statistic \(=0.2024, \mathrm{p}\)-value \(=0.8169\)

Levene's test by Side
data: Conc
Test Statistic \(=0.6456, \mathrm{p}\)-value \(=0.5252\)
data: log10(Conc)
Test Statistic \(=0.5764, \mathrm{p}\)-value \(=0.5626\)

Kruskal-Wallis rank sum test
data: Conc and Transect
Kruskal-Wallis chi-squared \(=66.2862, \mathrm{df}=10, \mathrm{p}\)-value \(=2.299 \mathrm{e}-10\)
```

Dependent Variable Potassium, total
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 1.731
The p-value is 0.421 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 3.429
The p-value is 0.180 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.659
The p-value is 0.719 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 0.606
The p-value is 0.739 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 4.990
The p-value is 0.082 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 0.919
The p-value is 0.631 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 5.258
The p-value is 0.072 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 5.757
The p-value is 0.056 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 1.338
The p-value is 0.512 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 6.214
The p-value is 0.045 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).

Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 3.947
The p-value is 0.047 assuming chi-square distribution with 1 df .

Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 0.429
The p-value is 0.513 assuming chi-square distribution with 1 df .

Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 2.938
The p-value is 0.230 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 3.234
The p-value is 0.199 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 0.201
The p-value is 0.904 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 2.529
The p-value is 0.282 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 0.338
The p-value is 0.845 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 0.364
The p-value is 0.834 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 0.111
The p-value is 0.946 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 4.083
The p-value is 0.043 assuming chi-square distribution with 1 df .

P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).

Levene's test by Transect
data: Conc
Test Statistic \(=0.7624, \mathrm{p}\)-value \(=0.6197\)
data: \(\log 10(C o n c)\)
Test Statistic \(=1.8551, \mathrm{p}\)-value \(=0.08076\)

Levene's test by Depth
data: Conc
Test Statistic \(=6.2853\), p -value \(=0.002366\)
data: \(\log 10(\) Conc)
Test Statistic \(=2.4229, \mathrm{p}\)-value \(=0.09197\)

Levene's test by Side
data: Conc
Test Statistic \(=0.3214, \mathrm{p}\)-value \(=0.7256\)
data: \(\log 10(C o n c)\)
Test Statistic \(=0.3365, \mathrm{p}\)-value \(=0.7148\)

\begin{tabular}{lrrrrr} 
& Df & Sum Sq Mean Sq & F value & \(\operatorname{Pr}(>F)\) \\
Transect & 7 & 1.600 & 0.22851 & 1.709 & 0.113 \\
Transect:Depth & 16 & 3.012 & 0.18827 & 1.408 & 0.148 \\
Transect:Side & 12 & 0.520 & 0.04333 & 0.324 & 0.984 \\
Residuals & 124 & 16.575 & 0.13367 & &
\end{tabular}

Levene's test by Transect
data: Conc
Test Statistic \(=3.3101, \mathrm{p}\)-value \(=0.002628\)
data: \(\log 10(C o n c)\)
Test Statistic \(=2.9164, \mathrm{p}\)-value \(=0.006847\)

Levene's test by Depth
data: Conc
Test Statistic \(=2.4839, \mathrm{p}\)-value \(=0.08669\)
data: \(\log 10(C o n c)\)
Test Statistic \(=2.5829, p\)-value \(=0.07876\)

Levene's test by Side
data: Conc
Test Statistic \(=1.0763, \mathrm{p}\)-value \(=0.3434\)
data: log10(Conc)
Test Statistic \(=0.7023, p-\) value \(=0.497\)

Kruskal-Wallis rank sum test
data: Conc and Transect
Kruskal-Wallis chi-squared \(=34.7627, d f=7, p-\) value \(=1.239 e-05\)

Dependent Variable Rubidium, dissolved
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.806
The p-value is 0.668 assuming chi-square distribution with 2 df .
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 0.968
The p-value is 0.616 assuming chi-square distribution with 2 df .
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.077
The p-value is 0.962 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 1.800
The p-value is 0.407 assuming chi-square distribution with 2 df .
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 2.044
The p-value is 0.360 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 0.217
The p-value is 0.897 assuming chi-square distribution with 2 df .
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 3.389
The p-value is 0.184 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 1.825
The p-value is 0.402 assuming chi-square distribution with 2 df .

P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 8=0.00625\).

Dependent Variable Rubidium, dissolved Grouping Variable SIDE\$

Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.642
The p-value is 0.423 assuming chi-square distribution with 1 df .
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 0.054
The \(p\)-value is 0.817 assuming chi-square distribution with 1 df .

Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.852
The p-value is 0.653 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 0.200
The p-value is 0.655 assuming chi-square distribution with 1 df .

Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 2.979
The p-value is 0.225 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 0.565
The p-value is 0.754 assuming chi-square distribution with 2 df .
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 0.630
The p-value is 0.730 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 5.126
The p-value is 0.024 assuming chi-square distribution with 1 df .

P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 8=0.00625\).

Levene's test by Transect
data: Conc
Test Statistic \(=1.3918, \mathrm{p}\)-value \(=0.2126\)
data: \(\log 10(C o n c)\)
Test Statistic \(=1.5828, \mathrm{p}\)-value \(=0.1445\)

Levene's test by Depth
data: Conc
Test Statistic \(=5.309, \mathrm{p}\)-value \(=0.005874\)
data: \(\log 10(C o n c)\)
Test Statistic \(=4.1174, \mathrm{p}\)-value \(=0.01808\)

Levene's test by Side
data: Conc
Test Statistic \(=1.0547, p\)-value \(=0.3508\)
data: \(\log 10(C o n c)\)
Test Statistic \(=0.7872, \mathrm{p}\)-value \(=0.4569\)

Kruskal-Wallis rank sum test
data: Conc and Transect
Kruskal-Wallis chi-squared \(=33.3425, d f=7, p\)-value \(=2.286 e-05\)
```

Dependent Variable Rubidium, total
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.603
The p-value is 0.740 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 3.333
The p-value is 0.189 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.223
The p-value is 0.895 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 1.800
The p-value is 0.407 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 2.572
The p-value is 0.276 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 3.989
The p-value is 0.136 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 5.698
The p-value is 0.058 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 3.103
The p-value is 0.212 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 8=0.00625\).

Dependent Variable Rubidium, total
Grouping Variable SIDE\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.512
The p-value is 0.474 assuming chi-square distribution with 1 df .
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 0.556
The p-value is 0.456 assuming chi-square distribution with 1 df .

Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 1.244
The p-value is 0.537 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 0.200
The p-value is 0.655 assuming chi-square distribution with 1 df .
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 2.657
The p-value is 0.265 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 1.801
The \(p\)-value is 0.406 assuming chi-square distribution with 2 df .
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 1.241
The p-value is 0.538 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 7.349
The p-value is 0.007 assuming chi-square distribution with 1 df .

P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 8=0.00625\).

Levene's test by Transect
```

data: Conc

```
Test Statistic \(=2.2543, \mathrm{p}\)-value \(=0.03284\)
data: \(\log 10(C o n c)\)
Test Statistic \(=2.8735, \mathrm{p}\)-value \(=0.007595\)

Levene's test by Depth
data: Conc
Test Statistic \(=0.2765, \mathrm{p}\)-value \(=0.7588\)
data: \(\log 10(C o n c)\)
Test Statistic \(=0.2035, \mathrm{p}\)-value \(=0.8161\)

Levene's test by Side
data: Conc
Test Statistic \(=0.3138, \mathrm{p}\)-value \(=0.7312\)
data: \(\log 10(C o n c)\)
Test Statistic \(=0.6073, \mathrm{p}\)-value \(=0.5461\)

Kruskal-Wallis rank sum test
data: Conc and Transect
Kruskal-Wallis chi-squared \(=30.4754, d f=7, p-v a l u e=7.767 e-05\)
```

Dependent Variable Scandium, dissolved
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.105
The p-value is 0.949 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 3.603
The p-value is 0.165 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.431
The p-value is 0.806 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 1.800
The p-value is 0.407 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 0.044
The p-value is 0.978 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 0.866
The p-value is 0.649 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 5.362
The p-value is 0.069 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 0.479
The p-value is 0.787 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 8=0.00625\).

Dependent Variable Scandium, dissolved Grouping Variable SIDE\$

Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.096
The p-value is 0.757 assuming chi-square distribution with 1 df .

Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 0.441
The p-value is 0.507 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 1.073
The p-value is 0.585 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 0.200
The p-value is 0.655 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 0.105
The p-value is 0.949 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 0.264
The p-value is 0.876 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 3.268
The p-value is 0.195 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 0.753
The p-value is 0.386 assuming chi-square distribution with 1 df .

P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 8=0.00625\).

Levene's test by Transect
data: Conc
Test Statistic \(=2.3377, \mathrm{p}\)-value \(=0.02707\)
data: \(\log 10(C o n c)\)
Test Statistic \(=2.7703, \mathrm{p}\)-value \(=0.009732\)

Levene's test by Depth
data: Conc
Test Statistic \(=1.5582, \mathrm{p}\)-value \(=0.2137\)
data: \(\log 10(C o n c)\)
Test Statistic \(=0.6394, p\)-value \(=0.529\)

Levene's test by Side
data: Conc
Test Statistic \(=1.0768, \mathrm{p}\)-value \(=0.3432\)
data: \(\log 10(C o n c)\)
Test Statistic \(=0.9823, \mathrm{p}\)-value \(=0.3767\)

Kruskal-Wallis rank sum test
data: Conc and Transect
Kruskal-Wallis chi-squared \(=30.231, d f=7, p-v a l u e=8.613 e-05\)
```

Dependent Variable Scandium, total
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.179
The p-value is 0.915 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 2.258
The p-value is 0.323 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.215
The p-value is 0.898 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 2.700
The p-value is 0.259 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 0.387
The p-value is 0.824 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 0.400
The p-value is 0.819 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 2.629
The p-value is 0.269 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 0.763
The p-value is 0.683 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 8=0.00625\).
    Results for TRANSECT\$ = CAN1
    Kruskal-Wallis Test Statistic: 0.049
    The p-value is 0.825 assuming chi-square distribution with 1 df .
    Results for TRANSECT\$ = TC10
    Kruskal-Wallis Test Statistic: 2.634
    The p-value is 0.105 assuming chi-square distribution with 1 df .
    Results for TRANSECT\$ = TC1
    Kruskal-Wallis Test Statistic: 0.353
    The p-value is 0.838 assuming chi-square distribution with 2 df .
    Results for TRANSECT\$ = TC2
    Kruskal-Wallis Test Statistic: 0.200
    The p-value is 0.655 assuming chi-square distribution with 1 df .
    Results for TRANSECT\$ = TC3
    Kruskal-Wallis Test Statistic: 0.194
    The p-value is 0.908 assuming chi-square distribution with 2 df .
    Results for TRANSECT\$ = TC4
    Kruskal-Wallis Test Statistic: 0.025
    The p-value is 0.988 assuming chi-square distribution with 2 df .
    Results for TRANSECT\$ = TC6
    Kruskal-Wallis Test Statistic: 0.961
    The p-value is 0.618 assuming chi-square distribution with 2 df .
    Results for TRANSECT\$ = TC9
    Kruskal-Wallis Test Statistic: 0.926
    The \(p\)-value is 0.336 assuming chi-square distribution with 1 df .
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 8=0.00625\).

Levene's test by Transect
data: Conc
Test Statistic \(=9.4415, \mathrm{p}\)-value \(=3.207 \mathrm{e}-13\)
data: \(\log 10(C o n c)\)
Test Statistic \(=9.367, p\)-value \(=4.101 \mathrm{e}-13\)

Levene's test by Depth
data: Conc
Test Statistic \(=5.3879, \mathrm{p}\)-value \(=0.005118\)
data: \(\log 10(C o n c)\)
Test Statistic \(=5.4918, \mathrm{p}\)-value \(=0.004633\)

Levene's test by Side
data: Conc
Test Statistic \(=1.7133, \mathrm{p}\)-value \(=0.1824\)
data: log10(Conc)
Test Statistic \(=2.7297, p\)-value \(=0.06719\)

Kruskal-Wallis rank sum test
data: Conc and Transect
Kruskal-Wallis chi-squared \(=93.2655, \mathrm{df}=10, \mathrm{p}\)-value \(=1.203 \mathrm{e}-15\)
```

Dependent Variable Sodium, dissolved
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.495
The p-value is 0.781 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 2.000
The p-value is 0.368 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.030
The p-value is 0.985 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 3.370
The p-value is 0.185 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 0.133
The p-value is 0.936 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 0.162
The p-value is 0.922 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 2.759
The p-value is 0.252 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 2.519
The p-value is 0.284 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 0.522
The p-value is 0.770 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 0.365
The p-value is 0.833 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).

Dependent Variable Sodium, dissolved Grouping Variable SIDE\$

Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.070
The p-value is 0.791 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 0.048
The p-value is 0.827 assuming chi-square distribution with 1 df .

Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 3.445
The p-value is 0.179 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 1.089
The p-value is 0.580 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 0.636
The p-value is 0.728 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 2.278
The p-value is 0.320 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 1.716
The p-value is 0.424 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 1.079
The p-value is 0.583 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 0.232
The p-value is 0.890 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 5.333
The p-value is 0.021 assuming chi-square distribution with 1 df .

P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).

Levene's test by Transect
data: Conc
Test Statistic \(=7.6455, \mathrm{p}\)-value \(=1.339 \mathrm{e}-10\)
data: \(\log 10(C o n c)\)
Test Statistic \(=7.3484, p\)-value \(=3.705 \mathrm{e}-10\)

Levene's test by Depth
data: Conc
Test Statistic \(=5.7206, \mathrm{p}\)-value \(=0.003722\)
data: \(\log 10(C o n c)\)
Test Statistic \(=5.7361, \mathrm{p}\)-value \(=0.003667\)

Levene's test by Side
data: Conc
Test Statistic \(=1.2041, p\)-value \(=0.3017\)
data: \(\log 10(C o n c)\)
Test Statistic \(=2.1329, p-v a l u e=0.1206\)

Kruskal-Wallis rank sum test
data: Conc and Transect
Kruskal-Wallis chi-squared \(=85.5031, \mathrm{df}=10, \mathrm{p}\)-value \(=4.153 \mathrm{e}-14\)
```

Dependent Variable Sodium, total
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.372
The p-value is 0.830 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 3.714
The p-value is 0.156 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.050
The p-value is 0.975 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 3.635
The p-value is 0.162 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 1.009
The p-value is 0.604 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 0.130
The p-value is 0.937 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 2.213
The p-value is 0.331 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 2.837
The p-value is 0.242 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 0.649
The p-value is 0.723 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 0.475
The p-value is 0.789 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).

Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.018
The p-value is 0.894 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 0.048
The p-value is 0.827 assuming chi-square distribution with 1 df .

Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 3.017
The p-value is 0.221 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 0.191
The p-value is 0.909 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 1.465
The p-value is 0.481 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 1.537
The p-value is 0.464 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 2.652
The p-value is 0.266 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 1.682
The p-value is 0.431 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 0.231
The p-value is 0.891 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 5.340
The p-value is 0.021 assuming chi-square distribution with 1 df .

P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).

Levene's test by Transect
data: Conc
Test Statistic \(=2.1625, \mathrm{p}\)-value \(=0.04055\)
data: \(\log 10(C o n c)\)
Test Statistic \(=2.1952, p\)-value \(=0.03762\)

Levene's test by Depth
data: Conc
Test Statistic \(=1.398, \mathrm{p}\)-value \(=0.2502\)
data: \(\log 10(C o n c)\)
Test Statistic \(=1.7379, \mathrm{p}\)-value \(=0.1793\)

Levene's test by Side
data: Conc
Test Statistic \(=0.2605, p\)-value \(=0.771\)
data: \(\log 10(C o n c)\)
Test Statistic \(=0.4212, p-\) value \(=0.657\)

Kruskal-Wallis rank sum test
data: Conc and Transect
Kruskal-Wallis chi-squared \(=31.8534, d f=7, p\)-value \(=4.324 e-05\)
```

Dependent Variable Strontium, dissolved
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.106
The p-value is 0.948 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 2.258
The p-value is 0.323 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.191
The p-value is 0.909 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 1.800
The p-value is 0.407 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 0.105
The p-value is 0.949 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 0.794
The p-value is 0.672 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 4.776
The p-value is 0.092 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 1.072
The p-value is 0.585 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 8=0.00625\).

Dependent Variable Strontium, dissolved Grouping Variable SIDE\$

Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.283
The p-value is 0.595 assuming chi-square distribution with 1 df .

Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 0.484
The p-value is 0.487 assuming chi-square distribution with 1 df .

Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 3.055
The p-value is 0.217 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 0.200
The p-value is 0.655 assuming chi-square distribution with 1 df .

Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 0.343
The p-value is 0.843 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 0.406
The p-value is 0.816 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 2.150
The p-value is 0.341 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 5.801
The p-value is 0.016 assuming chi-square distribution with 1 df .

P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 8=0.00625\).

Levene's test by Transect
```

data: Conc

```
Test Statistic \(=2.1164, \mathrm{p}\)-value \(=0.04504\)
data: \(\log 10(\) Conc)
Test Statistic \(=2.1935, \mathrm{p}\)-value \(=0.03777\)

Levene's test by Depth
data: Conc
Test Statistic \(=1.4438, \mathrm{p}\)-value \(=0.2391\)
data: \(\log 10(\) Conc)
Test Statistic \(=1.7189, \mathrm{p}\)-value \(=0.1826\)

Levene's test by Side
data: Conc
Test Statistic \(=0.058, \mathrm{p}\)-value \(=0.9437\)
data: \(\log 10(C o n c)\)
Test Statistic \(=0.2494, \mathrm{p}\)-value \(=0.7796\)

Kruskal-Wallis rank sum test
data: Conc and Transect
Kruskal-Wallis chi-squared \(=33.3259, \mathrm{df}=7, \mathrm{p}\)-value \(=2.302 \mathrm{e}-05\)
```

Dependent Variable Strontium, total
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.021
The p-value is 0.990 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 2.250
The p-value is 0.325 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.068
The p-value is 0.966 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 1.800
The p-value is 0.407 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 1.152
The p-value is 0.562 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 0.250
The p-value is 0.883 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 4.420
The p-value is 0.110 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 1.935
The p-value is 0.380 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 8=0.00625\).

Dependent Variable Strontium, total
Grouping Variable SIDE\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.008
The p-value is 0.929 assuming chi-square distribution with 1 df .

Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 2.722
The p-value is 0.099 assuming chi-square distribution with 1 df .

Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 3.602
The p-value is 0.165 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 0.200
The p-value is 0.655 assuming chi-square distribution with 1 df .

Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 0.035
The p-value is 0.983 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 0.499
The p-value is 0.779 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 1.624
The p-value is 0.444 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 7.806
The \(p\)-value is 0.005 assuming chi-square distribution with 1 df .

P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 8=0.00625\).

Levene's test by Transect
data: Conc
Test Statistic \(=0.4698, \mathrm{p}\)-value \(=0.8553\)
data: \(\log 10(C o n c)\)
Test Statistic \(=2.0495, \mathrm{p}\)-value \(=0.0524\)

Levene's test by Depth
data: Conc
Test Statistic \(=5.0728\), p-value \(=0.007331\)
data: \(\log 10(C o n c)\)
Test Statistic \(=5.5692\), p -value \(=0.004605\)

Levene's test by Side
data: Conc
Test Statistic \(=0.3357, \mathrm{p}\)-value \(=0.7154\)
data: \(\log 10(C o n c)\)
Test Statistic \(=0.093, \mathrm{p}\)-value \(=0.9112\)

Kruskal-Wallis rank sum test
data: Conc and Transect
Kruskal-Wallis chi-squared \(=20.3474, \mathrm{df}=7, \mathrm{p}\)-value \(=0.004866\)
```

Dependent Variable Thorium, total
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.606
The p-value is 0.739 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 0.000
The p-value is 1.000 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.035
The p-value is 0.983 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 0.000
The p-value is 1.000 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 5.797
The p-value is 0.055 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 6.706
The p-value is 0.035 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 2.035
The p-value is 0.361 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 0.311
The p-value is 0.856 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 8=0.00625\).

Dependent Variable Thorium, total
Grouping Variable SIDE\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.008
The p-value is 0.928 assuming chi-square distribution with 1 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 0.000
The p-value is 1.000 assuming chi-square distribution with 1 df .
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.274
The p-value is 0.872 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 0.000
The p-value is 1.000 assuming chi-square distribution with 1 df .

Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 1.111
The p-value is 0.574 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 1.999
The p-value is 0.368 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 3.006
The p-value is 0.222 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 0.010
The p-value is 0.919 assuming chi-square distribution with 1 df .

P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 8=0.00625\).

Levene's test by Transect
```

data: Conc

```
Test Statistic \(=4.2202, \mathrm{p}\)-value \(=2.048 \mathrm{e}-05\)
data: \(\log 10(C o n c)\)
Test Statistic \(=4.26, p-\) value \(=1.781 \mathrm{e}-05\)

Levene's test by Depth
data: Conc
Test Statistic \(=1.4628, \mathrm{p}\)-value \(=0.2336\)
data: log10(Conc)
Test Statistic \(=1.4312, \mathrm{p}\)-value \(=0.241\)

Levene's test by Side
data: Conc
Test Statistic \(=0.0196, \mathrm{p}\)-value \(=0.9806\)
data: \(\log 10(C o n c)\)
Test Statistic \(=0.0467, p-\) value \(=0.9544\)

Kruskal-Wallis rank sum test
data: Conc and Transect
Kruskal-Wallis chi-squared \(=68.1121, d f=10, p-v a l u e=1.025 e-10\)
```

Dependent Variable Uranium, dissolved
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.012
The p-value is 0.994 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 3.603
The p-value is 0.165 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.297
The p-value is 0.862 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 1.874
The p-value is 0.392 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 0.114
The p-value is 0.945 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 1.308
The p-value is 0.520 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 0.872
The p-value is 0.647 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 0.124
The p-value is 0.940 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 0.080
The p-value is 0.961 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 0.203
The p-value is 0.904 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).

Dependent Variable Uranium, dissolved Grouping Variable SIDE\$

Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.031
The p-value is 0.859 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 1.225
The p-value is 0.268 assuming chi-square distribution with 1 df .

Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.396
The p-value is 0.820 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 0.162
The p-value is 0.922 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 1.509
The p-value is 0.470 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 0.308
The p-value is 0.857 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 0.768
The p-value is 0.681 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 0.355
The p-value is 0.837 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 0.606
The p-value is 0.739 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 1.692
The p-value is 0.193 assuming chi-square distribution with 1 df .

P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).

Levene's test by Transect
data: Conc
Test Statistic \(=3.4541, \mathrm{p}\)-value \(=0.0002927\)
data: \(\log 10(C o n c)\)
Test Statistic \(=3.3679, \mathrm{p}\)-value \(=0.0003935\)

Levene's test by Depth
data: Conc
Test Statistic \(=1.8225, \mathrm{p}\)-value \(=0.1638\)
data: \(\log 10(\) Conc)
Test Statistic \(=1.8171, \mathrm{p}\)-value \(=0.1646\)

Levene's test by Side
data: Conc
Test Statistic \(=0.1323, \mathrm{p}\)-value \(=0.8761\)
data: \(\log 10(C o n c)\)
Test Statistic \(=0.2445, \mathrm{p}\)-value \(=0.7833\)

Kruskal-Wallis rank sum test
data: Conc and Transect
Kruskal-Wallis chi-squared \(=66.3203, \mathrm{df}=10, \mathrm{p}\)-value \(=2.264 \mathrm{e}-10\)
```

Dependent Variable Uranium, total
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.127
The p-value is 0.939 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 4.706
The p-value is 0.095 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.076
The p-value is 0.963 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 0.041
The p-value is 0.979 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 1.196
The p-value is 0.550 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 1.568
The p-value is 0.457 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 1.025
The p-value is 0.599 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 0.133
The p-value is 0.935 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 0.473
The p-value is 0.790 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 1.652
The p-value is 0.438 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).

Dependent Variable Uranium, total
Grouping Variable SIDE\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.636
The p-value is 0.425 assuming chi-square distribution with 1 df .
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 0.000
The p-value is 1.000 assuming chi-square distribution with 1 df .

Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.632
The p-value is 0.729 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 0.004
The p-value is 0.998 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 2.234
The p-value is 0.327 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 1.624
The p-value is 0.444 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 1.252
The p-value is 0.535 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 0.240
The \(p\)-value is 0.887 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 0.116
The p-value is 0.944 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 3.704
The p-value is 0.054 assuming chi-square distribution with 1 df .

P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).

Vanadium, dissolved

Levene's test by Transect
data: Conc
Test Statistic \(=2.4996, \mathrm{p}\)-value \(=0.007146\)
data: \(\log 10(C o n c)\)
Test Statistic \(=3.2812\), \(p\)-value \(=0.0005291\)

Levene's test by Depth
data: Conc
Test Statistic \(=0.5931, \mathrm{p}\)-value \(=0.5534\)
data: \(\log 10(\) Conc)
Test Statistic \(=1.6758\), p -value \(=0.1893\)

Levene's test by Side
data: Conc
Test Statistic \(=1.2724, \mathrm{p}\)-value \(=0.282\)
data: log10(Conc)
Test Statistic \(=2.5055, \mathrm{p}\)-value \(=0.08368\)

Kruskal-Wallis rank sum test
data: Conc and Transect
Kruskal-Wallis chi-squared \(=65.0645, d f=10, p-\) value \(=3.94 e-10\)
```

Dependent Variable Vanadium, dissolved
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.749
The p-value is 0.688 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 2.250
The p-value is 0.325 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.867
The p-value is 0.648 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 0.131
The p-value is 0.936 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 1.680
The p-value is 0.432 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 0.239
The p-value is 0.887 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 4.185
The p-value is 0.123 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 0.870
The p-value is 0.647 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 1.498
The p-value is 0.473 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 2.189
The p-value is 0.335 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).

Dependent Variable Vanadium, dissolved Grouping Variable SIDE\$

Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.097
The \(p\)-value is 0.755 assuming chi-square distribution with 1 df .

Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 2.722
The p-value is 0.099 assuming chi-square distribution with 1 df .

Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 1.610
The p-value is 0.447 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 0.019
The p-value is 0.990 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 0.955
The p-value is 0.620 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 1.275
The p-value is 0.529 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 1.155
The p-value is 0.561 assuming chi-square distribution with 2 df.

Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 3.272
The p-value is 0.195 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 0.781
The p-value is 0.677 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 8.374
The p-value is 0.004 assuming chi-square distribution with 1 df .

P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).

Levene's test by Transect
data: Conc
Test Statistic \(=2.6626, p\)-value \(=0.01259\)
data: \(\log 10(C o n c)\)
Test Statistic \(=2.0539, \mathrm{p}\)-value \(=0.05189\)

Levene's test by Depth
data: Conc
Test Statistic \(=0.6094, p-\) value \(=0.545\)
data: \(\log 10(C o n c)\)
Test Statistic \(=0.2291, \mathrm{p}\)-value \(=0.7955\)

Levene's test by Side
data: Conc
Test Statistic \(=0.2084, \mathrm{p}\)-value \(=0.8121\)
data: \(\log 10(C o n c)\)
Test Statistic \(=0.0093\), p -value \(=0.9907\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Df & Sum Sq & Mean Sq & F value & \(\operatorname{Pr}(>F)\) \\
\hline Transect & 7 & 2.501 & 0.3572 & 3.507 & 0.00201 \\
\hline Transect:Depth & 16 & 0.162 & 0.0101 & 0.099 & 1.00000 \\
\hline Transect:Side & 12 & 0.432 & 0.0360 & 0.353 & 0.97622 \\
\hline Transect:Depth:Side & 18 & 0.279 & 0.0155 & 0.152 & 0.99998 \\
\hline Residuals & 106 & 10.796 & 0.1019 & & \\
\hline
\end{tabular}
\begin{tabular}{lrrrrr} 
& Df & Sum Sq & Mean Sq \(F\) value & \(\operatorname{Pr}(>F)\) \\
Transect & 7 & 2.501 & 0.3572 & 4.000 & 0.00056
\end{tabular} ***

Levene's test by Transect
```

data: Conc

```
Test Statistic \(=0.8274, \mathrm{p}\)-value \(=0.566\)
data: \(\log 10(C o n c)\)
Test Statistic \(=0.7953, \mathrm{p}\)-value \(=0.5924\)

Levene's test by Depth
data: Conc
Test Statistic \(=6.1765\), p -value \(=0.002617\)
data: \(\log 10(C o n c)\)
Test Statistic \(=4.1645, \mathrm{p}\)-value \(=0.01729\)

Levene's test by Side
data: Conc
Test Statistic \(=0.3465, \mathrm{p}\)-value \(=0.7077\)
data: log10(Conc)
Test Statistic \(=1.3822\), \(p\)-value \(=0.2541\)

Kruskal-Wallis rank sum test
data: Conc and Transect
Kruskal-Wallis chi-squared \(=24.0641, \mathrm{df}=7, \mathrm{p}\)-value \(=0.00111\)
```

Dependent Variable Yttrium, total
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.038
The p-value is 0.981 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 1.250
The p-value is 0.535 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.465
The p-value is 0.793 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 1.500
The p-value is 0.472 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 3.781
The p-value is 0.151 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 5.061
The p-value is 0.080 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 5.416
The p-value is 0.067 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 1.600
The p-value is 0.449 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 8=0.00625\).
```

Dependent Variable Yttrium, total

```
Grouping Variable SIDE\$
    Results for TRANSECT\$ = CAN1
    Kruskal-Wallis Test Statistic: 0.169
    The p-value is 0.681 assuming chi-square distribution with 1 df .
    Results for TRANSECT\$ = TC10
    Kruskal-Wallis Test Statistic: 2.500
    The p-value is 0.114 assuming chi-square distribution with 1 df .
    Results for TRANSECT\$ = TC1
    Kruskal-Wallis Test Statistic: 0.964
    The p-value is 0.617 assuming chi-square distribution with 2 df .
    Results for TRANSECT\$ = TC2
    Kruskal-Wallis Test Statistic: 1.000
    The p-value is 0.317 assuming chi-square distribution with 1 df .
    Results for TRANSECT\$ = TC3
    Kruskal-Wallis Test Statistic: 0.227
    The p-value is 0.893 assuming chi-square distribution with 2 df .
    Results for TRANSECT\$ = TC4
    Kruskal-Wallis Test Statistic: 1.714
    The p-value is 0.424 assuming chi-square distribution with 2 df .
    Results for TRANSECT\$ = TC6
    Kruskal-Wallis Test Statistic: 0.646
    The p-value is 0.724 assuming chi-square distribution with 2 df .
    Results for TRANSECT\$ = TC9
    Kruskal-Wallis Test Statistic: 1.445
    The p-value is 0.229 assuming chi-square distribution with 1 df .
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 8=0.00625\).

Levene's test by Transect
data: Conc
Test Statistic \(=0.5295, \mathrm{p}\)-value \(=0.8496\)
data: \(\log 10(C o n c)\)
Test Statistic \(=1.8936\), \(p\)-value \(=0.06267\)

Levene's test by Depth
data: Conc
Test Statistic \(=0.3398, \mathrm{p}\)-value \(=0.7127\)
data: \(\log 10(C o n c)\)
Test Statistic \(=0.0821, \mathrm{p}\)-value \(=0.9213\)

Levene's test by Side
data: Conc
Test Statistic \(=0.3918, \mathrm{p}\)-value \(=0.6769\)
data: log10(Conc)
Test Statistic \(=0.8717, \mathrm{p}\)-value \(=0.4215\)

Standard ANOVA-log10 - full model
\begin{tabular}{lrrrrr} 
& Df & Sum Sq Mean Sq F value & \(\operatorname{Pr}(>F)\) \\
Transect & 9 & 3.126 & 0.3473 & 2.932 & 0.00574 ** \\
Transect:Depth & 20 & 2.717 & 0.1358 & 1.147 & 0.32948 \\
Transect:Side & 3 & 0.028 & 0.0094 & 0.079 & 0.97115 \\
Transect:Depth:Side & 5 & 0.446 & 0.0892 & 0.753 & 0.58692 \\
Residuals & 63 & 7.464 & 0.1185 & &
\end{tabular}

Df Sum Sq Mean Sq F value \(\operatorname{Pr}(>F)\)
Transect \(9 \quad 3.126 \quad 0.3473 \quad 2.9860 .00469\) **
Transect:Depth 202.717 0.1358 1.168 0.30864
Transect:Side \(30.028 \quad 0.0094 \quad 0.0800 .97040\)
Residuals \(68 \quad 7.910 \quad 0.1163\)

Levene's test by Transect
data: Conc
Test Statistic \(=1.6931, \mathrm{p}\)-value \(=0.102\)
data: \(\log 10(\) Conc)
Test Statistic \(=0.5478, \mathrm{p}\)-value \(=0.8358\)

Levene's test by Depth
data: Conc
Test Statistic \(=0.7234, \mathrm{p}\)-value \(=0.4877\)
data: \(\log 10(C o n c)\)
Test Statistic \(=1.3832, \mathrm{p}\)-value \(=0.2556\)

Levene's test by Side
data: Conc
Test Statistic \(=0.2308, \mathrm{p}\)-value \(=0.7944\)
data: \(\log 10(C o n c)\)
Test Statistic \(=0.5895, \mathrm{p}\)-value \(=0.5566\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Df & Sum Sq & Mean Sq & F value & \(\operatorname{Pr}(>F)\) \\
\hline Transect & 9 & 15700 & 1744.4 & 1.651 & 0.120 \\
\hline Transect: Depth & 20 & 14072 & 703.6 & 0.666 & 0.844 \\
\hline Transect:Side & 3 & 616 & 205.3 & 0.194 & 0.900 \\
\hline Transect: Depth:Side & 5 & 1220 & 243.9 & 0.231 & 0.948 \\
\hline Residuals & 63 & 66578 & 1056.8 & & \\
\hline
\end{tabular}
\begin{tabular}{lrrrrr} 
& Df & Sum Sq & Mean Sq F value & \(\operatorname{Pr}(>F)\) \\
Transect & 9 & 15700 & 1744.4 & 1.750 & 0.0946 \\
Transect:Depth & 20 & 14072 & 703.6 & 0.706 & 0.8067 \\
Transect:Side & 3 & 616 & 205.3 & 0.206 & 0.8919 \\
Residuals & 68 & 67797 & 997.0 & &
\end{tabular}

Levene's test by Transect
data: Conc
Test Statistic \(=0.7433, \mathrm{p}\)-value \(=0.6684\)
data: \(\log 10(C o n c)\)
Test Statistic \(=1.3235\), p -value \(=0.2359\)

Levene's test by Depth
data: Conc
Test Statistic \(=0.9544, \mathrm{p}\)-value \(=0.3886\)
data: \(\log 10(\) Conc)
Test Statistic \(=1.0269, \mathrm{p}\)-value \(=0.3619\)

Levene's test by Side
data: Conc
Test Statistic \(=3.0709, p-\) value \(=0.05087\)
data: \(\log 10(C o n c)\)
Test Statistic \(=0.3101, \mathrm{p}\)-value \(=0.7341\)

Standard ANOVA-log10 - full model
\begin{tabular}{lrrrrr} 
& Df & Sum Sq Mean Sq & F value & \(\operatorname{Pr}(>F)\) \\
Transect & 9 & 1.318 & 0.14646 & 1.369 & 0.221 \\
Transect:Depth & 20 & 0.816 & 0.04082 & 0.382 & 0.990 \\
Transect:Side & 3 & 0.045 & 0.01486 & 0.139 & 0.936 \\
Transect:Depth:Side & 5 & 0.157 & 0.03135 & 0.293 & 0.915 \\
Residuals & 63 & 6.739 & 0.10696 & &
\end{tabular}

Df Sum Sq Mean Sq \(F\) value \(\operatorname{Pr}(>F)\)
\(\begin{array}{llllll}\text { Transect } & 9 & 1.318 & 0.14646 & 1.444 & 0.187\end{array}\)
Transect:Depth 200.8160 .040820 .4030 .987
Transect:Side \(30.0450 .01486 \quad 0.147 \quad 0.932\)
Residuals \(68 \quad 6.8950 .10140\)

Levene's test by Transect
data: Conc
Test Statistic \(=0.3457, \mathrm{p}\)-value \(=0.9569\)
data: \(\log 10(C o n c)\)
Test Statistic \(=1.6629, \mathrm{p}\)-value \(=0.1095\)

Levene's test by Depth
data: Conc
Test Statistic \(=0.7973, \mathrm{p}\)-value \(=0.4534\)
data: \(\log 10(C o n c)\)
Test Statistic \(=0.7712, \mathrm{p}\)-value \(=0.4653\)

Levene's test by Side
data: Conc
Test Statistic \(=0.2902, \mathrm{p}\)-value \(=0.7488\)
data: \(\log 10(C o n c)\)
Test Statistic \(=1.6584, \mathrm{p}\)-value \(=0.1957\)

Standard ANOVA-log10 - full model
\begin{tabular}{lrrrrr} 
& Df & Sum Sq Mean Sq & F value & \(\operatorname{Pr}(>F)\) \\
Transect & 9 & 2.350 & 0.26111 & 1.934 & 0.063 \\
Transect:Depth & 20 & 0.796 & 0.03982 & 0.295 & 0.998 \\
Transect:Side & 3 & 0.001 & 0.00019 & 0.001 & 1.000 \\
Transect:Depth:Side & 5 & 0.097 & 0.01931 & 0.143 & 0.981 \\
Residuals & 63 & 8.506 & 0.13502 & &
\end{tabular}

Df Sum Sq Mean Sq \(F\) value \(\operatorname{Pr}(>F)\)
Transect \(92.3500 .26111 \quad 2.0640 .0451\) *
Transect:Depth 20 0.796 0.03982 0.315 0.9973
Transect:Side \(30.0010 .00019 \quad 0.0010 .9999\)
Residuals \(68 \quad 8.603 \quad 0.12651\)

Levene's test by Transect
data: Conc
Test Statistic \(=0.3664, \mathrm{p}\)-value \(=0.9482\)
data: \(\log 10(\) Conc)
Test Statistic \(=1.687, \mathrm{p}\)-value \(=0.1035\)

Levene's test by Depth
data: Conc
Test Statistic \(=0.7102, \mathrm{p}\)-value \(=0.4941\)
data: \(\log 10(C o n c)\)
Test Statistic \(=0.748, \mathrm{p}\)-value \(=0.476\)

Levene's test by Side
data: Conc
Test Statistic \(=0.1918, \mathrm{p}\)-value \(=0.8258\)
data: \(\log 10(C o n c)\)
Test Statistic \(=2.0472, \mathrm{p}\)-value \(=0.1346\)

Standard ANOVA-log10 - full model
\begin{tabular}{lrrrrr} 
& Df & Sum Sq Mean Sq & F value & Pr (>F) \\
Transect & 9 & 2.599 & 0.28875 & 2.004 & 0.0534 \\
Transect:Depth & 20 & 0.788 & 0.03942 & 0.274 & 0.9989 \\
Transect:Side & 3 & 0.001 & 0.00033 & 0.002 & 0.9998 \\
Transect:Depth:Side & 5 & 0.061 & 0.01224 & 0.085 & 0.9944 \\
Residuals & 63 & 9.076 & 0.14406 & &
\end{tabular}

Df Sum Sq Mean Sq F value \(\operatorname{Pr}(>F)\)
Transect \(92.5990 .28875 \quad 2.1490 .0367\) *
Transect:Depth 20 0.788 0.03942 0.293 0.9983
Transect:Side 30.0010 .000330 .0020 .9998
Residuals \(68 \quad 9.137 \quad 0.13437\)

Levene's test by Transect
data: Conc
Test Statistic \(=3.2961, \mathrm{p}\)-value \(=0.0008539\)

Levene's test by Depth
data: Conc
Test Statistic \(=4.5462\), \(p\)-value \(=0.01157\)

Levene's test by Side
data: Conc
Test Statistic \(=1.1777, \mathrm{p}\)-value \(=0.3098\)

Kruskal-Wallis rank sum test
data: Conc and Transect
Kruskal-Wallis chi-squared \(=65.3896, d f=9, p-v a l u e=1.212 e-10\)
```

Dependent Variable SIR, oxygen
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.012
The p-value is 0.994 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 1.143
The p-value is 0.565 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.868
The p-value is 0.648 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 0.010
The p-value is 0.995 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 0.017
The p-value is 0.992 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 0.392
The p-value is 0.822 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 1.442
The p-value is 0.486 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 2.539
The p-value is 0.281 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 0.969
The p-value is 0.616 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 1.548
The p-value is 0.461 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).

Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.002
The p-value is 0.965 assuming chi-square distribution with 1 df.

Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 1.190
The p-value is 0.275 assuming chi-square distribution with 1 df .

Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 2.545
The p-value is 0.280 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 0.659
The p-value is 0.719 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 0.101
The p-value is 0.951 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 1.565
The p-value is 0.457 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 2.359
The p-value is 0.307 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 0.944
The p-value is 0.624 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 0.236
The p-value is 0.889 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 6.259
The p-value is 0.012 assuming chi-square distribution with 1 df .

P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).

Levene's test by Transect
data: Conc
Test Statistic \(=4.1978, \mathrm{p}\)-value \(=4.964 \mathrm{e}-05\)

Levene's test by Depth
data: Conc
Test Statistic \(=4.1275\), p -value \(=0.01733\)

Levene's test by Side
data: Conc
Test Statistic \(=0.7356, \mathrm{p}\)-value \(=0.4804\)

Kruskal-Wallis rank sum test
data: Conc and Transect
Kruskal-Wallis chi-squared \(=61.4016, \mathrm{df}=9, \mathrm{p}\)-value \(=7.192 \mathrm{e}-10\)
```

Dependent Variable SIR, hydrogen
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.294
The p-value is 0.863 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 2.000
The p-value is 0.368 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.351
The p-value is 0.839 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 0.077
The p-value is 0.962 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 0.147
The p-value is 0.929 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 0.899
The p-value is 0.638 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 1.580
The p-value is 0.454 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 3.645
The p-value is 0.162 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 1.980
The p-value is 0.372 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 1.897
The p-value is 0.387 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).

Dependent Variable SIR, hydrogen Grouping Variable SIDE\$

Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.096
The p-value is 0.757 assuming chi-square distribution with 1 df .
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 0.048
The p-value is 0.827 assuming chi-square distribution with 1 df .

Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 2.742
The p-value is 0.254 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 0.090
The p-value is 0.956 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 0.385
The p-value is 0.825 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 3.146
The p-value is 0.207 assuming chi-square distribution with 2 df .
Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 2.814
The p-value is 0.245 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 1.150
The \(p\)-value is 0.563 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 0.017
The p-value is 0.992 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 5.346
The p-value is 0.021 assuming chi-square distribution with 1 df .

P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).

Appendix G1b.
Distribution probability plots and Shapiro-Wilks distribution tests and boxplots by transect, depth, and side

\section*{Alkalinity}

Shapiro-Wilk test: \(\mathrm{W}=0.978 ;\)-value \(=5 \mathrm{e}-04\)



Log - Alkalinity
hapiro-Wilk test: \(\mathrm{W}=0.984 ; \mathrm{P}\)-value \(=0.0067\)

Page G1b - 1



Page G1b-2

Chloridelon
Shapiro-Wilk test: \(\mathrm{W}=0.931\); P -value \(=0\)


Normal variate


Log - Chloridelon


Page G1b - 3



Page G1b-4

Fluoride




\section*{Log - Fluoride}


Page G1b-5


Page G1b-6

Hardness



Log - Hardness

Page G1b-7



Page G1b-8
pH.lab.


Log - pH.lab.



Page G1b-9



Page G1b-10

Silica


Log - Silica




Page G1b-11



Page G1b-12

Silicon.dis.


Log - Silicon.dis.


Page G1b-13



Page G1b-14

Silicon.tot.



\section*{Log - Silicon.tot.}



Page G1b-16

\section*{Sulfate}


Log - Sulfate



Page G1b-17


Page G1b-18

TDS.lab.
Shapiro-Wilk test: \(\mathrm{W}=0.173 ; \mathrm{P}\)-value \(=0\)


Log - TDS.lab.



Page G1b-19



Page G1b-20

\section*{ALtot}

Shapiro-Wilk test: \(\mathrm{W}=0.349\); P -value \(=0\)



Page G1b-21



Page G1b-22

SBdis


Log - SBdis



Page G1b-23



Page G1b-24

SBtot


Log - SBtot


Page G1b-25



Page G1b-26

ASdis





Page G1b-27



Page G1b-28

IASdis



Log - IASdis

Page G1b-29



Page G1b-30

IAStot
Shapiro-Wilk test: \(\mathrm{W}=0.943 ; \mathrm{P}\)-value \(=0\)


\section*{Log - IAStot}




Page G1b-32

BAdis




Page G1b-33



Page G1b-34

BAtot


Log - BAtot


Page G1b-35



Page G1b-36

CDdis
Shapiro-Wilk test: \(\mathrm{W}=0.877 ; \mathrm{P}\)-value \(=0\)



Page G1b-37


Page G1b - 38

CDtot
Shapiro-Wilk test: \(\mathrm{W}=0.666 ; \mathrm{P}\)-value \(=0\)


Log - CDtot




Page G1b-39



Page G1b-40

CAdis



Log - CAdis



Page G1b-42

CAtot


Shapiro-Wilk test: \(\mathrm{W}=0.981 ;\) P-value \(=0.0022\)


Log - CAtot

Page G1b-43



Page G1b-44

\section*{CEtot}

Shapiro-Wilk test: \(\mathrm{W}=0.355\); P -value \(=0\)


Log - CEtot



Page G1b-45



Page G1b-46

CSdis
Shapiro-Wilk test: \(\mathrm{W}=0.841 ; \mathrm{P}\)-value \(=0\)


Normal variate


Log - CSdis



Page G1b-47



Page G1b-48

CStot
Shapiro-Wilk test: \(\mathrm{W}=0.405 ;\) P-value \(=0\)


Log - CStot




Page G1b-49



Page G1b-50

COtot



Page G1b-51



Page G1b-52

\section*{CUtot}

Shapiro-Wilk test: \(\mathrm{W}=0.176 ; \mathrm{P}\)-value \(=0\)


Normal variate


Log - CUtot



Page G1b-53


Page G1b-54

EUdis
Shapiro-Wilk test: \(\mathrm{W}=0.842 ;\) P-value \(=0\)



Log - EUdis

Page G1b-55



Page G1b-56

EUtot
Shapiro-Wilk test: \(\mathrm{W}=0.858 ; \mathrm{P}\)-value \(=0\)



Log - EUtot


Page G1b-57



Page G1b-58

FEtot


Log - FEtot



Page G1b-59



Page G1b-60

\section*{LAtot}

Shapiro-Wilk test: \(\mathrm{W}=0.462 ; \mathrm{P}\)-value \(=0\)


Log - LAtot


Page G1b-61



Page G1b-62

PBtot
Shapiro-Wilk test: \(\mathrm{W}=0.235 ; \mathrm{P}\)-value \(=0\)


Log - PBtot




Page G1b-63



Page G1b-64

MGdis



Log - MGdis


Page G1b-65



Page G1b-66

MGtot



Log - MGtot

Page G1b-67



Page G1b-68

\section*{MNtot}

Shapiro-Wilk test: \(\mathrm{W}=0.49\); P -value \(=0\)


Log - MNtot






Page G1b-70

MOdis


\section*{Log - MOdis}


Page G1b-71



Page G1b-72

MOtot


Log - MOtot



Page G1b-73



Page G1b-74

\section*{NEtot}

Shapiro-Wilk test: \(\mathrm{W}=0.501 ;\) P-value \(=0\)


Log - NEtot


Page G1b-75



Page G1b-76

\section*{NIdis}


Log - Nldis




Page G1b-77



Page G1b-78

NItot


Shapiro-Wilk test: \(\mathrm{W}=0.831 ; \mathrm{P}\)-value \(=0\)


\section*{Log - NItot}

Page G1b-79



Page G1b-80

Kdis



Log - Kdis

Page G1b-81



Page G1b-82

Ktot



Log - Ktot

Page G1b-83



Page G1b-84

PRtot
Shapiro-Wilk test: \(\mathrm{W}=0.467 ; \mathrm{P}\)-value \(=0\)


Log - PRtot



Page G1b-85



Page G1b-86

RUdis




Page G1b-87



Page G1b-88

RUtot


Log - RUtot



Page G1b-89



Page G1b-90

SCdis




Page G1b-91



Page G1b-92

SCtot
Shapiro-Wilk test: \(\mathrm{W}=0.921 ; \mathrm{P}\)-value \(=0\)


Log - SCtot



Page G1b-93



Page G1b-94

NAdis



\section*{Log - NAdis}


Page G1b-95



Page G1b-96

NAtot




Page G1b-97



Page G1b-98

STdis


Log - STdis



Page G1b-99



Page G1b - 100

\section*{STtot}


Log - STtot





Page G1b-102

TOtot
Shapiro-Wilk test: \(\mathrm{W}=0.321\); P -value \(=0\)


Log - TOtot



Page G1b-103



Page G1b-104

Udis


Log - Udis




Page G1b-105



Page G1b-106

Utot



Log - Utot

Page G1b-107



Page G1b-108

Vdis


Log - Vdis


Page G1b-109



Page G1b-110

\section*{YTdis}


Log - YTdis



Page G1b-111



Page G1b-112

\section*{YTtot}



Log - YTtot

Page G1b-113



Page G1b-114

PAHsum.halfDL.





Page G1b-116

PCBcongenerSum



Log - PCBcongenerSum



Page G1b-118

PCBTEQ.bird.



\section*{Log - PCBTEQ.bird.}




Page G1b-120

PCBTEQ.fish.




\section*{Log - PCBTEQ.fish.}



Page G1b-122

PCBTEQ.mammal.



Log - PCBTEQ.mammal.



Page G1b-124

\section*{SIRoxygen}




SIRhydrogen




Appendix G2a.
Tukey's multiple comparisons and Wilcoxon tests to identify specific transect differences

Alkalinity
Wilcox Tests between Transects:
CAN1 - CAN2: \(W=162.5 ; ~ P-v a l u e=0.8078\)
CAN1 - TC1: \(W=92 ; ~ P\)-value \(=0.0017\)
CAN1 - TC10: \(W=90 ;\) P-value \(=0.0178\)
\begin{tabular}{|l|l|}
\hline CAN1 - TC2: \(W=60.5 ; ~ P-\)-value \(=1 \mathrm{e}-04\) \\
\hline CAN1 - TC3: \(W=107 ; ~ P\)-value \(=5 \mathrm{e}-04\) \\
\hline
\end{tabular}

CAN1 - TC4: \(W=135.5 ; ~ P-v a l u e ~=~ 0.0043\)
CAN1 - TC5: \(\mathrm{W}=162.5 ; ~ P-v a l u e ~=~ 0.0227\)
CAN1 - TC6: \(W=187.5 ; ~ P-v a l u e ~=~ 0.0591\)
CAN1 - TC7: \(W=96.5 ; ~ P\)-value \(=0.0025\)
CAN1 - TC9: \(W=79.5 ; ~ P-v a l u e=0.016\)
CAN2 - TC1: \(W=99.5 ; ~ P-v a l u e=0.0017\)
CAN2 - TC10: \(W=97.5 ; ~ P-v a l u e=0.0108\)
\begin{tabular}{|l}
\hline CAN2 - TC2: \(W=43 ; ~ P-v a l u e ~=~\) \\
\hline CAN2 - TC3: \(W=116 ; ~ P-v a l u e ~=~ 5 e-04\) \\
\hline
\end{tabular}

CAN2 - TC4: \(W=190.5 ; ~ P-v a l u e ~=~ 0.0536\)
CAN2 - TC5: \(W=193 ;\) P-value \(=0.0603\)
CAN2 - TC6: \(W=188.5 ; ~ P-\) value \(=0.0349\)
CAN2 - TC7: \(W=139 ; ~ P-v a l u e=0.0303\)
CAN2 - TC9: \(\mathrm{W}=88.5 ; \mathrm{P}\)-value \(=0.0216\)
TC1 - TC10: \(W=144 ; ~ P-v a l u e ~=~ 2 e-04 ~\)
TC1 - TC2: W = 227; P-value = 0.2119
TC1 - TC3: W = 340.5; P-value \(=0.7407\)
TC1 - TC4: W = 451; P-value = 0.1149
TC1 - TC5: W = 428; P-value \(=0.2399\)
TC1 - TC6: \(W=413.5 ; ~ P-v a l u e ~=~ 0.4865 ~\)
TC1 - TC7: W = 291; P-value \(=0.9589\)
TC1 - TC9: \(W=207.5 ; ~ P-v a l u e=0.9367\)
\begin{tabular}{|c|c|}
\hline TC10 & - TC2: W = 0; P-value = 2e-04 \\
\hline TC10 & - TC3: W = 0; P-value = 1e-04 \\
\hline TC10 & - TC4: W = 0; P-value \(=1 \mathrm{e}-04\) \\
\hline TC10 & - TC5: W = 9.5; P-value = 7e-04 \\
\hline TC10 & - TC6: W = 25; P-value \(=0.0054\) \\
\hline TC10 & - TC7: W = 0; P-value = 2e-04 \\
\hline TC10 &  \\
\hline
\end{tabular}

TC2 - TC3: W = 423.5; P-value = 0.2726
TC2 - TC4: W = 545; P-value = 0.0013
TC2 - TC5: W = 489; P-value \(=0.0252\)
TC2 - TC6: \(W=475 ; ~ P-v a l u e=0.0819\)
TC2 - TC7: W = 339.5; P-value \(=0.2926\)
TC2 - TC9: W = 233.5; P-value \(=0.4427\)
TC3 - TC4: \(W=588.5 ; ~ P-\) value \(=0.0412\)
TC3 - TC5: W = 554.5; P-value = 0.1241
TC3 - TC6: W = 533; P-value = 0.3301
TC3 - TC7: W = 388.5; P-value \(=0.6258\)
TC3 - TC9: W = 262.5; P-value \(=0.8768\)
TC4 - TC5: \(\mathrm{W}=446.5 ; \mathrm{P}\)-value \(=0.9646\)
TC4 - TC6: \(W=426 ;\) P-value \(=0.5785\)
TC4 - TC7: W = 306.5; P-value \(=0.3559\)
TC4 - TC9: W = 232.5; P-value = 0.6261
TC5 - TC6: W = 445; P-value = 0.7784
TC5 - TC7: W = 295.5; P-value \(=0.265\)
TC5 - TC9: W = 216; P-value \(=0.3939\)
TC6 - TC7: \(W=341.5 ; ~ P-v a l u e=0.6106\)
TC6 - TC9: \(W=217.5 ; ~ P-v a l u e=0.3266\)
TC7 - TC9: \(W=202.5 ; ~ P-v a l u e=0.9789\)

P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 55=0.00091\).

Wilcox Tests between Transects:
CAN1 - CAN2: \(\mathrm{W}=209.5\); P -value \(=0.2478\)
CAN1 - TC1: \(W=225 ; ~ P-v a l u e=0.8285\)
CAN1 - TC10: \(W=72 ;\)-value \(=0.2414\)
CAN1 - TC2: \(W=194 ; ~ P-v a l u e=0.5842\)
CAN1 - TC3: \(W=276 ;\)-value \(=0.9067\)
CAN1 - TC4: W = 338.5; P-value = 0.1474
CAN1 - TC5: \(\mathrm{W}=299.5 ; \mathrm{P}\)-value \(=0.5366\)
CAN1 - TC6: \(W=262 ;\) P-value \(=0.7321\)
CAN1 - TC7: \(W=284 ; ~ P-v a l u e ~=~ 0.086\)
CAN1 - TC9: \(W=90 ;\) P-value \(=0.0386\)
CAN2 - TC1: \(W=206 ; ~ P-v a l u e ~=~ 0.5987 ~\)
CAN2 - TC10: \(W=93.5 ; ~ P-v a l u e=0.0214\)
CAN2 - TC2: W = 179.5; P-value = 0.24
CAN2 - TC3: \(W=257.5 ; ~ P-v a l u e ~=~ 0.5794\)
CAN2 - TC4: \(W=298 ; ~ P-v a l u e ~=~ 0.7975 ~\)
CAN2 - TC5: \(\mathrm{W}=268.5 ; \mathrm{P}\)-value \(=0.7426\)
CAN2 - TC6: \(\mathrm{W}=158.5 ; \mathrm{P}\)-value \(=0.0067\)
CAN2 - TC7: \(W=274.5 ; ~ P-v a l u e=0.2604\)
CAN2 - TC9: \(W=90 ;\) P-value \(=0.0242\)
TC1 - TC10: W = 144; P-value = 2e-04
TC1 - TC2: \(W=229.5 ; ~ P-v a l u e ~=~ 0.2313\)
TC1 - TC3: \(W=289.5 ; ~ P-v a l u e=0.2227\)
TC1 - TC4: W = 327; P-value = 0.5714
TC1 - TC5: \(W=292.5 ; ~ P-\) value \(=0.2432\)
TC1 - TC6: \(W=242.5 ; ~ P-v a l u e=0.0285\)
TC1 - TC7: W = 257.5; P-value \(=0.536\)
TC1 - TC9: \(W=143.5 ; ~ P-v a l u e=0.1117\)
\begin{tabular}{|c|l|}
\hline TC10 - TC2: & W \(=0 ; ~ P-v a l u e ~\)
\end{tabular}\(=2 \mathrm{e}-04\)

TC2 - TC3: W = 344.5; P-value \(=0.7939\)
TC2 - TC4: W = 366.5; P-value \(=0.9168\)
TC2 - TC5: W = 326.5; P-value \(=0.5654\)
TC2 - TC6: \(W=276 ; ~ P-v a l u e=0.1049\)
TC2 - TC7: W = 298.5; P-value \(=0.8365\)
TC2 - TC9: \(W=167.5 ; ~ P-\) value \(=0.3397\)
TC3 - TC4: \(W=465 ; ~ P-\) value \(=0.8302\)
TC3 - TC5: W = 410; P-value = 0.5591
TC3 - TC6: W = 301.5; P-value = 0.0187
TC3 - TC7: W = 374.5; P-value \(=0.8074\)
TC3 - TC9: W = 242; P-value \(=0.7815\)
TC4 - TC5: \(W=380 ;\) P-value \(=0.3038\)
TC4 - TC6: \(W=258.5 ; ~ P-v a l u e=0.003\)
TC4 - TC7: W = 387.5; P-value = 0.6382
TC4 - TC9: W = 192; P-value = 0.1661
TC5 - TC6: W = 305; P-value \(=0.0213\)
TC5 - TC7: W = 433; P-value \(=0.2065\)
TC5 - TC9: W = 225; P-value \(=0.5133\)
TC6 - TC7: W = 589; P-value = 2e-04
TC6 - TC9: W = 284.5; P-value = 0.6583
TC7 - TC9: \(W=145.5 ; ~ P-v a l u e=0.1243\)

P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 55=0.00091\).

Tukey multiple comparisons of means 95\% family-wise confidence level
diff lwr upr p adj
CAN2-CAN1 3.292398e-03 -6.560872e-03 0.0131456669 0.9915697
TC1-CAN1 \(4.513889 \mathrm{e}-03-4.826723 \mathrm{e}-03 \quad 0.01385450050 .8931271\)
TC10-CAN1 1.388889e-02 -2.327885e-04 0.0280105662 0.0584253
TC2-CAN1 \(5.972222 \mathrm{e}-03-3.368389 \mathrm{e}-03 \quad 0.01531283380 .5942567\)
\begin{tabular}{|lrrrr|}
\hline TC3-CAN1 & \(1.211222 \mathrm{e}-02\) & \(3.180889 \mathrm{e}-03\) & 0.0210435552 & 0.0007922 \\
\hline TC4-CAN1 & \(1.455556 \mathrm{e}-02\) & \(5.624223 \mathrm{e}-03\) & 0.0234868885 & 0.0000142 \\
\hline TC5-CAN1 & \(1.022222 \mathrm{e}-02\) & \(1.290889 \mathrm{e}-03\) & 0.0191535552 & 0.0110249 \\
\hline TC6-CAN1 & \(6.523297 \mathrm{e}-03\) & \(-2.353851 \mathrm{e}-03\) & 0.0154004459 & 0.3786857 \\
TC7-CAN1 & \(9.305556 \mathrm{e}-03\) & \(-3.505603 \mathrm{e}-05\) & 0.0186461671 & 0.0518209 \\
TC9-CAN1 & \(3.202614 \mathrm{e}-03\) & \(-6.928701 \mathrm{e}-03\) & 0.0133339301 & 0.9945600 \\
TC1-CAN2 & \(1.221491 \mathrm{e}-03\) & \(-7.977588 \mathrm{e}-03\) & 0.0104205702 & 0.9999978 \\
TC10-CAN2 & \(1.059649 \mathrm{e}-02\) & \(-3.431973 \mathrm{e}-03\) & 0.0246249552 & 0.3367937 \\
TC2-CAN2 & \(2.679825 \mathrm{e}-03\) & \(-6.519254 \mathrm{e}-03\) & 0.0118789035 & 0.9972034 \\
\hline TC3-CAN2 & \(8.819825 \mathrm{e}-03\) & \(3.661685 \mathrm{e}-05\) & 0.0176030323 & 0.0480417 \\
\hline TC4-CAN2 & \(1.126316 \mathrm{e}-02\) & \(2.479950 \mathrm{e}-03\) & 0.0200463656 & 0.0020897 \\
\hline TC5-CAN2 & \(6.929825 \mathrm{e}-03\) & \(-1.853383 \mathrm{e}-03\) & 0.0157130323 & 0.2737141 \\
\hline
\end{tabular}
TC5-CAN2 \(6.929825 \mathrm{e}-03\)-1.853383e-03 0.01571303230 .2737141

TC6-CAN2 \(3.230900 \mathrm{e}-03\)-5.497204e-03 0.01195900350 .9816981
TC7-CAN2 6.013158e-03 -3.185921e-03 0.0152122369 0.5611038
TC9-CAN2 -8.978328e-05 -1.009076e-02 0.0099111961 1.0000000
TC10-TC1 \(9.375000 \mathrm{e}-03\)-4.298255e-03 0.02304825530 .4871647
TC2-TC1 1.458333e-03-7.189393e-03 0.0101060593 0.9999788
TC3-TC1 7.598333e-03 -6.056198e-04 0.01580228650 .0975748
\begin{tabular}{|llllll|}
\hline TC4-TC1 & \(1.004167 \mathrm{e}-02\) & \(1.837713 \mathrm{e}-03\) & 0.0182456198 & 0.0043305 \\
\hline TC5-TC1 & \(5.708333 \mathrm{e}-03\) & \(-2.495620 \mathrm{e}-03\) & 0.0139122865 & 0.4640560
\end{tabular}

TC6-TC1 2.009409e-03 -6.135523e-03 0.0101543398 0.9993218
TC7-TC1 \(4.791667 \mathrm{e}-03-3.856059 \mathrm{e}-03 \quad 0.01343939260 .7787440\)
TC9-TC1 -1.311275e-03 -1.080757e-02 0.0081850247 0.9999968
TC2-TC10 -7.916667e-03 -2.158992e-02 0.00575658860 .7287331
TC3-TC10 -1.776667e-03 -1.517367e-02 \(0.0116203328 \quad 0.9999978\)
TC4-TC10 6.666667e-04 -1.273033e-02 0.01406366611 .0000000
TC5-TC10 -3.666667e-03 -1.706367e-02 0.0097303328 0.9983420
TC6-TC10 -7.365591e-03 -2.072653e-02 0.0059953461 0.7841246
TC7-TC10 -4.583333e-03 -1.825659e-02 0.0090899220 0.9913590
TC9-TC10 -1.068627e-02 -2.491141e-02 0.0035388597 0.3450370
\begin{tabular}{|rrrrr|} 
TC3-TC2 & \(6.140000 \mathrm{e}-03\) & \(-2.063953 \mathrm{e}-03\) & 0.0143439532 & 0.3506912 \\
\hline TC4-TC2 & \(8.583333 \mathrm{e}-03\) & \(3.793802 \mathrm{e}-04\) & 0.0167872865 & 0.0316988 \\
\hline TC5-TC2 & \(4.250000 \mathrm{e}-03\) & \(-3.953953 \mathrm{e}-03\) & 0.0124539532 & 0.8426454
\end{tabular}

C5-TC2 \(4.250000 \mathrm{e}-03-3.953953 \mathrm{e}-03\) 0.0124539532 0.8426454
TC6-TC2 5.510753e-04-7.593856e-03 0.0086960064 1.0000000
TC7-TC2 3.333333e-03 -5.314393e-03 0.0119810593 0.9754661
TC9-TC2 -2.769608e-03 -1.226591e-02 0.0067266913 0.9971765
TC4-TC3 2.443333e-03 -5.291428e-03 0.0101780946 0.9945903
TC5-TC3 -1.890000e-03 -9.624761e-03 0.0058447612 0.9993765
TC6-TC3 -5.588925e-03 -1.326106e-02 0.0020832058 0.3921570
TC7-TC3 -2.806667e-03 -1.101062e-02 0.00539728650 .9898826
TC9-TC3 -8.909608e-03 -1.800364e-02 0.00018442210 .0605269
TC5-TC4 -4.333333e-03 \(-1.206809 \mathrm{e}-02 \quad 0.00340142790 .7667995\)
\begin{tabular}{llllll}
\hline TC6-TC4 & \(-8.032258 \mathrm{e}-03\) & \(-1.570439 \mathrm{e}-02\) & -0.0003601275 & 0.0314756
\end{tabular}
TC7-TC4 \(-5.250000 \mathrm{e}-03-1.345395 \mathrm{e}-02 \quad 0.00295395320 .5929766\)
\begin{tabular}{llllll}
\hline TC9-TC4 & \(-1.135294 e-02\) & \(-2.044697 e-02\) & -0.0022589112 & 0.0032070
\end{tabular}

TC6-TC5 -3.698925e-03 -1.137106e-02 0.0039732058 0.8945713
TC7-TC5 -9.166667e-04 -9.120620e-03 0.0072872865 0.9999996
TC9-TC5 -7.019608e-03 -1.611364e-02 0.00207442210 .3048557
TC7-TC6 2.782258e-03 -5.362673e-03 0.0109271892 0.9899998
TC9-TC6 -3.320683e-03 -1.236150e-02 0.00572013750 .9827180
TC9-TC7 -6.102941e-03 -1.559924e-02 0.0033933580 0.5866531

P-values reported are adjusted for multiple comparisons.


P-values reported are not adjusted for multiple comparisons. Adjusted significance level is 0.05 / 55 = 0.00091.
\begin{tabular}{|c|}
\hline CAN1 - CAN2: \(W=192 ; ~ P-v a l u e ~=~ 0.5331 ~\) \\
\hline CAN1 - TC1: W = 96; P-value = 0.0024 \\
\hline CAN1 - TC10: \(\mathrm{W}=72 ; \mathrm{P}\)-value \(=0.2428\) \\
\hline CAN1 - TC2: \(\mathrm{W}=127 ; ~ P-\) value \(=0.0244\) \\
\hline CAN1 - TC3: \(\mathrm{W}=120 ; ~ P-\) value \(=0.0015\) \\
\hline CAN1 - TC4: \(\mathrm{W}=233 ; \mathrm{P}\)-value \(=0.4369\) \\
\hline CAN1 - TC5: W = 145; P-value \(=0.008\) \\
\hline CAN1 - TC6: \(\mathrm{W}=149 ; \mathrm{P}\)-value \(=0.0072\) \\
\hline CAN1 - TC7: W = 76.5; P-value \(=4 \mathrm{e}-04\) \\
\hline CAN1 - TC9: \(\mathrm{W}=81.5 ; ~ \mathrm{P}\)-value \(=0.0191\) \\
\hline CAN2 - TC1: \(\mathrm{W}=85.5\); P-value \(=5 \mathrm{e}-04\) \\
\hline CAN2 - TC10: \(\mathrm{W}=\) 90; P-value \(=0.0386\) \\
\hline CAN2 - TC2: \(\mathrm{W}=125 ; ~ \mathrm{P}\)-value \(=0.0122\) \\
\hline CAN2 - TC3: W = 106; P-value = 2e-04 \\
\hline CAN2 - TC4: W = 217; P-value = 0.166 \\
\hline CAN2 - TC5: \(\mathrm{W}=153.5 ; \mathrm{P}\)-value \(=0.0072\) \\
\hline CAN2 - TC6: \(\mathrm{W}=155.5 ; \mathrm{P}\)-value \(=0.0056\) \\
\hline CAN2 - TC7: W = 52; P-value = 0 \\
\hline CAN2 - TC9: W = 88.5; P-value = 0.0216 \\
\hline TC1 - TC10: W = 144; P-value = 2e-04 \\
\hline TC1 - TC2: W = 328; P-value = 0.4153 \\
\hline TC1 - TC3: W = 307.5; P-value \(=0.3653\) \\
\hline TC1 - TC4: W = 436.5; P-value \(=0.1858\) \\
\hline TC1 - TC5: W = 329.5; P-value \(=0.6015\) \\
\hline TC1 - TC6: W = 311; P-value \(=0.3045\) \\
\hline TC1 - TC7: W = 171.5; P-value \(=0.0167\) \\
\hline TC1 - TC9: W = 215; P-value \(=0.7811\) \\
\hline TC10 - TC2: W = 0; P-value = 2e-04 \\
\hline TC10 - TC3: W = 4; P-value = 3e-04 \\
\hline TC10 - TC4: W = 0; P-value = 1e-04 \\
\hline TC10 - TC5: W = 6; P-value = 4e-04 \\
\hline TC10 - TC6: W = 0; P-value = 1e-04 \\
\hline TC10 - TC7: W = 0; P-value = 2e-04 \\
\hline TC10 - TC9: W = 0; P-value = 4e-04 \\
\hline TC2 - TC3: W = 257; P-value = 0.0743 \\
\hline TC2 - TC4: W = 361; P-value = 0.9931 \\
\hline TC2 - TC5: W = 304; P-value \(=0.334\) \\
\hline TC2 - TC6: W = 266.5; P-value \(=0.0747\) \\
\hline TC2 - TC7: W = 136.5; P-value \(=0.0018\) \\
\hline TC2 - TC9: W = 197; P-value = 0.8634 \\
\hline TC3 - TC4: W = 581.5; P-value \(=0.0527\) \\
\hline TC3 - TC5: W = 517; P-value \(=0.3255\) \\
\hline TC3 - TC6: W = 454; P-value \(=0.8796\) \\
\hline TC3 - TC7: W = 247; P-value \(=0.0502\) \\
\hline TC3 - TC9: W = 303; P-value \(=0.2929\) \\
\hline TC4 - TC5: W = 387.5; P-value \(=0.3593\) \\
\hline TC4 - TC6: \(\mathrm{W}=308 ; \mathrm{P}\)-value \(=0.024\) \\
\hline TC4 - TC7: W = 153.5; P-value = 3e-04 \\
\hline TC4 - TC9: W = 234.5; P-value = 0.6578 \\
\hline TC5 - TC6: W = 358.5; P-value \(=0.1262\) \\
\hline TC5 - TC7: W = 244; P-value = 0.0443 \\
\hline TC5 - TC9: W = 274; P-value = 0.6821 \\
\hline TC6 - TC7: W = 329; P-value = 0.4707 \\
\hline TC6 - TC9: W = 326.5; P-value \(=0.1779\) \\
\hline TC7 - TC9: W = 275; P-value \(=0.062\) \\
\hline
\end{tabular}

P-values reported are not adjusted for multiple comparisons. Adjusted significance level is 0.05 / 55 = 0.00091.

Silicon, dissolved
Wilcox Tests between Transects:
CAN1 - TC1: \(W=92 ; ~ P-v a l u e ~=~ 0.0017 ~\)
CAN1 - TC10: W = 72; P-value \(=0.2427\)
CAN1 - TC2: \(\mathrm{W}=44 ; \mathrm{P}\)-value \(=0.5225\)
CAN1 - TC3: W = 132; P-value \(=0.0034\)
CAN1 - TC4: W = 164; P-value = 0.0246
CAN1 - TC6: W = 132; P-value = 0.0024
CAN1 - TC9: \(\mathrm{W}=92.5 ; ~ \mathrm{P}\)-value \(=0.0475\)
TC1 - TC10: \(W=144 ; ~ P-v a l u e ~=~ 2 e-04 ~\)
TC1 - TC2: W = 84.5; P-value = 0.018
TC1 - TC3: \(W=298 ; ~ P\)-value \(=0.2843\)
TC1 - TC4: \(W=336 ;\) P-value \(=0.6824\)
TC1 - TC6: W = 266.5; P-value \(=0.0747\)
TC1 - TC9: W = 225; P-value \(=0.5874\)
TC10 - TC2: W = 0; P-value = 0.0095
TC10 - TC3: \(W=0 ;\) P-value \(=1 \mathrm{e}-04\)

TC10 - TC4: \(W=0 ; P\)-value \(=1 \mathrm{e}-04\)
TC10 - TC6: W = 0; P-value = 1e-04
TC10 - TC9: W = 1; P-value = 0
TC2 - TC3: W = 18; P-value \(=0.0265\)
TC2 - TC4: W = 30; P-value \(=0.1146\)
TC2 - TC6: W = 32; P-value = 0.126
TC2 - TC9: W = 18; P-value \(=0.1718\)
TC3 - TC4: \(W=585.5 ; ~ P-v a l u e=0.0459\)
TC3 - TC6: \(W=400 ;\)-value \(=0.352\)
TC3 - TC9: W = 317.5; P-value = 0.1697
TC4 - TC6: W = 272; P-value = 0.0055
TC4 - TC9: W = 272; P-value = 0.7147
TC6 - TC9: W = 365; P-value = 0.0294

P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 28=0.00179\).

Silicon, total
Wilcox Tests between Transects:
CAN1 - TC1: \(W=94 ; ~ P-v a l u e=0.002\)
CAN1 - TC10: \(W=93 ; P\)-value \(=0.0102\)
CAN1 - TC2: \(W=36 ; ~ P-v a l u e=1\)
CAN1 - TC3: \(W=141.5 ; ~ P-\) value \(=0.0064\)
CAN1 - TC4: \(W=163.5 ; ~ P-v a l u e=0.024\)
CAN1 - TC6: \(W=134 ; ~ P-v a l u e ~=~ 0.0027\)
CAN1 - TC9: W = 97; P-value \(=0.0669\)
TC1 - TC10: W = 144; P-value = 2e-04
TC1 - TC2: W = 85; P-value = 0.0165
TC1 - TC3: \(W=313.5 ; ~ P\)-value \(=0.4232\)
TC1 - TC4: W = 383; P-value \(=0.6952\)
TC1 - TC6: W = 271; P-value \(=0.0881\)
TC1 - TC9: W = 225; P-value \(=0.5874\)
TC10 - TC2: W = 0; P-value = 0.0139
TC10 - TC3: W = 0; P-value = 1e-04

TC10 - TC4: \(W=0 ; P\)-value \(=1 \mathrm{e}-04\)
TC10 - TC6: W = 0; P-value = 1e-04
TC10 - TC9: \(W=1 ; ~ P\)-value \(=0\)
TC2 - TC3: \(W=21.5 ; ~ P-v a l u e ~=~ 0.0422\)
TC2 - TC4: W = 30; P-value \(=0.1147\)
TC2 - TC6: W = 32; P-value = 0.1261
TC2 - TC9: W = 17; P-value \(=0.1393\)
TC3 - TC4: W = 588.5; P-value \(=0.0413\)
TC3 - TC6: \(W=413 ;\)-value \(=0.4575\)
TC3 - TC9: \(W=314 ; ~ P-\) value \(=0.1952\)
TC4 - TC6: W = 286.5; P-value \(=0.0102\)
TC4 - TC9: W = 269.5; P-value = 0.7565
TC6 - TC9: W = 353; P-value \(=0.055\)
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 28=0.00179\).

Sulfate


P-values reported are not adjusted for multiple comparisons. Adjusted significance level is 0.05 / 55 = 0.00091.

Aluminum, total
Wilcox Tests between Transects:
CAN1 - CAN2: \(\mathrm{W}=95.5\); P -value \(=0.0226\)
CAN1 - TC1: \(\mathrm{W}=117 ; ~ P-\) value \(=0.0123\)
CAN1 - TC10: \(W=86 ; ~ P-v a l u e ~=~ 0.0355 ~\)
CAN1 - TC2: \(W=129.5 ; ~ P-v a l u e=0.0288\)
CAN1 - TC3: W = 187.5; P-value = 0.0807
CAN1 - TC4: W = 237; P-value = 0.4888
CAN1 - TC5: W = 152.5; P-value = 0.0127
CAN1 - TC6: W = 170.5; P-value = 0.0251
CAN1 - TC7: \(W=219 ; ~ P-\) value \(=0.9493\)
CAN1 - TC9: \(W=109 ; ~ P-\) value \(=0.2338\)
CAN2 - TC1: \(W=233 ; ~ P-v a l u e ~=~ 0.9124\)
CAN2 - TC10: W = 109.5; P-value = 9e-04
CAN2 - TC2: W = 258.5; P-value = 0.4631
CAN2 - TC3: \(W=336 ; ~ P-v a l u e=0.3001\)
CAN2 - TC4: \(W=411 ; ~ P-v a l u e=0.01\)
CAN2 - TC5: \(W=282 ; ~ P-\) value \(=0.9591\)
CAN2 - TC6: \(W=302.5 ; ~ P-\) value \(=0.8808\)
CAN2 - TC7: \(W=335.5 ; ~ P-v a l u e=0.0089\)
CAN2 - TC9: W = 198; P-value = 0.1332
TC1 - TC10: \(W=144 ; ~ P-v a l u e ~=~ 0 ~\)
TC1 - TC2: \(W=303 ; ~ P-v a l u e=0.7649\)
TC1 - TC3: \(W=412 ; ~ P-v a l u e=0.3699\)
TC1 - TC4: \(W=508 ; ~ P-\) value \(=0.0102\)
TC1 - TC5: \(W=325 ; ~ P-\) value \(=0.5481\)
TC1 - TC6: \(W=351 ; ~ P\)-value \(=0.7279\)
TC1 - TC7: W = 396.5; P-value \(=0.0259\)
TC1 - TC9: W = 239; P-value = 0.2017
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|l|}{TC10 - TC2: \(\mathrm{W}=0 ; \mathrm{P}\)-value \(=2 \mathrm{e}-04\)} \\
\hline TC10 & \multicolumn{11}{|c|}{TC3: \(\mathrm{W}=6 ; \mathrm{P}\)-value \(=4 \mathrm{e}-04\)} \\
\hline C10 & \multicolumn{11}{|c|}{TC4: W = 10; P-value = 7e-04} \\
\hline TC10 & \multicolumn{11}{|c|}{TC5: \(\mathrm{W}=1 ; \mathrm{P}\)-value \(=2 \mathrm{e}-04\)} \\
\hline TC10 & \multicolumn{11}{|c|}{TC6: \(W=5 ; ~ P-\) value \(=3 \mathrm{e}-04\)} \\
\hline TC10 & \multicolumn{11}{|l|}{- TC7: W = 27.5; P-value \(=0.0225\)} \\
\hline C10 & \multicolumn{11}{|r|}{TC9: \(W=11.5 ; ~ P\)-value \(=0.0079\)} \\
\hline
\end{tabular}

TC2 - TC3: W = 375.5; P-value = 0.794
TC2 - TC4: W = 489.5; P-value \(=0.0247\)
TC2 - TC5: \(W=304 ; ~ P\)-value \(=0.3339\)
TC2 - TC6: \(W=325.5 ; ~ P\)-value \(=0.435\)
TC2 - TC7: \(W=395 ; ~ P-\) value \(=0.0281\)
TC2 - TC9: \(W=225 ; ~ P-\) value \(=0.3695\)
TC3 - TC4: \(W=567.5 ; ~ P-\) value \(=0.0837\)
TC3 - TC5: \(W=374 ; ~ P-\) value \(=0.2643\)
TC3 - TC6: W = 396; P-value \(=0.323\)
TC3 - TC7: W = 469.5; P-value \(=0.0577\)
TC3 - TC9: \(W=275.5 ; ~ P-v a l u e=0.4195\)
TC4 - TC5: \(W=242.5 ; ~ P-\) value \(=0.0022\)
TC4 - TC6: \(W=261.5 ; ~ P\)-value \(=0.0034\)
TC4 - TC7: W = 356; P-value \(=0.9514\)
TC4 - TC9: \(W=224.5 ; ~ P-v a l u e=0.7294\)
TC5 - TC6: W = 476; P-value \(=0.8796\)
TC5 - TC7: W = 543.5; P-value \(=0.0014\)
TC5 - TC9: \(W=303 ; ~ P-\) value \(=0.1494\)
TC6 - TC7: \(W=560 ; ~ P-v a l u e=0.0015\)
TC6 - TC9: \(W=298.5 ; ~ P-v a l u e=0.2616\)
TC7 - TC9: \(W=154.5 ; ~ P-\) value \(=0.307\)
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 55=0.00091\).

Antimony, dissolved
Wilcox Tests between Transects:
\begin{tabular}{|l|l|}
\hline CAN1 - CAN2: \(\mathrm{W}=0.5 ; \mathrm{P}\)-value \(=0\) \\
\hline CAN1 - TC1: \(\mathrm{W}=1 ; \mathrm{P}\)-value \(=0\) \\
\hline CAN1 - TC10: \(\mathrm{W}=0 ; \mathrm{P}\)-value \(=5 \mathrm{e}-04\) \\
\hline CAN1 - TC2: \(\mathrm{W}=0 ; \mathrm{P}\)-value \(=0\) \\
\hline CAN1 - TC3: \(\mathrm{W}=0 ; \mathrm{P}\)-value \(=0\) \\
\hline CAN1 - TC4: \(\mathrm{W}=3 ; \mathrm{P}\)-value \(=0\) \\
\hline CAN1 - TC5: \(\mathrm{W}=0 ; \mathrm{P}\)-value \(=0\) \\
\hline CAN1 - TC6: \(\mathrm{W}=0 ; \mathrm{P}\)-value \(=0\) \\
\hline CAN1 - TC7: \(\mathrm{W}=0 ; \mathrm{P}\)-value \(=0\) \\
\hline CAN1 - TC9: \(\mathrm{W}=1 ; \mathrm{P}\)-value \(=0\) \\
\hline CAN2 - TC1: \(\mathrm{W}=132 ; \mathrm{P}\)-value \(=0.0584\) \\
\hline
\end{tabular}

CAN2 - TC10: W = 10; P-value \(=0.0046\)
CAN2 - TC2: \(W=129 ; ~ P-v a l u e ~=~ 0.0485\)
CAN2 - TC3: \(W=161 ; ~ P-v a l u e ~=~ 0.0384 ~\)
CAN2 - TC4: \(W=225.5 ; ~ P-v a l u e ~=~ 0.5208\)
CAN2 - TC5: W = 170.5; P-value = 0.0628
CAN2 - TC6: \(\mathrm{W}=116.5 ;\) P-value \(=0.0016\)
CAN2 - TC7: \(W=76 ; ~ P-v a l u e=7 e-04\)
CAN2 - TC9: \(W\) = 101.5; P-value \(=0.1432\)
TC1 - TC10: \(W=29 ; ~ P-v a l u e=0.0275\)
TC1 - TC2: W = 271; P-value \(=0.7336\)
TC1 - TC3: W = 343.5; P-value \(=0.7805\)
TC1 - TC4: \(W=492 ; ~ P-\) value \(=0.0221\)
TC1 - TC5: \(W=418.5 ; ~ P-v a l u e=0.3126\)
TC1 - TC6: \(W=326 ; ~ P\)-value \(=0.4399\)
TC1 - TC7: W = 260.5; P-value \(=0.5776\)
TC1 - TC9: W = 174; P-value = 0.435
TC10 - TC2: W = 109.5; P-value = 0.0548
TC10 - TC3: \(W=147.5 ; ~ P-v a l u e=0.0155\)
TC10 - TC4: W = 180; P-value = 1e-04
TC10 - TC5: W = 172; P-value = 5e-04
TC10 - TC6: \(W=149 ; ~ P-v a l u e ~=~ 0.0222 ~\)
TC10 - TC7: \(W=127.5 ; ~ P-v a l u e=0.0043\)
TC10 - TC9: W = 62.5; P-value = 0.4411
TC2 - TC3: W = 384; P-value \(=0.6824\)
TC2 - TC4: W = 473; P-value \(=0.0501\)
TC2 - TC5: W = 401.5; P-value \(=0.4751\)
TC2 - TC6: \(W=328.5 ; ~ P-\) value \(=0.4654\)
TC2 - TC7: W = 252; P-value \(=0.464\)
TC2 - TC9: \(W=190 ; ~ P-\) value \(=0.7208\)
TC3 - TC4: \(W=626 ; ~ P-v a l u e=0.0095\)
TC3 - TC5: \(W=540 ; ~ P-v a l u e=0.1856\)
TC3 - TC6: W = 440; P-value \(=0.7237\)
TC3 - TC7: W = 338.5; P-value \(=0.7146\)
TC3 - TC9: W = 214.5; P-value \(=0.3757\)
TC4 - TC5: W = 315; P-value \(=0.0467\)
TC4 - TC6: W = 166; P-value \(=0\)
TC4 - TC7: W = 74.5; P-value \(=0\)
TC4 - TC9: \(W=183.5 ; ~ P-\) value \(=0.1159\)
TC5 - TC6: W = 285.5; P-value \(=0.0098\)
TC5 - TC7: W = 175.5; P-value \(=0.0014\)
TC5 - TC9: W = 210; P-value \(=0.3244\)
TC6 - TC7: \(W=360 ; ~ P-\) value \(=0.8452\)
TC6 - TC9: \(W=257.5 ; ~ P-\) value \(=0.9056\)
TC7 - TC9: \(W=189 ; ~ P\)-value \(=0.7012\)

P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 55=0.00091\).

Antimony, total
Wilcox Tests between Transects:

CAN2 - TC10: W = 10; P-value = 0.0046
CAN2 - TC2: \(W=195.5 ; ~ P-v a l u e=0.8322\)
CAN2 - TC3: W = 239; P-value \(=0.7314\)
CAN2 - TC4: \(W=341 ; ~ P-v a l u e ~=~ 0.0582\)
CAN2 - TC5: \(W=283 ; ~ P-v a l u e=0.5425\)
CAN2 - TC6: \(W=192 ; ~ P-v a l u e=0.1258\)
CAN2 - TC7: \(W=128.5 ; ~ P-v a l u e=0.0471\)
CAN2 - TC9: \(W=130 ; ~ P-v a l u e=0.6296\)
TC1 - TC10: W = 30; P-value = 0.0313
TC1 - TC2: W = 302; P-value \(=0.7805\)
TC1 - TC3: W = 390; P-value \(=0.6075\)
TC1 - TC4: \(W=505.5 ; ~ P-v a l u e=0.0116\)
TC1 - TC5: \(W=485.5 ; ~ P-\) value \(=0.0295\)
TC1 - TC6: \(W=388.5 ; ~ P-v a l u e=0.7859\)
TC1 - TC7: W = 296; P-value \(=0.877\)
TC1 - TC9: W = 188; P-value \(=0.6816\)
TC10 - TC2: W = 119; P-value \(=0.0157\)
TC10 - TC3: \(W=167 ; ~ P-\) value \(=0.0012\)
TC10 - TC4: W = 180; P-value = 1e-04
TC10 - TC5: \(\mathrm{W}=178 ; \mathrm{P}\)-value \(=2 \mathrm{e}-04\)
TC10 - TC6: \(W=158 ; ~ P-v a l u e ~=~ 0.0079\)
TC10 - TC7: W = 135; P-value \(=0.0012\)
TC10 - TC9: \(W=70 ;\)-value \(=0.195\)
TC2 - TC3: W = 404.5; P-value \(=0.4435\)
TC2 - TC4: \(W=474 ; ~ P-v a l u e=0.048\)
TC2 - TC5: W = 433.5; P-value \(=0.2031\)
TC2 - TC6: \(W=345.5 ; ~ P-\) value \(=0.6589\)
TC2 - TC7: \(W=274.5 ; ~ P-\) value \(=0.7885\)
TC2 - TC9: \(W=188.5 ; ~ P-v a l u e=0.6907\)
TC3 - TC4: W = 632.5; P-value \(=0.0071\)
TC3 - TC5: W = 587.5; P-value \(=0.0428\)
TC3 - TC6: W = 489.5; P-value \(=0.7291\)
TC3 - TC7: W = 381.5; P-value \(=0.7146\)
TC3 - TC9: W = 215; P-value \(=0.3817\)
TC4 - TC5: \(W=351 ; ~ P-v a l u e=0.145\)


P-values reported are not adjusted for multiple comparisons. Adjusted significance level is \(0.05 / 55=0.00091\).

Wilcox Tests between Transects:
CAN1 - CAN2: \(W=79.5 ; ~ P-v a l u e=0.0045\)


CAN2 - TC9: W = 108; P-value = 0.086
\begin{tabular}{|l|l|}
\hline TC1 - TC10: \(W=144 ; ~ P-v a l u e ~\) & 1e-04 \\
\hline TC1 - TC2: \(W=50 ; ~ P-\) value \(=0\) \\
\hline
\end{tabular}

TC1 - TC3: W = 363; P-value \(=0.963\)
TC1 - TC4: W = 403; P-value \(=0.4232\)
TC1 - TC5: \(W=435.5 ; ~ P-\) value \(=0.1839\)
TC1 - TC6: W = 299; P-value = 0.2053
TC1 - TC7: W = 151; P-value = 0.0039
TC1 - TC9: W = 214; P-value = 0.7938


TC2 - TC9: W = 316; P-value \(=0.0029\)
TC3 - TC4: \(W=495.5 ; ~ P-\) value \(=0.4846\)
TC3 - TC5: W = 523.5; P-value \(=0.2734\)
TC3 - TC6: W = 382; P-value \(=0.2251\)
TC3 - TC7: W = 190; P-value \(=0.0027\)
TC3 - TC9: W = 270; P-value = 0.7433
TC4 - TC5: W = 493; P-value \(=0.5222\)
TC4 - TC6: W = 336; P-value = 0.0577
TC4 - TC7: W = 165.5; P-value = 6e-04
TC4 - TC9: W = 259; P-value = 0.9365
TC5 - TC6: W = 327; P-value \(=0.0447\)
TC5 - TC7: W = 179; P-value \(=0.0015\)
TC5 - TC9: \(W=270.5 ; ~ P-v a l u e=0.7379\)
TC6 - TC7: W = 264; P-value \(=0.0654\)
TC6 - TC9: \(W=313 ; ~ P-\) value \(=0.2877\)
TC7 - TC9: W = 281; P-value \(=0.0411\)

P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 55=0.00091\).

Inorganic Arsenic, dissolved


CAN2 - TC9: \(W=57.5 ; ~ P-v a l u e ~=~ 0.001 ~\)
TC1 - TC10: \(W=141 ; ~ P-v a l u e ~=~ 4 e-04\)
TC1 - TC2: W = 240.5; P-value = 0.3324
TC1 - TC3: W = 337.5; P-value \(=0.7017\)
TC1 - TC4: \(W=410.5 ; ~ P\)-value \(=0.2678\)
TC1 - TC5: \(W=321.5 ; ~ P-\) value \(=0.5082\)
TC1 - TC6: \(W=169 ; ~ P-\) value \(=6 \mathrm{e}-04\)
TC1 - TC7: W = 171; P-value = 0.0163
TC1 - TC9: \(W=262 ; ~ P-v a l u e=0.1281\)


TC2 - TC3: W = 397.5; P-value \(=0.5195\)
TC2 - TC4: W = 445; P-value \(=0.0846\)
TC2 - TC5: W = 368; P-value = 0.8961
TC2 - TC6: \(W=227 ; ~ P-v a l u e=0.0142\)
TC2 - TC7: W = 222.5; P-value \(=0.1801\)
TC2 - TC9: \(W=274 ;\)-value \(=0.0658\)
TC3 - TC4: W = 553; P-value = 0.0748
TC3 - TC5: W = 456; P-value = 0.9352
TC3 - TC6: W = 252.5; P-value = 0.0022
TC3 - TC7: W = 275.5; P-value \(=0.1436\)
TC3 - TC9: \(W=277.5 ; ~ P-v a l u e=0.6262\)
TC4 - TC5: W = 283; P-value \(=0.0216\)
TC4 - TC6: W = 79; P-value \(=0\)
TC4 - TC7: W = 81.5; P-value = 0
TC4 - TC9: W = 334; P-value = 0.0477
TC5 - TC6: \(W=212.5 ; ~ P-v a l u e ~=~ 3 e-04\)
TC5 - TC7: W = 225.5; P-value = 0.0196
TC5 - TC9: \(W=357 ; ~ P-v a l u e=0.0246\)
TC6 - TC7: \(W=475.5 ; ~ P-v a l u e=0.0804\)
TC6 - TC9: \(W=405 ; ~ P-\) value \(=0.0024\)
TC7 - TC9: \(W=294 ;\)-value \(=0.0178\)

P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 55=0.00091\).

Inorganic Arsenic, total
Wilcox Tests between Transects:
CAN1 - CAN2: \(\mathrm{W}=73 ; \mathrm{P}\)-value \(=0.003\)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{CAN1 - TC1: W = 3; P-value = 0} \\
\hline CAN1 & - TC10: W = 65; P-value \(=0.4837\) \\
\hline CAN1 & - TC2: W = 0; P-value = 0 \\
\hline CAN1 & - TC3: W = 65.5; P-value = 0 \\
\hline CAN1 & - TC4: W = 0; P-value = 0 \\
\hline CAN1 & - TC5: W = 0; P-value = 0 \\
\hline CAN1 & - TC6: W = 3; P-value = 0 \\
\hline CAN1 & - TC7: W = 0; P-value = 0 \\
\hline CAN1 & - TC9: W = 20; P-value = 0 \\
\hline CAN2 & - TC1: W = 21; P-value = 0 \\
\hline CAN2 & - TC10: W = 88; P-value = 0.0522 \\
\hline CAN2 & - TC2: W = 9; P-value = 0 \\
\hline CAN2 & - TC3: W = 107; P-value = 3e-04 \\
\hline CAN2 & - TC4: W = 0; P-value = 0 \\
\hline CAN2 & - TC5: W = 0; P-value = 0 \\
\hline CAN2 & - TC6: W = 31.5; P-value = 0 \\
\hline CAN2 & - TC7: W = 0; P-value = 0 \\
\hline
\end{tabular}

CAN2 - TC9: \(W=57 ; ~ P-v a l u e=0.001\)
TC1 - TC10: \(W=144 ; ~ P-v a l u e=2 e-04\)
TC1 - TC2: \(W=201.5 ; ~ P-v a l u e ~=~ 0.0761\)
TC1 - TC3: W = 368; P-value \(=0.8961\)
TC1 - TC4: \(W=380 ; ~ P\)-value \(=0.5734\)
TC1 - TC5: \(W=276 ; P\)-value \(=0.1461\)
TC1 - TC6: \(W=263.5 ; ~ P-v a l u e=0.0668\)
TC1 - TC7: W = 168; P-value \(=0.0137\)
TC1 - TC9: W = 254.5; P-value = 0.1857


TC10 - TC9: \(W=5.5 ; ~ P-v a l u e ~=~ 0.0016\)
TC2 - TC3: \(W=466.5 ; ~ P-v a l u e=0.065\)
TC2 - TC4: W = 497.5; P-value \(=0.0077\)
TC2 - TC5: \(W=397 ; ~ P-v a l u e=0.5251\)
TC2 - TC6: \(W=337 ; ~ P-v a l u e=0.5582\)
TC2 - TC7: W = 268; P-value \(=0.6876\)
TC2 - TC9: \(W=282 ; ~ P-\) value \(=0.0403\)
TC3 - TC4: W = 487.5; P-value \(=0.4304\)
TC3 - TC5: W = 360.5; P-value \(=0.1882\)
TC3 - TC6: \(W=298.5 ; ~ P-v a l u e=0.0166\)
TC3 - TC7: W = 238.5; P-value \(=0.0352\)
TC3 - TC9: W = 267; P-value \(=0.799\)
TC4 - TC5: W = 271; P-value \(=0.0132\)
TC4 - TC6: \(W=264.5 ; ~ P-\) value \(=0.0063\)
TC4 - TC7: W = 89; P-value = 0
TC4 - TC9: W = 320; P-value = 0.0966
TC5 - TC6: \(W=385.5 ; ~ P\)-value \(=0.2544\)
TC5 - TC7: W = 259.5; P-value \(=0.0817\)
TC5 - TC9: \(W=351 ; ~ P-v a l u e=0.0345\)
TC6 - TC7: \(W=392 ; ~ P-v a l u e=0.7407\)
TC6 - TC9: \(W=364 ; ~ P-v a l u e=0.0311\)
TC7 - TC9: W = 284.5; P-value \(=0.0342\)
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 55=0.00091\).

Barium, dissolved
Wilcox Tests between Transects:
CAN1 - CAN2: \(W=209.5 ; ~ P-v a l u e=0.2475\)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{CAN1 - TC1: \(\mathrm{W}=0 ; \mathrm{P}\)-value \(=0\)} \\
\hline CAN1 & - TC10: W = 74; P-value \(=0.1929\) \\
\hline CAN1 & - TC2: W = 0; P-value = 0 \\
\hline CAN1 & - TC3: W = 0; P-value = 0 \\
\hline CAN1 & - TC4: W = 0; P-value = 0 \\
\hline CAN1 & - TC5: W = 0; P-value = 0 \\
\hline CAN1 & - TC6: W = 13; P-value = 0 \\
\hline CAN1 & - TC7: W = 0; P-value = 0 \\
\hline CAN1 & - TC9: W = 28.5; P-value \(=0\) \\
\hline CAN2 & - TC1: W = 0; P-value = 0 \\
\hline
\end{tabular}

CAN2 - TC10: W = 96; P-value = 0.0141
\begin{tabular}{|l|l|}
\hline CAN2 - TC2: \(W=0 ; ~ P-\) value \(=0\) \\
\hline CAN2 - TC3: \(W=0 ; ~ P-\) value \(=0\) \\
\hline CAN2 - TC4: \(W=0 ; ~ P-\) value \(=0\) \\
\hline CAN2 - TC5: \(W=0 ; ~ P-\) value \(=0\) \\
\hline CAN2 - TC6: \(W=12 ; ~ P-\) value \(=0\) \\
\hline CAN2 - TC7: \(W=0 ; ~ P-\) value \(=0\) \\
\hline CAN2 - TC9: \(W=19 ; ~ P-\) value \(=0\) \\
\hline TC1 - TC10: \(W=144 ; ~ P-\) value \(=2 e-04\) \\
\hline
\end{tabular}

TC1 - TC2: \(W=227 ; ~ P-v a l u e ~=~ 0.2122 ~\)
TC1 - TC3: W = 396.5; P-value \(=0.5308\)
TC1 - TC4: \(W=459.5 ; ~ P-v a l u e=0.0848\)
TC1 - TC5: \(W=487.5 ; ~ P\)-value \(=0.027\)
TC1 - TC6: \(W=534 ; ~ P-\) value \(=0.0061\)
TC1 - TC7: W = 391.5; P-value \(=0.0337\)
TC1 - TC9: W = 271; P-value = 0.0784
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|l|}{TC10 - TC2: W = 0; P-value = 2e-04} \\
\hline TC10 & - & TC3: & W & \(=\) & 0 & ; & P-value & = & 1 & e-04 \\
\hline TC10 & - & TC4: & W & \(=\) & 0 & ; P & P-value & = & 1 & e-04 \\
\hline TC10 & - & TC5: & W & = & 0 & ; & P-value & = & 1 & e-04 \\
\hline TC10 & - & TC6: & W & = & 0 & , & P-value & = & 1 & e-04 \\
\hline TC10 & - & TC7: & W & \(=\) & 0 & ; & P-value & = & 2 & e-04 \\
\hline TC10 & - & TC9: & W & = & 0 & ; & P-value & = & 4 & e-04 \\
\hline
\end{tabular}

TC2 - TC3: W = 449.5; P-value = 0.1213
TC2 - TC4: W = 519; P-value \(=0.0058\)
\begin{tabular}{|l|l|}
\hline TC2 - TC5: \(W=586.5 ; ~ P-\)-value \(=1 \mathrm{e}-04\) \\
\hline TC2 - TC6: \(W=647.5 ; ~ P\)-value \(=0\) \\
\hline TC2 - TC7: \(W=478 ; ~ P-\) value \(=1 \mathrm{e}-04\) \\
\hline TC2
\end{tabular}

TC2 - TC9: W = 298; P-value = 0.0133
TC3 - TC4: W = 645.5; P-value \(=0.0039\)
\begin{tabular}{|l|l|}
\hline TC3 - TC5: \(W=713.5 ; ~ P-\)-value \(=1 \mathrm{e}-04\) \\
\hline TC3 - TC6: \(W=776.5 ; ~ P\)-value \(=0\) \\
\hline TC3 - TC7: \(W=559 ; ~ P\)-value \(=5 \mathrm{e}-04\) \\
\hline
\end{tabular}

TC3 - TC9: W = 362; P-value = 0.0184
TC4 - TC5: \(W=727.5\); \(P\)-value \(=0\)
TC4 - TC6: W = 833.5; P-value = 0
TC4 - TC7: W = 519; P-value = 0.0058
TC4 - TC9: W = 360; P-value = 0.0207
TC5 - TC6: W = 615.5; P-value \(=0.0303\)
TC5 - TC7: W = 361.5; P-value \(=0.9861\)
TC5 - TC9: W = 341.5; P-value \(=0.0567\)
TC6 - TC7: \(W=299 ; ~ P-v a l u e=0.2184\)
TC6 - TC9: \(W=321 ; ~ P-v a l u e=0.2191\)
TC7 - TC9: W = 264.5; P-value \(=0.1122\)

P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is 0.05 / 55 = 0.00091.

Barium, total
Wilcox Tests between Transects:
CAN1 - CAN2: \(\mathrm{W}=183 ; \mathrm{P}\)-value \(=0.7264\)
CAN1 - TC1: W = 0; P-value \(=0\)
CAN1 - TC10: W = 88; P-value = 0.0249
\begin{tabular}{|l|l|}
\hline CAN1 - TC2: & \(\mathrm{W}=0 ; ~ \mathrm{P}\)-value \(=0\) \\
\hline CAN1 - TC3: \(\mathrm{W}=0 ; ~ \mathrm{P}\)-value \(=0\) \\
\hline
\end{tabular}
CAN1 - TC4: \(W=0 ; P\)-value \(=0\)
CAN1 - TC6: \(W\) = 12; P-value \(=0\)
CAN1 - TC7: W = 0; P-value = 0
CAN1 - TC9: \(W=32 ; ~ P-v a l u e ~=~ 1 e-04 ~\)
CAN2 - TC1: \(W=0 ; P\)-value \(=0\)
CAN2 - TC10: \(W=114 ; ~ P-v a l u e ~=~ 3 e-04 ~\)
CAN2 - TC2: \(W=0 ; ~ P-v a l u e ~=~ 0 ~\)
CAN2 - TC3: W = 0; P-value = 0
CAN2 - TC4: \(W\) = 0; P-value \(=0\)
CAN2 - TC5: W = 0; P-value = 0
CAN2 - TC6: W = 15; P-value \(=0\)
CAN2 - TC7: W = 0; P-value = 0
CAN2 - TC9: \(W=35.5\); P -value \(=1 \mathrm{e}-04\)
TC1 - TC10: W = 144; P-value = 2e-04
TC1 - TC2: W = 226.5; P-value = 0.2084
TC1 - TC3: W = 414; P-value \(=0.3516\)
TC1 - TC4: \(W=471 ; ~ P-v a l u e ~=~ 0.0544\)
TC1 - TC5: \(W=488 ; ~ P-\) value \(=0.0264\)
TC1 - TC6: \(W=552.5 ; ~ P-v a l u e=0.0022\)
TC1 - TC7: \(W=401.5 ; ~ P-v a l u e=0.0198\)
TC1 - TC9: W = 271; P-value = 0.0784


TC2 - TC3: W = 491; P-value = 0.0231
TC2 - TC4: \(W=547 ; ~ P-\) value \(=0.0012\)
TC2 - TC5: \(W=574.5 ; ~ P\)-value \(=2 \mathrm{e}-04\)
TC2 - TC6: W = 652; P-value = 0
TC2 - TC7: W = 494.5; P-value \(=0\)
TC2 - TC9: W = 293; P-value = 0.0192
TC3 - TC4: W = 655.5; P-value \(=0.0024\)
\begin{tabular}{|l|l|}
\hline TC3 - TC5: \(W=700.5 ; ~ P-\)-value \(=2 \mathrm{e}-04\) \\
\hline TC3 - TC6: \(W=773 ; ~ P\)-value \(=0\) \\
\hline TC3 - TC7: \(W=569.5 ; ~ P\)-value \(=3 \mathrm{e}-04\) \\
\hline
\end{tabular}
TC3 - TC9: W = 345; P-value = 0.0475

TC4 - TC5: W = 583.5; P-value \(=0.0491\)
TC4 - TC6: \(W=771 ;\) P-value \(=0\)
TC4 - TC7: \(W=515.5 ; ~ P-v a l u e ~=~ 0.007\)
TC4 - TC9: W = 328.5; P-value = 0.106
TC5 - TC6: \(W=703.5 ; ~ P-v a l u e ~=~ 6 e-04\)
TC5 - TC7: W = 438.5; P-value \(=0.1744\)
TC5 - TC9: \(W=323 ; ~ P-\) value \(=0.1349\)
TC6 - TC7: W = 327; P-value \(=0.4499\)
TC6 - TC9: \(W=303 ; ~ P-v a l u e=0.4003\)
TC7 - TC9: \(W=245 ; ~ P-v a l u e ~=~ 0.2837 ~\)

P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 55=0.00091\).

Cadmium, dissolved
Tukey multiple comparisons of means 95\% family-wise confidence level
\begin{tabular}{|lrrrrr|}
\multicolumn{1}{l}{} \\
\multicolumn{1}{l}{ CAN2-CAN1 } & 0.30893222 & 0.10103249 & 0.516831944 & 0.0001273 \\
\hline TC1-CAN1 & 0.25388606 & 0.05680319 & 0.450968926 & 0.0019384 \\
\hline TC10-CAN1 & 0.42719426 & 0.12923297 & 0.725155551 & 0.0002705 \\
\hline TC2-CAN1 & 0.16656512 & -0.03051775 & 0.363647994 & 0.1858238 \\
TC3-CAN1 & 0.13449504 & -0.05395223 & 0.322942304 & 0.4241308 \\
TC4-CAN1 & 0.04970023 & -0.13874704 & 0.238147500 & 0.9987911 \\
TC5-CAN1 & 0.02370491 & -0.16474236 & 0.212152176 & 0.9999987 \\
TC6-CAN1 & 0.08854334 & -0.09876066 & 0.275847340 & 0.9061139 \\
TC7-CAN1 & 0.11149358 & -0.08558929 & 0.308576453 & 0.7559219 \\
\hline TC9-CAN1 & 0.34386760 & 0.13010122 & 0.557633987 & 0.0000198 \\
\hline TC1-CAN2 & -0.05504616 & -0.24914276 & 0.139050430 & 0.9977632 \\
TC10-CAN2 & 0.11826204 & -0.17773249 & 0.414256569 & 0.9684027 \\
TC2-CAN2 & -0.14236709 & -0.33646369 & 0.051729499 & 0.3815354 \\
TC3-CAN2 & -0.17443718 & -0.35975907 & 0.010884707 & 0.0856353 \\
\hline TC4-CAN2 & -0.25923199 & -0.44455388 & -0.073910097 & 0.0004416 \\
\hline TC5-CAN2 & -0.28522731 & -0.47054920 & -0.099905421 & 0.0000577 \\
\hline TC6-CAN2 & -0.22038888 & -0.40454809 & -0.036229658 & 0.0060142 \\
\hline TC7-CAN2 & -0.19743864 & -0.39153523 & -0.003342043 & 0.0423321 \\
\hline TC9-CAN2 & 0.03493538 & -0.17608096 & 0.245951727 & 0.9999822 \\
TC10-TC1 & 0.17330820 & -0.11519158 & 0.461807984 & 0.6819943 \\
TC2-TC1 & -0.08732093 & -0.26978421 & 0.095142351 & 0.8990404 \\
TC3-TC1 & -0.11939102 & -0.29249089 & 0.053708849 & 0.4778540 \\
\hline TC4-TC1 & -0.20418582 & -0.37728569 & -0.031085955 & 0.0073633 \\
\hline TC5-TC1 & -0.23018115 & -0.40328102 & -0.057081278 & 0.0011274 \\
\hline
\end{tabular}

TC6-TC1 \(-0.16534271-0.33719724 \quad 0.006511817 \quad 0.0711318\)
TC7-TC1 -0.14239247-0.32485576 0.0400708100 .2891284
TC9-TC1 0.08998155 -0.11038627 0.290349356 0.9314202
TC2-TC10 \(-0.26062913-0.54912891 \quad 0.0278706470 .1181055\)
\begin{tabular}{|lrrrrr|}
\hline TC3-TC10 & -0.29269922 & -0.57537012 & -0.010028320 & 0.0353334 \\
\hline TC4-TC10 & -0.37749403 & -0.66016493 & -0.094823124 & 0.0010453 \\
\hline TC5-TC10 & -0.40348935 & -0.68616025 & -0.120818448 & 0.0002958 \\
\hline TC6-TC10 & -0.33865092 & -0.62056093 & -0.056740906 & 0.0056971 \\
\hline TC7-TC10 & -0.31570068 & -0.60420046 & -0.027200895 & 0.0191916 \\
\hline TC9-TC10 & -0.08332666 & -0.38347085 & 0.216817531 & 0.9981297 \\
TC3-TC2 & -0.03207009 & -0.20516996 & 0.141029780 & 0.9999490 \\
TC4-TC2 & -0.11686489 & -0.28996476 & 0.056234976 & 0.5113362 \\
TC5-TC2 & -0.14286022 & -0.31596008 & 0.030239653 & 0.2143007 \\
TC6-TC2 & -0.07802178 & -0.24987631 & 0.093832748 & 0.9265898 \\
TC7-TC2 & -0.05507154 & -0.23753482 & 0.127391741 & 0.9962571 \\
TC9-TC2 & 0.17730248 & -0.02306533 & 0.377670288 & 0.1371577 \\
TC4-TC3 & -0.08479480 & -0.24799493 & 0.078405317 & 0.8401593 \\
TC5-TC3 & -0.11079013 & -0.27399025 & 0.052409994 & 0.5027364 \\
TC6-TC3 & -0.04595169 & -0.20783033 & 0.115926947 & 0.9977457 \\
TC7-TC3 & -0.02300145 & -0.19610132 & 0.150098415 & 0.9999978 \\
\hline TC9-TC3 & 0.20937256 & 0.01749246 & 0.401252670 & 0.0198443 \\
\hline TC5-TC4 & -0.02599532 & -0.18919544 & 0.137204798 & 0.9999876 \\
TC6-TC4 & 0.03884311 & -0.12303553 & 0.200721751 & 0.9994685 \\
TC7-TC4 & 0.06179335 & -0.11130652 & 0.234893219 & 0.9860203 \\
\hline TC9-TC4 & 0.29416737 & 0.10228726 & 0.486047474 & 0.0000632 \\
\hline TC6-TC5 & 0.06483843 & -0.09704021 & 0.226717075 & 0.9678512 \\
TC7-TC5 & 0.08778867 & -0.08531119 & 0.260888542 & 0.8596782 \\
\hline TC9-TC5 & 0.32016269 & 0.12828259 & 0.512042797 & 0.0000077 \\
\hline TC7-TC6 & 0.02295024 & -0.14890429 & 0.194804770 & 0.9999977 \\
\hline TC9-TC6 & 0.25532426 & 0.06456685 & 0.446081669 & 0.0010041 \\
\hline TC9-TC7 & 0.23237402 & 0.03200621 & 0.432741829 & 0.0092698 \\
\hline
\end{tabular}

P-values reported are adjusted for multiple comparisons.

Wilcox Tests between Transects:
CAN1 - CAN2: \(W=85 ;\) P-value \(=0.0093\)
\begin{tabular}{|l|}
\hline CAN1 - TC1: \(W=58 ; ~ P-\) value \(=1 \mathrm{e}-04\) \\
\hline CAN1 - TC10: \(\mathrm{W}=4 ; \mathrm{P}\)-value \(=9 \mathrm{e}-04\) \\
\hline CAN1 - TC2: \(\mathrm{W}=119.5 ; \mathrm{P}\)-value \(=0.0145\) \\
\hline
\end{tabular}

CAN1 - TC2: \(W=119.5 ; ~ P-v a l u e ~=~ 0.0145\)
CAN1 - TC3: W = 151; P-value = 0.0115
CAN1 - TC4: W = 263.5; P-value = 0.8981
CAN1 - TC5: \(\mathrm{W}=285.5 ; \mathrm{P}\)-value \(=0.7487\)
CAN1 - TC6: \(W=311.5 ; ~ P-v a l u e=0.506\)
CAN1 - TC7: \(\mathrm{W}=167.5 ; \mathrm{P}\)-value \(=0.2217\)
CAN1 - TC9: W = 15; P-value \(=0\)
CAN2 - TC1: W = 215.5; P-value = 0.769
CAN2 - TC10: \(W=47.5 ; ~ P-v a l u e=0.5664\)
CAN2 - TC2: W = 258; P-value \(=0.4702\)
CAN2 - TC3: W = 364.5; P-value = 0.1048
CAN2 - TC4: \(W=423 ; ~ P-v a l u e=0.0047\)
CAN2 - TC5: \(\mathrm{W}=431.5 ;\)-value \(=0.0027\)
CAN2 - TC6: \(W=438 ; ~ P-\) value \(=0.0042\)
CAN2 - TC7: \(W=280.5 ; ~ P-v a l u e=0.203\)
CAN2 - TC9: \(W=125.5 ; ~ P-v a l u e=0.26\)
TC1 - TC10: W = 53.5; P-value = 0.3496
TC1 - TC2: W = 380; P-value \(=0.0587\)
TC1 - TC3: W = 496.5; P-value \(=0.0178\)
\begin{tabular}{|l}
\hline TC1 - TC4: \(W=593.5 ; ~ P-\) value \(=0\) \\
\hline TC1 - TC5: \(W=622 ; ~ P-\) value \(=0\) \\
\hline TC1 - TC6: \(W=636.5 ; ~ P-\) value \(=0\) \\
\hline TC1 - TC7: \(W=410 ; ~ P-\) value \(=0.0122\) \\
TC1 - TC9: \(W=138 ; ~ P-\) value \(=0.0825\)
\end{tabular}
TC10 - TC2: W = 110.5; P-value = 0.0485
TC10 - TC3: W = 156; P-value = 0.0054
TC10 - TC4: W = 167.5; P-value \(=0.0011\)
\begin{tabular}{|l|l|l}
\hline TC10 - TC5: & W \(=170 ; ~ P-\) value \(=7 e-04\) \\
TC10 - TC6: \(W=167 ; ~ P-v a l u e ~\) & \(=0.0024\)
\end{tabular}
TC10 - TC7: W = 111.5; P-value = 0.0429
TC10 - TC9: \(W=43 ; ~ P-\) value \(=0.5976\)
TC2 - TC3: W = 378; P-value \(=0.7605\)
TC2 - TC4: W = 501; P-value \(=0.0143\)
TC2 - TC5: W = 547; P-value \(=0.0011\)
TC2 - TC6: \(W=557.5 ; ~ P-\) value \(=0.0017\)
TC2 - TC7: W = 345.5; P-value \(=0.2393\)
TC2 - TC9: \(W=87.5 ; ~ P-v a l u e=0.0021\)
TC3 - TC4: W = 611; P-value = 0.0175
TC3 - TC5: W = 656.5; P-value \(=0.0023\)
TC3 - TC6: W = 688; P-value \(=0.0013\)
TC3 - TC7: W = 432; P-value \(=0.2129\)
TC3 - TC9: W = 69; P-value = 0
TC4 - TC5: W = 478; P-value = 0.6838
TC4 - TC6: \(W=503.5 ; ~ P-\) value \(=0.5829\)
TC4 - TC7: W = 297; P-value = 0. 2758


P-values reported are not adjusted for multiple comparisons. Adjusted significance level is \(0.05 / 55=0.00091\).

Calcium, dissolved
Tukey multiple comparisons of means 95\% family-wise confidence level
diff lwr upr p adj
CAN2-CAN1 -36.25731 -1649.1243 1576.609661 .0000000 \(\begin{array}{lllllll}\text { TC1-CAN1 } & 627.77778 & -901.1730 & 2156.72858 & 0.9618734\end{array}\) \begin{tabular}{llllll}
\hline TC10-CAN1 & -2472.22222 & -4783.7786 & -160.66588 & 0.0249486
\end{tabular}
\(\begin{array}{llllll}\text { TC2-CAN1 } & 648.61111 & -880.3397 & 2177.56192 & 0.9525230\end{array}\)
TC3-CAN1 \(731.11111 \quad-730.84552193 .067710 .8701358\)
TC4-CAN1 \(294.44444-1167.51221756 .401040 .9998899\)
\(\begin{array}{llllll}\text { TC5-CAN1 } & -582.22222 & -2044.1788 & 879.73437 & 0.9691080\end{array}\)
TC6-CAN1 \(-717.92115-2171.0084 \quad 735.16606 \quad 0.8786766\)
TC7-CAN1 \(\quad 69.44444-1459.50641598 .395251 .0000000\)
TC9-CAN1 328.75817 -1329.6218 1987.13816 0.9999047
TC1-CAN2 \(664.03509 \quad-841.7485 \quad 2169.818630 .9388881\) \begin{tabular}{lllll}
\hline TC10-CAN2 & -2435.96491 & -4732.2633 & -139.66654 & 0.0273027
\end{tabular}
\begin{tabular}{llllll}
\hline TC2-CAN2 & 684.86842 & -820.9151 & 2190.65196 & 0.9257561
\end{tabular}
\begin{tabular}{llllll} 
TC3-CAN2 & 767.36842 & -670.3418 & 2205.07861 & 0.8161794
\end{tabular}

TC4-CAN2 330.70175 -1107.0084 \(1768.41195 \quad 0.9996345\)
\(\begin{array}{lllll}\text { TC5-CAN2 } & -545.96491 & -1983.6751 & 891.74528 & 0.9779598\end{array}\)
TC6-CAN2 -681.66384 -2110.3541 747.02646 0.9008172
TC7-CAN2 105.70175 -1400.0818 1611.485301 .0000000
TC9-CAN2 365.01548 -1272.0299 2002.06090 0.9997232
\begin{tabular}{llllll}
\hline TC10-TC1 & -3100.00000 & -5338.1548 & -861.84520 & 0.0005341
\end{tabular}
TC2-TC1 20.83333 -1394.7001 1436.366721 .0000000

TC3-TC1 103.33333-1239.5595 1446.226211.0000000
TC4-TC1 -333.33333 -1676.2262 1009.55955 0.9992846
TC5-TC1 \(-1210.00000-2552.8929 \quad 132.89288 \quad 0.1204077\)
\begin{tabular}{|lrrrrl|}
\hline TC6-TC1 & -1345.69892 & -2678.9306 & -12.46727 & 0.0456996 \\
\hline TC7-TC1 & -558.33333 & -1973.8667 & 857.20005 & 0.9711210 \\
TC9-TC1 & -299.01961 & -1853.4547 & 1255.41546 & 0.9999278 \\
\hline TC2-TC10 & 3120.83333 & 882.6785 & 5358.98814 & 0.0004697 \\
\hline TC3-TC10 & 3203.33333 & 1010.3984 & 5396.26823 & 0.0001837 \\
\hline TC4-TC10 & 2766.66667 & 573.7318 & 4959.60156 & 0.0027178 \\
\hline TC5-TC10 & 1890.00000 & -302.9349 & 4082.93489 & 0.1640294 \\
TC6-TC10 & 1754.30108 & -432.7309 & 3941.33304 & 0.2511182 \\
\hline TC7-TC10 & 2541.66667 & 303.5119 & 4779.82147 & 0.0121918 \\
\hline TC9-TC10 & 2800.98039 & 472.4893 & 5129.47144 & 0.0055863 \\
\hline
\end{tabular}
\(\begin{array}{llllll}\text { TC3-TC2 } 82.50000 & -1260.3929 & 1425.39288 & 1.0000000\end{array}\)
\(\begin{array}{llllll}\text { TC4-TC2 } & -354.16667 & -1697.0595 & 988.72621 & 0.9987911\end{array}\)
TC5-TC2 \(-1230.83333-2573.7262 \quad 112.05955 \quad 0.1058694\)
\begin{tabular}{lllll}
\hline TC6-TC2 & -1366.53226 & -2699.7639 & -33.30060 & 0.0392233
\end{tabular}
\(\begin{array}{llllll}\text { TC7-TC2 } & -579.16667 & -1994.7001 & 836.36672 & 0.9627778\end{array}\)
TC9-TC2 -319.85294 -1874.2880 1234.582130 .9998661
TC4-TC3 \(\quad-436.66667-1702.7582 \quad 829.42488 \quad 0.9892338\)
\begin{tabular}{|rrrrrr}
\hline TC5-TC3 & -1313.33333 & -2579.4249 & -47.24178 & 0.0346889 \\
\hline TC6-TC3 & -1449.03226 & -2704.8719 & -193.19263 & 0.0099183
\end{tabular}

TC7-TC3 \(\quad-661.66667-2004.5595 \quad 681.22621 \quad 0.8805408\)
TC9-TC3 -402.35294 -1890.9412 \(1086.23529 \quad 0.9985090\)
\(\begin{array}{lllll}\text { TC5-TC4 } & -876.66667 & -2142.7582 & 389.42488 & 0.4717217\end{array}\)
TC6-TC4 -1012.36559 -2268.2052 243.47404 0.2445062
TC7-TC4 -225.00000 -1567.8929 1117.89288 0.9999801
TC9-TC4 \(34.31373-1454.27451522 .901961 .0000000\)
TC6-TC5 -135.69892 -1391.5386 1120.14070 0.9999997
TC7-TC5 651.66667 -691.2262 1994.55955 0.8905175
TC9-TC5 \(910.98039-577.6078 \quad 2399.568620 .6569262\)
TC7-TC6 \(\quad 787.36559-545.86612120 .597250 .7041354\)
TC9-TC6 1046.67932 -433.1991 2526.55778 0.4383346
TC9-TC7 259.31373 -1295.1213 1813.74880 0.9999809
P-values reported are adjusted for multiple comparisons.

Calcium, total
Wilcox Tests between Transects:
CAN1 - CAN2: \(W=131.5 ; ~ P-v a l u e=0.2352\)
CAN1 - TC1: \(W=114.5 ; ~ P-v a l u e=0.0101\)
CAN1 - TC10: \(W=108 ; ~ P-v a l u e ~=~ 3 e-04 ~\)
CAN1 - TC2: \(\mathrm{W}=147 ; ~ P-\) value \(=0.0811\)
CAN1 - TC3: W = 232; P-value = 0.4239
CAN1 - TC4: \(W=273.5 ; ~ P-v a l u e ~=~ 0.949\)
CAN1 - TC5: \(W=309 ; ~ P-v a l u e=0.4117\)
CAN1 - TC6: \(W=287 ; ~ P-v a l u e ~=~ 0.8762 ~\)
CAN1 - TC7: \(W=261.5 ; ~ P-v a l u e=0.2516\)
CAN1 - TC9: \(W=124 ; ~ P\)-value \(=0.3461\)
CAN2 - TC1: \(W=163 ; ~ P-v a l u e ~=~ 0.1138\)
CAN2 - TC10: \(W=114 ; ~ P-v a l u e ~=~ 3 e-04 ~\)
CAN2 - TC2: \(W=162 ; ~ P-v a l u e ~=~ 0.1089 ~\)
CAN2 - TC3: \(W=226 ;\) P-value \(=0.2296\)
CAN2 - TC4: W = 293; P-value = 0.8774
CAN2 - TC5: \(W=389 ; ~ P-v a l u e=0.0335\)
CAN2 - TC6: \(W=320 ; ~ P-v a l u e=0.6168\)
CAN2 - TC7: \(W=272.5 ; ~ P\)-value \(=0.2813\)
CAN2 - TC9: \(W=170 ; ~ P-\) value \(=0.7996\)
TC1 - TC10: W = 144; P-value = 2e-04
TC1 - TC2: \(W=305 ; ~ P-v a l u e=0.7333\)
TC1 - TC3: W = 383; P-value \(=0.6951\)
TC1 - TC4: \(W=452 ; ~ P-v a l u e=0.1101\)
TC1 - TC5: W = 565; P-value \(=4 \mathrm{e}-04\)

TC1 - TC6: W = 463; P-value = 0.1232
TC1 - TC7: W = 390.5; P-value \(=0.0352\)
TC1 - TC9: W = 252; P-value \(=0.208\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|l|}{} \\
\hline \multicolumn{12}{|l|}{\[
\begin{aligned}
& \text { TC10 - TC2: W = 0; P-value = 2e-04 } \\
& \hline \text { TC10 - TC3: W = 6; P-value = 4e-04 }
\end{aligned}
\]} \\
\hline \multicolumn{12}{|l|}{TC10 - TC4: W = 0.5; P-value = 2e-04} \\
\hline \multicolumn{12}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& \text { TC10 - TC5: } W=12 ; ~ P \text {-value }=0.001 \\
& \text { TC10 - TC6: } W=38 ; ~ P \text {-value }=0.0244
\end{aligned}
\]}} \\
\hline & & & & & & & & & & & \\
\hline \multicolumn{12}{|l|}{TC10 - TC7: W = 4; P-value = 4e-04} \\
\hline \multicolumn{12}{|l|}{TC10 - TC9: W = 0.5; P-value = 5e-04} \\
\hline
\end{tabular}

TC2 - TC3: \(W=427.5 ; ~ P-v a l u e=0.2429\)
TC2 - TC4: W = 466; P-value \(=0.0659\)
TC2 - TC5: W = 551; P-value = 9e-04
TC2 - TC6: W = 529.5; P-value = 0.0076
TC2 - TC7: W = 375; P-value \(=0.0742\)
TC2 - TC9: \(W=221.5 ; ~ P-v a l u e ~=~ 0.6524\)
TC3 - TC4: W = 517; P-value \(=0.325\)
TC3 - TC5: \(W=630 ; ~ P-v a l u e ~=~ 0.0079\)
TC3 - TC6: W = 629.5; P-value \(=0.0179\)
TC3 - TC7: W = 410; P-value \(=0.3886\)
TC3 - TC9: \(W=262 ; ~ P-v a l u e=0.8855\)
TC4 - TC5: \(W=564.5 ; ~ P-\) value \(=0.0915\)
TC4 - TC6: \(W=519 ; ~ P-\) value \(=0.4391\)
TC4 - TC7: W = 376; P-value \(=0.7869\)
TC4 - TC9: \(W=238.5 ; ~ P-v a l u e=0.7228\)
TC5 - TC6: W = 388; P-value \(=0.2694\)
TC5 - TC7: W = 325.5; P-value \(=0.5536\)
TC5 - TC9: W = 206; P-value \(=0.2826\)
TC6 - TC7: W = 350.5; P-value \(=0.7212\)
TC6 - TC9: \(W=228 ; ~ P\)-value \(=0.4501\)
TC7 - TC9: \(W=168 ; ~ P\)-value \(=0.3469\)

P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 55=0.00091\).

Cerium, total
Wilcox Tests between Transects:
CAN1 - TC1: \(W=96 ; ~ P-v a l u e=0.0024\)
CAN1 - TC10: \(W=61 ; ~ P-v a l u e=0.6627\)
CAN1 - TC2: \(W=24 ; ~ P-v a l u e=0.3269\)
CAN1 - TC3: W = 113.5; P-value = 9e-04
CAN1 - TC4: W = 143; P-value = 0.007
CAN1 - TC6: \(W=141 ; ~ P-v a l u e ~=~ 0.0043\)
CAN1 - TC9: \(W=91 ; ~ P-v a l u e ~=~ 0.0422 ~\)
TC1 - TC10: W = 144; P-value = 2e-04
TC1 - TC2: \(W=54.5 ; ~ P-v a l u e ~=~ 0.6933\)
TC1 - TC3: \(W=302.5 ; ~ P-\) value \(=0.3208\)
TC1 - TC4: W = 332.5; P-value \(=0.6382\)
TC1 - TC6: W = 350; P-value \(=0.715\)
TC1 - TC9: W = 251; P-value \(=0.2183\)
TC10 - TC2: W = 0; P-value = 0.0128
TC10 - TC3: W = 0; P-value = 1e-04

TC10 - TC4: \(W=2 ; ~ P-v a l u e ~=~ 2 e-04 ~\)
TC10 - TC6: \(W=0 ;\) P-value \(=1 \mathrm{e}-04\)
TC10 - TC9: \(W=8.5 ; ~ P-v a l u e ~=~ 0.0032\)
TC2 - TC3: \(W=32 ; ~ P-v a l u e=0.1414\)
TC2 - TC4: W = 39; P-value \(=0.2727\)
TC2 - TC6: W = 43; P-value \(=0.3372\)
TC2 - TC9: W = 38; P-value \(=0.7538\)
TC3 - TC4: W = 516.5; P-value \(=0.3289\)
TC3 - TC6: \(W=533.5 ; ~ P-\) value \(=0.3264\)
TC3 - TC9: \(W=351 ;\) P-value \(=0.0344\)
TC4 - TC6: W = 456.5; P-value = 0.9081
TC4 - TC9: W = 318.5; P-value = 0.1628
TC6 - TC9: W = 327.5; P-value \(=0.1709\)
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 28=0.00179\).

Cesium, dissolved
Wilcox Tests between Transects:
CAN1 - TC1: \(W=150 ; ~ P-v a l u e=0.0641\)
CAN1 - TC10: \(W=18 ; ~ P-v a l u e=0.0063\)
CAN1 - TC2: \(W=12 ; ~ P-v a l u e=0.0205\)
CAN1 - TC3: W = 261; P-value \(=0.8407\)
CAN1 - TC4: W = 327; P-value \(=0.185\)
CAN1 - TC6: W = 396; P-value \(=0.0086\)
CAN1 - TC9: W = 108; P-value \(=0.117\)
TC1 - TC10: W = 60; P-value \(=0.5238\)
TC1 - TC2: \(W=40 ; ~ P-v a l u e=0.5995\)
TC1 - TC3: \(W=454 ;\)-value \(=0.0818\)
TC1 - TC4: W = 522.5; P-value \(=0.0027\)
\begin{tabular}{|c}
\hline TC1 - TC6: \\
TC1 - TC9: \\
W
\end{tabular}
TC10 - TC2: W = 12; P-value = NaN
TC10 - TC3: W = 141; P-value = 0.0215
TC10 - TC4: \(W=153 ; ~ P-v a l u e=0.0045\)
TC10 - TC6: W = 180; P-value = 2e-04
TC10 - TC9: W = 54; P-value = 0.849
TC2 - TC3: W = 94; P-value = 0.0555
TC2 - TC4: W = 102; P-value \(=0.0178\)
TC2 - TC6: W = 120; P-value = 0.0019
TC2 - TC9: W = 36; P-value \(=0.8858\)
TC3 - TC4: W = 546.5; P-value \(=0.1294\)
TC3 - TC6: \(W=647 ; ~ P-v a l u e=0.0056\)
TC3 - TC9: W = 189.5; P-value = 0.1325
TC4 - TC6: W = 528; P-value \(=0.3407\)
TC4 - TC9: W = 151.5; P-value = 0.0171
TC6 - TC9: W = 129; P-value = 0.0029

P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 28=0.00179\).

Cesium, total
Tukey multiple comparisons of means 95\% family-wise confidence level
diff lwr upr p adj
\begin{tabular}{|rrrrr|}
\hline TC1-CAN1 & 0.222006518 & 0.07410537 & 0.369907662 & 0.0002208 \\
\hline
\end{tabular} TC10-CAN1 0.180115058 -0.04349045 0.4037205710 .2138866 TC2-CAN1 \(\quad 0.121417972\)-0.14078273 0.3836186770 .8451739
\begin{tabular}{|lrrrrr|}
\hline TC3-CAN1 & 0.168375641 & 0.02695510 & 0.309796184 & 0.0081658 \\
\hline TC4-CAN1 & 0.047603974 & -0.09381657 & 0.189024517 & 0.9683933
\end{tabular}
TC6-CAN1 \(0.065333935-0.07522864 \quad 0.2058965090 .8426314\)
\begin{tabular}{lllll}
\hline TC9-CAN1 & 0.173209519 & 0.01278820 & 0.333630834 & 0.0244527
\end{tabular}
TC10-TC1 \(-0.041891460-0.25839657 \quad 0.1746136470 .9989014\)
TC2-TC1 -0.100588546-0.35676084 0.1555837510 .9288182

TC3-TC1 -0.053630877 \(-0.18353394 \quad 0.076272187 \quad 0.9088386\)
\begin{tabular}{|llllll|}
\hline TC4-TC1 & -0.174402544 & -0.30430561 & -0.044499480 & 0.0015286 \\
\hline TC6-TC1 & -0.156672583 & -0.28564108 & -0.027704086 & 0.0063332 \\
\hline
\end{tabular}

TC9-TC1 \(-0.048796999-0.19916333 \quad 0.1015693340 .9742012\)
TC2-TC10 -0.058697086-0.36488154 0.247487372 0.9989655
TC3-TC10 \(-0.011739417-0.22387023 \quad 0.2003913980 .9999998\)
TC4-TC10 -0.132511084 -0.34464190 0.079619731 0.5394604
TC6-TC10 -0.114781124-0.32634093 0.096778679 0.7080040
TC9-TC10 -0.006905540 -0.23214921 0.218338131 1.0000000
TC3-TC2 0.046957669 -0.20552850 0.299443841 0.9991505
TC4-TC2 -0.073813998 -0.32630017 0.178672174 0.9858092
TC6-TC2 -0.056084037 -0.30809065 0.195922579 0.9973110
TC9-TC2 \(0.051791547-0.21180757 \quad 0.3153906660 .9987870\)
TC4-TC3 -0.120771667-0.24324545 0.001702116 0.0562625
TC6-TC3 -0.103041706-0.22452378 0.018440370 0.1615055
TC9-TC3 0.004833878 -0.13916284 0.148830599 1.0000000
TC6-TC4 0.017729961-0.10375212 0.139212037 0.9998290
TC9-TC4 0.125605545-0.01839118 0.269602266 0.1364976 TC9-TC6 0.107875584-0.03527861 0.251029777 0.2917663

P-values reported are adjusted for multiple comparisons.

Cobalt, total
Wilcox Tests between Transects:
CAN1 - CAN2: \(W=8 ;\)-value \(=0.0015\)
CAN1 - TC1: \(W=12 ; ~ P\)-value \(=0.0022\)
CAN1 - TC10: \(W=9 ; ~ P\)-value \(=0.0995\)
CAN1 - TC2: \(W=26.5 ; ~ P\)-value \(=0.0221\)
CAN1 - TC3: W = 39.5; P-value = 0.0167
CAN1 - TC4: \(W=58 ; ~ P-v a l u e=0.125\) CAN1 - TC5: \(W=84.5 ; ~ P-v a l u e=0.6856\)
CAN1 - TC6: \(W=15.5 ; ~ P-\) value \(=6 \mathrm{e}-04\)
CAN1 - TC7: W = 30; P-value = 0.0114 CAN1 - TC9: \(W=8 ; P\)-value \(=0.0066\)
\begin{tabular}{|l}
\hline CAN2 - TC1: \(W=246 ; ~ P-v a l u e ~\)
\end{tabular}\(=5 \mathrm{e}-04\)
CAN2 - TC2: \(W=270 ; ~ P-\) value \(=1 e-04\)
CAN2 - TC4: \(W=347 ; ~ P-\) value \(=0.001\)
CAN2 - TC5: W = 380.5; P-value = 0
CAN2 - TC6: \(W=358 ; ~ P-v a l u e ~=~ 0.0067\)
CAN2 - TC7: \(W=300 ; ~ P-v a l u e=0.003\)
CAN2 - TC9: \(W=150.5 ; ~ P-\) value \(=0.0022\)
TC1 - TC10: W = 104.5; P-value = 8e-04
TC1 - TC2: W = 197.5; P-value = 0.4289
TC1 - TC3: W = 286; P-value \(=0.4507\)
TC1 - TC4: \(W=300.5 ; ~ P-v a l u e=0.1863\)
TC1 - TC5: \(W=329 ; ~ P-\) value \(=0.0474\)
TC1 - TC6: \(W=181.5 ; ~ P-v a l u e=0.0607\)
TC1 - TC7: W = 246; P-value \(=0.4529\)
TC1 - TC9: \(W=104.5 ; ~ P\)-value \(=0.8219\)
TC10 - TC2: \(W=34.5 ; ~ P-v a l u e=0.1605\)
TC10 - TC3: \(W=29.5 ; ~ P-\) value \(=0.0147\)
TC10 - TC4: W = 58; P-value = 0.2932
TC10 - TC5: W = 77; P-value \(=0.8702\)
TC10 - TC6: W = 9; P-value \(=6 \mathrm{e}-04\)
TC10 - TC7: W = 44; P-value = 0.1535
TC10 - TC9: W = 14; P-value \(=0.0623\)
TC2 - TC3: W = 280; P-value \(=0.7696\)
TC2 - TC4: W = 297.5; P-value \(=0.3659\)
TC2 - TC5: W = 342.5; P-value \(=0.0563\)
TC2 - TC6: \(W=166.5 ; ~ P\)-value \(=0.0154\)
TC2 - TC7: W = 194.5; P-value \(=0.4193\)
TC2 - TC9: W = 95.5; P-value = 0.7138
TC3 - TC4: \(W=425.5 ; ~ P\)-value \(=0.4286\)
TC3 - TC5: \(W=475.5 ; ~ P\)-value \(=0.1024\)
TC3 - TC6: \(W=239 ; ~ P-v a l u e=0.005\)
TC3 - TC7: W = 333.5; P-value \(=0.9707\)
TC3 - TC9: W = 133; P-value \(=0.5222\)
TC4 - TC5: \(W=427 ; ~ P-\) value \(=0.2832\)
TC4 - TC6: \(W=217 ; ~ P-\) value \(=0.0027\)
TC4 - TC7: W = 286.5; P-value \(=0.4849\)
TC4 - TC9: W = 108; P-value \(=0.1978\)
TC5 - TC6: \(W=162.5 ; ~ P-v a l u e ~=~ 1 e-04 ~\)
TC5 - TC7: W = 215; P-value = 0.0406
TC5 - TC9: \(W=86 ;\) P-value \(=0.0458\)
TC6 - TC7: \(W=448 ; ~ P-\) value \(=0.1276\)
TC6 - TC9: \(W=220.5 ; ~ P-\) value \(=0.1054\)
TC7 - TC9: \(W=133.5 ; ~ P-v a l u e=0.9716\)

P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 55=0.00091\).

Copper, total
Wilcox Tests between Transects:
\begin{tabular}{|l|}
\hline CAN1 - CAN2: \(\mathrm{W}=26 ; \mathrm{P}\)-value \(=0\) \\
\hline CAN1 - TC1: \(\mathrm{W}=30 ; \mathrm{P}\)-value \(=0\) \\
\hline CAN1 - TC10: \(\mathrm{W}=72 ; \mathrm{P}\)-value \(=0.2412\) \\
\hline CAN1 - TC2: \(\mathrm{W}=38.5 ; \mathrm{P}\)-value \(=0\) \\
\hline CAN1 - TC3: \(\mathrm{W}=120.5 ; \mathrm{P}\)-value \(=0.0015\) \\
\hline CAN1 - TC4: \(\mathrm{W}=103.5 ; \mathrm{P}\)-value \(=4 \mathrm{e}-04\) \\
\hline CAN1 - TC5: \(\mathrm{W}=24 ; \mathrm{P}\)-value \(=0\) \\
\hline CAN1 - TC6: \(\mathrm{W}=36 ; \mathrm{P}\)-value \(=0\) \\
\hline CAN1 - TC7: \(\mathrm{W}=84 ; \mathrm{P}\)-value \(=8 \mathrm{e}-04\) \\
\hline CAN1 - TC9: \(\mathrm{W}=24 ; \mathrm{P}\)-value \(=0\) \\
\hline CAN2 - TC1: \(\mathrm{W}=242.5 ; \mathrm{P}\)-value \(=0.7319\) \\
\hline
\end{tabular}
CAN2 - TC10: \(W=109 ; ~ P-v a l u e ~=~ 0.001 ~\)
CAN2 - TC2: \(W=283 ; ~ P-v a l u e ~=~ 0.1824 ~\)
CAN2 - TC3: W = 386; P-value \(=0.0391\)
CAN2 - TC4: \(W=410 ; ~ P-v a l u e ~=~ 0.0106\)
CAN2 - TC5: \(W=352 ; ~ P-\) value \(=0.1087\)
CAN2 - TC6: \(W=355.5 ; ~ P-\) value \(=0.2263\)
CAN2 - TC7: \(W=298.5 ; ~ P-v a l u e=0.0867\)
CAN2 - TC9: W = 201; P-value = 0.2162
TC1 - TC10: \(W=144 ;\)-value \(=2 \mathrm{e}-04\)
TC1 - TC2: W = 356; P-value = 0.1637
TC1 - TC3: W = 515.5; P-value \(=0.0069\)
TC1 - TC4: W = 572; P-value = 2e-04
TC1 - TC5: W = 530; P-value = 0.0012
TC1 - TC6: \(W=506.5 ; ~ P-\) value \(=0.0229\)
TC1 - TC7: \(W=384 ; ~ P-\) value \(=0.0488\)
TC1 - TC9: \(W=252 ; ~ P-v a l u e=0.2086\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{TC10 - TC2: W = 0; P-value = 2e-04} \\
\hline TC10 & - & TC3: W = 0 & \(0 ;\) & P-value & = & 1e-04 \\
\hline TC10 & - & TC4: W = 0 & 0 ; & P-value & = & 1e-04 \\
\hline TC10 & - & TC5: W = 0 & 0 & P-value & = & 1e-04 \\
\hline TC10 & - & TC6: W = 0 & 0 & P-value & \(=\) & 1e-04 \\
\hline TC10 & & TC7: W = 0 & & P-value & & 2e-04 \\
\hline
\end{tabular}
TC10 - TC9: W = 5; P-value = 0.0014
TC2 - TC3: \(W=458 ; ~ P\)-value \(=0.0895\)
TC2 - TC4: W = 500; P-value \(=0.0151\)
TC2 - TC5: W = 411.5; P-value \(=0.2597\)
TC2 - TC6: W = 382; P-value \(=0.8718\)
TC2 - TC7: W = 333.5; P-value \(=0.3531\)
TC2 - TC9: \(W=210 ; ~ P\)-value \(=0.8842\)
TC3 - TC4: \(W=488 ; ~ P\)-value \(=0.5792\)
TC3 - TC5: \(W=432.5 ; ~ P-v a l u e=0.9758\)
TC3 - TC6: W = 393; P-value \(=0.3022\)
TC3 - TC7: W = 358.5; P-value \(=0.9861\)
TC3 - TC9: \(W=210 ; ~ P\)-value \(=0.3243\)
TC4 - TC5: \(W=312 ; ~ P\)-value \(=0.0628\)
TC4 - TC6: W = 268; P-value \(=0.0046\)
TC4 - TC7: W = 326; P-value \(=0.5595\)
TC4 - TC9: \(W=204.5 ; ~ P-v a l u e ~=~ 0.268 ~\)
TC5 - TC6: W = 347.5; P-value \(=0.1326\)
TC5 - TC7: \(W=364.5 ; ~ P\)-value \(=0.7746\)
TC5 - TC9: \(W=246.5 ; ~ P-\) value \(=1\)
TC6 - TC7: \(W=424.5 ; ~ P\)-value \(=0.3772\)
TC6 - TC9: \(W=282.5 ; ~ P-\) value \(=0.6899\)
TC7 - TC9: W = 185; P-value \(=0.6243\)

P-values reported are not adjusted for multiple comparisons. Adjusted significance level is \(0.05 / 55=0.00091\).

Europium, dissolved
Wilcox Tests between Transects:
\begin{tabular}{|l|}
\hline CAN1 - TC1: \(W=59 ; ~ P-\) value \(=0\) \\
\hline CAN1 - TC10: \(W=47.5 ; ~ P-\)-value \(=0.4042\) \\
\hline CAN1 - TC2: \(W=10 ; ~ P-\) value \(=0.0012\) \\
\hline CAN1 - TC3: \(W=44.5 ; ~ P\)-value \(=0\) \\
\hline CAN1 - TC4: \(W=106.5 ; ~ P\)-value \(=1 \mathrm{e}-04\) \\
\hline CAN1 - TC6: \(W=136.5 ; ~ P-\)-value \(=6 \mathrm{e}-04\) \\
\hline
\end{tabular}

CAN1 - TC9: W = 95; P-value = 0.0098
TC1 - TC10: \(W=117 ; ~ P-v a l u e=0.0165\)
TC1 - TC2: \(W=55 ; ~ P-v a l u e=0.6599\)
TC1 - TC3: \(W=404 ; ~ P-\) value \(=0.4389\)
TC1 - TC4: W = 365; P-value \(=0.9359\)
TC1 - TC6: W = 481; P-value \(=0.0571\)
TC1 - TC9: W = 252; P-value \(=0.1911\)
TC10 - TC2: W = 5; P-value = 0.117
TC10 - TC3: W = 29; P-value \(=0.0083\)
TC10 - TC4: W = 44; P-value \(=0.0424\)
TC10 - TC6: \(W=58 ; ~ P-v a l u e=0.1255\)
TC10 - TC9: \(W=36.5 ; ~ P-v a l u e ~=~ 0.2475 ~\)
TC2 - TC3: W = 58.5; P-value \(=0.9562\)
TC2 - TC4: \(W=55.5 ; ~ P-v a l u e=0.8259\)
TC2 - TC6: W = 74.5; P-value \(=0.5153\)
TC2 - TC9: W = 40; P-value \(=0.5931\)
TC3 - TC4: W = 438.5; P-value \(=0.8685\)
TC3 - TC6: W = 589; P-value \(=0.0684\)
TC3 - TC9: W = 316.5; P-value = 0.1654
TC4 - TC6: W = 566; P-value = 0.1316
TC4 - TC9: W = 298.5; P-value = 0.3171
TC6 - TC9: W = 268; P-value = 0.9264
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 28=0.00179\).

Wilcox Tests between Transects:
CAN1 - TC1: \(W=63.5\); P -value \(=1 \mathrm{e}-04\)
CAN1 - TC10: \(W=74 ; ~ P-v a l u e ~=~ 0.1445\)
CAN1 - TC2: \(W=8.5 ; ~ P-v a l u e=0.016\)
CAN1 - TC3: \(W=64 ; ~ P-\) value \(=0\).
CAN1 - TC6: \(W=162 ; ~ P-v a l u e ~=~ 0.0131\)
CAN1 - TC9: \(W=120.5 ; ~ P\)-value \(=0.2646\)
TC1 - TC10: \(W=136 ; ~ P-\) value \(=9 \mathrm{e}-04\)
TC1 - TC2: \(W\) = 57; P-value \(=0.5711\)
TC1 - TC3: \(W=359 ; ~ P-v a l u e=0.993\)
TC1 - TC4: W = 358; P-value \(=0.979\)
TC1 - TC6: W = 450; P-value \(=0.1848\)
TC1 - TC9: W = 277; P-value \(=0.0525\)
TC10 - TC2: W = 0; P-value \(=0.0087\)
TC10 - TC3: \(W=3.5 ; ~ P-\) value \(=2 \mathrm{e}-04\)
TC10 - TC4: W = 19; P-value = 0.0024
TC10 - TC6: \(W=33 ; P\)-value \(=0.0116\)
TC10 - TC9: \(W=25.5 ; ~ P-v a l u e ~=~ 0.0584\)
TC2 - TC3: W = 50; P-value \(=0.6037\)
TC2 - TC4: W = 53.5; P-value \(=0.7465\)
TC2 - TC6: W = 68; P-value \(=0.7731\)
TC2 - TC9: W = 47; P-value \(=0.2515\)
TC3 - TC4: \(W=458.5 ; ~ P-\) value \(=0.9049\)
TC3 - TC6: \(W=571 ; ~ P-\) value \(=0.1253\)
TC3 - TC9: \(W=355 ; ~ P-v a l u e=0.0258\)
TC4 - TC6: \(W=554 ; ~ P-v a l u e=0.198\)
TC4 - TC9: W = 333; P-value = 0.0825
TC6 - TC9: W = 298.5; P-value \(=0.448\)
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 28=0.00179\).

Wilcox Tests between Transects:
\begin{tabular}{|c|}
\hline CAN1 - CAN2: \(\mathrm{W}=48.5\); P-value \(=2 \mathrm{e}-04\) \\
\hline CAN1 - TC1: W = 92; P-value = 0.0012 \\
\hline CAN1 - TC10: \(\mathrm{W}=49 ; \mathrm{P}\)-value \(=0.7641\) \\
\hline CAN1 - TC2: W = 93.5; P-value \(=0.0019\) \\
\hline CAN1 - TC3: \(\mathrm{W}=132.5 ; ~ P\)-value \(=0.0035\) \\
\hline CAN1 - TC4: W = 178; P-value = 0.071 \\
\hline CAN1 - TC5: \(\mathrm{W}=142 ; \mathrm{P}\)-value \(=0.0066\) \\
\hline CAN1 - TC6: W = 109; P-value = 3e-04 \\
\hline CAN1 - TC7: \(\mathrm{W}=219 ; ~ \mathrm{P}\)-value \(=0.9493\) \\
\hline CAN1 - TC9: W = 84; P-value = 0.0224 \\
\hline CAN2 - TC1: W = 294; P-value \(=0.1092\) \\
\hline CAN2 - TC10: W = 110; P-value = 8e-04 \\
\hline CAN2 - TC2: \(\mathrm{W}=294 ; ~ P-v a l u e ~=~ 0.1092 ~\) \\
\hline CAN2 - TC3: \(\mathrm{W}=387\); P -value \(=0.0373\) \\
\hline CAN2 - TC4: \(\mathrm{W}=425.5 ; \mathrm{P}\)-value \(=0.0016\) \\
\hline CAN2 - TC5: \(W=396.5 ; ~ P\)-value \(=0.0227\) \\
\hline CAN2 - TC6: \(\mathrm{W}=376.5 ; \mathrm{P}\)-value \(=0.1033\) \\
\hline CAN2 - TC7: W = 403; P-value = 0 \\
\hline CAN2 - TC9: \(\mathrm{W}=232 ; ~ P-\) value \(=0.0265\) \\
\hline TC1 - TC10: W = 138; P-value = 7e-04 \\
\hline TC1 - TC2: W = 294; P-value = 0.9097 \\
\hline TC1 - TC3: W = 393; P-value \(=0.5745\) \\
\hline TC1 - TC4: W = 496; P-value = 0.0084 \\
\hline TC1 - TC5: W = 426; P-value \(=0.2542\) \\
\hline TC1 - TC6: W = 379; P-value = 0.9129 \\
\hline TC1 - TC7: W = 478.5; P-value = 1e-04 \\
\hline TC1 - TC9: W = 248.5; P-value = 0.2443 \\
\hline TC10 - TC2: W = 4; P-value = 5e-04 \\
\hline TC10 - TC3: \(\mathrm{W}=10 ; ~ P-\) value \(=7 \mathrm{e}-04\) \\
\hline TC10 - TC4: W = 33.5; P-value = 0.0203 \\
\hline TC10 - TC5: W = 18; P-value \(=0.0024\) \\
\hline TC10 - TC6: W = 1; P-value = 2e-04 \\
\hline TC10 - TC7: W = 61.5; P-value = 0.604 \\
\hline TC10 - TC9: \(W=7\); P-value \(=0.0023\) \\
\hline TC2 - TC3: W = 371; P-value \(=0.855\) \\
\hline TC2 - TC4: W = 496.5; P-value \(=0.0082\) \\
\hline TC2 - TC5: W = 415; P-value = 0.3428 \\
\hline TC2 - TC6: W = 347.5; P-value \(=0.6838\) \\
\hline TC2 - TC7: W = 473; P-value = 1e-04 \\
\hline TC2 - TC9: W = 247; P-value = 0.2607 \\
\hline TC3 - TC4: W = 603; P-value = 0.0111 \\
\hline TC3 - TC5: W = 506; P-value = 0.4119 \\
\hline TC3 - TC6: W = 448.5; P-value \(=0.8175\) \\
\hline TC3 - TC7: W = 577; P-value = 2e-04 \\
\hline TC3 - TC9: W = 299; P-value = 0.3355 \\
\hline TC4 - TC5: W = 334.5; P-value \(=0.1295\) \\
\hline TC4 - TC6: W = 242.5; P-value \(=0.0023\) \\
\hline TC4 - TC7: W = 459; P-value = 0.0483 \\
\hline TC4 - TC9: W = 189.5; P-value = 0.1985 \\
\hline TC5 - TC6: W = 372; P-value = 0.1834 \\
\hline TC5 - TC7: W = 538.5; P-value \(=0.0019\) \\
\hline TC5 - TC9: W = 261; P-value = 0.9041 \\
\hline TC6 - TC7: W = 610.5; P-value = 1e-04 \\
\hline TC6 - TC9: W = 315; P-value = 0.2747 \\
\hline TC7 - TC9: W = 99.5; P-value \(=0.0059\) \\
\hline
\end{tabular}

P-values reported are not adjusted for multiple comparisons. Adjusted significance level is 0.05 / 55 = 0.00091.
    Wilcox Tests between Transects:
    CAN1 - TC1: \(W=114 ; ~ P-\) value \(=0.0097\)
    CAN1 - TC10: \(W=73.5 ; ~ P-\) value \(=0.2021\)
    CAN1 - TC2: \(W=25 ; ~ P-v a l u e=0.3701\)
    CAN1 - TC3: W = 144.5; P-value = 0.0078
    CAN1 - TC4: W = 164.5; P-value = 0.0253
    CAN1 - TC6: \(W=183 ; ~ P-v a l u e=0.0475\)
    CAN1 - TC9: \(W=107 ; ~ P-v a l u e=0.1325\)
    TC1 - TC10: W = 144; P-value = 2e-04
    TC1 - TC2: \(W=62 ; ~ P-v a l u e ~=~ 0.3725 ~\)
    TC1 - TC3: \(W=290.5 ; ~ P-v a l u e=0.2289\)
    TC1 - TC4: \(W=331.5 ; ~ P-v a l u e=0.6255\)
    TC1 - TC6: W = 372.5; P-value = 1
    TC1 - TC9: \(W=259.5 ; ~ P\)-value \(=0.1446\)
    TC10 - TC2: W = 0; P-value \(=0.0128\)
    TC10 - TC3: W = 0; P-value = 1e-04
    TC10 - TC4: W = 5.5; P-value \(=4 \mathrm{e}-04\)
    TC10 - TC6: \(W=8.5 ; ~ P-\) value \(=5 \mathrm{e}-04\)
    TC10 - TC9: \(W=8.5 ; ~ P-v a l u e ~=~ 0.0031 ~\)
    TC2 - TC3: \(W=21.5 ; ~ P-v a l u e=0.0422\)
    TC2 - TC4: \(W=32.5 ; ~ P-v a l u e=0.1488\)
    TC2 - TC6: W = 43; P-value \(=0.3373\)
    TC2 - TC9: \(W=31.5 ; ~ P-v a l u e=0.8572\)
    TC3 - TC4: \(W=495 ; ~ P\)-value \(=0.5105\)
    TC3 - TC6: \(W=571 ; ~ P-\) value \(=0.128\)
    TC3 - TC9: \(W=352.5 ; ~ P-v a l u e=0.0316\)
    TC4 - TC6: W = 510.5; P-value = 0.5161
    TC4 - TC9: W = 314.5; P-value = 0.1911
    TC6 - TC9: W = 299.5; P-value \(=0.4439\)
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 28=0.00179\).

Lead, total
Wilcox Tests between Transects:
\begin{tabular}{|c|c|}
\hline CAN1 & - CAN2: W = 12; P-value = 0 \\
\hline CAN1 & - TC1: W = 24; P-value = 0 \\
\hline CAN1 & - TC10: W = 34; P-value = 0.1931 \\
\hline CAN1 & - TC2: W = 6; P-value = 0 \\
\hline CAN1 & - TC3: W = 86; P-value = 1e-04 \\
\hline CAN1 & - TC4: W = 210; P-value \(=0.205\) \\
\hline CAN1 & - TC5: W = 293; P-value \(=0.6317\) \\
\hline CAN1 & - TC6: W = 320; P-value \(=0.4009\) \\
\hline CAN1 & - TC7: W = 301; P-value \(=0.0317\) \\
\hline CAN1 & - TC9: W = 19; P-value = 0 \\
\hline CAN2 & - TC1: W = 289; P-value = 0.139 \\
\hline CAN2 & - TC10: W = 107.5; P-value \(=0.0015\) \\
\hline CAN2 & - TC2: W = 301; P-value \(=0.0762\) \\
\hline CAN2 & - TC3: W = 469.5; P-value \(=2 \mathrm{e}-04\) \\
\hline CAN2 & - TC4: W = 530.5; P-value = 0 \\
\hline CAN2 & - TC5: W = 528; P-value = 0 \\
\hline CAN2 & - TC6: W = 553.5; P-value = 0 \\
\hline CAN2 & - TC7: W = 448.5; P-value = 0 \\
\hline
\end{tabular}

CAN2 - TC9: \(W=228 ; ~ P-v a l u e ~=~ 0.0353\)
TC1 - TC10: \(W=133 ; ~ P-v a l u e=0.0017\)
TC1 - TC2: W = 311; P-value \(=0.6427\)
TC1 - TC3: \(W=538 ; ~ P-v a l u e=0.002\)
TC1 - TC4: \(W=647.5\); \(P\)-value \(=0\)
TC1 - TC5: W = 657.5; P-value = 0
TC1 - TC6: W = 686; P-value = 0
TC1 - TC7: W = 564; P-value = 0
TC1 - TC9: \(W=235 ; ~ P-v a l u e ~=~ 0.4195\)
TC10 - TC2: W = 12; P-value = 0.002
TC10 - TC3: W = 26; P-value = 0.007
TC10 - TC4: \(W=83.5 ; ~ P-v a l u e=0.7989\)
TC10 - TC5: \(W=121.5 ; ~ P-\) value \(=0.1881\)
TC10 - TC6: \(W=137.5 ; ~ P-\) value \(=0.0698\)
TC10 - TC7: \(W=116.5 ; ~ P-v a l u e=0.0225\)
TC10 - TC9: W = 14.5; P-value = 0.0117
\begin{tabular}{|c|c|}
\hline TC2 & - TC3: W = 571; P-value = 2e-04 \\
\hline TC2 & - TC4: W = 674; P-value \(=0\) \\
\hline TC2 & - TC5: W = 664; P-value = 0 \\
\hline TC2 & - TC6: W = 695; P-value = 0 \\
\hline TC2 & - TC7: W = 573; P-value = 0 \\
\hline TC2 & - TC9: W = 225; P-value \(=0.5875\) \\
\hline TC3 & - TC4: W = 747.5; P-value = 0 \\
\hline TC3 & - TC5: W = 766.5; P-value \(=0\) \\
\hline TC3 & - TC6: W = 804; P-value = 0 \\
\hline TC3 & - TC7: W = 687; P-value \(=0\) \\
\hline TC3 & - TC9: W = 158; P-value = 0.0326 \\
\hline TC4 & - TC5: W = 565.5; P-value \(=0.089\) \\
\hline TC4 & - TC6: W = 611.5; P-value \(=0.0352\) \\
\hline TC4 & - TC7: W = 552.5; P-value = 8e-04 \\
\hline TC4 & - TC9: W = 70.5; P-value = 0 \\
\hline
\end{tabular}

TC5 - TC6: W = 491; P-value \(=0.7129\)
TC5 - TC7: W = 450; P-value = 0.1191
TC5 - TC9: W = 63; P-value = 0
TC6 - TC7: W = 439.5; P-value = 0.2554
TC6 - TC9: W = 51; P-value = 0
TC7 - TC9: W = 13.5; P-value \(=0\)
P-values reported are not adjusted for multiple comparisons. Adjusted significance level is 0.05 / 55 = 0.00091.

Magnesium, dissolved
Wilcox Tests between Transects:
CAN1 - CAN2: \(W=132 ; ~ P-v a l u e=0.2417\)
CAN1 - TC1: \(W=70.5 ; ~ P-v a l u e ~=~ 2 e-04\)

CAN1 - TC10: \(W=81 ; ~ P-v a l u e ~=~ 0.0769\)
\begin{tabular}{|l|l|}
\hline CAN1 - TC2: & \(W=39 ; ~ P-\) value \(=0\) \\
\hline CAN1 - TC3: \(W=91.5 ; ~ P-v a l u e ~\) & \(=1 e-04\)
\end{tabular}
CAN1 - TC4: W = 193.5; P-value = 0.1054
CAN1 - TC5: W = 129; P-value \(=0.0028\)
CAN1 - TC6: \(W=116 ; ~ P-v a l u e=7 e-04\)
CAN1 - TC7: W = 86; P-value = 0.001
CAN1 - TC9: \(W=96 ; ~ P\)-value \(=0.0621\)
CAN2 - TC1: \(W=118 ; ~ P-v a l u e=0.0074\)
\begin{tabular}{|l|l|}
\hline CAN2 - TC10: \(W=111 ; ~ P-\)-value \(=7 e-04\) \\
\hline CAN2 - TC2: \(W=57 ; ~ P-\) value \(=0\) \\
\hline
\end{tabular}

CAN2 - TC3: \(W=129 ; ~ P-v a l u e ~=~ 0.0014 ~\)
CAN2 - TC4: W = 279; P-value = 0.9101
CAN2 - TC5: \(W=173.5 ; ~ P-\) value \(=0.0227\)
CAN2 - TC6: \(W=158 ; ~ P-\) value \(=0.0065\)
CAN2 - TC7: \(W=121 ; ~ P-v a l u e ~=~ 0.0092 ~\)
CAN2 - TC9: \(W=131 ; ~ P-v a l u e=0.3416\)
TC1 - TC10: \(W=144 ; ~ P-v a l u e=2 e-04\)
TC1 - TC2: W = 273.5; P-value = 0.7728
TC1 - TC3: W = 372; P-value \(=0.8413\)
TC1 - TC4: \(W=530 ; ~ P-v a l u e=0.0032\)
TC1 - TC5: \(W=401.5 ; ~ P-\) value \(=0.4753\)
TC1 - TC6: \(W=373.5 ; ~ P-v a l u e=0.9865\)
TC1 - TC7: W = 268.5; P-value \(=0.6951\)
TC1 - TC9: W = 268; P-value = 0.0928
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{TC10 - TC2: \(\mathrm{W}=0 ; \mathrm{P}\)-value \(=2 \mathrm{e}-04\)} \\
\hline TC10 & - & TC3: W = 0 & 0 & P-value & = & 1e-04 \\
\hline TC10 & - & TC4: W = 0 & 0 & P-value & = & 1e-04 \\
\hline TC10 & - & TC5: W = 0 & 0 & P-value & = & 1e-04 \\
\hline TC10 & - & TC6: W = 0 & 0 & P-value & = & 1e-04 \\
\hline TC10 & - & TC7: W = 0 & 0 & P-value & \(=\) & 2e-04 \\
\hline TC10 & & TC9: W = 0 & & P-value & & 4e-04 \\
\hline
\end{tabular}

TC2 - TC3: W = 402; P-value \(=0.4699\)
TC2 - TC4: W = 658; P-value = 0
TC2 - TC5: W = 444.5; P-value \(=0.1435\)
TC2 - TC6: \(W=443.5 ; ~ P-v a l u e=0.228\)
TC2 - TC7: W = 337.5; P-value \(=0.3121\)
TC2 - TC9: W = 311; P-value = 0.0048
TC3 - TC4: W = 698; P-value = 3e-04
TC3 - TC5: W = 491.5; P-value \(=0.5442\)
TC3 - TC6: W = 469.5; P-value \(=0.954\)
TC3 - TC7: W = 346.5; P-value \(=0.8209\)
TC3 - TC9: W = 339; P-value = 0.0644
TC4 - TC5: W = 301.5; P-value \(=0.0286\)
TC4 - TC6: \(W=264 ; ~ P-v a l u e=0.0038\)
TC4 - TC7: W = 192; P-value \(=0.0035\)
TC4 - TC9: W = 226; P-value = 0.5279
TC5 - TC6: W = 405.5; P-value = 0.3945
TC5 - TC7: W = 306.5; P-value \(=0.3559\)
TC5 - TC9: W = 304; P-value = 0.2827
TC6 - TC7: W = 385.5; P-value \(=0.8253\)
TC6 - TC9: \(W=336.5 ; ~ P-\) value \(=0.1179\)
TC7 - TC9: \(W=257.5 ; ~ P-v a l u e=0.1605\)

P-values reported are not adjusted for multiple comparisons. Adjusted significance level is 0.05 / 55 = 0.00091.

Magnesium, total
Wilcox Tests between Transects:
CAN1 - CAN2: \(W=114 ; ~ P-v a l u e=0.0859\)
\begin{tabular}{|l|l|}
\hline CAN1 - TC1: \(W=67.5 ; ~ P-v a l u e ~\) & \(=2 \mathrm{e}-04\) \\
\hline CAN1 - TC10: \(W=108 ; ~ P-\) value \(=4 \mathrm{e}-04\) \\
\hline CAN1 - TC2: \(\mathrm{W}=27.5 ; ~ P-\) value \(=0\) \\
\hline CAN1 - TC3: \(\mathrm{W}=80.5 ; ~ P-\) value \(=1 \mathrm{e}-04\) \\
\hline
\end{tabular}

CAN1 - TC4: \(W=197 ; ~ P-v a l u e ~=~ 0.1224\)
CAN1 - TC5: W = 135; P-value \(=0.0042\)
\begin{tabular}{|l|l|}
\hline CAN1 - TC6: \(W=113 ; ~ P-\)-value \(=6 \mathrm{e}-04\) \\
\hline CAN1 - TC7: \(W=85.5 ; ~ P-\) value \(=9 \mathrm{e}-04\) \\
\hline
\end{tabular}
CAN1 - TC9: W = 86; P-value = 0.0281
CAN2 - TC1: \(W=126.5\); P-value \(=0.0135\)
\begin{tabular}{|l|l|}
\hline CAN2 - TC10: \(W=114 ; ~ P-\)-value \(=3 \mathrm{e}-04\) \\
\hline CAN2 - TC2: \(W=74.5 ; ~ P\)-value \(=2 \mathrm{e}-04\) \\
\hline
\end{tabular}

CAN2 - TC3: \(W=141.5 ; ~ P-v a l u e ~=~ 0.0033\)
CAN2 - TC4: W = 327; P-value = 0.3942
CAN2 - TC5: \(\mathrm{W}=229.5 ; \mathrm{P}\)-value \(=0.259\)
CAN2 - TC6: \(W=191 ; ~ P-v a l u e=0.0395\)
CAN2 - TC7: W = 163; P-value \(=0.1146\)
CAN2 - TC9: \(W=142 ; ~ P-v a l u e=0.5471\)
TC1 - TC10: \(W=144 ; ~ P-v a l u e=2 e-04\)
TC1 - TC2: W = 242.5; P-value = 0.3531
TC1 - TC3: \(W=357.5 ; ~ P-v a l u e=0.9722\)
TC1 - TC4: \(W=550 ; ~ P-v a l u e=0.001\)
TC1 - TC5: \(\mathrm{W}=403.5 ; \mathrm{P}\)-value \(=0.454\)
TC1 - TC6: \(W=378 ; ~ P-\) value \(=0.9256\)
TC1 - TC7: W = 276; P-value \(=0.8125\)
TC1 - TC9: W = 265; P-value = 0.1092
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{TC10 - TC2: W = 0; P-value = 2e-04} \\
\hline TC10 & - & TC3: W = 5 & ; P-value & = & 3e-04 \\
\hline TC10 & - & TC4: W = 0 & ; P-value & = & \(1 \mathrm{e}-04\) \\
\hline TC10 & - & TC5: W = 0 & ; P-value & = & 1e-04 \\
\hline TC10 & - & TC6: W = 0 & ; P-value & \(=\) & 1e-04 \\
\hline TC10 & - & TC7: W = 0 & ; P-value & = & 2e-04 \\
\hline TC10 & & TC9: W = 0 & ; P-value & & \(4 \mathrm{e}-04\) \\
\hline
\end{tabular}

TC2 - TC3: W = 417; P-value = 0.3251
TC2 - TC4: W = 659; P-value = 0
TC2 - TC5: W = 477; P-value = 0.0425
TC2 - TC6: \(W=445.5 ; ~ P\)-value \(=0.2153\)
TC2 - TC7: W = 347; P-value \(=0.2276\)
TC2 - TC9: W = 298; P-value = 0.0133
TC3 - TC4: W = 726; P-value = 0
TC3 - TC5: W = 526; P-value = 0.2642
TC3 - TC6: W = 488.5; P-value = 0.74
TC3 - TC7: W = 371.5; P-value \(=0.8481\)
TC3 - TC9: W = 338.5; P-value \(=0.066\)
TC4 - TC5: \(W=341.5 ; ~ P-\) value \(=0.1103\)
TC4 - TC6: W = 260; P-value = 0.0032
TC4 - TC7: W = 220.5; P-value \(=0.0155\)
TC4 - TC9: W = 195.5; P-value = 0.1913
TC5 - TC6: W = 384; P-value = 0.2455
TC5 - TC7: W = 289; P-value \(=0.2195\)
TC5 - TC9: W = 285; P-value \(=0.5136\)
TC6 - TC7: W = 399.5; P-value \(=0.6467\)
TC6 - TC9: \(W=323 ; ~ P-\) value \(=0.2034\)
TC7 - TC9: \(W=243 ;\) P-value \(=0.3082\)

P-values reported are not adjusted for multiple comparisons. Adjusted significance level is \(0.05 / 55=0.00091\).

Wilcox Tests between Transects:


P-values reported are not adjusted for multiple comparisons. Adjusted significance level is 0.05 / 55 = 0.00091.

Molybdenum, dissolved
Wilcox Tests between Transects:
CAN1 - CAN2: \(\mathrm{W}=101.5 ; \mathrm{P}\)-value \(=0.036\)
CAN1 - TC1: \(\mathrm{W}=248.5 ; \mathrm{P}\)-value \(=0.416\)
CAN1 - TC10: \(W=11 ; ~ P-v a l u e=0.0046\)
CAN1 - TC2: \(W=262.5 ; ~ P-v a l u e=0.2421\)
CAN1 - TC3: \(W=348.5 ; ~ P-v a l u e=0.0966\)
CAN1 - TC4: W = 329.5; P-value = 0.2088
CAN1 - TC5: \(W=254.5 ; ~ P-v a l u e=0.7493\)
CAN1 - TC6: \(W=310 ; ~ P-v a l u e=0.527\)
CAN1 - TC7: \(W=183.5 ; ~ P-v a l u e=0.4159\)
CAN1 - TC9: \(W=137 ; ~ P-v a l u e=0.6089\)
CAN2 - TC1: \(W=329.5 ; ~ P-v a l u e=0.0135\)
CAN2 - TC10: W = 33; P-value = 0.1348
CAN2 - TC2: \(W=356.5 ; ~ P-v a l u e ~=~ 0.0017\)
CAN2 - TC3: \(W=440 ; ~ P-v a l u e=0.0015\)
CAN2 - TC4: W = 448; P-value = 9e-04
CAN2 - TC5: \(W=375 ; ~ P-v a l u e ~=~ 0.0662 ~\)
CAN2 - TC6: \(W=409 ; ~ P-v a l u e ~=~ 0.0227\)
CAN2 - TC7: \(\mathrm{W}=274 ;\) P-value \(=0.2657\)
CAN2 - TC9: \(W=208.5 ; ~ P-v a l u e=0.1406\)
TC1 - TC10: \(W=20 ; ~ P-v a l u e ~=~ 0.0076\)
TC1 - TC2: W = 319; P-value \(=0.5293\)
TC1 - TC3: W = 419.5; P-value \(=0.3043\)
TC1 - TC4: \(W=385 ; ~ P-v a l u e=0.6697\)
TC1 - TC5: \(W=295 ; ~ P-\) value \(=0.2614\)
TC1 - TC6: \(W=384 ; ~ P-v a l u e=0.8453\)
TC1 - TC7: W = 206; P-value \(=0.0928\)
TC1 - TC9: W = 176.5; P-value = 0.4749
TC10 - TC2: W = 142; P-value = 3e-04
TC10 - TC3: W = 165; P-value \(=0.0016\)
TC10 - TC4: W = 174; P-value = 4e-04
TC10 - TC5: \(W=159 ; ~ P-v a l u e ~=~ 0.0036\)
TC10 - TC6: \(W=156 ;\) P-value \(=0.01\)
TC10 - TC7: W = 108; P-value \(=0.0656\)
TC10 - TC9: W = 88; P-value = 0.0106
TC2 - TC3: W = 363.5; P-value \(=0.9583\)
TC2 - TC4: W = 359; P-value = 0.9931
TC2 - TC5: W = 256; P-value \(=0.0715\)
TC2 - TC6: W = 329; P-value \(=0.4707\)
TC2 - TC7: W = 184; P-value \(=0.0328\)
TC2 - TC9: W = 133; P-value \(=0.062\)
TC3 - TC4: W = 417; P-value = 0.6308
TC3 - TC5: W = 300.5; P-value \(=0.0276\)
TC3 - TC6: W = 400.5; P-value \(=0.3558\)
TC3 - TC7: W = 220; P-value \(=0.0152\)
TC3 - TC9: W = 177.5; P-value = 0.0882
TC4 - TC5: W = 318; P-value \(=0.0518\)
TC4 - TC6: \(W=429.5 ; ~ P-v a l u e ~=~ 0.6136\)
TC4 - TC7: W = 236; P-value = 0.0315
TC4 - TC9: W = 172.5; P-value \(=0.0694\)
TC5 - TC6: W = 542.5; P-value \(=0.2666\)
TC5 - TC7: W = 312; P-value \(=0.4082\)
TC5 - TC9: \(W=241.5 ; ~ P-v a l u e=0.7734\)
TC6 - TC7: \(W=284 ; ~ P-v a l u e=0.1375\)
TC6 - TC9: \(W=235.5 ; ~ P-\) value \(=0.5533\)
TC7 - TC9: W = 228; P-value \(=0.534\)

P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 55=0.00091\).
Wilcox Tests between Transects:
    CAN1 - CAN2: \(W=134 ; ~ P\)-value \(=0.2673\)
    CAN1 - TC1: \(W=246 ; ~ P-v a l u e=0.4533\)
    CAN1 - TC10: \(W=55 ; ~ P-v a l u e=0.9734\)
    CAN1 - TC2: \(W=302.5 ; ~ P-v a l u e ~=~ 0.0288 ~\)
    CAN1 - TC3: W = 364; P-value = 0.0464
    CAN1 - TC4: W = 425.5; P-value = 0.001
    CAN1 - TC5: W = 292; P-value = 0.647
    CAN1 - TC6: W = 336; P-value = 0.2412
    CAN1 - TC7: \(\mathrm{W}=266.5 ; \mathrm{P}\)-value \(=0.2037\)
    CAN1 - TC9: \(W=207.5 ; ~ P-v a l u e=0.0746\)
    CAN2 - TC1: \(\mathrm{W}=287.5 ; \mathrm{P}\)-value \(=0.149\)
    CAN2 - TC10: \(W=76.5 ; ~ P-v a l u e=0.2266\)
    CAN2 - TC2: W = 352; P-value \(=0.0025\)
    CAN2 - TC3: W = 406.5; P-value = 0.013
    CAN2 - TC4: W = 467; P-value = 2e-04
    CAN2 - TC5: \(W=384.5 ; ~ P-\) value \(=0.0422\)
    CAN2 - TC6: \(W=397 ; ~ P-\) value \(=0.0415\)
    CAN2 - TC7: \(W=305 ; ~ P-v a l u e=0.0613\)
    CAN2 - TC9: \(W=247.5 ; ~ P-v a l u e=0.0067\)
    TC1 - TC10: \(W=64 ; ~ P-v a l u e=0.7047\)
    TC1 - TC2: W = 354.5; P-value = 0.1735
    TC1 - TC3: \(W=427 ; ~ P-v a l u e=0.247\)
    TC1 - TC4: W = 510.5; P-value = 0.009
    TC1 - TC5: \(\mathrm{W}=338.5 ; \mathrm{P}\)-value \(=0.7147\)
    TC1 - TC6: \(W=396 ; ~ P-v a l u e=0.69\)
    TC1 - TC7: W = 316.5; P-value = 0.5637
    TC1 - TC9: W = 235; P-value = 0.4195
    TC10 - TC2: W = 101; P-value \(=0.1395\)
    TC10 - TC3: W = 125; P-value = 0.143
    TC10 - TC4: \(W=144 ; ~ P-v a l u e=0.0231\)
    TC10 - TC5: \(W=94 ;\) P-value \(=0.8819\)
    TC10 - TC6: \(W=101 ; ~ P-\) value \(=0.7572\)
    TC10 - TC7: \(W=74 ; ~ P-v a l u e ~=~ 0.9397 ~\)
    TC10 - TC9: W = 69; P-value = 0.2204
    TC2 - TC3: W = 340.5; P-value \(=0.7408\)
    TC2 - TC4: W = 425.5; P-value \(=0.2578\)
    TC2 - TC5: W = 225; P-value \(=0.0192\)
    TC2 - TC6: \(W=298 ; ~ P-v a l u e=0.2122\)
    TC2 - TC7: \(W=237 ; ~ P-v a l u e=0.2977\)
    TC2 - TC9: W = 176; P-value \(=0.4667\)
    TC3 - TC4: W = 558; P-value \(=0.112\)
    TC3 - TC5: W = 305.5; P-value \(=0.0332\)
    TC3 - TC6: W = 390; P-value \(=0.2824\)
    TC3 - TC7: W = 324; P-value \(=0.5366\)
    TC3 - TC9: \(W=225 ; ~ P-v a l u e=0.5136\)
    TC4 - TC5: W = 205.5; P-value = 3e-04
    TC4 - TC6: W = 266; P-value = 0.0042
    TC4 - TC7: W = 228.5; P-value \(=0.0226\)
    TC4 - TC9: W = 160.5; P-value = 0.0374
    TC5 - TC6: W = 506; P-value \(=0.559\)
    TC5 - TC7: W = 395.5; P-value \(=0.5423\)
    TC5 - TC9: W = 330.5; P-value \(=0.0967\)
    TC6 - TC7: \(W=389.5 ; ~ P-v a l u e=0.7729\)
    TC6 - TC9: \(W=296.5 ; ~ P-\) value \(=0.4834\)
    TC7 - TC9: \(W=217.5 ; ~ P-v a l u e=0.7308\)

P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is 0.05 / 55 = 0.00091.
dissolved
Wilcox Tests between Transects:
        CAN1 - CAN2: \(W=65.5 ; ~ P-v a l u e=0.0023\)
        CAN1 - TC1: \(W=268 ; ~ P-\) value \(=0.19\)
        CAN1 - TC10: \(W=71.5 ; ~ P-v a l u e=0.2561\)

        CAN1 - TC9: \(W=181 ; ~ P-v a l u e ~=~ 0.3633\)
        CAN2 - TC1: \(W=364 ; ~ P-v a l u e=2 e-04\)
        CAN2 - TC10: \(W=91.5 ; ~ P-v a l u e ~=~ 0.0135\)
    CAN2 - TC2: \(W=365.5\); P -value \(=2 \mathrm{e}-04\)
        CAN2 - TC3: W = 515.5; P-value = 0
        CAN2 - TC4: \(W=492 ; ~ P-v a l u e ~=~ 0 ~\)
        CAN2 - TC5: W = 474; P-value = 0
        CAN2 - TC6: W = 508.5; P-value = 0
        CAN2 - TC7: W = 391; P-value = 0
        CAN2 - TC9: \(W=253 ; ~ P-v a l u e ~=~ 0.001 ~\)
        TC1 - TC10: \(\mathrm{W}=66.5 ; ~ P-v a l u e=0.7952\)
        TC1 - TC2: W = 302; P-value = 0.7806
        TC1 - TC3: W = 541; P-value \(=0.0017\)
        TC1 - TC4: \(W=461 ; ~ P-v a l u e ~=~ 0.08 ~\)
        TC1 - TC5: \(\mathrm{W}=434 ; \mathrm{P}\)-value \(=0.126\)
        TC1 - TC6: \(W=462.5 ; ~ P-v a l u e ~=~ 0.1264 ~\)
        TC1 - TC7: W = 380; P-value = 0.059
        TC1 - TC9: W = 185.5; P-value = 0.6333
    TC10 - TC2: W = 78.5; P-value \(=0.7556\)
    TC10 - TC3: W = 151; P-value = 0.0101
    TC10 - TC4: W = 131; P-value = 0.0851
    TC10 - TC5: \(W=131 ; ~ P-\) value \(=0.0565\)
    TC10 - TC6: \(W=138.5 ; ~ P-v a l u e=0.0635\)
    TC10 - TC7: W = 119; P-value \(=0.0158\)
    TC10 - TC9: W = 46; P-value = 0.7516
    TC2 - TC3: W = 522.5; P-value \(=0.0048\)
    TC2 - TC4: W = 430.5; P-value = 0.2227
    TC2 - TC5: W = 403; P-value = 0.3297
    TC2 - TC6: W = 410; P-value \(=0.5242\)
    TC2 - TC7: \(W=321.5 ; ~ P-\) value \(=0.4958\)
    TC2 - TC9: W = 172; P-value = 0.4042
    TC3 - TC4: W = 305; P-value = 0.0325
    TC3 - TC5: W = 262.5; P-value \(=0.0091\)
    TC3 - TC6: W = 271; P-value = 0.0052
    TC3 - TC7: W = 169; P-value \(=9 \mathrm{e}-04\)
    TC3 - TC9: W = 74; P-value = 1e-04
    TC4 - TC5: W = 413; P-value \(=0.7443\)
    TC4 - TC6: \(W=425.5 ; ~ P-v a l u e ~=~ 0.5732\)
    TC4 - TC7: W = 295.5; P-value \(=0.2649\)
    TC4 - TC9: W = 129.5; P-value = 0.0056
    TC5 - TC6: W = 449; P-value = 1
    TC5 - TC7: W = 357.5; P-value = 0.8721
    TC5 - TC9: W = 131; P-value \(=0.0087\)
    TC6 - TC7: W = 366; P-value \(=0.9256\)
    TC6 - TC9: \(W=138.5 ;\)-value \(=0.0072\)
    TC7 - TC9: W = 97; P-value \(=0.0048\)

P-values reported are not adjusted for multiple comparisons. Adjusted significance level is 0.05 / 55 = 0.00091.

Nickel, total
Wilcox Tests between Transects:


P-values reported are not adjusted for multiple comparisons. Adjusted significance level is 0.05 / 55 = 0.00091.

Wilcox Tests between Transects:
CAN1 - CAN2: \(\mathrm{W}=118.5 ; \mathrm{P}\)-value \(=0.114\)
CAN1 - TC1: \(W=159 ; ~ P-\) value \(=0.1509\)
CAN1 - TC10: \(W=57 ; ~ P-v a l u e=0.8675\)
CAN1 - TC2: W = 91; P-value \(=0.0016\)
\begin{tabular}{|l|l|}
\hline CAN1 - TC3: \(W=51 ; ~ P-\) value \(=0\) \\
\hline CAN1 - TC4: \(W=43.5 ; ~ P-\) value \(=0\) \\
\hline CAN1 - TC5: \(W=34 ; ~ P-\) value \(=0\) \\
\hline CAN1 - TC6: \(W=45.5 ; ~ P\)-value \(=0\) \\
\hline CAN1 - TC7: \(W=26.5 ; ~ P\)-value \(=0\) \\
\hline
\end{tabular}

CAN1 - TC9: W = 56.5; P-value = 0.0015
CAN2 - TC1: \(W=219 ; ~ P-v a l u e=0.8353\)
CAN2 - TC10: W = 81.5; P-value = 0.1267
CAN2 - TC2: W = 129; P-value = 0.016
\begin{tabular}{|l|l|}
\hline CAN2 - TC3: \(W=92.5 ; ~ P-\)-value \(=1 \mathrm{e}-04\) \\
\hline CAN2 - TC4: \(W=99.5 ; ~ P\)-value \(=1 \mathrm{e}-04\) \\
\hline CAN2 - TC5: \(W=71.5 ; ~ P\)-value \(=0\) \\
\hline CAN2 - TC6: \(W=83.5 ; ~ P\)-value \(=0\) \\
\hline CAN2 - TC7: \(W=60 ; ~ P-\) value \(=0\) \\
\hline
\end{tabular}

CAN2 - TC9: \(W=91 ; ~ P-v a l u e ~=~ 0.0265 ~\)
TC1 - TC10: \(\mathrm{W}=91.5 ; ~ P-v a l u e=0.3245\)
TC1 - TC2: W = 152; P-value = 0.0052
TC1 - TC3: W = 171; P-value \(=0.001\)
TC1 - TC4: W = 202; P-value \(=0.0061\)
\begin{tabular}{|l|}
\hline TC1 - TC5: \\
\hline TC1 - TC6: \\
W
\end{tabular}

TC1 - TC7: W = 88.5; P-value = 0
TC1 - TC9: W = 133.5; P-value = 0.0639
TC10 - TC2: W = 33.5; P-value \(=0.0488\)
TC10 - TC3: W = 13; P-value \(=0.0012\)
TC10 - TC4: W = 7; P-value = 5e-04
TC10 - TC5: W = 6; P-value \(=4 \mathrm{e}-04\)
TC10 - TC6: \(W=10 ; ~ P-v a l u e=7 e-04\)
TC10 - TC7: W = 5; P-value = 6e-04
TC10 - TC9: W = 17.5; P-value = 0.0208
TC2 - TC3: W = 406; P-value \(=0.4283\)
TC2 - TC4: W = 437; P-value \(=0.1829\)
TC2 - TC5: W = 249; P-value \(=0.0544\)
TC2 - TC6: \(W=255.5 ; ~ P-v a l u e=0.049\)
TC2 - TC7: W = 193.5; P-value \(=0.0525\)
TC2 - TC9: \(W=232 ; ~ P-v a l u e ~=~ 0.4667 ~\)
TC3 - TC4: W = 530; P-value \(=0.2397\)
TC3 - TC5: W = 290; P-value = 0.0184
TC3 - TC6: W = 328.5; P-value = 0.0497
TC3 - TC7: W = 226.5; P-value \(=0.0206\)
TC3 - TC9: W = 288.5; P-value \(=0.465\)
TC4 - TC5: \(W=258 ; ~ P-\) value \(=0.0046\)
TC4 - TC6: W = 299; P-value = 0.0169
TC4 - TC7: W = 204; P-value \(=0.0068\)
TC4 - TC9: W = 260.5; P-value = 0.9118
TC5 - TC6: W = 424.5; P-value \(=0.5639\)
TC5 - TC7: W = 369.5; P-value \(=0.8755\)
TC5 - TC9: W = 358; P-value = 0.0232
TC6 - TC7: W = 419.5; P-value \(=0.425\)
TC6 - TC9: W = 366; P-value \(=0.0279\)
TC7 - TC9: W = 284.5; P-value \(=0.0342\)

P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is 0.05 / 55 = 0.00091.

Wilcox Tests between Transects:
CAN1 - CAN2: \(\mathrm{W}=88.5\); P -value \(=0.0127\)
CAN1 - TC1: \(W=92 ;\)-value \(=0.0017\)
\begin{tabular}{|l|l|}
\hline CAN1 - TC10: \(W=102 ; ~ P-\)-value \(=4 \mathrm{e}-04\) \\
\hline CAN1 - TC2: \(\mathrm{W}=46.5 ; \mathrm{P}\)-value \(=0\) \\
\hline CAN1 - TC3: \(\mathrm{W}=29.5 ; \mathrm{P}\)-value \(=0\) \\
\hline CAN1 - TC4: \(\mathrm{W}=89 ; \mathrm{P}\)-value \(=1 \mathrm{e}-04\) \\
\hline CAN1 - TC5: \(\mathrm{W}=180.5 ; \mathrm{P}\)-value \(=0.058\) \\
\hline CAN1 - TC6: \(\mathrm{W}=66.5 ; \mathrm{P}\)-value \(=0\) \\
\hline CAN1 - TC7: \(\mathrm{W}=33.5 ; \mathrm{P}\)-value \(=0\) \\
\hline CAN1 - TC9: \(\mathrm{W}=49 ; \mathrm{P}\)-value \(=6 \mathrm{e}-04\) \\
\hline
\end{tabular}

CAN2 - TC1: W = 185.5; P-value = 0.3043
CAN2 - TC10: W = 109; P-value = 0.001
CAN2 - TC2: \(W=113 ; ~ P-v a l u e=0.0051\)
CAN2 - TC3: W = 102; P-value = 2e-04
CAN2 - TC4: W = 212.5; P-value = 0.1395
CAN2 - TC5: \(W=213.5 ; ~ P-\) value \(=0.1451\)
CAN2 - TC6: W = 125; P-value = 7e-04
CAN2 - TC7: W = 89; P-value = 7e-04
CAN2 - TC9: W = 119.5; P-value = 0.1883
TC1 - TC10: \(W=144 ; ~ P-v a l u e=0\)
TC1 - TC2: W = 173; P-value = 0.0182
TC1 - TC3: W = 172.5; P-value \(=0.0011\)
TC1 - TC4: W = 332; P-value = 0.6321
TC1 - TC5: \(W=300.5 ; ~ P-\) value \(=0.3044\)
TC1 - TC6: \(W=198.5 ; ~ P-v a l u e=0.0033\)
TC1 - TC7: W = 137.5; P-value \(=0.002\)
TC1 - TC9: W = 176; P-value = 0.4667


TC2 - TC3: W = 361.5; P-value \(=0.9861\)
TC2 - TC4: W = 486.5; P-value \(=0.0283\)
TC2 - TC5: W = 384; P-value \(=0.6825\)
TC2 - TC6: \(W=290.5 ; ~ P-\) value \(=0.1692\)
TC2 - TC7: W = 222.5; P-value \(=0.1801\)
TC2 - TC9: \(W=258 ; ~ P-\) value \(=0.1568\)
TC3 - TC4: W = 660; P-value \(=0.0019\)
TC3 - TC5: W = 444; P-value = 0.9352
TC3 - TC6: W = 378.5; P-value \(=0.2147\)
TC3 - TC7: W = 248.5; P-value \(=0.0533\)
TC3 - TC9: \(W=340.5 ; ~ P-v a l u e=0.0598\)
TC4 - TC5: W = 398; P-value \(=0.4464\)
TC4 - TC6: \(W=255.5 ; ~ P-v a l u e=0.0026\)
TC4 - TC7: W = 200; P-value = 0.0055
TC4 - TC9: \(W=245.5 ; ~ P-v a l u e=0.842\)
TC5 - TC6: W = 329.5; P-value \(=0.0515\)
TC5 - TC7: W = 269; P-value \(=0.1151\)
TC5 - TC9: \(W=277.5 ; ~ P-\) value \(=0.6262\)
TC6 - TC7: \(W=388.5 ; ~ P-v a l u e=0.786\)
TC6 - TC9: \(W=362 ; ~ P-\) value \(=0.0346\)
TC7 - TC9: W = 296; P-value \(=0.0154\)

P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 55=0.00091\).

Rubidium, dissolved
Wilcox Tests between Transects:
CAN1 - TC1: \(W=299 ; ~ P-v a l u e=0.0358\)
CAN1 - TC10: \(W=14.5 ; ~ P-\) value \(=0.0086\)
CAN1 - TC2: \(\mathrm{W}=48.5 ; \mathrm{P}\)-value \(=0.3047\)
CAN1 - TC3: W = 427; P-value \(=9 \mathrm{e}-04\)
CAN1 - TC4: \(W=425 ; ~ P-v a l u e ~=~ 0.001 ~\)
CAN1 - TC6: \(W=393.5 ; ~ P-v a l u e ~=~ 0.0179\)
CAN1 - TC9: \(W=184.5 ; ~ P-v a l u e ~=~ 0.305\)
TC1 - TC10: W = 22.5; P-value = 0.0109
TC1 - TC2: \(W=43 ; ~ P-v a l u e=0.7675\)
TC1 - TC3: \(W=425 ; ~ P\)-value \(=0.2615\)
TC1 - TC4: W = 394; P-value \(=0.5597\)
TC1 - TC6: \(W=314.5 ; ~ P\)-value \(=0.3331\)
TC1 - TC9: W = 180.5; P-value \(=0.5424\)
TC10 - TC2: W = 24; P-value \(=0.0131\)
TC10 - TC3: W = 180; P-value \(=1 \mathrm{e}-04\)
TC10 - TC4: W = 180; P-value = 1e-04
TC10 - TC6: \(W=178 ; ~ P\)-value \(=5 \mathrm{e}-04\)
TC10 - TC9: W = 80.5; P-value = 0.0416
TC2 - TC3: W = 76; P-value \(=0.4073\)
TC2 - TC4: W = 74.5; P-value \(=0.4542\)
TC2 - TC6: \(W=44.5 ; ~ P-v a l u e ~=~ 0.3778 ~\)
TC2 - TC9: W = 28; P-value \(=0.6221\)
TC3 - TC4: W = 405; P-value \(=0.5106\)
\begin{tabular}{|c} 
TC3 - TC6: \(W=204 ; ~ P-v a l u e ~\)
\end{tabular}\(=2 \mathrm{e}-04\)
TC4 - TC6: W = 223.5; P-value = 5e-04
TC4 - TC9: W = 180.5; P-value = 0.1013
TC6 - TC9: W = 261.5; P-value \(=0.9742\)
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 28=0.00179\).

Rubidium, total
Wilcox Tests between Transects:
CAN1 - TC1: \(\mathrm{W}=294 ; \mathrm{P}\)-value \(=0.0486\)
CAN1 - TC10: W = 0; P-value = 3e-04
CAN1 - TC3: \(W=433.5\); P -value \(=5 \mathrm{e}-04\)
CAN1 - TC4: W = 390; P-value \(=0.0109\)
CAN1 - TC6: \(W=332 ; ~ P-v a l u e ~=~ 0.2755\)
CAN1 - TC9: \(W=172.5 ; ~ P-v a l u e=0.5294\)
TC1 - TC10: \(W=15 ; ~ P-\) value \(=0.0032\)
TC1 - TC2: \(W=45 ; ~ P-\) value \(=0.8695\)
TC1 - TC3: \(W=434.5 ; ~ P-\) value \(=0.1976\)
TC1 - TC4: \(W=402.5 ; ~ P\)-value \(=0.4646\)
TC1 - TC6: W = 290; P-value \(=0.1663\)
TC1 - TC9: W = 193; P-value \(=0.781\)
TC10 - TC2: W = 24; P-value \(=0.012\)
TC10 - TC3: W = 180; P-value = 1e-04
TC10 - TC4: W = 168; P-value = 0.001
TC10 - TC6: \(W=159 ; ~ P-v a l u e ~=~ 0.0068 ~\)
TC10 - TC9: W = 102; P-value \(=4 \mathrm{e}-04\)
TC2 - TC3: W = 68; P-value = 0.6885
TC2 - TC4: W = 63.5; P-value \(=0.8726\)
TC2 - TC6: W = 37; P-value \(=0.2035\)
TC2 - TC9: W = 26.5; P-value \(=0.5292\)
TC3 - TC4: \(W=411.5 ; ~ P-\) value \(=0.5742\)
TC3 - TC6: W = 191.5; P-value = 1e-04
TC3 - TC9: W = 171; P-value = 0.0644
TC4 - TC6: W = 257.5; P-value \(=0.0028\)
TC4 - TC9: W = 195.5; P-value = 0.1912
TC6 - TC9: \(W=301 ; ~ P-\) value \(=0.4246\)
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 28=0.00179\).

Scandium, dissolved
Wilcox Tests between Transects:
CAN1 - TC1: \(W=145 ; ~ P-v a l u e=0.0731\)
CAN1 - TC10: \(W=108 ; ~ P-\) value \(=4 \mathrm{e}-04\)
CAN1 - TC2: W = 48; P-value = 0.342
CAN1 - TC3: \(W=180 ;\) P-value \(=0.0566\)
CAN1 - TC4: W = 184; P-value = 0.0686
CAN1 - TC6: \(\mathrm{W}=257.5 ; \mathrm{P}\)-value \(=0.6632\)
CAN1 - TC9: \(W=140 ; ~ P-v a l u e=0.6799\)
TC1 - TC10: W = 144; P-value = 2e-04
TC1 - TC2: \(W=81.5 ; ~ P-v a l u e ~=~ 0.0302\)
TC1 - TC3: \(W=276 ; ~ P-\) value \(=0.146\)
TC1 - TC4: W = 322.5; P-value \(=0.5195\)
TC1 - TC6: W = 396.5; P-value = 0.6838
TC1 - TC9: W = 235.5; P-value \(=0.4119\)
TC10 - TC2: W = 0; P-value \(=0.0139\)
TC10 - TC3: W = 0; P-value = 1e-04
TC10 - TC4: W = 0; P-value = 1e-04
TC10 - TC6: \(W=0 ; ~ P-v a l u e=1 e-04\)
TC10 - TC9: W = 12; P-value = 0.007
TC2 - TC3: W = 1; P-value \(=0.0018\)
TC2 - TC4: W = 1; P-value = 0.0018
TC2 - TC6: \(W=2 ; ~ P-v a l u e ~=~ 2 e-04 ~\)
TC2 - TC9: W = 19; P-value = 0.1936
TC3 - TC4: \(W=527.5 ; ~ P\)-value \(=0.2549\)
TC3 - TC6: \(W=612.5 ; ~ P-v a l u e=0.0339\)
TC3 - TC9: \(W=321 ; ~ P-v a l u e=0.1469\)
TC4 - TC6: W = 520; P-value \(=0.4317\)
TC4 - TC9: W = 295; P-value = 0.3817
TC6 - TC9: W = 263; P-value = 1
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 28=0.00179\).
        Wilcox Tests between Transects:
    CAN1 - TC1: W = 149; P-value = 0.0909
    CAN1 - TC10: \(W=108 ; ~ P-\) value \(=4 \mathrm{e}-04\)
        CAN1 - TC2: \(W=48 ; ~ P-v a l u e ~=~ 0.3273 ~\)
        CAN1 - TC3: \(W=182 ;\) P-value \(=0.0624\)
        CAN1 - TC4: \(W=182 ;\) P-value \(=0.0624\)
        CAN1 - TC6: \(W=245 ; ~ P-v a l u e ~=~ 0.4872\)
        CAN1 - TC9: W = 146.5; P-value = 0.843
    TC1 - TC10: W = 144; P-value = 2e-04
        TC1 - TC2: W = 88; P-value = 0.0095
        TC1 - TC3: \(W=292 ; ~ P-v a l u e=0.2399\)
        TC1 - TC4: \(W=353 ;\)-value \(=0.9099\)
        TC1 - TC6: W = 413; P-value \(=0.4918\)
        TC1 - TC9: W = 234.5; P-value = 0.4272
        TC10 - TC2: W = 0; P-value \(=0.0131\)
TC10 - TC3: W = 0; P-value = 1e-04
TC10 - TC4: W = 0; P-value = 1e-04
TC10 - TC6: W = 0; P-value = 1e-04
    TC10 - TC9: W = 5.5; P-value \(=0.0016\)
    TC2 - TC3: W = 1; P-value \(=0.0018\)
    TC2 - TC4: W = 3; P-value \(=0.0025\)
    TC2 - TC6: W = 1; P-value \(=0.0017\)
    TC2 - TC9: \(W\) = 16; P-value \(=0.12\)
    TC3 - TC4: \(W=505 ; ~ P-\) value \(=0.4203\)
    TC3 - TC6: \(W=592.5 ; ~ P-\) value \(=0.0669\)
    TC3 - TC9: W = 305.5; P-value \(=0.2682\)
    TC4 - TC6: W = 493.5; P-value \(=0.6862\)
    TC4 - TC9: W = 309.5; P-value = 0.2318
    TC6 - TC9: W = 276.5; P-value = 0.7876

P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 28=0.00179\).
    Wilcox Tests between Transects:
        CAN1 - CAN2: \(W=182.5 ;\) P-value \(=0.7381\)
    CAN1 - TC1: \(W=54.5\); P-value \(=0\)
        CAN1 - TC10: \(W=72 ; ~ P-v a l u e=0.2431\)
    \begin{tabular}{|c}
\hline CAN1 - TC2: \\
\hline CAN1 - TC3: \\
W
\end{tabular}
        CAN1 - TC4: \(W=173.5 ; ~ P-v a l u e ~=~ 0.0408\)
        CAN1 - TC5: W = 124.5; P-value = 0.002
    CAN1 - TC6: W = 109; P-value = 4e-04
        CAN1 - TC7: \(W=78 ; ~ P-v a l u e=5 e-04\)
        CAN1 - TC9: \(W=77 ; ~ P-v a l u e=0.0127\)
    CAN2 - TC1: \(W=32 ; ~ P-v a l u e ~=~ 0 ~\)
        CAN2 - TC10: \(W=101 ; ~ P-v a l u e=0.0056\)
    CAN2 - TC2: \(W=15.5\); P-value \(=0\)
        CAN2 - TC3: W = 22; P-value = 0
        CAN2 - TC4: \(W=88 ; ~ P-v a l u e=1 e-04\)
        CAN2 - TC5: \(W=67.5 ; ~ P-v a l u e ~=~ 0 ~\)
        CAN2 - TC6: \(W=64.5 ; ~ P-v a l u e ~=~ 0 ~\)
        CAN2 - TC7: W = 31; P-value \(=0\)
        CAN2 - TC9: \(W=66 ;\) P-value \(=0.0026\)
        TC1 - TC10: \(W=144 ; ~ P-v a l u e=2 e-04\)
        TC1 - TC2: W = 147; P-value = 0.0037
        TC1 - TC3: W = 287.5; P-value \(=0.2098\)
        TC1 - TC4: W = 563.5; P-value \(=4 \mathrm{e}-04\)
        TC1 - TC5: W = 422.5; P-value = 0.2802
        TC1 - TC6: W = 320; P-value = 0.3818
        TC1 - TC7: W = 234.5; P-value \(=0.274\)
        TC1 - TC9: W = 229.5; P-value = 0.5077
    \begin{tabular}{|c}
\hline TC10 - TC2: \\
\hline TC10
\end{tabular}
        TC10 - TC4: W = 0; P-value = 1e-04
        TC10 - TC5: W = 0; P-value = 1e-04
        TC10 - TC6: W = 0; P-value = 1e-04
        TC10 - TC7: W = 0; P-value = 2e-04
        TC10 - TC9: \(W=0 ; P\)-value \(=0\)
        TC2 - TC3: W = 472.5; P-value = 0.0511
        TC2 - TC4: W = 681; P-value = 0
        TC2 - TC5: \(W=565.5 ; ~ P-\) value \(=4 \mathrm{e}-04\)
        TC2 - TC6: W = 373; P-value = 0.9932
        TC2 - TC7: W = 242; P-value \(=0.3477\)
        TC2 - TC9: W = 274.5; P-value \(=0.0637\)
    TC3 - TC4: W = 770; P-value = 0
    TC3 - TC5: \(W=591.5 ; ~ P-v a l u e ~=~ 0.037\)
    TC3 - TC6: W = 430.5; P-value \(=0.6237\)
    TC3 - TC7: W = 329; P-value = 0.5952
    TC3 - TC9: W = 305; P-value \(=0.2729\)
    TC4 - TC5: W = 317.5; P-value \(=0.0508\)
    TC4 - TC6: \(W=291.5 ; ~ P-v a l u e=0.0125\)
    TC4 - TC7: W = 172.5; P-value = 0.0011
    TC4 - TC9: W = 224; P-value = 0.4993
    TC5 - TC6: W = 356; P-value = 0.1174
    TC5 - TC7: W = 240.5; P-value \(=0.0382\)
    TC5 - TC9: W = 263.5; P-value = 0.8594
    TC6 - TC7: W = 390; P-value \(=0.7663\)
    TC6 - TC9: \(W=344.5 ; ~ P-\) value \(=0.0826\)
    TC7 - TC9: W = 271.5; P-value \(=0.076\)

P-values reported are not adjusted for multiple comparisons. Adjusted significance level is 0.05 / 55 = 0.00091.

Wilcox Tests between Transects:
CAN1 - CAN2: \(W=170.5 ; ~ P-v a l u e=1\)
CAN1 - TC1: W = 58.5; P-value = 1e-04
CAN1 - TC10: \(W=72 ;\) P-value \(=0.243\)
\begin{tabular}{|l}
\hline CAN1 - TC2: \\
\hline CAN1 - TC3: \\
W
\end{tabular}
CAN1 - TC4: \(\mathrm{W}=126.5\); P-value \(=0.0023\)
CAN1 - TC5: \(W=118 ; ~ P-v a l u e=0.0012\)
\begin{tabular}{|l|l|}
\hline CAN1 - TC6: & \(W=97.5 ; ~ P-v a l u e ~\)
\end{tabular}\(=2 \mathrm{e}-04\)

CAN1 - TC9: \(W=68 ; ~ P-\) value \(=0.0053\)
\begin{tabular}{|l|l|}
\hline CAN2 - TC1: \(\mathrm{W}=48 ; ~ \mathrm{P}\)-value \(=0\) \\
\hline CAN2 - TC10: \(\mathrm{W}=112.5 ; \mathrm{P}\)-value \(=5 \mathrm{e}-04\) \\
\hline CAN2 - TC2: \(\mathrm{W}=19 ; \mathrm{P}\)-value \(=0\) \\
\hline CAN2 - TC3: \(\mathrm{W}=31 ; \mathrm{P}\)-value \(=0\) \\
\hline CAN2 - TC4: \(\mathrm{W}=92.5 ; \mathrm{P}\)-value \(=1 \mathrm{e}-04\) \\
\hline CAN2 - TC5: \(\mathrm{W}=95.5 ; \mathrm{P}\)-value \(=1 \mathrm{e}-04\) \\
\hline CAN2 - TC6: \(\mathrm{W}=68 ; \mathrm{P}\)-value \(=0\) \\
\hline CAN2 - TC7: \(\mathrm{W}=53 ; \mathrm{P}\)-value \(=0\) \\
\hline
\end{tabular}

CAN2 - TC9: W = 70; P-value = 0.0039
TC1 - TC10: \(\mathrm{W}=144 ; ~ P-\) value \(=2 \mathrm{e}-04\)
TC1 - TC2: W = 136; P-value = 0.0018
TC1 - TC3: W = 301; P-value \(=0.3083\)
TC1 - TC4: \(W=478 ; ~ P\)-value \(=0.0406\)
TC1 - TC5: \(W=390 ; ~ P-\) value \(=0.6073\)
TC1 - TC6: \(W=309 ; ~ P-v a l u e=0.2887\)
TC1 - TC7: W = 209; P-value \(=0.1054\)
TC1 - TC9: W = 209; P-value = 0.9052


TC2 - TC3: \(W=465.5 ; ~ P\)-value \(=0.0674\)
TC2 - TC4: W = 655; P-value \(=0\)
TC2 - TC5: W = 528; P-value = 0.0035
TC2 - TC6: W = 379.5; P-value \(=0.9054\)
TC2 - TC7: W = 236; P-value \(=0.2879\)
TC2 - TC9: W = 267; P-value = 0.0979
TC3 - TC4: W = 687.5; P-value = 5e-04
TC3 - TC5: W = 563.5; P-value \(=0.0947\)
TC3 - TC6: W = 437.5; P-value \(=0.6968\)
TC3 - TC7: W = 306; P-value \(=0.3515\)
TC3 - TC9: \(W=295.5 ; ~ P-v a l u e ~=~ 0.3756\)
TC4 - TC5: \(W=385 ; ~ P-\) value \(=0.34\)
TC4 - TC6: \(W=304.5 ; ~ P-v a l u e=0.0209\)
TC4 - TC7: W = 197; P-value = 0.0046
TC4 - TC9: W = 214.5; P-value = 0.3755
TC5 - TC6: W = 331; P-value \(=0.0541\)
TC5 - TC7: W = 205.5; P-value \(=0.0073\)
TC5 - TC9: W = 257.5; P-value = 0.9647
TC6 - TC7: \(W=401.5 ; ~ P-v a l u e=0.6225\)
TC6 - TC9: \(W=344.5 ; ~ P-\) value \(=0.0826\)
TC7 - TC9: \(W=282.5 ; ~ P-v a l u e=0.0389\)

P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is 0.05 / 55 = 0.00091.

Strontium, dissolved
Wilcox Tests between Transects:
\begin{tabular}{|l|}
\hline CAN1 - TC1: \(\mathrm{W}=354 ; ~ \mathrm{P}\)-value \(=5 \mathrm{e}-04\) \\
\hline CAN1 - TC10: \(\mathrm{W}=87.5 ; ~ \mathrm{P}\)-value \(=0.0272\) \\
\hline
\end{tabular}

CAN1 - TC2: \(W=72 ; ~ P-v a l u e=0.0025\)
\begin{tabular}{|l|l|}
\hline CAN1 - TC3: \(W=430 ; ~ P-\) value \(=7 \mathrm{e}-04\) \\
\hline CAN1 - TC4: \(\mathrm{W}=426.5 ; ~ \mathrm{P}\)-value \(=9 \mathrm{e}-04\) \\
\hline CAN1 - TC6: \(\mathrm{W}=544.5 ; ~ \mathrm{P}\)-value \(=0\) \\
\hline
\end{tabular}

CAN1 - TC9: \(W=243.5 ; ~ P-v a l u e=0.0029\)
TC1 - TC10: \(\mathrm{W}=40.5 ; ~ P-v a l u e=0.1075\)
TC1 - TC2: \(W=42 ; ~ P-v a l u e=0.7177\)
TC1 - TC3: \(W=342.5 ; ~ P-\) value \(=0.7672\)
TC1 - TC4: W = 280.5; P-value \(=0.1687\)
TC1 - TC6: W = 405.5; P-value \(=0.5754\)
TC1 - TC9: W = 172; P-value \(=0.4043\)
TC10 - TC2: W = 24; P-value \(=0.0131\)
TC10 - TC3: W = 131.5; P-value = 0.0817
TC10 - TC4: \(W=120.5 ; ~ P-v a l u e=0.2021\)
TC10 - TC6: \(W=175 ; ~ P-v a l u e=8 e-04\)
TC10 - TC9: W = 73; P-value = 0.1302
TC2 - TC3: W = 50; P-value = 0.6115
TC2 - TC4: W = 49; P-value = 0.574
TC2 - TC6: W = 55; P-value \(=0.7361\)
TC2 - TC9: W = 19; P-value \(=0.1938\)
TC3 - TC4: \(W=394 ; ~ P-\) value \(=0.4117\)
TC3 - TC6: \(W=523.5 ; ~ P-v a l u e ~=~ 0.4027\)
TC3 - TC9: \(W=217.5 ; ~ P-v a l u e=0.4126\)
TC4 - TC6: W = 571.5; P-value \(=0.1261\)
TC4 - TC9: W = 228.5; P-value = 0.5646
TC6 - TC9: W = 174; P-value \(=0.055\)
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 28=0.00179\).

Wilcox Tests between Transects:
\begin{tabular}{|l|l|}
\hline CAN1 - TC1: \(W=365 ; ~ P-\)-value \(=2 e-04\) \\
\hline CAN1 - TC10: \(W=86 ; ~ P-v a l u e ~=~ 0.0341 ~\)
\end{tabular}

CAN1 - TC2: \(W=72 ; ~ P-v a l u e=0.0024\)
\begin{tabular}{|l|l|}
\hline CAN1 - TC3: \(W=449.5 ; ~ P-\) value \(=1 \mathrm{e}-04\) \\
\hline CAN1 - TC4: \(\mathrm{W}=444.5 ; ~ P\)-value \(=2 \mathrm{e}-04\) \\
\hline CAN1 - TC6: \(\mathrm{W}=542.5 ; ~ \mathrm{P}\)-value \(=0\) \\
\hline
\end{tabular}

CAN1 - TC9: \(W=238.5 ; ~ P-v a l u e ~=~ 0.0049\)
TC1 - TC10: W = 36; P-value \(=0.0654\)
TC1 - TC2: \(W=41 ; ~ P-v a l u e ~=~ 0.6693\)
TC1 - TC3: \(W=334.5 ; ~ P-v a l u e=0.6634\)
TC1 - TC4: W = 300.5; P-value = 0.3041
TC1 - TC6: W = 399; P-value = 0.6528
TC1 - TC9: W = 170; P-value = 0.3751
TC10 - TC2: W = 24; P-value = 0.0128
TC10 - TC3: W = 139.5; P-value = 0.0373
TC10 - TC4: W = 120.5; P-value = 0.2024
TC10 - TC6: W = 173; P-value = 0.001
TC10 - TC9: W = 72.5; P-value = 0.1394
TC2 - TC3: \(W=49.5 ; ~ P-v a l u e ~=~ 0.5928 ~\)
TC2 - TC4: W = 45; P-value = 0.438
TC2 - TC6: \(W=51.5 ; ~ P-v a l u e ~=~ 0.6041\)
TC2 - TC9: W = 20; P-value = 0.2263
TC3 - TC4: \(W=421.5 ; ~ P-v a l u e ~=~ 0.6788\)
TC3 - TC6: W = 499; P-value \(=0.6288\)
TC3 - TC9: W = 217; P-value \(=0.4062\)
TC4 - TC6: \(W=549.5 ; ~ P-v a l u e ~=~ 0.2255\)
TC4 - TC9: W = 227; P-value = 0.5425
TC6 - TC9: W = 177.5; P-value \(=0.0653\)
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 28=0.00179\).

Thorium, total
Wilcox Tests between Transects:
CAN1 - TC1: \(W=170 ; ~ P-v a l u e=0.2457\)
CAN1 - TC10: \(W=72 ; ~ P-v a l u e ~=~ 0.2358 ~\)
CAN1 - TC2: \(W=60 ; ~ P-v a l u e=0.0355\)
CAN1 - TC3: W = 289.5; P-value = 0.6814
CAN1 - TC4: W = 327.5; P-value = 0.2073
CAN1 - TC6: W = 352; P-value = 0.1148
CAN1 - TC9: W = 181; P-value = 0.3578
TC1 - TC10: \(W=117 ; ~ P-v a l u e=0.0179\)
TC1 - TC2: W = 94; P-value = 0.0026
TC1 - TC3: \(W=455 ;\)-value \(=0.0988\)
TC1 - TC4: W = 510.5; P-value \(=0.0082\)
TC1 - TC6: W = 553; P-value = 0.0019
TC1 - TC9: W = 290.5; P-value \(=0.0206\)
TC10 - TC2: W = 24; P-value \(=0.004\)
TC10 - TC3: W = 48; P-value \(=0.0754\)
TC10 - TC4: W = 84; P-value \(=0.8093\)
TC10 - TC6: \(W=102 ; ~ P-v a l u e=0.7142\)
TC10 - TC9: W = 36; P-value = 0.2484
TC2 - TC3: W = 16; P-value \(=0.0172\)
TC2 - TC4: W = 28; P-value \(=0.068\)
TC2 - TC6: W = 32; P-value \(=0.0898\)
TC2 - TC9: W = 4; P-value = 0.0059
TC3 - TC4: W = 537; P-value \(=0.1893\)
TC3 - TC6: \(W=570.5 ; ~ P-\) value \(=0.1179\)
TC3 - TC9: \(W=296 ; ~ P-v a l u e ~=~ 0.366\)
TC4 - TC6: \(W=484.5 ; ~ P-v a l u e ~=~ 0.7702\)
TC4 - TC9: W = 226.5; P-value \(=0.5258\)
TC6 - TC9: W = 214.5; P-value \(=0.2814\)
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 28=0.00179\).

Uranium, dissolved
Wilcox Tests between Transects:
CAN1 - CAN2: \(W=210 ; ~ P\)-value \(=0.2418\)
CAN1 - TC1: \(W=110.5 ; ~ P-\) value \(=0.0076\)
CAN1 - TC10: \(W=74 ; ~ P-\) value \(=0.193\)
\begin{tabular}{|l|l|}
\hline CAN1 - TC2: \(W=41 ; ~ P-v a l u e ~\) & \(=0\) \\
\hline CAN1 - TC3: \(W=102.5 ; ~ P-\) value \(=4 \mathrm{e}-04\) \\
\hline
\end{tabular}
CAN1 - TC4: \(W=190.5 ; ~ P-v a l u e ~=~ 0.0924\)
CAN1 - TC5: W = 120; P -value \(=0.0014\)
CAN1 - TC6: \(W=97.5 ; ~ P-v a l u e ~=~ 2 e-04\)
CAN1 - TC7: W = 96.5; P-value = 0.0025
CAN1 - TC9: \(W=83 ; ~ P-\) value \(=0.0217\)
CAN2 - TC1: \(W=77.5\); \(P\)-value \(=2 \mathrm{e}-04\)
CAN2 - TC10: \(W=109 ; ~ P-\) value \(=0.001\)


CAN2 - TC9: W = 79; P-value = 0.0094
TC1 - TC10: \(W=144 ; ~ P-v a l u e ~=~ 2 e-04 ~\)
TC1 - TC2: W = 226.5; P-value = 0.2083
TC1 - TC3: \(W=299.5 ; ~ P-v a l u e=0.2961\)
TC1 - TC4: \(W=412 ; ~ P-\) value \(=0.3699\)
TC1 - TC5: \(W=337.5 ; ~ P-\) value \(=0.7017\)
TC1 - TC6: \(W=276.5 ; ~ P\)-value \(=0.1068\)
TC1 - TC7: \(W=221.5 ; ~ P\)-value \(=0.1735\)
TC1 - TC9: W = 232; P-value \(=0.4666\)


TC2 - TC3: W = 410.5; P-value \(=0.3839\)
TC2 - TC4: W = 520.5; P-value \(=0.0053\)
TC2 - TC5: W = 439; P-value = 0.1716
TC2 - TC6: \(W=362.5 ; ~ P-v a l u e=0.8786\)
TC2 - TC7: W = 268; P-value \(=0.6875\)
TC2 - TC9: W = 290.5; P-value \(=0.0228\)
TC3 - TC4: W = 605; P-value = 0.0223
TC3 - TC5: W = 484; P-value = 0.6203
TC3 - TC6: W = 407.5; P-value \(=0.4108\)
TC3 - TC7: W = 333.5; P-value \(=0.6508\)
TC3 - TC9: W = 311.5; P-value = 0.2149
TC4 - TC5: \(W=334.5 ; ~ P-v a l u e=0.089\)
TC4 - TC6: \(W=293 ; ~ P-v a l u e=0.0133\)
TC4 - TC7: W = 271; P-value \(=0.1234\)
TC4 - TC9: W = 254; P-value = 0.9912
TC5 - TC6: W = 379.5; P-value \(=0.22\)
TC5 - TC7: W = 305.5; P-value \(=0.3472\)
TC5 - TC9: W = 304; P-value \(=0.2827\)
TC6 - TC7: W = 386.5; P-value \(=0.8122\)
TC6 - TC9: \(W=346 ; ~ P-v a l u e=0.077\)
TC7 - TC9: \(W=274.5 ; ~ P-v a l u e=0.0639\)

P-values reported are not adjusted for multiple comparisons. Adjusted significance level is \(0.05 / 55=0.00091\).

Uranium, total
Wilcox Tests between Transects:
CAN1 - CAN2: \(W=198.5 ; ~ P\)-value \(=0.4117\)
\begin{tabular}{|l|l|}
\hline CAN1 - TC1: \(\mathrm{W}=79.5 ; ~ \mathrm{P}\)-value \(=5 \mathrm{e}-04\) \\
\hline CAN1 - TC10: \(\mathrm{W}=108 ; ~ \mathrm{P}\)-value \(=4 \mathrm{e}-04\) \\
\hline CAN1 - TC2: \(\mathrm{W}=20.5 ; ~ \mathrm{P}\)-value \(=0\) \\
\hline
\end{tabular}

CAN1 - TC3: \(W=117 ; ~ P-v a l u e ~=~ 0.0012\)
CAN1 - TC4: \(W=212.5 ; ~ P-\) value \(=0.2245\)
\begin{tabular}{|l}
\hline CAN1 - TC5: \(W=79 ; ~ P-\) value \(=0\) \\
\hline CAN1 - TC6: \(W=84.5 ; ~ P-\) value \(=1 \mathrm{e}-04\)
\end{tabular}
CAN1 - TC7: \(W=103 ; ~ P-v a l u e ~=~ 0.0042\)
CAN1 - TC9: \(W=74.5 ; ~ P-\) value \(=0.01\)
\begin{tabular}{|l|l|}
\hline CAN2 - TC1: \(\mathrm{W}=52 ; ~ \mathrm{P}\)-value \(=0\) \\
\hline CAN2 - TC10: \(\mathrm{W}=114 ; \mathrm{P}\)-value \(=3 \mathrm{e}-04\) \\
\hline CAN2 - TC2: \(\mathrm{W}=16.5 ; ~ \mathrm{P}\)-value \(=0\) \\
\hline CAN2 - TC3: \(\mathrm{W}=80.5 ; \mathrm{P}\)-value \(=0\) \\
\hline CAN2 - TC4: \(\mathrm{W}=133 ; \mathrm{P}\)-value \(=0.0019\) \\
\hline CAN2 - TC5: \(\mathrm{W}=47 ; \mathrm{P}\)-value \(=0\) \\
\hline CAN2 - TC6: \(\mathrm{W}=69 ; \mathrm{P}\)-value \(=0\) \\
\hline CAN2 - TC7: \(\mathrm{W}=84.5 ; \mathrm{P}\)-value \(=5 \mathrm{e}-04\) \\
\hline
\end{tabular}

CAN2 - TC9: \(W=88.5 ; ~ P-\) value \(=0.0215\)
TC1 - TC10: \(W=144 ; ~ P-v a l u e ~=~ 2 e-04 ~\)
TC1 - TC2: \(W=242 ; ~ P-v a l u e ~=~ 0.3478\)
TC1 - TC3: W = 369.5; P-value \(=0.8755\)
TC1 - TC4: \(W=439.5 ; ~ P\)-value \(=0.1689\)
TC1 - TC5: \(W=343 ; ~ P\)-value \(=0.7738\)
TC1 - TC6: \(W=331 ; ~ P\)-value \(=0.4918\)
TC1 - TC7: W = 271.5; P-value \(=0.7414\)
TC1 - TC9: W = 259; P-value \(=0.1491\)


TC2 - TC3: W = 430.5; P-value = 0.2228
TC2 - TC4: W = 467.5; P-value \(=0.0625\)
TC2 - TC5: W = 410; P-value \(=0.3886\)
TC2 - TC6: W = 394; P-value \(=0.7151\)
TC2 - TC7: W = 312.5; P-value \(=0.6206\)
TC2 - TC9: W = 301.5; P-value \(=0.0102\)
TC3 - TC4: W = 557; P-value = 0.1152
TC3 - TC5: W = 420; P-value \(=0.6627\)
TC3 - TC6: \(W=401 ; ~ P-v a l u e ~=~ 0.3595 ~\)
TC3 - TC7: W = 355.5; P-value \(=0.9445\)
TC3 - TC9: \(W=307.5 ; ~ P-v a l u e=0.2494\)
TC4 - TC5: \(W=322 ; ~ P-\) value \(=0.0594\)
TC4 - TC6: \(W=316 ; ~ P-v a l u e=0.0321\)
TC4 - TC7: W = 282.5; P-value = 0.18
TC4 - TC9: W = 266.5; P-value \(=0.8075\)
TC5 - TC6: W = 434.5; P-value \(=0.6651\)
TC5 - TC7: W = 367; P-value \(=0.9099\)
TC5 - TC9: \(W=331.5 ; ~ P\)-value \(=0.0923\)
TC6 - TC7: W = 416; P-value \(=0.4602\)
TC6 - TC9: \(W=344.5 ; ~ P-\) value \(=0.0826\)
TC7 - TC9: \(W=249.5 ; ~ P-v a l u e=0.2336\)

P-values reported are not adjusted for multiple comparisons. Adjusted significance level is \(0.05 / 55=0.00091\).
Wilcox Tests between Transects:

CAN1 - CAN2: \(W=188.5 ; ~ P\)-value \(=0.6028\)
CAN1 - TC1: \(W=146.5 ; ~ P-\) value \(=0.0776\)
CAN1 - TC10: \(W=35.5 ; ~ P-\) value \(=0.2233\)
CAN1 - TC2: \(W=128.5 ; ~ P-v a l u e=0.0266\)
CAN1 - TC3: \(W=106 ; ~ P-\) value \(=5 \mathrm{e}-04\)
CAN1 - TC4: \(W=370 ; ~ P-\) value \(=0.0332\)


CAN1 - TC9: \(W=113 ; ~ P-v a l u e ~=~ 0.1911 ~\)
CAN2 - TC1: \(W=138 ; ~ P-v a l u e ~=~ 0.0277\)
CAN2 - TC10: \(W=39.5\); P -value \(=0.2708\)
CAN2 - TC2: W = 106; P-value = 0.0029
CAN2 - TC3: W = 97; P-value = 1e-04
CAN2 - TC4: W = 300.5; P-value = 0.7573
CAN2 - TC5: \(W=109.5\); \(P\)-value \(=3 e-04\)
CAN2 - TC6: \(W=85.5 ; ~ P-\) value \(=0\)
CAN2 - TC9: \(W=104.5 ; ~ P-v a l u e ~=~ 0.072\)
TC1 - TC10: \(W=81 ; ~ P-v a l u e=0.6555\)
TC1 - TC2: W = 212.5; P-value \(=0.1204\)
TC1 - TC3: \(W=247 ; ~ P-v a l u e=0.0496\)
TC1 - TC4: \(W=535 ; ~ P-\) value \(=0.0023\)
TC1 - TC5: \(W=261 ; ~ P-\) value \(=0.0853\)
TC1 - TC6: \(W=216.5 ; ~ P\)-value \(=0.0083\)
TC1 - TC7: W = 180; P-value \(=0.0264\)
TC1 - TC9: W = 212; P-value \(=0.8421\)
TC10 - TC2: W = 49; P-value \(=0.2408\)
TC10 - TC3: \(W=41.5 ; ~ P-v a l u e=0.041\)
TC10 - TC4: \(W=149 ; ~ P-\) value \(=0.0126\)
TC10 - TC5: W = 56; P-value \(=0.1527\)
TC10 - TC6: \(W=32 ; ~ P-\) value \(=0.0121\)
TC10 - TC7: \(W=26 ; ~ P-v a l u e=0.0179\)
TC10 - TC9: W = 46; P-value \(=0.7513\)
TC2 - TC3: W = 408; P-value \(=0.4071\)
TC2 - TC4: W = 528; P-value \(=0.0034\)
TC2 - TC5: \(W=341.5 ; ~ P\)-value \(=0.7533\)
TC2 - TC6: \(W=329.5 ; ~ P-\) value \(=0.4748\)
TC2 - TC7: W = 292.5; P-value \(=0.9341\)
TC2 - TC9: \(W=249 ; ~ P-v a l u e=0.2378\)
TC3 - TC4: \(W=715 ; ~ P-v a l u e ~=~ 1 e-04 ~\)
TC3 - TC5: \(W=439.5 ; ~ P-v a l u e ~=~ 0.8822 ~\)
TC3 - TC6: \(W=426.5 ; ~ P\)-value \(=0.583\)
TC3 - TC7: W = 369.5; P-value \(=0.8753\)
TC3 - TC9: \(W=343 ; ~ P-\) value \(=0.0523\)
\begin{tabular}{|c}
\hline TC4 - TC5: \(W=117 ; ~ P-v a l u e ~=~\) \\
\hline TC4 - TC6: \(W=95 ; ~ P-v a l u e ~=~\) \\
\hline
\end{tabular}

TC4 - TC7: W = 85; P-value = 0
TC4 - TC9: W = 162; P-value \(=0.0399\)
TC5 - TC6: W = 381; P-value \(=0.2271\)
TC5 - TC7: \(W=323.5 ; ~ P-v a l u e=0.53\)
TC5 - TC9: \(W=322 ; ~ P-\) value \(=0.1401\)
TC6 - TC7: W = 391.5; P-value \(=0.7466\)
TC6 - TC9: \(W=367 ; ~ P-\) value \(=0.026\)
TC7 - TC9: W = 277.5; P-value \(=0.0529\)
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 55=0.00091\).

Yttrium, dissolved
Tukey multiple comparisons of means 95\% family-wise confidence level
diff lwr upr p adj TC1-CAN1 0.028474615 -0.23706701 0.29401624 0.9999788 TC10-CAN1 -0.299772568 -0.70123377 0.10168863 0. 3031793 TC2-CAN1 -0.274686735 -0.74544172 0.19606825 0.6254687 TC3-CAN1 0.145443341 -0.10846302 0.399349700 .6474494 TC4-CAN1 \(0.109175552-0.144730810 .363081910 .8893581\) TC6-CAN1 0.236795408 -0.01557055 0.48916137 0.0830951 TC9-CAN1 0.032274658-0.25574567 0.32029499 0. 9999714 TC10-TC1 -0.328247184-0.71696032 0.06046595 0.1656991 TC2-TC1 -0.303161351 -0.76309294 0.15677024 0.4680244 TC3-TC1 0.116968725-0.11625916 0.35019661 0.7836574 TC4-TC1 \(0.080700937-0.152526950 .313928820 .9632588\) TC6-TC1 \(0.208320792-0.023229170 .439870750 .1117712\) TC9-TC1 0.003800043 -0.26616758 0.27376767 1.0000000 TC2-TC10 \(\quad 0.025085833-0.524637560 .574809220 .9999999\)
\begin{tabular}{|llllll|}
\hline TC3-TC10 & 0.445215909 & 0.06435637 & 0.82607545 & 0.0102028 \\
\hline TC4-TC10 & 0.408948120 & 0.02808858 & 0.78980766 & 0.0258541 \\
\hline TC6-TC10 & 0.536567976 & 0.15673363 & 0.91640232 & 0.0006643 \\
\hline
\end{tabular}
TC9-TC10 \(0.332047226-0.072355120 .736449580 .1935622\)
TC3-TC2 0.420130076-0.03318344 0.87344360 0.0909275
TC4-TC2 \(0.383862287-0.069451230 .837175810 .1630725\)
\begin{tabular}{llllll}
\hline TC6-TC2 & 0.511482143 & 0.05902962 & 0.96393467 & 0.0150121
\end{tabular}
TC9-TC2 \(0.306961393-0.166304300 .780227090 .4896577\)
TC4-TC3 -0.036267789 -0.25615714 0.18362157 0.9996139

TC6-TC3 0.091352067 -0.12675678 0.30946091 0.9022992
TC9-TC3 -0.113168683-0.37170031 0.14536294 0.8797744
TC6-TC4 \(0.127619856-0.090488990 .345728700 .6221198\)
TC9-TC4 -0.076900894-0.33543252 0.18163073 0.9843036 TC9-TC6 -0.204520750 -0.46153970 0.05249820 0. 2273412

P-values reported are adjusted for multiple comparisons.

Yttrium, total
Wilcox Tests between Transects:
CAN1 - TC1: \(W=117 ; ~ P-v a l u e=0.0105\)
CAN1 - TC10: \(W=86 ; P\)-value \(=0.0299\)
CAN1 - TC2: \(W=30 ; ~ P-v a l u e ~=~ 0.6282 ~\)
CAN1 - TC3: \(W=162 ; ~ P-\) value \(=0.0197\)
CAN1 - TC4: W = 178; P-value = 0.0441
CAN1 - TC6: W = 155.5; P-value = 0.0094
CAN1 - TC9: W = 125.5; P-value \(=0.3565\)
TC1 - TC10: W = 137; P-value = 6e-04
TC1 - TC2: W = 67; P-value = 0.2045
TC1 - TC3: \(W=351.5 ; ~ P-\) value \(=0.887\)
TC1 - TC4: \(W=403.5 ; ~ P\)-value \(=0.4399\)
TC1 - TC6: \(W=354 ; ~ P-v a l u e=0.7624\)
TC1 - TC9: W = 256; P-value \(=0.1604\)
TC10 - TC2: W = 2; P-value \(=0.0302\)
TC10 - TC3: W = 8; P-value \(=4 \mathrm{e}-04\)
TC10 - TC4: W = 15; P-value \(=0.0011\)
TC10 - TC6: W = 9; P-value = 5e-04
TC10 - TC9: W = 15; P-value = 0.0096
TC2 - TC3: \(W=31 ; ~ P-v a l u e ~=~ 0.1199\)
TC2 - TC4: W = 43; P-value \(=0.3585\)
TC2 - TC6: W = 34; P-value \(=0.1464\)
TC2 - TC9: W = 31; P-value \(=0.8146\)
TC3 - TC4: W = 493; P-value \(=0.5199\)
TC3 - TC6: \(W=447.5 ; ~ P-\) value \(=0.8034\)
TC3 - TC9: \(W=323 ; ~ P-v a l u e=0.1266\)
TC4 - TC6: W = 402; P-value \(=0.3563\)
TC4 - TC9: W = 295; P-value = 0.3642
TC6 - TC9: W = 337; P-value = 0.1077

P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 28=0.00179\).

Tukey multiple comparisons of means 95\% family-wise confidence level
diff lwr upr p adj
TC1-CAN1 0.18630642 -0.2816424 0.6542552330 .9531666
TC10-CAN1 -0.09613644-0.6322392 0.439966281 0.9998812
TC2-CAN1 \(0.31923446-0.14871440 .7871832780 .4559115\)
TC3-CAN1 0.24432538-0.2236234 0.712274191 0.7962131
TC4-CAN1 \(0.33113901-0.1368098 \quad 0.7990878270 .4022115\)
TC5-CAN1 \(0.01853215-0.4494167 \quad 0.4864809661 .0000000\)
TC6-CAN1 -0.18896779 -0.6569166 0.278981027 0.9489145
TC7-CAN1 \(0.04861723-0.4193316 \quad 0.516566048 \quad 0.9999989\)
TC9-CAN1 -0.13342543-0.5265811 0.259730213 0.9834676
TC10-TC1 -0.28244285-0.8673789 0.302493166 0.8606025
TC2-TC1 \(0.13292805-0.3902546 \quad 0.6561107260 .9980190\)
TC3-TC1 0.05801896 -0.4651637 0.581201639 0.9999981
TC4-TC1 0.14483259 -0.3783501 0.668015275 0.9961884
TC5-TC1 -0.16777427 -0.6909569 0.355408414 0.9888529
TC6-TC1 -0.37527421-0.8984569 0.147908475 0.3825469
TC7-TC1 \(-0.13768918-0.6608719 \quad 0.385493496 \quad 0.9974030\)
TC9-TC1 -0.31973185 -0.7772418 0.1377781340 .4204752
TC2-TC10 \(0.41537090-0.1695651 \quad 1.0003069170 .3971299\)
TC3-TC10 0.34046181-0.2444742 0.925397830 0.6770280
TC4-TC10 0.42727545-0.1576606 1.012211467 0.3564392
TC5-TC10 \(0.11466859-0.4702674 \quad 0.6996046060 .9997514\)
TC6-TC10 -0.09283135 -0.6777674 \(0.492104666 \quad 0.9999575\)
TC7-TC10 0.14475367-0.4401824 \(0.729689688 \quad 0.9983857\)
TC9-TC10 -0.03728900 -0.5643046 0.4897265771 .0000000
TC3-TC2 -0.07490909 -0.5980918 0.4482735930 .9999824
TC4-TC2 0.01190455-0.5112781 0.535087230 1.0000000
TC5-TC2 -0.30070231 -0.8238850 0.222480369 0.6925466
TC6-TC2 -0.50820225 -1.0313849 0.014980429 0.0642549
TC7-TC2 -0.27061723 -0.7937999 0.252565451 0.8048756
TC9-TC2 -0.45265989-0.9101699 0.004850089 0.0549228
TC4-TC3 \(0.08681364-0.4363690 \quad 0.609996317 \quad 0.9999381\)
TC5-TC3 -0.22579322 -0.7489759 0.297389456 0.9242657
TC6-TC3 -0.43329316 -0.9564758 0.089889517 0.1950475
TC7-TC3 -0.19570814 -0.7188908 0.327474538 0.9683939
TC9-TC3 -0.37775081-0.8352608 0.079759176 0.1984361
TC5-TC4 -0.31260686-0.8357895 0.210575820 0.6435098
TC6-TC4 -0.52010680-1.0432895 0.003075880 0.0526808
TC7-TC4 -0.28252178 \(-0.8057045 \quad 0.240660902 \quad 0.7629059\)
\begin{tabular}{rrrrr}
\hline TC9-TC4 & -0.46456444 & -0.9220744 & -0.007054460 & 0.0435236 \\
\hline TC6-TC5 & -0.20749994 & -0.7306826 & 0.315682741 & 0.9542615 \\
TC7-TC5 & 0.03008508 & -0.4930976 & 0.553267763 & 1.0000000 \\
TC9-TC5 & -0.15195758 & -0.6094676 & 0.305552401 & 0.9857482 \\
TC7-TC6 & 0.23758502 & -0.2855977 & 0.760767702 & 0.8992343 \\
TC9-TC6 & 0.05554236 & -0.4019676 & 0.513052340 & 0.9999958 \\
TC9-TC7 & -0.18204266 & -0.6395526 & 0.275467319 & 0.9533370
\end{tabular}

P-values reported are adjusted for multiple comparisons.

PCB TEQ, fish
Tukey multiple comparisons of means 95\% family-wise confidence level
diff lwr upr p adj
TC1-CAN1 \(0.36700965-0.07251928 \quad 0.80653858\) 0.1860863
TC10-CAN1 0.34728898 -0.15625467 0.850832630 .4398489
TC2-CAN1 0.28480639 -0.15472254 0.72433532 0.5311689
TC3-CAN1 0.27264415 -0.16688478 0.71217308 0.5930180
TC4-CAN1 0.25330881-0.18622012 0.69283774 0.6892393
TC5-CAN1 0.42256451 -0.01696442 0.862093440 .0699673
\begin{tabular}{rrrrrr}
\hline TC6-CAN1 & 0.45567238 & 0.01614345 & 0.89520131 & 0.0357848 \\
\hline TC7-CAN1 & 0.29873544 & -0.14079349 & 0.73826437 & 0.4613731
\end{tabular}

TC9-CAN1 0.06964812 -0.29963005 0.43892628 0.9998193
TC10-TC1 -0.01972067-0.56913183 0.52969049 1.0000000
TC2-TC1 -0.08220327 -0.57361155 0.40920502 0.9999337
TC3-TC1 -0.09436551 -0.58577379 0.39704277 0.9997903
TC4-TC1 -0.11370084 -0.60510913 0.37770744 0.9990491
TC5-TC1 0.05555485-0.43585343 0.54696314 0.9999977
TC6-TC1 \(0.08866273-0.402745560 .580071010 .9998750\)
TC7-TC1 -0.06827422 -0.55968250 0.42313406 0.9999864
TC9-TC1 -0.29736154 -0.72708562 0.132362540 .4349716
TC2-TC10 -0.06248260 -0.61189376 0.48692857 0.9999976
TC3-TC10 -0.07464484 -0.62405600 0.47476633 0.9999888
TC4-TC10 -0.09398017 -0.64339133 0.45543099 0.9999200
TC5-TC10 0.07527553-0.47413564 0.62468669 0.9999879
TC6-TC10 0.10838340 -0.44102776 0.65779456 0.9997382
TC7-TC10 -0.04855355 -0.59796471 0.500857620 .9999997
TC9-TC10 -0.27764087-0.77264926 0.217367530 .7214174
TC3-TC2 -0.01216224 -0.50357052 0.479246041 .0000000
TC4-TC2 -0.03149758 -0.52290586 0.45991071 1.0000000
TC5-TC2 \(0.13775812-0.353650160 .629166400 .9958114\)
TC6-TC2 0.17086599 -0.32054229 0.66227428 0.9804990
TC7-TC2 0.01392905 -0.47747923 0.50533733 1.0000000
TC9-TC2 \(-0.21515827-0.64488235 \quad 0.214565810 .8329495\)
TC4-TC3 -0.01933534-0.51074362 0.47207295 1.0000000
TC5-TC3 0.14992036 -0.34148792 0.64132864 0.9921937
TC6-TC3 0.18302823 -0.30838005 0.67443652 0.9692654
TC7-TC3 0.02609129 -0.46531699 0.51749957 1.0000000
TC9-TC3 -0.20299603 -0.63272011 0.22672805 0.8755450
TC5-TC4 0.16925570 -0.32215258 \(0.66066398 \quad 0.9817110\)
TC6-TC4 0.20236357-0.28904471 0.69377185 0.9424997
TC7-TC4 0.04542663 -0.44598166 0.53683491 0.9999996
TC9-TC4 -0.18366069 -0.61338477 0.24606338 0.9284094
TC6-TC5 0.03310787-0.45830041 0.52451615 1.0000000
TC7-TC5 -0.12382907 -0.61523735 0.367579210 .9981417
TC9-TC5 -0.35291639 -0.78264047 0.07680769 0. 2044572
TC7-TC6 -0.15693694-0.64834523 0.33447134 0.9891728
TC9-TC6 -0.38602426-0.81574834 0.04369981 0.1168410
TC9-TC7 -0.22908732 -0.65881140 0.20063676 0.7760251

P-values reported are adjusted for multiple comparisons.

PCB TEQ, mammal
Tukey multiple comparisons of means 95\% family-wise confidence level
diff lwr upr padj
TC1-CAN1 \(0.371137638-0.080545590 .82282087\) 0. 2038857
TC10-CAN1 0.362261801 -0.15520635 0.87972995 0.4179334
TC2-CAN1 0.308240347 -0.14344288 0.75992358 0.4554233
TC3-CAN1 \(0.291091016-0.160592210 .742774250 .5390293\)
TC4-CAN1 \(0.267215172-0.184468060 .718898400 .6564144\)
TC5-CAN1 \(0.425938577-0.025744650 .877621810 .0816442\)
\begin{tabular}{llllll}
\hline TC6-CAN1 & 0.477349116 & 0.02566589 & 0.92903235 & 0.0296274
\end{tabular}
TC7-CAN1 \(0.306805673-0.144877560 .758488900 .4622873\)
TC9-CAN1 \(0.057123439-0.32236638 \quad 0.436613260 .9999729\)
TC10-TC1 -0.008875837-0.57347987 0.55572820 1.0000000
TC2-TC1 -0.062897290 -0.56789449 0.44209991 0.9999947
TC3-TC1 -0.080046622 -0.58504383 0.42495058 0.9999580
TC4-TC1 -0.103922465 -0.60891967 0.40107474 0.9996299
TC5-TC1 \(0.054800940-0.450196260 .559798140 .9999984\)
TC6-TC1 \(0.106211478-0.398785730 .61120868 \quad 0.9995581\)
TC7-TC1 -0.064331965 -0.56932917 0.44066524 0.9999936
TC9-TC1 -0.314014198 -0.75562144 0.12759305 0. 3951700
TC2-TC10 -0.054021453 -0.61862549 0.51058258 0.9999995
TC3-TC10 -0.071170785 -0.63577482 0.49343325 0.9999941
TC4-TC10 -0.095046628 -0.65965067 0.46955741 0.9999301
TC5-TC10 \(0.063676777-0.500927260 .628280810 .9999978\)
TC6-TC10 \(0.115087315-0.449516720 .679691350 .9996576\)
TC7-TC10 -0.055456128 -0.62006017 0.50914791 0.9999993
TC9-TC10 -0.305138361-0.81383523 0. 20355851 0. 6383903
TC3-TC2 -0.017149332 -0.52214654 0.48784787 1.0000000
TC4-TC2 -0.041025175 -0.54602238 0.46397203 0.9999999
TC5-TC2 \(0.117698230-0.387298970 .622695430 .9989926\)
TC6-TC2 \(0.169108768-0.335888440 .674105970 .9849177\)
TC7-TC2 -0.001434674-0.50643188 0.50356253 1.0000000
TC9-TC2 -0.251116908-0.69272415 0.19049034 0.7053785
TC4-TC3 -0.023875843-0.52887305 0.48112136 1.0000000
TC5-TC3 0.134847561 -0.37014964 0.63984477 0.9970985
TC6-TC3 \(0.186258100-0.318739100 .691255300 .9711568\)
TC7-TC3 \(0.015714657-0.489282550 .520711861 .0000000\)
TC9-TC3 -0.233967576-0.67557482 0.20763967 0.7821707
TC5-TC4 \(0.158723405-0.346273800 .663720610 .9903329\)
TC6-TC4 \(0.210133943-0.294863260 .715131150 .9388172\)
TC7-TC4 \(0.039590500-0.46540670 \quad 0.544587700 .9999999\)
TC9-TC4 -0.210091733 -0.65169898 0.23151551 0.8708638
TC6-TC5 \(0.051410538-0.453586670 .556407740 .9999991\)
TC7-TC5 -0.119132904 -0.62413011 0.38586430 0.9988912
TC9-TC5 -0.368815138 -0.81042238 0.07279211 0. 1858813
TC7-TC6 -0.170543443-0.67554065 0.33445376 0.9840142
TC9-TC6 -0.420225676-0.86183292 0.02138157 0.0760115
TC9-TC7 -0.249682233-0.69128948 0.19192501 0.7121278

P-values reported are adjusted for multiple comparisons.

Wilcox Tests between Transects:
\begin{tabular}{|l|}
\hline CAN1 - TC1: \(W=52 ; ~ P-\)-value \(=0\) \\
\hline CAN1 - TC10: \(W=91.5 ; ~ P-\)-value \(=0.0136\) \\
\hline CAN1 - TC2: \(W=40.5 ; ~ P-\) value \(=0\) \\
\hline CAN1 - TC3: \(W=20 ; ~ P-\) value \(=0\) \\
\hline CAN1 - TC4: \(W=68 ; ~ P-\) value \(=0\) \\
\hline CAN1 - TC5: \(W=54.5 ; ~ P-\) value \(=0\) \\
\hline CAN1 - TC6: \(W=10.5 ; ~ P-\) value \(=0\) \\
\hline CAN1 - TC7: \(W=5 ; ~ P-\) value \(=0\) \\
\hline CAN1 - TC9: \(W=65.5 ; ~ P-\)-value \(=0.0041\) \\
\hline
\end{tabular}

TC1 - TC10: W = 144; P-value = 2e-04
TC1 - TC2: W = 281; P-value = 0.8934
TC1 - TC3: W = 320.5; P-value = 0.4971
TC1 - TC4: W = 400.5; P-value = 0.4861
TC1 - TC5: W = 367.5; P-value = 0.903
TC1 - TC6: \(W=296.5 ; ~ P-v a l u e=0.203\)
TC1 - TC7: W = 261; P-value = 0.5847
TC1 - TC9: \(W=252 ;\) P-value \(=0.2087\)


P-values reported are not adjusted for multiple comparisons. Adjusted significance level is \(0.05 / 45=0.00111\).

Wilcox Tests between Transects:
\begin{tabular}{|l|}
\hline CAN1 - TC1: \(\mathrm{W}=34 ; \mathrm{P}\)-value \(=0\) \\
\hline CAN1 - TC10: \(\mathrm{W}=74.5 ; \mathrm{P}\)-value \(=0.1817\) \\
\hline CAN1 - TC2: \(\mathrm{W}=43 ; \mathrm{P}\)-value \(=0\) \\
\hline CAN1 - TC3: \(\mathrm{W}=30.5 ; \mathrm{P}\)-value \(=0\) \\
\hline CAN1 - TC4: \(\mathrm{W}=75.5 ; \mathrm{P}\)-value \(=0\) \\
\hline CAN1 - TC5: \(\mathrm{W}=66 ; \mathrm{P}\)-value \(=0\) \\
\hline CAN1 - TC6: \(\mathrm{W}=16 ; \mathrm{P}\)-value \(=0\) \\
\hline CAN1 - TC7: \(\mathrm{W}=10 ; \mathrm{P}\)-value \(=0\) \\
\hline CAN1 - TC9: \(\mathrm{W}=52.5 ; \mathrm{P}\)-value \(=0.001\) \\
\hline TC1 - TC10: \(\mathrm{W}=144 ; \mathrm{P}\)-value \(=2 \mathrm{e}-04\) \\
\hline TC1 - TC2: \(\mathrm{W}=302.5 ; \mathrm{P}\)-value \(=0.7727\) \\
\hline
\end{tabular}

TC1 - TC3: \(W=373.5 ; ~ P-v a l u e=0.8209\)
TC1 - TC4: W = 399.5; P-value \(=0.4968\)
TC1 - TC5: W = 391.5; P-value \(=0.5893\)
TC1 - TC6: W = 303; P-value \(=0.2449\)
TC1 - TC7: W = 278; P-value \(=0.8447\)
TC1 - TC9: \(W=253 ;\) P-value \(=0.1991\)
\begin{tabular}{|c}
\hline TC10 - TC2: \\
\hline TC10
\end{tabular}

TC10 - TC4: W = 0; P-value = 1e-04
TC10 - TC5: \(W=0 ;\) P-value \(=1 \mathrm{e}-04\)
TC10 - TC6: \(W=0 ; P\)-value \(=1 \mathrm{e}-04\)
TC10 - TC7: W = 0; P-value = 2e-04
TC10 - TC9: \(W=2 ; ~ P-v a l u e ~=~ 7 e-04 ~\)
TC2 - TC3: W = 343; P-value \(=0.7738\)
TC2 - TC4: W = 392.5; P-value \(=0.5771\)
TC2 - TC5: W = 387; P-value = 0.6444
TC2 - TC6: W = 276.5; P-value \(=0.1068\)
TC2 - TC7: W = 237.5; P-value \(=0.3024\)
TC2 - TC9: W = 253; P-value = 0.1992
TC3 - TC4: \(W=549.5 ; ~ P-v a l u e=0.143\)
TC3 - TC5: W = 516; P-value \(=0.3326\)
TC3 - TC6: \(W=370.5 ; ~ P-v a l u e=0.175\)
TC3 - TC7: W = 286.5; P-value \(=0.2036\)
TC3 - TC9: W = 332; P-value = 0.0901
TC4 - TC5: W = 423; P-value = 0.6949
TC4 - TC6: W = 272.5; P-value = 0.0056
TC4 - TC7: \(W=232.5 ; ~ P-v a l u e=0.027\)
TC4 - TC9: W = 288; P-value \(=0.4715\)
TC5 - TC6: W = 303; P-value \(=0.0198\)
TC5 - TC7: W = 258; P-value = 0.0772
TC5 - TC9: W = 300.5; P-value \(=0.319\)
TC6 - TC7: W = 405; P-value \(=0.581\)
TC6 - TC9: W = 385.5; P-value \(=0.0088\)
TC7 - TC9: \(W=289.5 ; ~ P-v a l u e=0.0245\)
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 45=0.00111\).

Appendix G2b.
Tukey's multiple comparisons and Wilcoxon tests to identify specific depth differences
```

Dependent Variable Alkalinity
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.152
The p-value is 0.927 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 2.000
The p-value is 0.368 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.288
The p-value is 0.866 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 0.235
The p-value is 0.889 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 0.281
The p-value is 0.869 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 0.072
The p-value is 0.965 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 0.395
The p-value is 0.821 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 0.063
The p-value is 0.969 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 1.339
The p-value is 0.512 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 0.871
The p-value is 0.647 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).
```

Dependent Variable Chloride ion
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.322
The p-value is 0.851 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 2.500
The p-value is 0.287 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.236
The p-value is 0.889 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 0.409
The p-value is 0.815 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 3.395
The p-value is 0.183 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 0.454
The p-value is 0.797 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 10.807
The p-value is 0.005 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 4.838
The p-value is 0.089 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 4.760
The p-value is 0.093 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 0.232
The p-value is 0.890 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).

Dependent Variable Chloride ion
Grouping Variable DEPTH\$

Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 10.807
The p-value is 0.005 assuming chi-square distribution with 2 df .
Wilcoxon rank sum test with continuity correction
NB - NSH \(W=6.5, ~ p-v a l u e=0.006522\)
alternative hypothesis: true location shift is not equal to 0

Wilcoxon rank sum test with continuity correction
NB - NS W = 27.5, p-value = 0.01095
alternative hypothesis: true location shift is not equal to 0

Wilcoxon rank sum test with continuity correction
NSH - NS \(W=48.5, p\)-value \(=0.2606\)
alternative hypothesis: true location shift is not equal to 0

P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 3=0.01667\).
```

Dependent Variable Hardness
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.197
The p-value is 0.906 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 2.571
The p-value is 0.276 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.302
The p-value is 0.860 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 0.359
The p-value is 0.835 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 3.105
The p-value is 0.212 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 0.099
The p-value is 0.952 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 0.508
The p-value is 0.776 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 0.843
The p-value is 0.656 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 2.226
The p-value is 0.329 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 0.716
The p-value is 0.699 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).
```

Dependent Variable Silica
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.082
The p-value is 0.960 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 3.162
The p-value is 0.206 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.181
The p-value is 0.913 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 0.445
The p-value is 0.801 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 0.356
The p-value is 0.837 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 1.486
The p-value is 0.476 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 0.506
The p-value is 0.776 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 2.633
The p-value is 0.268 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 0.936
The p-value is 0.626 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 1.582
The p-value is 0.453 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).
```

Dependent Variable Silicon, dissolved
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.232
The p-value is 0.890 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 3.429
The p-value is 0.180 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.008
The p-value is 0.996 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 1.800
The p-value is 0.407 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 0.408
The p-value is 0.816 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 1.175
The p-value is 0.556 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 2.779
The p-value is 0.249 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 1.165
The p-value is 0.559 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 8=0.00625\).
```

Dependent Variable Silicon, total
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.114
The p-value is 0.944 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 0.286
The p-value is 0.867 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.472
The p-value is 0.790 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 2.250
The p-value is 0.325 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 0.485
The p-value is 0.785 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 0.754
The p-value is 0.686 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 3.644
The p-value is 0.162 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 2.613
The p-value is 0.271 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 8=0.00625\).
```

Dependent Variable Sulfate
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.570
The p-value is 0.752 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 1.250
The p-value is 0.535 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.758
The p-value is 0.684 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 0.139
The p-value is 0.933 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 0.130
The p-value is 0.937 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 0.125
The p-value is 0.939 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 0.173
The p-value is 0.917 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 1.508
The p-value is 0.470 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 2.182
The p-value is 0.336 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 1.452
The p-value is 0.484 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).
```

Dependent Variable TDS, lab
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 1.696
The p-value is 0.428 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 0.074
The p-value is 0.964 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 2.715
The p-value is 0.257 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 4.076
The p-value is 0.130 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 1.358
The p-value is 0.507 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 0.649
The p-value is 0.723 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 2.395
The p-value is 0.302 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 0.643
The p-value is 0.725 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 0.090
The p-value is 0.956 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 2.814
The p-value is 0.245 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).

Dependent Variable Aluminum, total
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.079
The p-value is 0.961 assuming chi-square distribution with 2 df .
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 4.571
The \(p\)-value is 0.102 assuming chi-square distribution with 2 df .
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.378
The p-value is 0.828 assuming chi-square distribution with 2 df .
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 1.509
The p-value is 0.470 assuming chi-square distribution with 2 df .
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 7.574
The p-value is 0.023 assuming chi-square distribution with 2 df .
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 4.339
The p-value is 0.114 assuming chi-square distribution with 2 df .
Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 13.498
The \(p\)-value is 0.001 assuming chi-square distribution with 2 df .
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 8.277
The p-value is 0.016 assuming chi-square distribution with 2 df .
Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 6.846
The \(p\)-value is 0.033 assuming chi-square distribution with 2 df .
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 1.309
The \(p\)-value is 0.520 assuming chi-square distribution with 2 df .

P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).

Dependent Variable Aluminum, total
Grouping Variable DEPTH\$

Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 13.498
The p-value is 0.001 assuming chi-square distribution with 2 df .

Wilcoxon rank sum test with continuity correction \(N B-N S \quad W=18.5, p\)-value \(=0.1112\) alternative hypothesis: true location shift is not equal to 0
```

Wilcoxon rank sum test with continuity correction
NB - NS $W=123, p$-value $=0.00355$
alternative hypothesis: true location shift is not equal to 0

```
```

Wilcoxon rank sum test with continuity correction
NSH - NS W = 67, p-value = 0.004282
alternative hypothesis: true location shift is not equal to 0

```

P-values reported are not adjusted for multiple comparisons. Adjusted significance level is \(0.05 / 3=0.01667\).
```

Dependent Variable Antimony, dissolved
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.234
The p-value is 0.889 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 3.429
The p-value is 0.180 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.756
The p-value is 0.685 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 0.202
The p-value is 0.904 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 0.570
The p-value is 0.752 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 3.627
The p-value is 0.163 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 5.143
The p-value is 0.076 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 12.253
The p-value is 0.002 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 0.969
The p-value is 0.616 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 0.518
The p-value is 0.772 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).

Dependent Variable Antimony, dissolved
Grouping Variable DEPTH\$

Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 12.253
The p-value is 0.002 assuming chi-square distribution with 2 df .
Wilcoxon rank sum test with continuity correction
NB - NSH \(W=5, p-\) value \(=0.004282\)
alternative hypothesis: true location shift is not equal to 0

Wilcoxon rank sum test with continuity correction
NB - NS \(\quad W=27, p-v a l u e=0.006008\)
alternative hypothesis: true location shift is not equal to 0

Wilcoxon rank sum test with continuity correction
NSH - NS \(W=54, p\)-value \(=0.2033\)
alternative hypothesis: true location shift is not equal to 0

P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 3=0.01667\).
```

Dependent Variable Antimony, total
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.492
The p-value is 0.782 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 1.838
The p-value is 0.399 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.116
The p-value is 0.944 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 0.323
The p-value is 0.851 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 0.856
The p-value is 0.652 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 1.634
The p-value is 0.442 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 4.761
The p-value is 0.093 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 13.205
The p-value is 0.001 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 3.253
The p-value is 0.197 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 1.522
The p-value is 0.467 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).

Dependent Variable Antimony, total
Grouping Variable DEPTH\$

Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 13.205
The p-value is 0.001 assuming chi-square distribution with 2 df .
Wilcoxon rank sum test with continuity correction
NB - NSH \(W=7, p-v a l u e=0.007602\)
alternative hypothesis: true location shift is not equal to 0

Wilcoxon rank sum test with continuity correction
NB - NS \(W=17.5, p\)-value \(=0.001093\)
alternative hypothesis: true location shift is not equal to 0

Wilcoxon rank sum test with continuity correction
NSH - NS \(W=41, p\)-value \(=0.8952\)
alternative hypothesis: true location shift is not equal to 0

P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 3=0.01667\).
```

Dependent Variable Arsenic, dissolved
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.038
The p-value is 0.981 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 2.000
The p-value is 0.368 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 1.970
The p-value is 0.373 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 1.275
The p-value is 0.529 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 0.105
The p-value is 0.949 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 0.808
The p-value is 0.668 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 3.009
The p-value is 0.222 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 8.820
The p-value is 0.012 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 1.543
The p-value is 0.462 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 0.816
The p-value is 0.665 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).
```

Dependent Variable Inorganic arsenic, dissolved
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 1.133
The p-value is 0.568 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 3.714
The p-value is 0.156 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 1.869
The p-value is 0.393 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 0.151
The p-value is 0.927 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 0.492
The p-value is 0.782 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 0.615
The p-value is 0.735 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 6.271
The p-value is 0.043 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 3.487
The p-value is 0.175 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 3.069
The p-value is 0.216 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).

Dependent Variable Inorganic arsenic, dissolved Grouping Variable DEPTH\$

Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 15.497
The p-value is 0.000 assuming chi-square distribution with 2 df .
Wilcoxon rank sum test with continuity correction
NB - NSH W=4, p-value \(=0.00316\)
alternative hypothesis: true location shift is not equal to 0

Wilcoxon rank sum test with continuity correction
NB - NS W = 14, p-value \(=0.0005511\)
alternative hypothesis: true location shift is not equal to 0

Wilcoxon rank sum test with continuity correction
NSH - NS \(W=48, p\)-value \(=0.456\)
alternative hypothesis: true location shift is not equal to 0

P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 3=0.01667\).
```

Dependent Variable Inorganic arsenic, total
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.495
The p-value is 0.781 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 0.000
The p-value is 1.000 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 1.016
The p-value is 0.602 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 1.356
The p-value is 0.508 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 0.320
The p-value is 0.852 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 2.554
The p-value is 0.279 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 4.916
The p-value is 0.086 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 10.030
The p-value is 0.007 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 4.006
The p-value is 0.135 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 4.970
The p-value is 0.083 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).
```

Dependent Variable Barium, dissolved
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 1.256
The p-value is 0.534 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 3.603
The p-value is 0.165 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.653
The p-value is 0.721 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 0.222
The p-value is 0.895 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 0.114
The p-value is 0.945 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 2.310
The p-value is 0.315 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 4.109
The p-value is 0.128 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 8.874
The p-value is 0.012 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 4.122
The p-value is 0.127 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 0.903
The p-value is 0.637 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).
```

Dependent Variable Barium, total
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.091
The p-value is 0.955 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 2.721
The p-value is 0.257 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.471
The p-value is 0.790 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 0.182
The p-value is 0.913 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 0.295
The p-value is 0.863 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 2.563
The p-value is 0.278 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 3.584
The p-value is 0.167 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 7.925
The p-value is 0.019 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 3.122
The p-value is 0.210 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 1.348
The p-value is 0.510 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).
```

Dependent Variable Cadmium, dissolved
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 1.338
The p-value is 0.512 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 1.591
The p-value is 0.451 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.058
The p-value is 0.971 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 1.141
The p-value is 0.565 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 2.204
The p-value is 0.332 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 6.190
The p-value is 0.045 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 5.866
The p-value is 0.053 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 6.494
The p-value is 0.039 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 3.585
The p-value is 0.167 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 0.220
The p-value is 0.896 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).
```

Dependent Variable Cadmium, total
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.047
The p-value is 0.977 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 1.397
The p-value is 0.497 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 1.010
The p-value is 0.603 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 0.492
The p-value is 0.782 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 2.879
The p-value is 0.237 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 1.352
The p-value is 0.509 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 5.102
The p-value is 0.078 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 7.600
The p-value is 0.022 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 0.478
The p-value is 0.787 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 1.203
The p-value is 0.548 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).
```

Dependent Variable Calcium, total
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.225
The p-value is 0.893 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 2.803
The p-value is 0.246 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.839
The p-value is 0.657 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 0.202
The p-value is 0.904 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 0.686
The p-value is 0.710 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 0.174
The p-value is 0.917 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 1.007
The p-value is 0.604 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 1.884
The p-value is 0.390 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 2.012
The p-value is 0.366 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 0.483
The p-value is 0.785 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).
```

Dependent Variable Cerium, total
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.115
The p-value is 0.944 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 4.333
The p-value is 0.115 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.979
The p-value is 0.613 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 1.800
The p-value is 0.407 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 6.753
The p-value is 0.034 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 7.636
The p-value is 0.022 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 9.529
The p-value is 0.009 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 1.196
The p-value is 0.550 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 8=0.00625\).
```

Dependent Variable Cesium, dissolved
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 1.417
The p-value is 0.492 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 0.000
The p-value is 1.000 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.618
The p-value is 0.734 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 0.000
The p-value is 1.000 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 0.412
The p-value is 0.814 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 0.520
The p-value is 0.771 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 6.562
The p-value is 0.038 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 3.279
The p-value is 0.194 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 8=0.00625\).

Dependent Variable Cesium, total
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
\begin{tabular}{lcccc} 
& Df & Sum Sq Mean Sq F value \(\operatorname{Pr}(>F)\) \\
MET\$Depth[MET\$Transect=="CAN1"] & 20.00810 .004065 & 0.166 & 0.848 \\
Residuals & 150.36700 .024465 & &
\end{tabular}

Results for TRANSECT\$ = TC10
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & Sum Sq & Mean Sq & F value & \(\operatorname{Pr}(>F)\) \\
\hline MET\$Depth[MET\$Transect=="TC10"] & 2 & 0.01034 & 0.005168 & 0.5 & 0.65 \\
\hline Residuals & & 30.03101 & 10.01033 & & \\
\hline \multicolumn{6}{|l|}{Results for TRANSECT\$ = TC1} \\
\hline & \multicolumn{5}{|l|}{Df Sum Sq Mean Sq F value \(\operatorname{Pr}(>F)\)} \\
\hline MET\$Depth[MET\$Transect=="TC1"] & \multicolumn{5}{|l|}{20.007440 .003720 .368 0.697} \\
\hline Residuals & \multicolumn{5}{|c|}{210.212440 .01012} \\
\hline \multicolumn{6}{|l|}{Results for TRANSECT\$ = TC2} \\
\hline \multicolumn{6}{|l|}{Insufficient replication for comparisons (one sample per depth)} \\
\hline
\end{tabular}

Results for TRANSECT\$ = TC3
Df Sum Sq Mean Sq F value \(\operatorname{Pr}(>F)\)
MET\$Depth[MET\$Transect=="TC3"] \(20.024290 .012145 \quad 2.08 \quad 0.144\)
Residuals
270.157620 .005838

Results for TRANSECT\$ = TC4
Df Sum Sq Mean Sq F value \(\operatorname{Pr}(>F)\)
MET\$Depth[MET\$Transect=="TC4"] \(20.22040 .11019 \quad 3.5460 .0429\) *
Residuals
270.83910 .03108

Tukey multiple comparisons of means 95\% family-wise confidence level
diff lwr upr p adj
NS-NB -0.15051500-0.32895383 0.02792384 0.1105333
NSH-NB 0.05738917-0.16115288 0.27593122 0.7933379
NSH-NS 0.20790417 -0.01063788 0.42644622 0.0645718
Results for TRANSECT\$ = TC6
\begin{tabular}{lccc} 
& Df Sum Sq Mean Sq F value \(\operatorname{Pr}(>F)\) \\
MET\$Depth[MET\$Transect=="TC6"] & 20.35580 .17790 & 3.90 .0321 * \\
Residuals & 281.27720 .04561 &
\end{tabular}

Tukey multiple comparisons of means \(95 \%\) family-wise confidence level
diff lwr upr p adj
NS-NB -0.01543047 -0.22698184 0.1961209 0.9822148
NSH-NB \(\quad 0.26257376-0.001653820 .52680130 .0516999\)
\begin{tabular}{llllll}
\hline NSH-NS & 0.27800422 & 0.01718618 & 0.5388223 & 0.0349076
\end{tabular}
Results for TRANSECT\$ = TC9
\begin{tabular}{l} 
Df Sum Sq Mean Sq F value \(\operatorname{Pr}(>F)\) \\
20.005050 .002523 \\
\begin{tabular}{l}
140.338 \\
140.104390 .007457
\end{tabular} \\
\hline
\end{tabular}
```

Dependent Variable Cobalt, total
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 1.136
The p-value is 0.567 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 1.397
The p-value is 0.497 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.230
The p-value is 0.891 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 2.451
The p-value is 0.294 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 5.951
The p-value is 0.051 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 6.660
The p-value is 0.036 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 4.995
The p-value is 0.082 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 5.887
The p-value is 0.053 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 0.041
The p-value is 0.980 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 0.386
The p-value is 0.824 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).
```

Dependent Variable Copper, total
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 2.878
The p-value is 0.237 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 0.515
The p-value is 0.773 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.406
The p-value is 0.816 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 6.598
The p-value is 0.037 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 4.128
The p-value is 0.127 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 5.565
The p-value is 0.062 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 8.642
The p-value is 0.013 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 3.207
The p-value is 0.201 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 1.757
The p-value is 0.415 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 2.338
The p-value is 0.311 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).

Dependent Variable Europium, dissolved
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 2.000
The p-value is 0.368 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 2.000
The p-value is 0.368 assuming chi-square distribution with 2 df .
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 3.275
The p-value is 0.194 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 2.700
The p-value is 0.259 assuming chi-square distribution with 2 df .
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 0.585
The p-value is 0.747 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 0.828
The p-value is 0.661 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 4.078
The p-value is 0.130 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 1.406
The p-value is 0.495 assuming chi-square distribution with 2 df .

P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 8=0.00625\).
```

Dependent Variable Europium, total
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 1.429
The p-value is 0.490 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 2.000
The p-value is 0.368 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.001
The p-value is 0.999 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 3.000
The p-value is 0.223 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 1.985
The p-value is 0.371 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 2.270
The p-value is 0.321 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 3.978
The p-value is 0.137 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 3.497
The p-value is 0.174 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 8=0.00625\).
```

Dependent Variable Iron, total
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.292
The p-value is 0.864 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 4.191
The p-value is 0.123 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.364
The p-value is 0.833 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 4.074
The p-value is 0.130 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 5.514
The p-value is 0.063 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 6.855
The p-value is 0.032 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 20.670
The p-value is 0.000 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 8.329
The p-value is 0.016 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 9.592
The p-value is 0.008 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 2.170
The p-value is 0.338 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).

Dependent Variable Iron, total
Grouping Variable DEPTH\$

Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 20.670
The p-value is 0.000 assuming chi-square distribution with 2 df .

Wilcoxon rank sum test with continuity correction NB - NSH \(W=15, p-v a l u e=0.05486\) alternative hypothesis: true location shift is not equal to 0

Wilcoxon rank sum test with continuity correction
NB - NS \(W=139, p-v a l u e=0.0001233\)
alternative hypothesis: true location shift is not equal to 0
```

Wilcoxon rank sum test with continuity correction
NSH - NS W = 72, p-value = 0.0008846
alternative hypothesis: true location shift is not equal to 0

```

P-values reported are not adjusted for multiple comparisons. Adjusted significance level is \(0.05 / 3=0.01667\).
```

Dependent Variable Lanthanum, total
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.153
The p-value is 0.926 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 2.903
The p-value is 0.234 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.415
The p-value is 0.813 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 0.917
The p-value is 0.632 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 4.151
The p-value is 0.125 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 5.893
The p-value is 0.053 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 6.152
The p-value is 0.046 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 0.953
The p-value is 0.621 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 8=0.00625\).
```

Dependent Variable Lead, total
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.114
The p-value is 0.944 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 0.000
The p-value is 1.000 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 1.325
The p-value is 0.516 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 3.401
The p-value is 0.183 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 5.309
The p-value is 0.070 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 1.837
The p-value is 0.399 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 5.449
The p-value is 0.066 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 5.087
The p-value is 0.079 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 9.262
The p-value is 0.010 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 1.459
The p-value is 0.482 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).
```

Dependent Variable Magnesium, dissolved
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.504
The p-value is 0.777 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 2.721
The p-value is 0.257 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.736
The p-value is 0.692 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 1.057
The p-value is 0.589 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 0.744
The p-value is 0.689 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 0.205
The p-value is 0.902 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 0.798
The p-value is 0.671 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 0.228
The p-value is 0.892 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 0.269
The p-value is 0.874 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 0.505
The p-value is 0.777 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).
```

Dependent Variable Magnesium, total
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.319
The p-value is 0.853 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 0.000
The p-value is 1.000 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.135
The p-value is 0.935 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 0.576
The p-value is 0.750 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 3.518
The p-value is 0.172 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 0.907
The p-value is 0.635 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 1.522
The p-value is 0.467 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 0.022
The p-value is 0.989 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 1.968
The p-value is 0.374 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 1.652
The p-value is 0.438 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).
```

Dependent Variable Manganese, total
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 1.116
The p-value is 0.572 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 0.857
The p-value is 0.651 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.215
The p-value is 0.898 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 4.740
The p-value is 0.093 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 7.078
The p-value is 0.029 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 3.686
The p-value is 0.158 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 18.287
The p-value is 0.000 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 6.179
The p-value is 0.046 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 5.200
The p-value is 0.074 assuming chi-square distribution with 2 df .
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 1.607
The p-value is 0.448 assuming chi-square distribution with 2 df .

```

P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).

Dependent Variable Manganese, total
Grouping Variable DEPTH\$

Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 18.287
The p-value is 0.000 assuming chi-square distribution with 2 df .
Wilcoxon rank sum test with continuity correction NB - NSH \(\quad W=37, p\)-value \(=0.9626\) alternative hypothesis: true location shift is not equal to 0
```

Wilcoxon rank sum test with continuity correction
NB - NS W = 137, p-value = 0.0001962
alternative hypothesis: true location shift is not equal to 0

```
```

Wilcoxon rank sum test with continuity correction
NSH - NS W = 72, p-value = 0.0008846
alternative hypothesis: true location shift is not equal to 0

```

P-values reported are not adjusted for multiple comparisons. Adjusted significance level is \(0.05 / 3=0.01667\).
```

Dependent Variable Molybdenum, dissolved
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.856
The p-value is 0.652 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 3.529
The p-value is 0.171 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 1.228
The p-value is 0.541 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 0.610
The p-value is 0.737 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 0.029
The p-value is 0.986 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 0.081
The p-value is 0.960 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 0.551
The p-value is 0.759 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 0.123
The p-value is 0.940 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 0.895
The p-value is 0.639 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 2.264
The p-value is 0.322 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).
```

Dependent Variable Molybdenum, total
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 3.287
The p-value is 0.193 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 0.857
The p-value is 0.651 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.899
The p-value is 0.638 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 0.490
The p-value is 0.783 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 0.174
The p-value is 0.917 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 5.000
The p-value is 0.082 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 0.115
The p-value is 0.944 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 1.178
The p-value is 0.555 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 0.822
The p-value is 0.663 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 0.921
The p-value is 0.631 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).
```

Dependent Variable Nickel, dissolved
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.380
The p-value is 0.827 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 4.571
The p-value is 0.102 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.971
The p-value is 0.616 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 1.079
The p-value is 0.583 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 2.282
The p-value is 0.320 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 3.600
The p-value is 0.165 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 7.583
The p-value is 0.023 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 11.809
The p-value is 0.003 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 10.081
The p-value is 0.006 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 1.367
The p-value is 0.505 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).

Dependent Variable Nickel, dissolved
Grouping Variable DEPTH\$

Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 11.809
The p-value is 0.003 assuming chi-square distribution with 2 df .
Wilcoxon rank sum test with continuity correction
NB - NSH \(W=4, ~ p-v a l u e=0.003144\)
alternative hypothesis: true location shift is not equal to 0
```

Dependent Variable Nickel, total
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.432
The p-value is 0.806 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 1.591
The p-value is 0.451 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.495
The p-value is 0.781 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 1.498
The p-value is 0.473 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 5.001
The p-value is 0.082 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 8.898
The p-value is 0.012 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 8.168
The p-value is 0.017 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 9.298
The p-value is 0.010 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 1.964
The p-value is 0.375 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).

Dependent Variable Nickel, total
Grouping Variable DEPTH\$

Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 11.163
The p-value is 0.004 assuming chi-square distribution with 2 df .
Wilcoxon rank sum test with continuity correction
NB - NSH \(W=2, ~ p-v a l u e=0.001694\)
alternative hypothesis: true location shift is not equal to 0

Wilcoxon rank sum test with continuity correction
NB - NS \(\quad W=54, p\)-value \(=0.2009\)
alternative hypothesis: true location shift is not equal to 0
```

Wilcoxon rank sum test with continuity correction NSH - NS $W=67$, p-value $=0.01587$
alternative hypothesis: true location shift is not equal to 0

```

P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 3=0.01667\).
```

Dependent Variable Potassium, dissolved
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.799
The p-value is 0.671 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 0.857
The p-value is 0.651 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.658
The p-value is 0.720 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 1.273
The p-value is 0.529 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 0.131
The p-value is 0.936 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 3.157
The p-value is 0.206 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 2.711
The p-value is 0.258 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 4.367
The p-value is 0.113 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 2.057
The p-value is 0.358 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 1.099
The p-value is 0.577 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).
```

Dependent Variable Potassium, total
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 1.731
The p-value is 0.421 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 3.429
The p-value is 0.180 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.659
The p-value is 0.719 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 0.606
The p-value is 0.739 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 4.990
The p-value is 0.082 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 0.919
The p-value is 0.631 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 5.258
The p-value is 0.072 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 5.757
The p-value is 0.056 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 1.338
The p-value is 0.512 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 6.214
The p-value is 0.045 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).

Dependent Variable Rubidium, dissolved
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.806
The p-value is 0.668 assuming chi-square distribution with 2 df .
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 0.968
The p-value is 0.616 assuming chi-square distribution with 2 df .
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.077
The p-value is 0.962 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 1.800
The p-value is 0.407 assuming chi-square distribution with 2 df .
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 2.044
The p-value is 0.360 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 0.217
The p-value is 0.897 assuming chi-square distribution with 2 df .
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 3.389
The p-value is 0.184 assuming chi-square distribution with 2 df .

Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 1.825
The p-value is 0.402 assuming chi-square distribution with 2 df .

P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 8=0.00625\).
```

Dependent Variable Rubidium, total
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.603
The p-value is 0.740 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 3.333
The p-value is 0.189 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.223
The p-value is 0.895 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 1.800
The p-value is 0.407 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 2.572
The p-value is 0.276 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 3.989
The p-value is 0.136 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 5.698
The p-value is 0.058 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 3.103
The p-value is 0.212 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 8=0.00625\).
```

Dependent Variable Scandium, dissolved
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.105
The p-value is 0.949 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 3.603
The p-value is 0.165 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.431
The p-value is 0.806 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 1.800
The p-value is 0.407 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 0.044
The p-value is 0.978 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 0.866
The p-value is 0.649 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 5.362
The p-value is 0.069 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 0.479
The p-value is 0.787 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 8=0.00625\).
```

Dependent Variable Scandium, total
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.179
The p-value is 0.915 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 2.258
The p-value is 0.323 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.215
The p-value is 0.898 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 2.700
The p-value is 0.259 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 0.387
The p-value is 0.824 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 0.400
The p-value is 0.819 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 2.629
The p-value is 0.269 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 0.763
The p-value is 0.683 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 8=0.00625\).
```

Dependent Variable Sodium, dissolved
Grouping Variable DEPTH\$
Results for TRANSECT\$ = CAN1
Kruskal-Wallis Test Statistic: 0.495
The p-value is 0.781 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC10
Kruskal-Wallis Test Statistic: 2.000
The p-value is 0.368 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC1
Kruskal-Wallis Test Statistic: 0.030
The p-value is 0.985 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC2
Kruskal-Wallis Test Statistic: 3.370
The p-value is 0.185 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC3
Kruskal-Wallis Test Statistic: 0.133
The p-value is 0.936 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC4
Kruskal-Wallis Test Statistic: 0.162
The p-value is 0.922 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC5
Kruskal-Wallis Test Statistic: 2.759
The p-value is 0.252 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC6
Kruskal-Wallis Test Statistic: 2.519
The p-value is 0.284 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC7
Kruskal-Wallis Test Statistic: 0.522
The p-value is 0.770 assuming chi-square distribution with 2 df.
Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 0.365
The p-value is 0.833 assuming chi-square distribution with 2 df.

```
P-values reported are not adjusted for multiple comparisons.
Adjusted significance level is \(0.05 / 10=0.005\).

Appendix G2c.
Tukey's multiple comparisons and Wilcoxon tests to identify specific side differences

Dependent Variable Arsenic, dissolved Grouping Variable SIDE\$

Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 7.993
The p-value is 0.005 assuming chi-square distribution with 1 df .
Wilcoxon rank sum test with continuity correction
data: \begin{tabular}{l} 
ASdis[MET\$Transect \(==~ " T C 9 " ~ \& ~ M E T \$ S i d e ~==~ " L "] ~ a n d ~\)
\end{tabular}
ASdis[MET\$Transect == "TC9" \& MET\$Side == "R"]
\begin{tabular}{l} 
W \(=65, ~ p-v a l u e ~=~ 0.005463\) \\
alternative hypothesis: true location shift is not equal to 0
\end{tabular}

Dependent Variable Inorganic arsenic, dissolved Grouping Variable SIDE\$

Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 9.199
The p-value is 0.002 assuming chi-square distribution with 1 df .
Wilcoxon rank sum test with continuity correction
data: \(\quad\)\begin{tabular}{l} 
IASdis[MET\$Transect \(==~ " T C 9 " ~ \& ~ M E T \$ S i d e ~==~ " L "] ~ a n d ~\)
\end{tabular}
IASdis[MET\$Transect == "TC9" \& MET\$Side == "R"]
W=67.5, p-value \(=0.002838\)
alternative hypothesis: true location shift is not equal to 0

Dependent Variable Barium, dissolved
Grouping Variable SIDE\$

Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 10.704
The p-value is 0.001 assuming chi-square distribution with 1 df .
Wilcoxon rank sum test with continuity correction
data: \(\quad\)\begin{tabular}{l} 
BAdis[MET\$Transect \(==~ " T C 9 " ~ \& ~ M E T \$ S i d e ~==~ " L "] ~ a n d ~\)
\end{tabular}
BAdis[MET\$Transect \(==~ " T C 9 " ~ \& ~ M E T \$ S i d e ~==~ " R "] ~\)

Dependent Variable Barium, total
Grouping Variable SIDE\$

Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 12.000
The p-value is 0.001 assuming chi-square distribution with 1 df .


Dependent Variable Magnesium, total
Grouping Variable SIDE\$

Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 8.898
The p-value is 0.003 assuming chi-square distribution with 1 df .

> Wilcoxon rank sum test with continuity correction
> data: \(\quad\) MGtot[MET\$Transect \(==\) "TC9" \& MET\$Side \(==\) "L"] and MGtot[MET\$Transect \(==\) "TC9" \& MET\$Side \(==~ " R "]\)
> \(W=67, ~ p-v a l u e=0.003337\)
> alternative hypothesis: true location shift is not equal to 0

Dependent Variable Manganese, total
Grouping Variable SIDE\$

Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 8.920
The \(p\)-value is 0.003 assuming chi-square distribution with 1 df .
```

 Wilcoxon rank sum test with continuity correction
 data: MNtot[MET\$Transect == "TC9" \& MET\$Side == "L"] and
MNtot[MET\$Transect == "TC9" \& MET\$Side == "R"]
$W=67, p$-value $=0.003298$
alternative hypothesis: true location shift is not equal to 0

```

Dependent Variable Strontium, total
Grouping Variable SIDE\$

Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 7.806
The p-value is 0.005 assuming chi-square distribution with 1 df .

> \begin{tabular}{ll}
> \hline Wilcoxon rank sum test with continuity correction \\ data: & STtot[MET\$Transect \(==\) "TC9" \& MET\$Side \(==~ " L "] ~ a n d ~\) \\
> & STtot[MET\$Transect \(==~ " T C 9 " ~ \& ~ M E T \$ S i d e ~==~ " R "] ~\)
> \end{tabular}

Dependent Variable Vanadium, dissolved
Grouping Variable SIDE\$

Results for TRANSECT\$ = TC9
Kruskal-Wallis Test Statistic: 8.374
The p-value is 0.004 assuming chi-square distribution with 1 df .
```

 Wilcoxon rank sum test with continuity correction
 data: Vdis[MET\$Transect == "TC9" \& MET\$Side == "L"] and
Vdis[MET\$Transect == "TC9" \& MET\$Side == "R"]
$W=66, p$-value $=0.004432$
alternative hypothesis: true location shift is not equal to 0

```

Table H-1. Field Measurements made during the First Round of Surface Water Sampling (Fall 2009)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Survey & Sample Number & Survey Station & Date & Sample ID & Field Replicate & Depth to Water Level ( m total) & Oxidation Reduction Potential ( \(\mathrm{m} V\) total) & Temperature (degC total) & \begin{tabular}{l}
Conductivity \\
( \(\mu \mathrm{S} / \mathrm{cm}\) total)
\end{tabular} & \[
\begin{gathered}
\text { Dissolved } \\
\text { Oxygen } \\
(\mathrm{mg} / \mathrm{L} \text { total) }
\end{gathered}
\] & Turbidity (NTU total) & \[
\begin{gathered}
\mathrm{pH} \\
(\mathrm{pH} \text { total })
\end{gathered}
\] \\
\hline TECKSWR1 & SWNB-1-CAN1-LA & CAN1-NB-L & 10/9/2009 & SWNB-1-CAN1-LA & 1 & 3 & -130 & 13.5 & 118 & 8.6 & 0 & 8.2 \\
\hline TECKSWR1 & SWNB-1-CAN1-LB & CAN1-NB-L & 10/9/2009 & SWNB-1-CAN1-LB & 2 & 13 & -143 & 13.5 & 118 & 8.5 & 0 & 8.3 \\
\hline TECKSWR1 & SWNB-1-CAN1-LC & CAN1-NB-L & 10/9/2009 & SWNB-1-CAN1-LC & 3 & 13 & -149 & 13.56 & 118 & 8.63 & 0 & 8.4 \\
\hline TECKSWR1 & SWNB-1-CAN1-RA & CAN1-NB-R & 10/9/2009 & SWNB-1-CAN1-RA & 1 & 3 & -162 & 13.7 & 119 & 8.7 & 0 & 8.2 \\
\hline TECKSWR1 & SWNB-1-CAN1-RB & CAN1-NB-R & 10/9/2009 & SWNB-1-CAN1-RB & 2 & 12 & -163 & 13.67 & 119 & 8.6 & 0 & 8.23 \\
\hline TECKSWR1 & SWNB-1-CAN1-RC & CAN1-NB-R & 10/9/2009 & SWNB-1-CAN1-RC & 3 & 12 & -160 & 13.65 & 119 & 8.71 & 0 & 8.2 \\
\hline TECKSWR1 & SWNB-1-TC10-L & TC10-NB-L & 10/10/2009 & SWNB-1-TC10-L & 0 & 11 & -63 & 13.31 & 119 & 8.76 & & 8.16 \\
\hline TECKSWR1 & SWNB-1-TC10-R & TC10-NB-R & 10/10/2009 & SWNB-1-TC10-R & 0 & 6 & -135 & 13.15 & 120 & 8.69 & 0 & 8.07 \\
\hline TECKSWR1 & SWNB-1-TC1-L & TC1-NB-L & 10/13/2009 & SWNB-1-TC1-L & 0 & 7 & -778 & 12.4 & 100 & 8.7 & & 8.1 \\
\hline TECKSWR1 & SWNB-1-TC1-M & TC1-NB-M & 10/12/2009 & SWNB-1-TC1-M & 0 & & & & & & & \\
\hline TECKSWR1 & SWNB-1-TC1-R & TC1-NB-R & 10/12/2009 & SWNB-1-TC1-R & 0 & 3 & -136 & 13.14 & 108 & 8.7 & 0 & 8.09 \\
\hline TECKSWR1 & SWNB-1-TC2-L & TC2-NB-L & 10/14/2009 & SWNB-1-TC2-L & 0 & 68.7 & -779 & 11.83 & 107 & 9.1 & & 8.28 \\
\hline TECKSWR1 & SWNB-1-TC2-M & TC2-NB-M & 10/14/2009 & SWNB-1-TC2-M & 0 & 55 & -780 & 11.85 & 107 & 8.98 & & 8.24 \\
\hline TECKSWR1 & SWNB-1-TC2-R & TC2-NB-R & 10/13/2009 & SWNB-1-TC2-R & 0 & 48.5 & -545 & 12.29 & 101 & 8.9 & & 8.20 \\
\hline TECKSWR1 & SWNB-1-TC3-L1A & TC3-NB-L1 & 10/16/2009 & SWNB-1-TC3-L1A & 1 & 68.1 & -783 & 11.92 & 105 & 8.98 & & 8.26 \\
\hline TECKSWR1 & SWNB-1-TC3-L1B & TC3-NB-L1 & 10/16/2009 & SWNB-1-TC3-L1B & 2 & 70.9 & -784 & 11.9 & 106 & 9 & & 8.27 \\
\hline TECKSWR1 & SWNB-1-TC3-L1C & TC3-NB-L1 & 10/16/2009 & SWNB-1-TC3-L1C & 3 & 72.6 & -784 & 11.8 & 106 & 8.9 & & 8.29 \\
\hline TECKSWR1 & SWNB-1-TC3-L2A & TC3-NB-L2 & 10/16/2009 & SWNB-1-TC3-L2A & 1 & 59.7 & -784 & 12.2 & 105 & 9.16 & & 8.24 \\
\hline TECKSWR1 & SWNB-1-TC3-L2B & TC3-NB-L2 & 10/16/2009 & SWNB-1-TC3-L2B & 2 & 60.3 & -782 & 12.17 & 105 & 9.17 & & 8.23 \\
\hline TECKSWR1 & SWNB-1-TC3-L2C & TC3-NB-L2 & 10/16/2009 & SWNB-1-TC3-L2C & 3 & 60.5 & -781 & 12.17 & 104 & 8.66 & & 8.25 \\
\hline TECKSWR1 & SWNB-1-TC3-MA & TC3-NB-M & 10/15/2009 & SWNB-1-TC3-MA & 1 & 35 & -736 & 12.1 & 105 & 8.7 & & 8.28 \\
\hline TECKSWR1 & SWNB-1-TC3-MB & TC3-NB-M & 10/15/2009 & SWNB-1-TC3-MB & 2 & 83.8 & -785 & 12.2 & 105.3 & 8.7 & & 8.28 \\
\hline TECKSWR1 & SWNB-1-TC3-MC & TC3-NB-M & 10/15/2009 & SWNB-1-TC3-MC & 3 & 81 & -784 & 12.14 & 105.5 & 8.8 & & 8.28 \\
\hline TECKSWR1 & SWNB-1-TC3-RA & TC3-NB-R & 10/15/2009 & SWNB-1-TC3-RA & 1 & 101 & & 12.12 & 104.5 & 8.99 & & 8.34 \\
\hline TECKSWR1 & SWNB-1-TC3-RB & TC3-NB-R & 10/15/2009 & SWNB-1-TC3-RB & 2 & 94 & -73 & 12.11 & 104.5 & 8.84 & & 8.31 \\
\hline TECKSWR1 & SWNB-1-TC3-RC & TC3-NB-R & 10/15/2009 & SWNB-1-TC3-RC & 3 & 93 & -784 & 12.15 & 104.2 & 8.97 & & 8.3 \\
\hline TECKSWR1 & SWNB-1-TC4-L1 & TC4-NB-L1 & 10/17/2009 & SWNB-1-TC4-L1 & 0 & 70 & -792 & 13.6 & 101 & 8.07 & & 8.3 \\
\hline TECKSWR1 & SWNB-1-TC4-L2 & TC4-NB-L2 & 10/17/2009 & SWNB-1-TC4-L2 & 0 & 73 & -793 & 13.7 & 101 & 8.3 & & 7.8 \\
\hline TECKSWR1 & SWNB-1-TC4-M & TC4-NB-M & 10/17/2009 & SWNB-1-TC4-M & 0 & 175.0 & -790 & 13.16 & 102 & 8.03 & & 8.2 \\
\hline TECKSWR1 & SWNB-1-TC4-R & TC4-NB-R & 10/17/2009 & SWNB-1-TC4-R & 0 & 140 & -788 & 13.19 & 101 & 8.27 & & 8.13 \\
\hline TECKSWR1 & SWNB-1-TC5-L1 & TC5-NB-L1 & 10/18/2009 & SWNB-1-TC5-L1 & 0 & 93.1 & -788 & 15.7 & 99 & 8.1 & & 8.27 \\
\hline TECKSWR1 & SWNB-1-TC5-L2 & TC5-NB-L2 & 10/18/2009 & SWNB-1-TC5-L2 & 0 & 84.2 & -791 & 15.74 & 99 & 8.5 & & 8.3 \\
\hline TECKSWR1 & SWNB-1-TC5-M & TC5-NB-M & 10/18/2009 & SWNB-1-TC5-M & 0 & 192 & -788 & 15 & 98 & 7.6 & & 8.2 \\
\hline TECKSWR1 & SWNB-1-TC5-R & TC5-NB-R & 10/18/2009 & SWNB-1-TC5-R & 0 & 116 & -789 & 15.6 & 99 & 7.7 & & 8.3 \\
\hline TECKSWR1 & SWNB-1-TC6-LA & TC6-NB-L & 10/20/2009 & SWNB-1-TC6-LA & 1 & 81.0 & -792 & 16.06 & 167 & 8.5 & & 8.22 \\
\hline TECKSWR1 & SWNB-1-TC6-LB & TC6-NB-L & 10/20/2009 & SWNB-1-TC6-LB & 2 & 69 & -791 & 16.07 & 167 & 9.03 & & 8.24 \\
\hline TECKSWR1 & SWNB-1-TC6-LC & TC6-NB-L & 10/20/2009 & SWNB-1-TC6-LC & 3 & 73 & -794 & 16.0 & 166 & 9.80 & & 8.2 \\
\hline TECKSWR1 & SWNB-1-TC6-MA & TC6-NB-M & 10/19/2009 & SWNB-1-TC6-MA & 1 & 179 & -784 & 15.3 & 102 & 7.87 & & 8.36 \\
\hline TECKSWR1 & SWNB-1-TC6-MB & TC6-NB-M & 10/19/2009 & SWNB-1-TC6-MB & 2 & 135.5 & -784 & 15.66 & 101 & 8.76 & & 8.42 \\
\hline TECKSWR1 & SWNB-1-TC6-MC & TC6-NB-M & 10/19/2009 & SWNB-1-TC6-MC & 3 & 170.5 & -784 & 15.43 & 101 & 7.94 & & 8.43 \\
\hline TECKSWR1 & SWNB-1-TC6-R1 & TC6-NB-R1 & 10/19/2009 & SWNB-1-TC6-R1 & 0 & 269.2 & -795 & 15.32 & 100 & 7.63 & & 8.41 \\
\hline TECKSWR1 & SWNB-1-TC6-R2 & TC6-NB-R2 & 10/19/2009 & SWNB-1-TC6-R2 & 0 & 73.1 & -792 & 16 & 98 & 7.39 & & 8.29 \\
\hline TECKSWR1 & SWNB-1-TC7-L & TC7-NB-L & 10/20/2009 & SWNB-1-TC7-L & 0 & 155 & -819 & 17.3 & 164 & 9.06 & & 8.78 \\
\hline TECKSWR1 & SWNB-1-TC7-M & TC7-NB-M & 10/20/2009 & SWNB-1-TC7-M & 0 & 236 & -812 & 17.0 & 165 & 7.8 & & 8.5 \\
\hline TECKSWR1 & SWNB-1-TC7-R & TC7-NB-R & 10/20/2009 & SWNB-1-TC7-R & 0 & 183 & -798 & 17.2 & 163 & 8.2 & & 8.2 \\
\hline TECKSWR1 & SWNB-1-TC9-L & TC9-NB-L & 10/11/2009 & SWNB-1-TC9-L & 0 & 27.5 & -122 & 12.94 & 126 & 8.61 & & 8.16 \\
\hline TECKSWR1 & SWNB-1-TC9-R & TC9-NB-R & 10/11/2009 & SWNB-1-TC9-R & 0 & 4.0 & -127 & 12.85 & 124 & 8.6 & 538 & 8.1 \\
\hline TECKSWR1 & SWNS-1-CAN1-LA & CAN1-NS-L & 10/9/2009 & SWNS-1-CAN1-LA & 1 & 1 & -104 & 13.46 & 118 & 8.6 & 388 & 7.9 \\
\hline TECKSWR1 & SWNS-1-CAN1-LB & CAN1-NS-L & 10/9/2009 & SWNS-1-CAN1-LB & 2 & 1 & -129 & 13.46 & 118 & 8.6 & 388 & 7.93 \\
\hline TECKSWR1 & SWNS-1-CAN1-LC & CAN1-NS-L & 10/9/2009 & SWNS-1-CAN1-LC & 3 & 1 & -128 & 13.47 & 118 & 8.6 & 388 & 7.94 \\
\hline TECKSWR1 & SWNS-1-CAN1-RA & CAN1-NS-R & 10/9/2009 & SWNS-1-CAN1-RA & 1 & 1 & -148 & 13.65 & 118 & 8.72 & 152 & 8.1 \\
\hline TECKSWR1 & SWNS-1-CAN1-RB & CAN1-NS-R & 10/9/2009 & SWNS-1-CAN1-RB & 2 & 1 & -159 & 13.6 & 118 & 8.72 & 152 & 8.1 \\
\hline TECKSWR1 & SWNS-1-CAN1-RC & CAN1-NS-R & 10/9/2009 & SWNS-1-CAN1-RC & 3 & 1 & -161 & 13.7 & 118 & 8.7 & 149 & 8.1 \\
\hline TECKSWR1 & SWNS-1-TC10-L & TC10-NS-L & 10/10/2009 & SWNS-1-TC10-L & 0 & 1 & -109 & 13.26 & 118 & 8.77 & 25 & 8 \\
\hline TECKSWR1 & SWNS-1-TC10-R & TC10-NS-R & 10/10/2009 & SWNS-1-TC10-R & 0 & 1 & -119 & 13.11 & 119 & 8.7 & & 7.9 \\
\hline TECKSWR1 & SWNS-1-TC1-L & TC1-NS-L & 10/13/2009 & SWNS-1-TC1-L & 0 & 2 & -786 & 12.4 & 97 & 7 & & 8 \\
\hline TECKSWR1 & SWNS-1-TC1-M & TC1-NS-M & 10/12/2009 & SWNS-1-TC1-M & 0 & 1 & -178 & 12.44 & 138 & 8.95 & & 8.18 \\
\hline
\end{tabular}

Table H-1. Field Measurements made during the First Round of Surface Water Sampling (Fall 2009)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Survey & Sample Number & Survey Station & Date & Sample ID & Field Replicate & Depth to Water Level ( m total) & Oxidation Reduction Potential ( mV total) & Temperature (degC total) & \begin{tabular}{l}
Conductivity \\
( \(\mu \mathrm{S} / \mathrm{cm}\) total)
\end{tabular} & \[
\begin{gathered}
\text { Dissolved } \\
\text { Oxygen } \\
(\mathrm{mg} / \mathrm{L} \text { total) }
\end{gathered}
\] & Turbidity (NTU total) & \[
\begin{gathered}
\mathrm{pH} \\
(\mathrm{pH} \text { total) }
\end{gathered}
\] \\
\hline TECKSWR1 & SWNS-1-TC1-R & TC1-NS-R & 10/12/2009 & SWNS-1-TC1-R & 0 & 1 & -790 & 12.52 & 109 & 8.34 & & 8.3 \\
\hline TECKSWR1 & SWNS-1-TC2-L & TC2-NS-L & 10/14/2009 & SWNS-1-TC2-L & 0 & 1 & -774 & 11.82 & 106 & 9.02 & & 8.27 \\
\hline TECKSWR1 & SWNS-1-TC2-M & TC2-NS-M & 10/14/2009 & SWNS-1-TC2-M & 0 & 1 & -781 & 11.9 & 107 & 9 & & 8.3 \\
\hline TECKSWR1 & SWNS-1-TC2-R & TC2-NS-R & 10/13/2009 & SWNS-1-TC2-R & 0 & 4 & -781 & 12.2 & 105 & 7.4 & & 8.2 \\
\hline TECKSWR1 & SWNS-1-TC3-L1A & TC3-NS-L1 & 10/16/2009 & SWNS-1-TC3-L1A & 1 & 1 & -144 & 12.13 & 117 & 8.8 & & 8.26 \\
\hline TECKSWR1 & SWNS-1-TC3-L1B & TC3-NS-L1 & 10/16/2009 & SWNS-1-TC3-L1B & 2 & 1 & -169 & 12.1 & 118 & 8.8 & & 8.24 \\
\hline TECKSWR1 & SWNS-1-TC3-L1C & TC3-NS-L1 & 10/16/2009 & SWNS-1-TC3-L1C & 3 & 1 & -170 & 11.74 & 118 & 8.98 & & 7.75 \\
\hline TECKSWR1 & SWNS-1-TC3-L2A & TC3-NS-L2 & 10/16/2009 & SWNS-1-TC3-L2A & 1 & 1.09 & -187 & 12.27 & 117 & 8.77 & & 8.2 \\
\hline TECKSWR1 & SWNS-1-TC3-L2B & TC3-NS-L2 & 10/16/2009 & SWNS-1-TC3-L2B & 2 & 1.09 & -181 & 12.25 & 117 & 8.77 & & 8.2 \\
\hline TECKSWR1 & SWNS-1-TC3-L2C & TC3-NS-L2 & 10/16/2009 & SWNS-1-TC3-L2C & 3 & 1.09 & -177 & 12.26 & 117 & 8.78 & & 8.20 \\
\hline TECKSWR1 & SWNS-1-TC3-MA & TC3-NS-M & 10/15/2009 & SWNS-1-TC3-MA & 1 & 2 & -784 & 12.3 & 104 & 8.9 & & 8.35 \\
\hline TECKSWR1 & SWNS-1-TC3-MB & TC3-NS-M & 10/16/2009 & SWNS-1-TC3-MB & 2 & 1 & -783 & 12.04 & 104 & 8.9 & & 8.13 \\
\hline TECKSWR1 & SWNS-1-TC3-MC & TC3-NS-M & 10/16/2009 & SWNS-1-TC3-MC & 3 & 1 & -779 & 12.08 & 104 & 8.57 & & 8.3 \\
\hline TECKSWR1 & SWNS-1-TC3-RA & TC3-NS-R & 10/14/2009 & SWNS-1-TC3-RA & 1 & 2 & -783 & 12.3 & 104 & 9 & & 8.3 \\
\hline TECKSWR1 & SWNS-1-TC3-RB & TC3-NS-R & 10/14/2009 & SWNS-1-TC3-RB & 2 & 1 & -782 & 12.3 & 104 & 8.73 & & 8.3 \\
\hline TECKSWR1 & SWNS-1-TC3-RC & TC3-NS-R & 10/14/2009 & SWNS-1-TC3-RC & 3 & 1 & -781 & 12.31 & 105 & 8.7 & & 8.3 \\
\hline TECKSWR1 & SWNS-1-TC4-L1 & TC4-NS-L1 & 10/17/2009 & SWNS-1-TC4-L1 & 0 & 0.95 & -171 & 13.9 & 86 & 8.5 & & 8.2 \\
\hline TECKSWR1 & SWNS-1-TC4-L2 & TC4-NS-L2 & 10/17/2009 & SWNS-1-TC4-L2 & 0 & 36 & -608 & 13.8 & 97 & 8.3 & & 8.3 \\
\hline TECKSWR1 & SWNS-1-TC4-M & TC4-NS-M & 10/17/2009 & SWNS-1-TC4-M & 0 & 1 & -792 & 14 & 101 & 8 & & 8.4 \\
\hline TECKSWR1 & SWNS-1-TC4-R & TC4-NS-R & 10/17/2009 & SWNS-1-TC4-R & 0 & 3 & -779 & 13.78 & 100 & 8 & & 8 \\
\hline TECKSWR1 & SWNS-1-TC5-L1 & TC5-NS-L1 & 10/18/2009 & SWNS-1-TC5-L1 & 0 & 1.2 & -182 & 16.13 & 87 & 7.72 & 0 & 8.10 \\
\hline TECKSWR1 & SWNS-1-TC5-L2 & TC5-NS-L2 & 10/18/2009 & SWNS-1-TC5-L2 & 0 & 1.02 & 111 & 16.11 & 87 & 8.0 & 0 & 8.13 \\
\hline TECKSWR1 & SWNS-1-TC5-M & TC5-NS-M & 10/18/2009 & SWNS-1-TC5-M & 0 & 4 & -790 & 16 & 99 & 7.4 & & 8.4 \\
\hline TECKSWR1 & SWNS-1-TC5-R & TC5-NS-R & 10/18/2009 & SWNS-1-TC5-R & 0 & 4 & -789 & 15.87 & 100 & 7.4 & & 8.2 \\
\hline TECKSWR1 & SWNS-1-TC6-L & TC6-NS-L & 10/20/2009 & SWNS-1-TC6-L & 0 & 4 & -796 & 16.1 & 166 & 7.5 & & 8.3 \\
\hline TECKSWR1 & SWNS-1-TC6-MA & TC6-NS-M & 10/19/2009 & SWNS-1-TC6-MA & 1 & 1 & -66 & 16.2 & 88 & 7.63 & 0 & 8 \\
\hline TECKSWR1 & SWNS-1-TC6-MB & TC6-NS-M & 10/19/2009 & SWNS-1-TC6-MB & 2 & 1.04 & -76 & 16.22 & 87 & 7.62 & 0 & 8.01 \\
\hline TECKSWR1 & SWNS-1-TC6-MC & TC6-NS-M & 10/19/2009 & SWNS-1-TC6-MC & 3 & 1.04 & -76 & 16.22 & 87 & 7.62 & 0 & 8.01 \\
\hline TECKSWR1 & SWNS-1-TC6-R1 & TC6-NS-R1 & 10/19/2009 & SWNS-1-TC6-R1 & 0 & 3.9 & -788 & 16.24 & 101 & 8.20 & & 8.33 \\
\hline TECKSWR1 & SWNS-1-TC6-RA2 & TC6-NS-R2 & 10/19/2009 & SWNS-1-TC6-RA2 & 0 & 3.7 & -795 & 16.14 & 99 & 7.44 & & 8.38 \\
\hline TECKSWR1 & SWNS-1-TC6-RB2 & TC6-NS-R2 & 10/19/2009 & SWNS-1-TC6-RB2 & 0 & 3.7 & -794 & 16.38 & 99 & 7.38 & & 8.38 \\
\hline TECKSWR1 & SWNS-1-TC6-RC2 & TC6-NS-R2 & 10/19/2009 & SWNS-1-TC6-RC2 & 0 & 3.7 & -794 & 16.38 & 99 & 7.38 & & 8.38 \\
\hline TECKSWR1 & SWNS-1-TC7-L & TC7-NS-L & 10/20/2009 & SWNS-1-TC7-L & 0 & 1 & -178 & 17.35 & 85 & 7.2 & 0 & 7.88 \\
\hline TECKSWR1 & SWNS-1-TC7-M & TC7-NS-M & 10/20/2009 & SWNS-1-TC7-M & 0 & 0.93 & -180 & 17.37 & 85 & 7.25 & 0 & 7.9 \\
\hline TECKSWR1 & SWNS-1-TC7-R & TC7-NS-R & 10/20/2009 & SWNS-1-TC7-R & 0 & 0.90 & 230 & 17.38 & 85 & 7.3 & 0 & 7.92 \\
\hline TECKSWR1 & SWNS-1-TC9-L & TC9-NS-L & 10/11/2009 & SWNS-1-TC9-L & 0 & 0.3 & -103 & 12.8 & 132 & 8.7 & 986 & 8.1 \\
\hline TECKSWR1 & SWNS-1-TC9-R & TC9-NS-R & 10/11/2009 & SWNS-1-TC9-R & 0 & 1 & -119 & 12.8 & 122 & 8.64 & & 7.94 \\
\hline TECKSWR1 & SWNSH-1A-CAN2-L & CAN2-NSH-L & 9/1/2009 & SWNSH-1A-CAN2-L & 0 & & 174 & 20.23 & 79 & 9.7 & 651 & 5.68 \\
\hline TECKSWR1 & SWNSH-1B-CAN2-L & CAN2-NSH-L & 9/8/2009 & SWNSH-1B-CAN2-L & 0 & & 171 & 16.94 & 50 & 10.95 & 205 & 5.51 \\
\hline TECKSWR1 & SWNSH-1-CAN1-LA & CAN1-NSH-L & 10/8/2009 & SWNSH-1-CAN1-LA & 1 & 0.25 & -71 & 13.67 & 118 & 8.67 & 0 & 8.05 \\
\hline TECKSWR1 & SWNSH-1-CAN1-LB & CAN1-NSH-L & 10/8/2009 & SWNSH-1-CAN1-LB & 2 & 0.25 & -132 & 13.81 & 118 & 8.7 & 0 & 8.1 \\
\hline TECKSWR1 & SWNSH-1-CAN1-LC & CAN1-NSH-L & 10/8/2009 & SWNSH-1-CAN1-LC & 3 & 0.25 & -138 & 13.8 & 119 & 8.73 & 0 & 8.1 \\
\hline TECKSWR1 & SWNSH-1-CAN1-RA & CAN1-NSH-R & 10/8/2009 & SWNSH-1-CAN1-RA & 1 & 0.25 & -89 & 13.87 & 119 & 8.73 & 0 & 8.1 \\
\hline TECKSWR1 & SWNSH-1-CAN1-RB & CAN1-NSH-R & 10/8/2009 & SWNSH-1-CAN1-RB & 2 & 0.25 & -166 & 13.85 & 119 & 8.7 & 0 & 8.1 \\
\hline TECKSWR1 & SWNSH-1-CAN1-RC & CAN1-NSH-R & 10/8/2009 & SWNSH-1-CAN1-RC & 3 & 0.25 & -169 & 13.84 & 118 & 8.7 & 0 & 8.1 \\
\hline TECKSWR1 & SWNSH-1C-CAN2-L & CAN2-NSH-L & 9/15/2009 & SWNSH-1C-CAN2-L & 0 & & 162 & 18.44 & 47 & 7.98 & & 6.12 \\
\hline TECKSWR1 & SWNSH-1D-CAN2-L & CAN2-NSH-L & 9/22/2009 & SWNSH-1D-CAN2-L & 0 & & 153 & 17.76 & 46 & 7.47 & 9.2 & 7.35 \\
\hline TECKSWR1 & SWNSH-1E-CAN2-L & CAN2-NSH-L & 9/29/2009 & SWNSH-1E-CAN2-L & 0 & & 179 & 16.99 & 47 & 6.86 & 0 & 6.86 \\
\hline TECKSWR1 & SWNSH-1-TC10-L & TC10-NSH-L & 10/10/2009 & SWNSH-1-TC10-L & 0 & 0.5 & -82 & 13.3 & 118 & 8.8 & 0 & 8.13 \\
\hline TECKSWR1 & SWNSH-1-TC10-R & TC10-NSH-R & 10/10/2009 & SWNSH-1-TC10-R & 0 & 0.25 & -39 & 13.04 & 118 & 8.7 & 3 & 7.7 \\
\hline TECKSWR1 & SWNSH-1-TC1-L & TC1-NSH-L & 10/13/2009 & SWNSH-1-TC1-L & 0 & 0.25 & -202 & 12.2 & 126 & 8.8 & & 8.05 \\
\hline TECKSWR1 & SWNSH-1-TC1-LDISA & TC1-NSH-L & 10/13/2009 & SWNSH-1-TC1-LDISA & 1 & & & & & & & \\
\hline TECKSWR1 & SWNSH-1-TC1-LDISB & TC1-NSH-L & 10/13/2009 & SWNSH-1-TC1-LDISB & 2 & 0.25 & -200 & 12.2 & 126 & 8.84 & & 8.10 \\
\hline TECKSWR1 & SWNSH-1-TC1-LDISC & TC1-NSH-L & 10/13/2009 & SWNSH-1-TC1-LDISC & 3 & 0.25 & -182 & 12.3 & 130 & 8.9 & & 8.15 \\
\hline TECKSWR1 & SWNSH-1-TC1-R & TC1-NSH-R & 10/12/2009 & SWNSH-1-TC1-R & 0 & 0.23 & -182 & 12.46 & 138 & 8.95 & & 8.2 \\
\hline TECKSWR1 & SWNSH-1-TC1-RDISA & TC1-NSH-R & 10/12/2009 & SWNSH-1-TC1-RDISA & 1 & 0.22 & -194 & 12.46 & 138 & 8.96 & & 8.2 \\
\hline TECKSWR1 & SWNSH-1-TC1-RDISB & TC1-NSH-R & 10/12/2009 & SWNSH-1-TC1-RDISB & 2 & 0.22 & -194 & 12.46 & 138 & 8.96 & & 8.2 \\
\hline
\end{tabular}

Table H-1. Field Measurements made during the First Round of Surface Water Sampling (Fall 2009)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Survey & Sample Number & Survey Station & Date & Sample ID & Field Replicate & Depth to Water Level ( m total) & Oxidation Reduction Potential (mV total) & Temperature (degC total) & Conductivity ( \(\mu \mathrm{S} / \mathrm{cm}\) total) & Dissolved Oxygen (mg/L total) & Turbidity (NTU total) & \[
\begin{gathered}
\mathrm{pH} \\
(\mathrm{pH} \text { total }) \\
\hline
\end{gathered}
\] \\
\hline TECKSWR1 & SWNSH-1-TC1-RDISC & TC1-NSH-R & 10/12/2009 & SWNSH-1-TC1-RDISC & 3 & 0.22 & -194 & 12.46 & 138 & 8.96 & & 8.2 \\
\hline TECKSWR1 & SWNSH-1-TC2-L & TC2-NSH-L & 10/13/2009 & SWNSH-1-TC2-L & 0 & 0.25 & -194 & 12.12 & 134 & 8.84 & & 8.17 \\
\hline TECKSWR1 & SWNSH-1-TC2-R & TC2-NSH-R & 10/13/2009 & SWNSH-1-TC2-R & 0 & 0.25 & -148 & 12.06 & 137 & 9.00 & & 8.2 \\
\hline TECKSWR1 & SWNSH-1-TC2-RDISA & TC2-NSH-R & 10/13/2009 & SWNSH-1-TC2-RDISA & 1 & 0.25 & -180 & 12.03 & 136 & 8.95 & & 8.18 \\
\hline TECKSWR1 & SWNSH-1-TC2-RDISB & TC2-NSH-R & 10/13/2009 & SWNSH-1-TC2-RDISB & 2 & 0.25 & -180 & 12.03 & 136 & 8.95 & & 8.18 \\
\hline TECKSWR1 & SWNSH-1-TC2-RDISC & TC2-NSH-R & 10/13/2009 & SWNSH-1-TC2-RDISC & 3 & 0.25 & -180 & 12.03 & 136 & 8.95 & & 8.18 \\
\hline TECKSWR1 & SWNSH-1-TC3-LA & TC3-NSH-L & 10/15/2009 & SWNSH-1-TC3-LA & 1 & 0.25 & -136 & 13.06 & 132 & 8.98 & & 8.1 \\
\hline TECKSWR1 & SWNSH-1-TC3-LB & TC3-NSH-L & 10/15/2009 & SWNSH-1-TC3-LB & 2 & 0.25 & -149 & 12.89 & 132 & 8.93 & & 8.2 \\
\hline TECKSWR1 & SWNSH-1-TC3-LC & TC3-NSH-L & 10/15/2009 & SWNSH-1-TC3-LC & 3 & 0.25 & -157 & 12.79 & 132 & 8.9 & & 8.2 \\
\hline TECKSWR1 & SWNSH-1-TC3-LDISA & TC3-NSH-L & 10/15/2009 & SWNSH-1-TC3-LDISA & 1 & 0.25 & -165 & 12.9 & 132 & 9 & & 8.27 \\
\hline TECKSWR1 & SWNSH-1-TC3-LDISB & TC3-NSH-L & 10/15/2009 & SWNSH-1-TC3-LDISB & 2 & 0.25 & -173 & 12.8 & 132 & 8.98 & & 8.26 \\
\hline TECKSWR1 & SWNSH-1-TC3-LDISC & TC3-NSH-L & 10/15/2009 & SWNSH-1-TC3-LDISC & 3 & 0.25 & -178 & 12.78 & 132 & 8.98 & & 8.28 \\
\hline TECKSWR1 & SWNSH-1-TC3-RA & TC3-NSH-R & 10/15/2009 & SWNSH-1-TC3-RA & 1 & 0.25 & -184 & 12.34 & 134 & 8.83 & & 8.2 \\
\hline TECKSWR1 & SWNSH-1-TC3-RB & TC3-NSH-R & 10/15/2009 & SWNSH-1-TC3-RB & 2 & 0.25 & -184 & 12.37 & 134 & 8.83 & & 8.18 \\
\hline TECKSWR1 & SWNSH-1-TC3-RC & TC3-NSH-R & 10/15/2009 & SWNSH-1-TC3-RC & 3 & 0.25 & -154 & 12.34 & 134 & 8.82 & & 8.19 \\
\hline TECKSWR1 & SWNSH-1-TC3-RDISA & TC3-NSH-R & 10/16/2009 & SWNSH-1-TC3-RDISA & 1 & 0.25 & -168 & 11.96 & 118 & 8.80 & & 8.15 \\
\hline TECKSWR1 & SWNSH-1-TC3-RDISB & TC3-NSH-R & 10/16/2009 & SWNSH-1-TC3-RDISB & 2 & 0.25 & -165 & 11.96 & 118 & 8.78 & & 8.16 \\
\hline TECKSWR1 & SWNSH-1-TC3-RDISC & TC3-NSH-R & 10/16/2009 & SWNSH-1-TC3-RDISC & 3 & 0.25 & -162 & 11.96 & 118 & 8.78 & & 8.17 \\
\hline TECKSWR1 & SWNSH-1-TC4-L & TC4-NSH-L & 10/17/2009 & SWNSH-1-TC4-L & 0 & 0.1 & -168 & 13.8 & 86 & 8.2 & & 8.02 \\
\hline TECKSWR1 & SWNSH-1-TC4-LDISA & TC4-NSH-L & 10/17/2009 & SWNSH-1-TC4-LDISA & 1 & 0.023 & -176 & 13.8 & 85 & 8.25 & & 8.06 \\
\hline TECKSWR1 & SWNSH-1-TC4-LDISB & TC4-NSH-L & 10/17/2009 & SWNSH-1-TC4-LDISB & 2 & 0.010 & -175 & 13.83 & 85 & 8.27 & & 8.07 \\
\hline TECKSWR1 & SWNSH-1-TC4-LDISC & TC4-NSH-L & 10/17/2009 & SWNSH-1-TC4-LDISC & 3 & 0.007 & -175 & 13.85 & 86 & 8.26 & & 8.07 \\
\hline TECKSWR1 & SWNSH-1-TC4-R & TC4-NSH-R & 10/17/2009 & SWNSH-1-TC4-R & 0 & 0.15 & -176 & 13.73 & 86 & 8.52 & & 8.16 \\
\hline TECKSWR1 & SWNSH-1-TC5-L & TC5-NSH-L & 10/18/2009 & SWNSH-1-TC5-L & 0 & 0.25 & -144 & 15.7 & 87 & 7.63 & & 7.88 \\
\hline TECKSWR1 & SWNSH-1-TC5-LDISA & TC5-NSH-L & 10/18/2009 & SWNSH-1-TC5-LDISA & 1 & 0.25 & -157 & 15.68 & 87 & 7.65 & 16 & 7.95 \\
\hline TECKSWR1 & SWNSH-1-TC5-LDISB & TC5-NSH-L & 10/18/2009 & SWNSH-1-TC5-LDISB & 2 & 0.25 & -166 & 15.71 & 88 & 7.64 & 38 & 7.97 \\
\hline TECKSWR1 & SWNSH-1-TC5-LDISC & TC5-NSH-L & 10/18/2009 & SWNSH-1-TC5-LDISC & 3 & 0.25 & -173 & 15.75 & 88 & 7.63 & 32 & 7.97 \\
\hline TECKSWR1 & SWNSH-1-TC5-R & TC5-NSH-R & 10/18/2009 & SWNSH-1-TC5-R & 0 & 0.25 & -156 & 16.23 & 86 & 7.94 & 1 & 8.1 \\
\hline TECKSWR1 & SWNSH-1-TC5-RDISA & TC5-NSH-R & 10/18/2009 & SWNSH-1-TC5-RDISA & 1 & 0.25 & -157 & 16.30 & 86 & 8 & 15 & 8.11 \\
\hline TECKSWR1 & SWNSH-1-TC5-RDISB & TC5-NSH-R & 10/18/2009 & SWNSH-1-TC5-RDISB & 2 & 0.25 & -160 & 16.3 & 86 & 8.02 & 1 & 8.15 \\
\hline TECKSWR1 & SWNSH-1-TC5-RDISC & TC5-NSH-R & 10/18/2009 & SWNSH-1-TC5-RDISC & 3 & 0.25 & -158 & 16.34 & 86 & 8.06 & 2 & 8.17 \\
\hline TECKSWR1 & SWNSH-1-TC6-LA & TC6-NSH-L & 10/19/2009 & SWNSH-1-TC6-LA & 1 & 0.25 & -74 & 15.95 & 87 & 7.7 & 2 & 7.65 \\
\hline TECKSWR1 & SWNSH-1-TC6-LB & TC6-NSH-L & 10/19/2009 & SWNSH-1-TC6-LB & 2 & 0.3 & -84 & 16.1 & 88 & 7.6 & 0.3 & 7.98 \\
\hline TECKSWR1 & SWNSH-1-TC6-LC & TC6-NSH-L & 10/19/2009 & SWNSH-1-TC6-LC & 3 & 0.3 & -84 & 16.1 & 88 & 7.6 & 0.3 & 7.98 \\
\hline TECKSWR1 & SWNSH-1-TC6-LDISA & TC6-NSH-L & 10/19/2009 & SWNSH-1-TC6-LDISA & 1 & 0.3 & -15 & 16.21 & 88 & 7.65 & 11 & 8 \\
\hline TECKSWR1 & SWNSH-1-TC6-LDISB & TC6-NSH-L & 10/19/2009 & SWNSH-1-TC6-LDISB & 2 & 0.21 & -8 & 16.22 & 88 & 7.67 & 3 & 8 \\
\hline TECKSWR1 & SWNSH-1-TC6-LDISC & TC6-NSH-L & 10/19/2009 & SWNSH-1-TC6-LDISC & 3 & 0.24 & -68 & 16.23 & 88 & 7.71 & 5 & 8.02 \\
\hline TECKSWR1 & SWNSH-1-TC6-R & TC6-NSH-R & 10/19/2009 & SWNSH-1-TC6-R & 0 & 0.1 & -92 & 16.8 & 87 & 8.3 & 8 & 8.2 \\
\hline TECKSWR1 & SWNSH-1-TC6-RDISA & TC6-NSH-R & 10/19/2009 & SWNSH-1-TC6-RDISA & 1 & 0.13 & -71 & 16.8 & 87 & 8.38 & 26 & 8.25 \\
\hline TECKSWR1 & SWNSH-1-TC6-RDISB & TC6-NSH-R & 10/19/2009 & SWNSH-1-TC6-RDISB & 2 & 0.13 & -70 & 16.83 & 87 & 8.44 & 1 & 8.27 \\
\hline TECKSWR1 & SWNSH-1-TC6-RDISC & TC6-NSH-R & 10/19/2009 & SWNSH-1-TC6-RDISC & 3 & 0.13 & -75 & 16.75 & 87 & 8.43 & 1 & 8.27 \\
\hline TECKSWR1 & SWNSH-1-TC7-L & TC7-NSH-L & 10/20/2009 & SWNSH-1-TC7-L & 0 & 0.2 & -6 & 17.2 & 85 & 7.3 & 1 & 7.9 \\
\hline TECKSWR1 & SWNSH-1-TC7-LDISA & TC7-NSH-L & 10/20/2009 & SWNSH-1-TC7-LDISA & 1 & 0.2 & -51 & 17.25 & 85 & 7.3 & 2 & 7.9 \\
\hline TECKSWR1 & SWNSH-1-TC7-LDISB & TC7-NSH-L & 10/20/2009 & SWNSH-1-TC7-LDISB & 2 & 0.23 & 7 & 17.25 & 85 & 7.34 & 1 & 7.9 \\
\hline TECKSWR1 & SWNSH-1-TC7-LDISC & TC7-NSH-L & 10/20/2009 & SWNSH-1-TC7-LDISC & 3 & 0.23 & 3 & 17.25 & 85 & 7.37 & 0.3 & 7.9 \\
\hline TECKSWR1 & SWNSH-1-TC7-R & TC7-NSH-R & 10/20/2009 & SWNSH-1-TC7-R & 0 & 0.32 & 34 & 17.44 & 85 & 7.95 & 2 & 8.1 \\
\hline TECKSWR1 & SWNSH-1-TC7-RDISA & TC7-NSH-R & 10/20/2009 & SWNSH-1-TC7-RDISA & 1 & 0.35 & 76 & 17.49 & 85 & 7.94 & 2 & 8.1 \\
\hline TECKSWR1 & SWNSH-1-TC7-RDISB & TC7-NSH-R & 10/20/2009 & SWNSH-1-TC7-RDISB & 2 & 0.37 & -8 & 17.48 & 85 & 7.94 & 2 & 8.11 \\
\hline TECKSWR1 & SWNSH-1-TC7-RDISC & TC7-NSH-R & 10/20/2009 & SWNSH-1-TC7-RDISC & 3 & 0.37 & 6 & 17.51 & 85 & 7.91 & 1 & 8.1 \\
\hline TECKSWR1 & SWNSH-1-TC8-LDISA & TC8-NSH-L & 10/12/2009 & SWNSH-1-TC8-LDISA & 1 & 0.34 & -146 & 12.43 & 138 & 8.9 & & 8.1 \\
\hline TECKSWR1 & SWNSH-1-TC8-LDISB & TC8-NSH-L & 10/12/2009 & SWNSH-1-TC8-LDISB & 2 & 0.25 & -157 & 12.45 & 138 & 8.9 & & 8.2 \\
\hline TECKSWR1 & SWNSH-1-TC8-LDISC & TC8-NSH-L & 10/12/2009 & SWNSH-1-TC8-LDISC & 3 & 0.25 & -162 & 12.47 & 138 & 8.95 & & 8.2 \\
\hline TECKSWR1 & SWNSH-1-TC9-L & TC9-NSH-L & 10/11/2009 & SWNSH-1-TC9-L & 0 & 0.25 & -152 & 12.67 & 149 & 9.1 & 595 & 8.3 \\
\hline TECKSWR1 & SWNSH-1-TC9-R & TC9-NSH-R & 10/11/2009 & SWNSH-1-TC9-R & 0 & 0.25 & -82 & 12.7 & 121 & 8.6 & 641 & 7.9 \\
\hline
\end{tabular}

\section*{Table H-2. Field Measurements made during the Second Round of Surface Water Sampling (Spring 2010)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Survey & Sample Number & Survey Station & Date & Sample ID & Field Replicate & Depth to Water Level (ft total) & Oxidation Reduction Potential ( mV total) & Total Dissolved
Solids
(g/L total) & Temperature (degC total) & Conductivity ( \(\mathrm{mS} / \mathrm{cm}\) total) & Dissolved Oxygen ( \(\mathrm{mg} / \mathrm{L}\) total) & \begin{tabular}{l}
Dissolved Oxygen \\
\% Saturation (\% total)
\end{tabular} & Turbidity (NTU total) & \[
\begin{gathered}
\mathrm{pH} \\
(\mathrm{pH} \text { total })
\end{gathered}
\] \\
\hline TECKSWR2 & SWNB-2-CAN1-LA & CAN1-NB-L & 4/7/2010 & SWNB-2-CAN1-LA & 1 & 7 & 721 & & 5.05 & 0.091 & 11 & & 1,000 & 8.3 \\
\hline TECKSWR2 & SWNB-2-CAN1-LB & CAN1-NB-L & 4/7/2010 & SWNB-2-CAN1-LB & 2 & 7 & 446 & & 5.06 & 0.091 & 11.1 & & 1,000 & 8.3 \\
\hline TECKSWR2 & SWNB-2-CAN1-LC & CAN1-NB-L & 4/7/2010 & SWNB-2-CAN1-LC & 3 & & & & & & & & & \\
\hline TECKSWR2 & SWNB-2-CAN1-RA & CAN1-NB-R & 4/8/2010 & SWNB-2-CAN1-RA & 1 & & & & & & & & & \\
\hline TECKSWR2 & SWNB-2-CAN1-RB & CAN1-NB-R & 4/8/2010 & SWNB-2-CAN1-RB & 2 & & & & & & & & & \\
\hline TECKSWR2 & SWNB-2-CAN1-RC & CAN1-NB-R & 4/8/2010 & SWNB-2-CAN1-RC & 3 & 5 & & & 5 & 0.134 & 11 & & 64 & 8.3 \\
\hline TECKSWR2 & SWNB-2-TC1-L & TC1-NB-L & 4/11/2010 & SWNB-2-TC1-L & 0 & 19 & -528 & & 5.05 & 0.149 & 13 & & 0 & 8.3 \\
\hline TECKSWR2 & SWNB-2-TC1-M & TC1-NB-M & 4/11/2010 & SWNB-2-TC1-M & 0 & 20 & -664 & & 5.8 & 0.154 & 9.6 & & 20 & 8.5 \\
\hline TECKSWR2 & SWNB-2-TC1-R & TC1-NB-R & 4/11/2010 & SWNB-2-TC1-R & 0 & 23.3 & -889 & & 5.3 & 0.140 & 9.7 & & 0.06 & 8.0 \\
\hline TECKSWR2 & SWNB-2-TC2-L & TC2-NB-L & 4/12/2010 & SWNB-2-TC2-L & 0 & & -64 & & 5.4 & 0.141 & 9.51 & & 366 & 8.12 \\
\hline TECKSWR2 & SWNB-2-TC2-M & TC2-NB-M & 4/12/2010 & SWNB-2-TC2-M & 0 & 29.3 & -341 & & 5.46 & 0.141 & 9.4 & & 365 & 8.3 \\
\hline TECKSWR2 & SWNB-2-TC2-R & TC2-NB-R & 4/12/2010 & SWNB-2-TC2-R & 0 & & -774 & & 5.5 & 0.095 & 11.28 & & 55 & 8.4 \\
\hline TECKSWR2 & SWNB-2-TC3-L1A & TC3-NB-L1 & 4/13/2010 & SWNB-2-TC3-L1A & 1 & 32.3 & -147 & & 5.7 & 0.143 & 14 & & 0.06 & 8.0 \\
\hline TECKSWR2 & SWNB-2-TC3-L1B & TC3-NB-L1 & 4/13/2010 & SWNB-2-TC3-L1B & 2 & 52.5 & -185 & & 5.59 & 0.143 & 9.16 & & 9 & 8.04 \\
\hline TECKSWR2 & SWNB-2-TC3-L1C & TC3-NB-L1 & 4/13/2010 & SWNB-2-TC3-L1C & & 53.2 & -186 & & 5.62 & 0.144 & 9.11 & & 1 & 8.09 \\
\hline TECKSWR2 & SWNB-2-TC3-L2A & TC3-NB-L2 & 4/13/2010 & SWNB-2-TC3-L2A & 1 & 27.7 & -174 & & 6 & 0.144 & 8.3 & & 1 & 8.25 \\
\hline TECKSWR2 & SWNB-2-TC3-L2B & TC3-NB-L2 & 4/13/2010 & SWNB-2-TC3-L2B & 2 & & & & & & & & & \\
\hline TECKSWR2 & SWNB-2-TC3-L2C & TC3-NB-L2 & 4/13/2010 & SWNB-2-TC3-L2C & 2 & & & & & & & & & \\
\hline TECKSWR2 & SWNB-2-TC3-MA & TC3-NB-M & 4/14/2010 & SWNB-2-TC3-MA & 1 & 43 & -231 & & 5.68 & 0.692 & 9 & & 0 & 8 \\
\hline TECKSWR2 & SWNB-2-TC3-MB & TC3-NB-M & 4/14/2010 & SWNB-2-TC3-MB & 2 & 42.9 & , & & 5.76 & 0.694 & 8.84 & & 0 & 7.88 \\
\hline TECKSWR2 & SWNB-2-TC3-MC & TC3-NB-M & 4/14/2010 & SWNB-2-TC3-MC & 3 & 41 & -192 & & 5.8 & 0.694 & 8.9 & & 0 & 8.06 \\
\hline TECKSWR2 & SWNB-2-TC3-RA & TC3-NB-R & 4/14/2010 & SWNB-2-TC3-RA & 1 & 37.8 & -132 & & 6.03 & 0.685 & 8.4 & & 0 & 8.02 \\
\hline TECKSWR2 & SWNB-2-TC3-RB & TC3-NB-R & 4/14/2010 & SWNB-2-TC3-RB & 2 & 36 & -237 & & 6.05 & 0.688 & 8.37 & & 0 & 8.03 \\
\hline TECKSWR2 & SWNB-2-TC3-RC & TC3-NB-R & 4/14/2010 & SWNB-2-TC3-RC & 3 & 37 & -51 & & 6.4 & 0.685 & 8 & & 0 & 8.01 \\
\hline TECKSWR2 & SWNB-2-TC4-L1 & TC4-NB-L1 & 4/15/2010 & SWNB-2-TC4-L1 & 0 & 45 & -698 & 0.1 & 6.4 & 0.129 & 6 & & & 7.6 \\
\hline TECKSWR2 & SWNB-2-TC4-L2 & TC4-NB-L2 & 4/15/2010 & SWNB-2-TC4-L2 & 0 & 57 & -687 & & 6.14 & 0.129 & 7.0 & & 0.1 & 7.57 \\
\hline TECKSWR2 & SWNB-2-TC4-M & TC4-NB-M & 4/15/2010 & SWNB-2-TC4-M & 0 & 103 & -731 & 0.09 & 6.12 & 0.1 & 8.65 & & & 8.05 \\
\hline TECKSWR2 & SWNB-2-TC4-R & TC4-NB-R & 4/15/2010 & SWNB-2-TC4-R & 0 & 40 & 274 & & 6.16 & 0.112 & 13.15 & & 0 & 7.9 \\
\hline TECKSWR2 & SWNB-2-TC5-L1 & TC5-NB-L1 & 4/16/2010 & SWNB-2-TC5-L1 & 0 & 121 & -351 & & 5.91 & 0.149 & 11.14 & & 0.0 & 7.81 \\
\hline TECKSWR2 & SWNB-2-TC5-L2 & TC5-NB-L2 & 4/16/2010 & SWNB-2-TC5-L2 & 0 & 17 & -393 & & 6.4 & 0.150 & 7 & & 0 & 7.9 \\
\hline TECKSWR2 & SWNB-2-TC5-M & TC5-NB-M & 4/16/2010 & SWNB-2-TC5-M & 0 & 255 & -520 & & 5.74 & 0.148 & 9.22 & & 1.0 & 7.81 \\
\hline TECKSWR2 & SWNB-2-TC5-R & TC5-NB-R & 4/16/2010 & SWNB-2-TC5-R & 0 & 152.5 & -555 & 0.1 & 5.82 & 0.149 & 12.57 & & & 7.9 \\
\hline TECKSWR2 & SWNB-2-TC6-LA & TC6-NB-L & 4/17/2010 & SWNB-2-TC6-LA & 1 & 59 & -277 & & 6.8 & 0.143 & 6.0 & & 0.1 & 8.0 \\
\hline TECKSWR2 & SWNB-2-TC6-LB & TC6-NB-L & 4/17/2010 & SWNB-2-TC6-LB & 2 & & & & & & & & & \\
\hline TECKSWR2 & SWNB-2-TC6-LC & TC6-NB-L & 4/17/2010 & SWNB-2-TC6-LC & 3 & & & & & & & & & \\
\hline TECKSWR2 & SWNB-2-TC6-MA & TC6-NB-M & 4/17/2010 & SWNB-2-TC6-MA & 1 & 83 & -199 & 0.1 & 6.51 & 0.142 & 6.0 & & 0.04 & 8.0 \\
\hline TECKSWR2 & SWNB-2-TC6-MB & TC6-NB-M & 4/17/2010 & SWNB-2-TC6-MB & 2 & & & & & & & & & \\
\hline TECKSWR2 & SWNB-2-TC6-MC & TC6-NB-M & 4/17/2010 & SWNB-2-TC6-MC & 3 & & & & & & & & & \\
\hline TECKSWR2 & SWNB-2-TC6-R1 & TC6-NB-R1 & 4/1772010 & SWNB-2-TC6-R1 & 0 & 137 & -207 & & 6.2 & 0.142 & 6.4 & & 0.1 & 7.8 \\
\hline TECKSWR2 & SWNB-2-TC6-R2 & TC6-NB-R2 & 4/17/2010 & SWNB-2-TC6-R2 & 0 & 29 & -271 & & 7.40 & 0.141 & 4 & & 0 & 8.0 \\
\hline TECKSWR2 & SWNB-2-TC7-L & TC7-NB-L & 4/18/2010 & SWNB-2-TC7-L & 0 & 118 & -175 & & 5.8 & 0.145 & 6.41 & & 0 & 7.8 \\
\hline TECKSWR2 & SWNB-2-TC7-M & TC7-NB-M & 4/18/2010 & SWNB-2-TC7-M & 0 & 335 & -180 & & 4.92 & 0.144 & 5.65 & & 0 & 7.65 \\
\hline TECKSWR2 & SWNB-2-TC7-R & TC7-NB-R & 4/18/2010 & SWNB-2-TC7-R & 0 & 248 & -157 & & 5.20 & 0.145 & 5.24 & & 0 & 7.69 \\
\hline TECKSWR2 & SWNB-2-TC9-L & TC9-NB-L & 4/9/2010 & SWNB-2-TC9-L & 0 & 15 & -604 & & 5.3 & 0.139 & 10.8 & & 0.03 & 8.4 \\
\hline TECKSWR2 & SWNB-2-TC9-R & TC9-NB-R & 4/9/2010 & SWNB-2-TC9-R & 0 & 5.2 & -668 & & 5.25 & 0.137 & 10.97 & & & 8.23 \\
\hline TECKSWR2 & SWNS-2-CAN1-LA & CAN1-NS-L & 4/7/2010 & SWNS-2-CAN1-LA & 1 & 3 & 621 & & 4.98 & 0.091 & 11 & & 1,000 & 8.1 \\
\hline TECKSWR2 & SWNS-2-CAN1-LB & CAN1-NS-L & 4/7/2010 & SWNS-2-CAN1-LB & 2 & 3 & 963 & & 5 & 0.091 & 11 & & 1,000 & 8.1 \\
\hline TECKSWR2 & SWNS-2-CAN1-LC & CAN1-NS-L & 4/7/2010 & SWNS-2-CAN1-LC & 3 & 3 & 1,000 & & 5.03 & 0.091 & 11.1 & & 1,000 & 8.1 \\
\hline TECKSWR2 & SWNS-2-CAN1-RA & CAN1-NS-R & 4/8/2010 & SWNS-2-CAN1-RA & 1 & 3 & & & 4.94 & 0.133 & 10.96 & & 0 & 9.0 \\
\hline TECKSWR2 & SWNS-2-CAN1-RB & CAN1-NS-R & 4/8/2010 & SWNS-2-CAN1-RB & 2 & & & & & & & & & \\
\hline TECKSWR2 & SWNS-2-CAN1-RC & CAN1-NS-R & 4/8/2010 & SWNS-2-CAN1-RC & 3 & & & & & & & & & \\
\hline TECKSWR2 & SWNS-2-TC1-L & TC1-NS-L & 4/11/2010 & SWNS-2-TC1-L & 0 & 3 & -495 & & 5.04 & 0.149 & 13 & & 0 & 8.4 \\
\hline TECKSWR2 & SWNS-2-TC1-M & TC1-NS-M & 4/11/2010 & SWNS-2-TC1-M & 0 & 3.4 & -539 & & 5.7 & 0.153 & 12.6 & & 38 & 8.47 \\
\hline TECKSWR2 & SWNS-2-TC1-R & TC1-NS-R & 4/11/2010 & SWNS-2-TC1-R & 0 & 3.7 & -984 & & 5.1 & 0.138 & 10.1 & & 0 & 8.1 \\
\hline TECKSWR2 & SWNS-2-TC2-L & TC2-NS-L & 4/12/2010 & SWNS-2-TC2-L & 0 & & -288 & & 5.4 & 0.140 & 9.47 & & 360 & 8.1 \\
\hline TECKSWR2 & SWNS-2-TC2-M & TC2-NS-M & 4/1212010 & SWNS-2-TC2-M & 0 & 4 & -421 & & 5.4 & 0.140 & 11 & & 362 & 8.2 \\
\hline TECKSWR2 & SWNS-2-TC2-R & TC2-NS-R & 4/12/2010 & SWNS-2-TC2-R & 0 & & -774 & & 5.5 & 0.095 & 11.84 & & 54 & 8.4 \\
\hline TECKSWR2 & SWNS-2-TC3-L1A & TC3-NS-L1 & 4/13/2010 & SWNS-2-TC3-L1A & 1 & 3.3 & -183 & & 5.79 & 0.143 & 8.81 & & & 7.91 \\
\hline TECKSWR2 & SWNS-2-TC3-L1B & TC3-NS-L1 & 4/13/2010 & SWNS-2-TC3-L1B & 2 & 3.3 & -184 & & 5.79 & 0.141 & 8.82 & & 0 & 7.93 \\
\hline TECKSWR2 & SWNS-2-TC3-L1C & TC3-NS-L1 & 4/13/2010 & SWNS-2-TC3-L1C & 3 & 3.5 & -180 & & 5.92 & 0.143 & 8.6 & & 0 & 7.95 \\
\hline TECKSWR2 & SWNS-2-TC3-L2A & TC3-NS-L2 & 4/13/2010 & SWNS-2-TC3-L2A & 1 & 3.6 & -195 & & 6.53 & 0.144 & 7.6 & & 1 & 8.3 \\
\hline TECKSWR2 & SWNS-2-TC3-L2B & TC3-NS-L2 & 4/13/2010 & SWNS-2-TC3-L2B & 2 & 3.4 & -187 & & 6.54 & 0.143 & 7.6 & & 1 & 8.3 \\
\hline TECKSWR2 & SWNS-2-TC3-L2C & TC3-NS-L2 & 4/13/2010 & SWNS-2-TC3-L2C & 3 & 3.5 & -186 & & 6.52 & 0.143 & 7.6 & & 1 & 8.3 \\
\hline TECKSWR2 & SWNS-2-TC3-MA & TC3-NS-M & 4/14/2010 & SWNS-2-TC3-MA & 1 & 2 & -748 & & 5.9 & 0.146 & 16 & & 48 & 8.0 \\
\hline TECKSWR2 & SWNS-2-TC3-MB & TC3-NS-M & 4/14/2010 & SWNS-2-TC3-MB & 2 & 2 & -746 & & 6 & 0.149 & 12 & & 46 & 8.0 \\
\hline TECKSWR2 & SWNS-2-TC3-MC & TC3-NS-M & 4/14/2010 & SWNS-2-TC3-MC & 3 & 2 & -718 & & 6.1 & 0.149 & 13.8 & & 45 & 8.0 \\
\hline TECKSWR2 & SWNS-2-TC3-RA & TC3-NS-R & 4/14/2010 & SWNS-2-TC3-RA & 1 & 3.4 & -252 & & 7 & 0.683 & 7.4 & & 0 & 8.13 \\
\hline
\end{tabular}

Table H-2. Field Measurements made during the Second Round of Surface Water Sampling (Spring 2010)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Survey & Sample Number & Survey Station & Date & Sample ID & Field Replicate & Depth to Water Level (ft total) & Oxidation Reduction Potential ( mV total) & Total Dissolved
Solids
(g/L total) & Temperature (degC total) & Conductivity ( \(\mathrm{mS} / \mathrm{cm}\) total) & \[
\begin{aligned}
& \text { Dissolved } \\
& \text { Oxygen } \\
& \text { (mg/L total) }
\end{aligned}
\] & \begin{tabular}{l}
Dissolved Oxygen \\
\% Saturation (\% total)
\end{tabular} & Turbidity (NTU total) & \[
\begin{gathered}
\mathrm{pH} \\
(\mathrm{pH} \text { total })
\end{gathered}
\] \\
\hline TECKSWR2 & SWNS-2-TC3-RB & TC3-NS-R & 4/14/2010 & SWNS-2-TC3-RB & 2 & 3.5 & -191 & & 6.38 & 0.684 & 7 & & 0 & 8.15 \\
\hline TECKSWR2 & SWNS-2-TC3-RC & TC3-NS-R & 4/14/2010 & SWNS-2-TC3-RC & 3 & 3.4 & -175 & & 6.36 & 0.685 & 7.85 & & 0 & 8.15 \\
\hline TECKSWR2 & SWNS-2-TC4-L1 & TC4-NS-L1 & 4/15/2010 & SWNS-2-TC4-L1 & 0 & 3 & -675 & & 7.52 & 0.149 & 9.76 & & & 8.10 \\
\hline TECKSWR2 & SWNS-2-TC4-L2 & TC4-NS-L2 & 4/15/2010 & SWNS-2-TC4-L2 & 0 & 2.0 & -660 & & 7.4 & 0.149 & 11.0 & & 1 & 8.1 \\
\hline TECKSWR2 & SWNS-2-TC4-M & TC4-NS-M & 4/15/2010 & SWNS-2-TC4-M & 0 & & & & & & & & & \\
\hline TECKSWR2 & SWNS-2-TC4-R & TC4-NS-R & 4/15/2010 & SWNS-2-TC4-R & 0 & 3.4 & -159 & & 6.3 & 0.112 & 13.6 & & 0.2 & 7.9 \\
\hline TECKSWR2 & SWNS-2-TC5-L1 & TC5-NS-L1 & 4/16/2010 & SWNS-2-TC5-L1 & 0 & & & & & & & & & \\
\hline TECKSWR2 & SWNS-2-TC5-L2 & TC5-NS-L2 & 4/16/2010 & SWNS-2-TC5-L2 & 0 & 3.3 & 477 & 0.1 & 7.1 & 0.137 & 14.4 & & 3 & 8.5 \\
\hline TECKSWR2 & SWNS-2-TC5-M & TC5-NS-M & 4/16/2010 & SWNS-2-TC5-M & 0 & 3 & 186 & 0.1 & 7 & 0.136 & 14 & 115 & 2 & 8.5 \\
\hline TECKSWR2 & SWNS-2-TC5-R & TC5-NS-R & 4/16/2010 & SWNS-2-TC5-R & 0 & 3.6 & -617 & 0.1 & 6.9 & 0.148 & 11.7 & & & 8.2 \\
\hline TECKSWR2 & SWNS-2-TC6-L & TC6-NS-L & 4/17/2010 & SWNS-2-TC6-L & 0 & 3 & -335 & & 8.0 & 0.146 & 7 & & 306 & 8.3 \\
\hline TECKSWR2 & SWNS-2-TC6-MA & TC6-NS-M & 4/18/2010 & SWNS-2-TC6-MA & 1 & & 544 & & 9 & 0.137 & 14 & & 0.4 & 8.0 \\
\hline TECKSWR2 & SWNS-2-TC6-MB & TC6-NS-M & 4/18/2010 & SWNS-2-TC6-MB & 2 & 3 & 805 & & 9 & 0.136 & 14 & & 0.3 & 8.0 \\
\hline TECKSWR2 & SWNS-2-TC6-MC & TC6-NS-M & 4/18/2010 & SWNS-2-TC6-MC & 3 & & & & & & & & & \\
\hline TECKSWR2 & SWNS-2-TC6-R1 & TC6-NS-R1 & 4/17/2010 & SWNS-2-TC6-R1 & 0 & 4 & -255 & & 8.4 & 0.145 & 5.3 & & 0 & 8.26 \\
\hline TECKSWR2 & SWNS-2-TC6-R2A & TC6-NS-R2 & 4/17/2010 & SWNS-2-TC6-R2A & 1 & & & & & & & & & \\
\hline TECKSWR2 & SWNS-2-TC6-R2B & TC6-NS-R2 & 4/17/2010 & sWNS-2-TC6-R2B & 2 & 4 & -282 & 0.1 & 8.5 & 0.143 & 5.5 & & 0.4 & 8.3 \\
\hline TECKSWR2 & SWNS-2-TC6-R2C & TC6-NS-R2 & 4/17/2010 & SWNS-2-TC6-R2C & 3 & & & & & & & & & \\
\hline TECKSWR2 & SWNS-2-TC7-L & TC7-NS-L & 4/19/2010 & SWNS-2-TC7-L & 0 & 3.6 & -229 & & 8.9 & 0.146 & 5.98 & & 0.09 & 8.33 \\
\hline TECKSWR2 & SWNS-2-TC7-M & TC7-NS-M & 4/18/2010 & SWNS-2-TC7-M & 0 & 3 & -231 & & 8 & 0.147 & 2.0 & & 0 & 8.4 \\
\hline TECKSWR2 & SWNS-2-TC7-R & TC7-NS-R & 4/18/2010 & SWNS-2-TC7-R & 0 & 3.2 & -206 & & 7.79 & 0.149 & 1.28 & & 0 & 8.39 \\
\hline TECKSWR2 & SWNS-2-TC9-L & TC9-NS-L & 4/9/2010 & SWNS-2-TC9-L & 0 & 3 & -671 & & 5.4 & 0.140 & 10.8 & & 0.03 & 8.2 \\
\hline TECKSWR2 & SWNS-2-TC9-R & TC9-NS-R & 4/9/2010 & SWNS-2-TC9-R & 0 & 3 & -717 & & 5.23 & 0.137 & 10.9 & & 0.05 & 8.3 \\
\hline TECKSWR2 & SWNSH-2A-CAN2-L & CAN2-NSH-L & 2/23/2010 & SWNSH-2A-CAN2-L & 0 & & 168 & & 5 & 0.36 & 11.30 & & 27 & 7.40 \\
\hline TECKSWR2 & SWNSH-2B-CAN2-L & CAN2-NSH-L & 3/2/2010 & SWNSH-2B-CAN2-L & 0 & & 93 & & 5.3 & 0.423 & 12.26 & & 16.0 & 7.2 \\
\hline TECKSWR2 & SWNSH-2-CAN1-LA & CAN1-NSH-L & 4/6/2010 & SWNSH-2-CAN1-LA & 1 & 0.2 & 1,000 & & 5.3 & 0.090 & 11.2 & & 3 & 7.9 \\
\hline TECKSWR2 & SWNSH-2-CAN1-LB & CAN1-NSH-L & 4/6/2010 & SWNSH-2-CAN1-LB & 2 & 0.09 & 1,000 & & 5.3 & 0.090 & 11.1 & & 1 & 8.0 \\
\hline TECKSWR2 & SWNSH-2-CAN1-LC & CAN1-NSH-L & 4/6/2010 & SWNSH-2-CAN1-LC & 3 & 0.07 & 1,000 & & 5.32 & 0.091 & 11.1 & & 0.1 & 8.0 \\
\hline TECKSWR2 & SWNSH-2-CAN1-RA & CAN1-NSH-R & 4/7/2010 & SWNSH-2-CAN1-RA & 1 & 0.5 & 928 & & 4.9 & 0.090 & 10.9 & & 435 & 8.0 \\
\hline TECKSWR2 & SWNSH-2-CAN1-RB & CAN1-NSH-R & 4/7/2010 & SWNSH-2-CAN1-RB & 2 & 0.4 & 963 & & 4.92 & 0.091 & 10.9 & & 430 & 8.0 \\
\hline TECKSWR2 & SWNSH-2-CAN1-RC & CAN1-NSH-R & 4/7/2010 & SWNSH-2-CAN1-RC & 3 & 0.5 & 920 & & 4.92 & 0.090 & 10.9 & & 428 & 8.0 \\
\hline TECKSWR2 & SWNSH-2C-CAN2-L & CAN2-NSH-L & 3/9/2010 & SWNSH-2C-CAN2-L & 0 & & 41 & & 6 & 0.42 & 11.89 & & 15 & 7.22 \\
\hline TECKSWR2 & SWNSH-2D-CAN2-L & CAN2-NSH-L & 3/16/2010 & SWNSH-2D-CAN2-L & 0 & & 74 & & 5.7 & 0.409 & 10.89 & & 13.0 & 7.13 \\
\hline TECKSWR2 & SWNSH-2E-CAN2-L & CAN2-NSH-L & 3/23/2010 & SWNSH-2E-CAN2-L & 0 & & 94 & & , & 0.43 & 10.7 & & 0 & 7.1 \\
\hline TECKSWR2 & SWNSH-2F-CAN2-L & CAN2-NSH-L & 3/30/2010 & SWNSH-2F-CAN2-L & 0 & & 96 & & 6.1 & 0.431 & 11.21 & & 75 & 6.93 \\
\hline TECKSWR2 & SWNSH-2G-CAN2-L & CAN2-NSH-L & 4/6/2010 & SWNSH-2G-CAN2-L & 0 & & 130 & & 6.46 & 0.439 & 10.55 & & 9 & 8.06 \\
\hline TECKSWR2 & SWNSH-2-TC1-L & TC1-NSH-L & 4/10/2010 & SWNSH-2-TC1-L & 0 & 1 & -184 & & 6 & 0.139 & 11.2 & & 336 & 8.0 \\
\hline TECKSWR2 & SWNSH-2-TC1-LDISA & TC1-NSH-L & 4/10/2010 & SWNSH-2-TC1-LDISA & 1 & 1 & -581 & & 6 & 0.141 & 11.3 & & 329 & 8.3 \\
\hline TECKSWR2 & SWNSH-2-TC1-LDISB & TC1-NSH-L & 4/10/2010 & SWNSH-2-TC1-LDISB & 2 & 1 & -236 & & 6 & 0.141 & 11.3 & & 326 & 8.3 \\
\hline TECKSWR2 & SWNSH-2-TC1-LDISC & TC1-NSH-L & 4/10/2010 & SWNSH-2-TC1-LDISC & 3 & 1 & -519 & & 6 & 0.141 & 11.3 & & 287 & 8.4 \\
\hline TECKSWR2 & SWNSH-2-TC1-R & TC1-NSH-R & 4/11/2010 & SWNSH-2-TC1-R & 0 & 1 & -563 & & 5.13 & 0.137 & & & 0.1 & 8.2 \\
\hline TECKSWR2 & SWNSH-2-TC1-RDISA & TC1-NSH-R & 4/11/2010 & SWNSH-2-TC1-RDISA & 1 & 1.1 & -1,000 & & 5.12 & 0.137 & & & 2 & 8.24 \\
\hline TECKSWR2 & SWNSH-2-TC1-RDISB & TC1-NSH-R & 4/11/2010 & SWNSH-2-TC1-RDISB & 2 & 1 & -904 & & 5.12 & 0.137 & & & 4 & 8.2 \\
\hline TECKSWR2 & SWNSH-2-TC1-RDISC & TC1-NSH-R & 4/11/2010 & SWNSH-2-TC1-RDISC & 3 & 1.1 & -143 & & 5.1 & 0.138 & 10 & & 2 & 8.1 \\
\hline TECKSWR2 & SWNSH-2-TC2-L & TC2-NSH-L & 4/12/2010 & SWNSH-2-TC2-L & 0 & 2 & -769 & & 5.8 & 0.095 & 10.65 & & 59 & 8.5 \\
\hline TECKSWR2 & SWNSH-2-TC2-LDISA & TC2-NSH-L & 4/12/2010 & SWNSH-2-TC2-LDISA & 1 & & -782 & & 5.8 & 0.095 & 10.13 & & 59 & 8.49 \\
\hline TECKSWR2 & SWNSH-2-TC2-LDISB & TC2-NSH-L & 4/12/2010 & SWNSH-2-TC2-LDISB & 2 & & -783 & & 5.7 & 0.095 & 10.0 & & 59 & 8.5 \\
\hline TECKSWR2 & SWNSH-2-TC2-LDISC & TC2-NSH-L & 4/12/2010 & SWNSH-2-TC2-LDISC & 3 & & -783 & & 5.7 & 0.095 & 9.98 & & 59 & 8.49 \\
\hline TECKSWR2 & SWNSH-2-TC2-R & TC2-NSH-R & 4/11/2010 & SWNSH-2-TC2-R & 0 & 1 & 840 & & 6.8 & 0.140 & 8 & & 9 & 8.2 \\
\hline TECKSWR2 & SWNSH-2-TC2-RDISA & TC2-NSH-R & 4/11/2010 & SWNSH-2-TC2-RDISA & 1 & 1 & -519 & & 6.7 & 0.140 & 8 & & 38 & 8.3 \\
\hline TECKSWR2 & SWNSH-2-TC2-RDISB & TC2-NSH-R & 4/11/2010 & SWNSH-2-TC2-RDISB & 2 & 1 & -35 & & 6.5 & 0.140 & 7 & & 62 & 8.2 \\
\hline TECKSWR2 & SWNSH-2-TC2-RDISC & TC2-NSH-R & 4/11/2010 & SWNSH-2-TC2-RDISC & 3 & 1 & -257 & & 6.5 & 0.139 & 7.6 & & 22 & 8.3 \\
\hline TECKSWR2 & SWNSH-2-TC3-LA & TC3-NSH-L & 4/13/2010 & SWNSH-2-TC3-LA & 1 & 0.4 & -783 & & 7.26 & 0.148 & 9.3 & & 1 & 7.99 \\
\hline TECKSWR2 & SWNSH-2-TC3-LB & TC3-NSH-L & 4/13/2010 & SWNSH-2-TC3-LB & 2 & 0.5 & -783 & & 7.04 & 0.150 & 9.49 & & 1 & 8.01 \\
\hline TECKSWR2 & SWNSH-2-TC3-LC & TC3-NSH-L & 4/13/2010 & SWNSH-2-TC3-LC & 3 & 0.5 & -783 & & 7.28 & 0.148 & 9.3 & & 2 & 8.04 \\
\hline TECKSWR2 & SWNSH-2-TC3-LDISA & TC3-NSH-L & 4/13/2010 & SWNSH-2-TC3-LDISA & 1 & 0.5 & -783 & & 7.17 & 0.148 & 9.4 & & 30 & 8.04 \\
\hline TECKSWR2 & SWNSH-2-TC3-LDISB & TC3-NSH-L & 4/13/2010 & SWNSH-2-TC3-LDISB & 2 & & & & & & & & & \\
\hline TECKSWR2 & SWNSH-2-TC3-LDISC & TC3-NSH-L & 4/13/2010 & SWNSH-2-TC3-LDISC & 3 & & & & & & & & & \\
\hline TECKSWR2 & SWNSH-2-TC3-RA & TC3-NSH-R & 4/12/2010 & SWNSH-2-TC3-RA & 1 & 0.6 & -776 & & 6.38 & 0.094 & 10.13 & & 38 & 8.47 \\
\hline TECKSWR2 & SWNSH-2-TC3-RB & TC3-NSH-R & 4/12/2010 & SWNSH-2-TC3-RB & & 0.6 & -776 & & 6.3 & 0.094 & 10.06 & & 37 & 8.48 \\
\hline TECKSWR2 & SWNSH-2-TC3-RC & TC3-NSH-R & 4/12/2010 & SWNSH-2-TC3-RC & 3 & 0.6 & -776 & & 6.4 & 0.095 & 10.61 & & 37 & 8.48 \\
\hline TECKSWR2 & SWNSH-2-TC3-RDISA & TC3-NSH-R & 4/13/2010 & SWNSH-2-TC3-RDISA & 1 & 0.6 & -782 & & 6.2 & 0.148 & 9.7 & & 1 & 7.8 \\
\hline TECKSWR2 & SWNSH-2-TC3-RDISB & TC3-NSH-R & 4/13/2010 & SWNSH-2-TC3-RDISB & 2 & 0.5 & -782 & & 6.2 & 0.148 & 9.74 & & 1 & 7.8 \\
\hline TECKSWR2 & SWNSH-2-TC3-RDISC & TC3-NSH-R & 4/13/2010 & SWNSH-2-TC3-RDISC & 3 & 0.5 & -782 & & 6.2 & 0.148 & 9.65 & & 1 & 7.8 \\
\hline TECKSWR2 & SWNSH-2-TC4-L & TC4-NSH-L & 4/15/2010 & SWNSH-2-TC4-L & 0 & 0.7 & -682 & & 7.21 & 0.150 & 11.36 & & 1 & 8.13 \\
\hline TECKSWR2 & SWNSH-2-TC4-LDISA & TC4-NSH-L & 4/15/2010 & SWNSH-2-TC4-LDISA & 1 & 0 & -673 & & 7.47 & 0.151 & 9.57 & & 1 & 8.15 \\
\hline TECKSWR2 & SWNSH-2-TC4-LDISB & TC4-NSH-L & 4/15/2010 & SWNSH-2-TC4-LDISB & & & & & & & & & & \\
\hline
\end{tabular}

\section*{Table H-2. Field Measurements made during the Second Round of Surface Water Sampling (Spring 2010)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Survey & Sample Number & Survey Station & Date & Sample ID & Field Replicate & \(\qquad\) & Oxidation Reduction Potential (mV total) & \begin{tabular}{l} 
Total Dissolved \\
Solids \\
( \(\mathrm{g} / \mathrm{L}\) total \()\) \\
\hline
\end{tabular} & Temperature
(degC total) (degC total) & \[
\begin{aligned}
& \text { Conductivity } \\
& (\mathrm{mS} / \mathrm{cm} \text { total) } \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
\text { Dissolved } \\
\text { Oxygen } \\
\text { (mg/L total) } \\
\hline
\end{gathered}
\] & Dissolved Oxygen
\(\%\) Saturation
(\% total) & Turbidity (NTU total) & \[
\begin{gathered}
\mathrm{pH} \\
(\mathrm{pH} \text { total }) \\
\hline
\end{gathered}
\] \\
\hline TECKSWR2 & SWNSH-2-TC4-LDISC & TC4-NSH-L & 4/15/2010 & SWNSH-2-TC4-LDISC & 3 & & & & & & & & & \\
\hline TECKSWR2 & SWNSH-2-TC4-R & TC4-NSH-R & 4/14/2010 & SWNSH-2-TC4-R & 0 & 0.6 & -656 & & 6.96 & 0.147 & 14.06 & & & 8.11 \\
\hline TECKSWR2 & SWNSH-2-TC4-RDISA & TC4-NSH-R & 4/14/2010 & SWNSH-2-TC4-RDISA & 1 & & & & & & & & & \\
\hline TECKSWR2 & SWNSH-2-TC4-RDISB & TC4-NSH-R & 4/14/2010 & SWNSH-2-TC4-RDISB & 2 & 0.6 & -665 & & 7.02 & 0.149 & 16.08 & & 0 & 8.08 \\
\hline TECKSWR2 & SWNSH-2-TC4-RDISC & TC4-NSH-R & 4/14/2010 & SWNSH-2-TC4-RDISC & 3 & & & & & & & & & \\
\hline TECKSWR2 & SWNSH-2-TC5-L & TC5-NSH-L & 4/16/2010 & SWNSH-2-TC5-L & 0 & 0.5 & 39 & & 7.94 & 0.140 & 14.37 & & 27 & 8.44 \\
\hline TECKSWR2 & SWNSH-2-TC5-LDISA & TC5-NSH-L & 4/16/2010 & SWNSH-2-TC5-LDISA & 1 & & & & & & & & & \\
\hline TECKSWR2 & SWNSH-2-TC5-LDISB & TC5-NSH-L & 4/16/2010 & SWNSH-2-TC5-LDISB & 2 & & & & & & & & & \\
\hline TECKSWR2 & SWNSH-2-TC5-LDISC & TC5-NSH-L & 4/16/2010 & SWNSH-2-TC5-LDISC & 3 & 0.3 & -177 & & 8.02 & 0.139 & 13.74 & & 152 & 8.48 \\
\hline TECKSWR2 & SWNSH-2-TC5-R & TC5-NSH-R & 4/16/2010 & SWNSH-2-TC5-R & 0 & 0.4 & 527 & 0.1 & 7.8 & 0.135 & 14 & 114 & 11 & 8.4 \\
\hline TECKSWR2 & SWNSH-2-TC5-RDISA & TC5-NSH-R & 4/16/2010 & SWNSH-2-TC5-RDISA & 1 & 0.4 & 39 & 0.1 & 7.53 & 0.135 & 14.0 & 117 & 3 & 8.58 \\
\hline TECKSWR2 & SWNSH-2-TC5-RDISB & TC5-NSH-R & 4/16/2010 & SWNSH-2-TC5-RDISB & 2 & 0.6 & -44 & 0.1 & 7.5 & 0.136 & 14 & 117 & 12 & 8.6 \\
\hline TECKSWR2 & SWNSH-2-TC5-RDISC & TC5-NSH-R & 4/16/2010 & SWNSH-2-TC5-RDISC & 3 & 0.5 & 11 & 0.1 & 7.47 & 0.136 & 13.9 & 116 & 23 & 8.6 \\
\hline TECKSWR2 & SWNSH-2-TC6-LA & TC6-NSH-L & 4/17/2010 & SWNSH-2-TC6-LA & 1 & 2 & -19 & & 8 & 0.140 & 12.9 & & 2 & 8.0 \\
\hline TECKSWR2 & SWNSH-2-TC6-LB & TC6-NSH-L & 4/17/2010 & SWNSH-2-TC6-LB & 2 & 2 & 33 & & 9.0 & 0.139 & 13 & & 2 & 8.1 \\
\hline TECKSWR2 & SWNSH-2-TC6-LC & TC6-NSH-L & 4/17/2010 & SWNSH-2-TC6-LC & 3 & & & & & & & & & \\
\hline TECKSWR2 & SWNSH-2-TC6-LDISA & TC6-NSH-L & 4/17/2010 & SWNSH-2-TC6-LDISA & 1 & 1.5 & 124 & & 9.4 & 0.141 & 13 & & 27 & 8.2 \\
\hline TECKSWR2 & SWNSH-2-TC6-LDISB & TC6-NSH-L & 4/17/2010 & SWNSH-2-TC6-LDISB & 2 & 1.5 & 67 & & 9.5 & 0.142 & 13 & & 31 & 8.2 \\
\hline TECKSWR2 & SWNSH-2-TC6-LDISC & TC6-NSH-L & 4/17/2010 & SWNSH-2-TC6-LDISC & 3 & 1.5 & 101 & & 9.4 & 0.141 & 12.8 & & 32 & 8.2 \\
\hline TECKSWR2 & SWNSH-2-TC6-R & TC6-NSH-R & 4/17/2010 & SWNSH-2-TC6-R & 0 & 1 & 51 & & 10.0 & 0.132 & 14.0 & & 15 & 8.3 \\
\hline TECKSWR2 & SWNSH-2-TC6-RDISA & TC6-NSH-R & 4/17/2010 & SWNSH-2-TC6-RDISA & 1 & 0.7 & 248 & & 10 & 0.131 & 13.8 & & 164 & 8.0 \\
\hline TECKSWR2 & SWNSH-2-TC6-RDISB & TC6-NSH-R & 4/17/2010 & SWNSH-2-TC6-RDISB & 2 & 0.7 & 134 & & 10.5 & 0.133 & 13.0 & & 59 & 8.0 \\
\hline TECKSWR2 & SWNSH-2-TC6-RDISC & TC6-NSH-R & 4/17/2010 & SWNSH-2-TC6-RDISC & 3 & 0.7 & 136 & & 10.7 & 0.133 & 13.7 & & 92 & 8.0 \\
\hline TECKSWR2 & SWNSH-2-TC7-L & TC7-NSH-L & 4/18/2010 & SWNSH-2-TC7-L & 0 & 0.5 & & & 9 & 0.127 & 14 & & 3 & 8.0 \\
\hline TECKSWR2 & SWNSH-2-TC7-LDISA & TC7-NSH-L & 4/19/2010 & SWNSH-2-TC7-LDISA & 1 & 0.4 & & & 9.2 & 0.128 & 13.9 & & 4 & 8.29 \\
\hline TECKSWR2 & SWNSH-2-TC7-LDISB & TC7-NSH-L & 4/19/2010 & SWNSH-2-TC7-LDISB & 2 & 0.6 & & & 9 & 0.129 & 13.88 & & 12 & 8.27 \\
\hline TECKSWR2 & SWNSH-2-TC7-LDISC & TC7-NSH-L & 4/19/2010 & SWNSH-2-TC7-LDISC & 3 & 0.5 & & & 9.9 & 0.134 & 13.8 & & 11 & 8.3 \\
\hline TECKSWR2 & SWNSH-2-TC7-R & TC7-NSH-R & 4/19/2010 & SWNSH-2-TC7-R & 0 & 1.5 & & & 11.48 & 0.135 & 13.47 & & 2 & 8.22 \\
\hline TECKSWR2 & SWNSH-2-TC7-RDISA & TC7-NSH-R & 4/18/2010 & SWNSH-2-TC7-RDISA & 1 & 1.5 & & & 12.29 & 0.137 & 13.63 & & 7 & 8.55 \\
\hline TECKSWR2 & SWNSH-2-TC7-RDISB & TC7-NSH-R & 4/18/2010 & SWNSH-2-TC7-RDISB & 2 & 1.5 & & & 12.15 & 0.136 & 13.82 & & & 8.21 \\
\hline TECKSWR2 & SWNSH-2-TC7-RDISC & TC7-NSH-R & 4/18/2010 & SWNSH-2-TC7-RDISC & 3 & 1.5 & & & 12.09 & 0.135 & 13.90 & & & 8.07 \\
\hline TECKSWR2 & SWNSH-2-TC8-LDISA & TC8-NSH-L & 4/10/2010 & SWNSH-2-TC8-LDISA & 1 & 1 & -495 & & 5.3 & 0.141 & 10.7 & & 0.2 & 8.0 \\
\hline TECKSWR2 & SWNSH-2-TC8-LDISB & TC8-NSH-L & 4/10/2010 & SWNSH-2-TC8-LDISB & 2 & 1 & -159 & & 5.35 & 0.141 & 10.76 & & 0.5 & 8.0 \\
\hline TECKSWR2 & SWNSH-2-TC8-LDISC & TC8-NSH-L & 4/10/2010 & SWNSH-2-TC8-LDISC & & 1 & -169 & & 5.4 & 0.141 & 10.8 & & 0.3 & 8.0 \\
\hline TECKSWR2 & SWNSH-2-TC9-L & TC9-NSH-L & 4/8/2010 & SWNSH-2-TC9-L & 0 & 0.3 & 239 & & 6.4 & 0.147 & 10.6 & & 4 & 8.2 \\
\hline TECKSWR2 & SWNSH-2-TC9-R & TC9-NSH-R & 4/8/2010 & SWNSH-2-TC9-R & 0 & 1.5 & 449 & & 5.3 & 0.136 & 10.8 & & 2 & 8.1 \\
\hline
\end{tabular}

Table H-3. Field Measurements made during the Third Round of Surface Water Sampling (Summer 2010
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Survey & Sample Number & Survey Station & Date & Sample ID & Field Replicate & Depth to Water Level ( m total) & \begin{tabular}{l}
Oxidation Reduction \\
Potential ( mV total)
\end{tabular} & Total Dissolved Solids ( \(\mathrm{g} / \mathrm{L}\) total) & Temperature (degC total) & Conductivity ( \(\mu \mathrm{S} / \mathrm{cm}\) total) & Dissolved Oxygen ( \(\mathrm{mg} / \mathrm{L}\) total) & Turbidity (NTU total) & \[
\begin{gathered}
\mathrm{pH} \\
\text { (pH total) } \\
\hline
\end{gathered}
\] \\
\hline TECKSWR3 & SWNB-3-CAN1-L & CAN1-NB-L-R3 & 6/7/2010 & SWNB-3-CAN1-L & 0 & 5 & & & 10.8 & 119 & & 1 & 8.4 \\
\hline TECKSWR3 & SWNB-3-CAN1-R & CAN1-NB-R-R3 & 6/6/2010 & SWNB-3-CAN1-R & 0 & & & & & & & & \\
\hline TECKSWR3 & SWNB-3-TC1-L & TC1-NB-L-R3 & 6/10/2010 & SWNB-3-TC1-L & 0 & 10 & & & 11.86 & 123 & & 2 & 8.3 \\
\hline TECKSWR3 & SWNB-3-TC1-M & TC1-NB-M-R3 & 6/10/2010 & SWNB-3-TC1-M & 0 & 10 & & & 11.9 & 123 & 9 & 3 & 8.4 \\
\hline TECKSWR3 & SWNB-3-TC1-R & TC1-NB-R-R3 & 6/11/2010 & SWNB-3-TC1-R & 0 & 10 & & & 11.77 & 118 & & 1 & 8.2 \\
\hline TECKSWR3 & SWNB-3-TC2-L & TC2-NB-L-R3 & 6/11/2010 & SWNB-3-TC2-L & 0 & 12.9 & & & 12.10 & 116 & & & 8.14 \\
\hline TECKSWR3 & SWNB-3-TC2-M & TC2-NB-M-R3 & 6/11/2010 & SWNB-3-TC2-M & 0 & 14 & & & 11.95 & 119 & & 1 & 8.2 \\
\hline TECKSWR3 & SWNB-3-TC2-R & TC2-NB-R-R3 & 6/11/2010 & SWNB-3-TC2-R & 0 & 12.5 & & & 12.13 & 117 & & 1 & 8.18 \\
\hline TECKSWR3 & SWNB-3-TC3-L1 & TC3-NB-L1-R3 & 6/12/2010 & SWNB-3-TC3-L1 & 0 & 10 & & & 12.6 & 110 & & 6 & 8.2 \\
\hline TECKSWR3 & SWNB-3-TC3-L2 & TC3-NB-L2-R3 & 6/12/2010 & SWNB-3-TC3-L2 & 0 & 13 & & & 12.15 & 113 & & 1 & 8.14 \\
\hline TECKSWR3 & SWNB-3-TC3-M & TC3-NB-M-R3 & 6/12/2010 & SWNB-3-TC3-M & 0 & 16.4 & & & 12.0 & 110 & & 2 & 8.1 \\
\hline TECKSWR3 & SWNB-3-TC3-R & TC3-NB-R-R3 & 6/12/2010 & SWNB-3-TC3-R & 0 & 18.9 & & & 12.3 & 106 & & 1 & 8.1 \\
\hline TECKSWR3 & SWNB-3-TC4-L1 & TC4-NB-L1-R3 & 6/13/2010 & SWNB-3-TC4-L1 & 0 & 17 & & & 12.5 & 115 & & 0 & 8.13 \\
\hline TECKSWR3 & SWNB-3-TC4-L2 & TC4-NB-L2-R3 & 6/13/2010 & SWNB-3-TC4-L2 & 0 & 16 & & & 12.5 & 110 & & 0 & 8.17 \\
\hline TECKSWR3 & SWNB-3-TC4-M & TC4-NB-M-R3 & 6/13/2010 & SWNB-3-TC4-M & 0 & 25 & & & 12 & 111 & & 0 & 8.3 \\
\hline TECKSWR3 & SWNB-3-TC4-R & TC4-NB-R-R3 & 6/13/2010 & SWNB-3-TC4-R & 0 & 22 & & & 12.3 & 116 & & 0 & 8 \\
\hline TECKSWR3 & SWNB-3-TC5-L1 & TC5-NB-L1-R3 & 6/14/2010 & SWNB-3-TC5-L1 & 0 & 25 & & & 12.4 & 119 & & 0 & 8.0 \\
\hline TECKSWR3 & SWNB-3-TC5-L2 & TC5-NB-L2-R3 & 6/14/2010 & SWNB-3-TC5-L2 & 0 & 22 & & & 12.7 & 120 & & 0 & 8 \\
\hline TECKSWR3 & SWNB-3-TC5-M & TC5-NB-M-R3 & 6/14/2010 & SWNB-3-TC5-M & 0 & 50 & & & 11.9 & 118 & & 0 & 8 \\
\hline TECKSWR3 & SWNB-3-TC5-R & TC5-NB-R-R3 & 6/14/2010 & SWNB-3-TC5-R & 0 & 28.9 & & & 12.2 & 119 & & 0 & 8.0 \\
\hline TECKSWR3 & SWNB-3-TC6-LA & TC6-NB-L-R3 & 6/15/2010 & SWNB-3-TC6-LA & 1 & 22 & & & 12.47 & 111 & & 0 & 7.9 \\
\hline TECKSWR3 & SWNB-3-TC6-LB & TC6-NB-L-R3 & 6/15/2010 & SWNB-3-TC6-LB & 2 & 35.5 & & & 11.34 & 114 & & 0 & 7.91 \\
\hline TECKSWR3 & SWNB-3-TC6-LC & TC6-NB-L-R3 & 6/15/2010 & SWNB-3-TC6-LC & 3 & 35.5 & & & 11.34 & 114 & & 0 & 7.91 \\
\hline TECKSWR3 & SWNB-3-TC6-MA & TC6-NB-M-R3 & 6/15/2010 & SWNB-3-TC6-MA & 1 & 33.1 & & & 12 & 111 & & 0.3 & 8.0 \\
\hline TECKSWR3 & SWNB-3-TC6-MB & TC6-NB-M-R3 & 6/15/2010 & SWNB-3-TC6-MB & 2 & 55.0 & & & 11.34 & 113 & & 0.4 & 7.9 \\
\hline TECKSWR3 & SWNB-3-TC6-MC & TC6-NB-M-R3 & 6/15/2010 & SWNB-3-TC6-MC & 3 & 55.0 & & & 11.34 & 113 & & 0.4 & 7.9 \\
\hline TECKSWR3 & SWNB-3-TC6-R1 & TC6-NB-R1-R3 & 6/16/2010 & SWNB-3-TC6-R1 & 0 & 51 & & & 11.7 & 113 & & 0 & 7.96 \\
\hline TECKSWR3 & SWNB-3-TC6-R2 & TC6-NB-R2-R3 & 6/16/2010 & SWNB-3-TC6-R2 & 0 & 14 & & & 13.0 & 108 & & 0 & 8.1 \\
\hline TECKSWR3 & SWNB-3-TC7-L & TC7-NB-L-R3 & 6/16/2010 & SWNB-3-TC7-L & 0 & 40 & & & 11.5 & 117 & & 0 & 7.97 \\
\hline TECKSWR3 & SWNB-3-TC7-M & TC7-NB-M-R3 & 6/17/2010 & SWNB-3-TC7-M & 0 & 71 & & & 10.4 & 122 & 12 & 0 & 7.9 \\
\hline TECKSWR3 & SWNB-3-TC7-R & TC7-NB-R-R3 & 6/17/2010 & SWNB-3-TC7-R & 0 & 48 & & & 11.8 & 117 & 11.1 & 0 & 8.0 \\
\hline TECKSWR3 & SWNB-3-TC9-R & TC9-NB-R-R3 & 6/8/2010 & SWNB-3-TC9-R & 0 & 8 & & & 11.3 & 119 & & 1 & 8.45 \\
\hline TECKSWR3 & SWNS-3-CAN1-L & CAN1-NS-L-R3 & 6/7/2010 & SWNS-3-CAN1-L & 0 & 1 & & & 10.7 & 119 & & 1 & 8.4 \\
\hline TECKSWR3 & SWNS-3-CAN1-R & CAN1-NS-R-R3 & 6/6/2010 & SWNS-3-CAN1-R & 0 & 1 & 151 & & 10.26 & 91 & & 0.01 & 8 \\
\hline TECKSWR3 & SWNS-3-TC1-L & TC1-NS-L-R3 & 6/10/2010 & SWNS-3-TC1-L & 0 & 1 & & & 15.9 & 117 & & 0.1 & 8.15 \\
\hline TECKSWR3 & SWNS-3-TC1-M & TC1-NS-M-R3 & 6/10/2010 & SWNS-3-TC1-M & 0 & 1 & 231 & & 11.9 & 133 & 10.7 & 3 & 8 \\
\hline TECKSWR3 & SWNS-3-TC1-R & TC1-NS-R-R3 & 6/11/2010 & SWNS-3-TC1-R & 0 & 1 & 238 & & 11.73 & 130 & & 3 & 7.8 \\
\hline TECKSWR3 & SWNS-3-TC2-L & TC2-NS-L-R3 & 6/11/2010 & SWNS-3-TC2-L & 0 & & 285 & 0.1 & 12.05 & 130 & 13 & 2 & 7.64 \\
\hline TECKSWR3 & SWNS-3-TC2-M & TC2-NS-M-R3 & 6/11/2010 & SWNS-3-TC2-M & 0 & 0.6 & & & 11.9 & 118 & & 3 & 8.35 \\
\hline TECKSWR3 & SWNS-3-TC2-R & TC2-NS-R-R3 & 6/11/2010 & SWNS-3-TC2-R & 0 & & 279 & & 12.1 & 130 & 13 & 3 & 7.7 \\
\hline TECKSWR3 & SWNS-3-TC3-L1 & TC3-NS-L1-R3 & 6/12/2010 & SWNS-3-TC3-L1 & 0 & 1 & 232 & 0.1 & 13.5 & 129 & 11.0 & 1 & 7.85 \\
\hline TECKSWR3 & SWNS-3-TC3-L2 & TC3-NS-L2-R3 & 6/12/2010 & SWNS-3-TC3-L2 & 0 & 1.2 & & & 13.1 & 113 & & 0 & 8.44 \\
\hline TECKSWR3 & SWNS-3-TC3-M & TC3-NS-M-R3 & 6/12/2010 & SWNS-3-TC3-M & 0 & 0.5 & & & 13 & 114 & & 3 & 8.36 \\
\hline TECKSWR3 & SWNS-3-TC3-R & TC3-NS-R-R3 & 6/12/2010 & SWNS-3-TC3-R & 0 & 1 & 225 & 0.1 & 13.6 & 127 & 11 & 1 & 7.76 \\
\hline TECKSWR3 & SWNS-3-TC4-L1 & TC4-NS-L1-R3 & 6/13/2010 & SWNS-3-TC4-L1 & 0 & 1 & & & 16.2 & 112 & & 0.07 & 8.5 \\
\hline TECKSWR3 & SWNS-3-TC4-L2 & TC4-NS-L2-R3 & 6/13/2010 & SWNS-3-TC4-L2 & 0 & 1.2 & & & 16 & 112 & & 0.2 & 8.54 \\
\hline TECKSWR3 & SWNS-3-TC4-M & TC4-NS-M-R3 & 6/13/2010 & SWNS-3-TC4-M & 0 & 1.2 & 247 & & 15 & 117 & 12 & 1 & 7.7 \\
\hline TECKSWR3 & SWNS-3-TC4-R & TC4-NS-R-R3 & 6/13/2010 & SWNS-3-TC4-R & 0 & 1.1 & 243 & & 14 & 117 & 12.5 & 1 & 7.75 \\
\hline TECKSWR3 & SWNS-3-TC5-L1 & TC5-NS-L1-R3 & 6/14/2010 & SWNS-3-TC5-L1 & 0 & 1 & & & 16 & 113 & & 0.1 & 8.2 \\
\hline TECKSWR3 & SWNS-3-TC5-L2 & TC5-NS-L2-R3 & 6/14/2010 & SWNS-3-TC5-L2 & 0 & 1 & & & 15.9 & 117 & 0 & 0 & 8.15 \\
\hline TECKSWR3 & SWNS-3-TC5-M & TC5-NS-M-R3 & 6/14/2010 & SWNS-3-TC5-M & 0 & 1.2 & 229 & & 16 & 119 & 10.4 & 10 & 7.6 \\
\hline TECKSWR3 & SWNS-3-TC5-R & TC5-NS-R-R3 & 6/14/2010 & SWNS-3-TC5-R & 0 & 1.2 & 223 & & 15.8 & 119 & 10.4 & 11 & 7.65 \\
\hline TECKSWR3 & SWNS-3-TC6-L & TC6-NS-L-R3 & 6/15/2010 & SWNS-3-TC6-L & 0 & 1.2 & & & 16.6 & 104 & & 227 & 8.14 \\
\hline TECKSWR3 & SWNS-3-TC6-MA & TC6-NS-M-R3 & 6/16/2010 & SWNS-3-TC6-MA & 1 & 1.1 & 238 & & 15 & 99 & 10.8 & 3 & 7.8 \\
\hline TECKSWR3 & SWNS-3-TC6-MB & TC6-NS-M-R3 & 6/16/2010 & SWNS-3-TC6-MB & 2 & & & & & & & & \\
\hline TECKSWR3 & SWNS-3-TC6-MC & TC6-NS-M-R3 & 6/16/2010 & SWNS-3-TC6-MC & 3 & & & & & & & & \\
\hline TECKSWR3 & SWNS-3-TC6-R1 & TC6-NS-R1-R3 & 6/15/2010 & SWNS-3-TC6-R1 & 0 & 1 & 160 & & 15.5 & 110 & 10.4 & & 7.9 \\
\hline TECKSWR3 & SWNS-3-TC6-R2A & TC6-NS-R2-R3 & 6/15/2010 & SWNS-3-TC6-R2A & 1 & 1.2 & 167 & & 15.3 & 110 & 10.6 & 124 & 7.9 \\
\hline TECKSWR3 & SWNS-3-TC6-R2B & TC6-NS-R2-R3 & 6/15/2010 & SWNS-3-TC6-R2B & 2 & & & & & & & & \\
\hline TECKSWR3 & SWNS-3-TC6-R2C & TC6-NS-R2-R3 & 6/15/2010 & SWNS-3-TC6-R2C & 3 & & & & & & & & \\
\hline TECKSWR3 & SWNS-3-TC7-L & TC7-NS-L-R3 & 6/16/2010 & SWNS-3-TC7-L & 0 & 1 & & & 15.7 & 114 & & 0 & 8.3 \\
\hline
\end{tabular}

Table H-3. Field Measurements made during the Third Round of Surface Water Sampling (Summer 2010
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Survey & Sample Number & Survey Station & Date & Sample ID & Field Replicate & Depth to Water Level ( \(m\) total) & Oxidation Reduction Potential (mV total) & Total Dissolved Solids ( \(\mathrm{g} / \mathrm{L}\) total) & Temperature (degC total) & Conductivity ( \(\mu \mathrm{S} / \mathrm{cm}\) total) & Dissolved Oxygen ( \(\mathrm{mg} / \mathrm{L}\) total) & Turbidity (NTU total) & \[
\begin{gathered}
\mathrm{pH} \\
(\mathrm{pH} \text { total })
\end{gathered}
\] \\
\hline TECKSWR3 & SWNS-3-TC7-M & TC7-NS-M-R3 & 6/17/2010 & SWNS-3-TC7-M & 0 & 1.1 & & & 15.5 & 112 & 3.2 & 0 & 8.33 \\
\hline TECKSWR3 & SWNS-3-TC7-R & TC7-NS-R-R3 & 6/17/2010 & SWNS-3-TC7-R & 0 & 1 & & & 15.8 & 112 & 2.4 & 0 & 8.32 \\
\hline TECKSWR3 & SWNS-3-TC9-L & TC9-NS-L-R3 & 6/10/2010 & SWNS-3-TC9-L & 0 & 1.3 & 232 & & 12 & 135 & 13.1 & 5 & 7.7 \\
\hline TECKSWR3 & SWNS-3-TC9-R & TC9-NS-R-R3 & 6/8/2010 & SWNS-3-TC9-R & 0 & 1 & & & 11.3 & 119 & & 1 & 8.4 \\
\hline TECKSWR3 & SWNSH-3A-CAN2-L & CAN2-NSH-L-R3 & 4/24/2010 & SWNSH-3A-CAN2-L & 0 & & 141 & & 8.3 & 750 & 9.75 & 2.2 & 8.02 \\
\hline TECKSWR3 & SWNSH-3B-CAN2-L & CAN2-NSH-L-R3 & 5/4/2010 & SWNSH-3B-CAN2-L & 0 & & 151 & & 9.5 & 710 & 9.60 & 4 & 8.1 \\
\hline TECKSWR3 & SWNSH-3-CAN1-L & CAN1-NSH-L-R3 & 6/6/2010 & SWNSH-3-CAN1-L & 0 & & & & & & & & \\
\hline TECKSWR3 & SWNSH-3-CAN1-R & CAN1-NSH-R-R3 & 6/6/2010 & SWNSH-3-CAN1-R & 0 & 0.6 & 162 & & 10.26 & 91 & & 2 & 8 \\
\hline TECKSWR3 & SWNSH-3C-CAN2-L & CAN2-NSH-L-R3 & 5/11/2010 & SWNSH-3C-CAN2-L & 0 & & 165 & & 10.4 & 773 & 8.8 & 7.4 & 7.46 \\
\hline TECKSWR3 & SWNSH-3D-CAN2-L & CAN2-NSH-L-R3 & 5/18/2010 & SWNSH-3D-CAN2-L & 0 & & 137 & & 11.3 & 710 & 9.0 & 9.8 & 7.82 \\
\hline TECKSWR3 & SWNSH-3E-CAN2-L & CAN2-NSH-L-R3 & 5/25/2010 & SWNSH-3E-CAN2-L & 0 & & 164 & & 10.7 & 786 & 11.71 & 4 & 8 \\
\hline TECKSWR3 & SWNSH-3F-CAN2-L & CAN2-NSH-L-R3 & 6/1/2010 & SWNSH-3F-CAN2-L & 0 & & 156 & & 11.3 & 726 & 11.71 & 7.7 & 8.02 \\
\hline TECKSWR3 & SWNSH-3G-CAN2-L & CAN2-NSH-L-R3 & 6/8/2010 & SWNSH-3G-CAN2-L & 0 & & 171 & & 12 & 775 & 11.74 & 8 & 7.46 \\
\hline TECKSWR3 & SWNSH-3-TC1-L & TC1-NSH-L-R3 & 6/10/2010 & SWNSH-3-TC1-L & 0 & & 230 & & 12.3 & 133 & 11.2 & 4 & 7.9 \\
\hline TECKSWR3 & SWNSH-3-TC1-LDISA & TC1-NSH-L(d)-R3 & 6/10/2010 & SWNSH-3-TC1-LDISA & 1 & & 235 & & 12.2 & 133 & 11.4 & 3 & 7.9 \\
\hline TECKSWR3 & SWNSH-3-TC1-LDISB & TC1-NSH-L(d)-R3 & 6/10/2010 & SWNSH-3-TC1-LDISB & 2 & & & & & & & & \\
\hline TECKSWR3 & SWNSH-3-TC1-LDISC & TC1-NSH-L(d)-R3 & 6/10/2010 & SWNSH-3-TC1-LDISC & 3 & & & & & & & & \\
\hline TECKSWR3 & SWNSH-3-TC1-R & TC1-NSH-R-R3 & 6/9/2010 & SWNSH-3-TC1-R & 0 & 0.4 & 255 & & 11.94 & 93 & 12 & & 7.5 \\
\hline TECKSWR3 & SWNSH-3-TC1-RDISA & TC1-NSH-R(d)-R3 & 6/10/2010 & SWNSH-3-TC1-RDISA & 1 & & 232 & & 11.76 & 133 & 11.7 & & 7.8 \\
\hline TECKSWR3 & SWNSH-3-TC1-RDISB & TC1-NSH-R(d)-R3 & 6/10/2010 & SWNSH-3-TC1-RDISB & 2 & & & & & & & & \\
\hline TECKSWR3 & SWNSH-3-TC1-RDISC & TC1-NSH-R(d)-R3 & 6/10/2010 & SWNSH-3-TC1-RDISC & 3 & & & & & & & & \\
\hline TECKSWR3 & SWNSH-3-TC2-L & TC2-NSH-L-R3 & 6/11/2010 & SWNSH-3-TC2-L & 0 & & 282 & 0.1 & 12 & 128 & 12 & 6 & 7.6 \\
\hline TECKSWR3 & SWNSH-3-TC2-LDISA & TC2-NSH-L(d)-R3 & 6/11/2010 & SWNSH-3-TC2-LDISA & 1 & & 291 & 0.1 & 12 & 127 & 12 & 4 & 7.65 \\
\hline TECKSWR3 & SWNSH-3-TC2-LDISB & TC2-NSH-L(d)-R3 & 6/11/2010 & SWNSH-3-TC2-LDISB & 2 & & & & & & & & \\
\hline TECKSWR3 & SWNSH-3-TC2-LDISC & TC2-NSH-L(d)-R3 & 6/11/2010 & SWNSH-3-TC2-LDISC & 3 & & & & & & & & \\
\hline TECKSWR3 & SWNSH-3-TC2-R & TC2-NSH-R-R3 & 6/11/2010 & SWNSH-3-TC2-R & 0 & & 247 & & 12.5 & 125 & 11.3 & 3 & 7.5 \\
\hline TECKSWR3 & SWNSH-3-TC2-RDISA & TC2-NSH-R(d)-R3 & 6/11/2010 & SWNSH-3-TC2-RDISA & 1 & & 261 & & 12.6 & 126 & 11 & 9 & 7.6 \\
\hline TECKSWR3 & SWNSH-3-TC2-RDISB & TC2-NSH-R(d)-R3 & 6/11/2010 & SWNSH-3-TC2-RDISB & 2 & & & & & & & & \\
\hline TECKSWR3 & SWNSH-3-TC2-RDISC & TC2-NSH-R(d)-R3 & 6/11/2010 & SWNSH-3-TC2-RDISC & 3 & & & & & & & & \\
\hline TECKSWR3 & SWNSH-3-TC3-L & TC3-NSH-L-R3 & 6/12/2010 & SWNSH-3-TC3-L & 0 & & 248 & & 13 & 130 & 10.4 & 70 & 7.8 \\
\hline TECKSWR3 & SWNSH-3-TC3-LDISA & TC3-NSH-L(d)-R3 & 6/12/2010 & SWNSH-3-TC3-LDISA & 1 & & 250 & & 14 & 130 & 10.3 & 3 & 7.9 \\
\hline TECKSWR3 & SWNSH-3-TC3-LDISB & TC3-NSH-L(d)-R3 & 6/12/2010 & SWNSH-3-TC3-LDISB & 2 & & & & & & & & \\
\hline TECKSWR3 & SWNSH-3-TC3-LDISC & TC3-NSH-L(d)-R3 & 6/12/2010 & SWNSH-3-TC3-LDISC & 3 & & & & & & & & \\
\hline TECKSWR3 & SWNSH-3-TC3-R & TC3-NSH-R-R3 & 6/12/2010 & SWNSH-3-TC3-R & 0 & & 244 & & 13 & 125 & 10.4 & 1 & 7.7 \\
\hline TECKSWR3 & SWNSH-3-TC3-RDISA & TC3-NSH-R(d)-R3 & 6/12/2010 & SWNSH-3-TC3-RDISA & 1 & & 252 & 0.1 & 13.0 & 124 & 10.4 & 2 & 7.75 \\
\hline TECKSWR3 & SWNSH-3-TC3-RDISB & TC3-NSH-R(d)-R3 & 6/12/2010 & SWNSH-3-TC3-RDISB & 2 & & & & & & & & \\
\hline TECKSWR3 & SWNSH-3-TC3-RDISC & TC3-NSH-R(d)-R3 & 6/12/2010 & SWNSH-3-TC3-RDISC & 3 & & & & & & & & \\
\hline TECKSWR3 & SWNSH-3-TC4-L & TC4-NSH-L-R3 & 6/13/2010 & SWNSH-3-TC4-L & 0 & & 240 & 0.1 & 19.4 & 114 & 11 & 5 & 7.8 \\
\hline TECKSWR3 & SWNSH-3-TC4-LDISA & TC4-NSH-L(d)-R3 & 6/13/2010 & SWNSH-3-TC4-LDISA & 1 & & 242 & 0.1 & 18 & 114 & 11 & 0.2 & 7.8 \\
\hline TECKSWR3 & SWNSH-3-TC4-LDISB & TC4-NSH-L(d)-R3 & 6/13/2010 & SWNSH-3-TC4-LDISB & 2 & & & & & & & & \\
\hline TECKSWR3 & SWNSH-3-TC4-LDISC & TC4-NSH-L(d)-R3 & 6/13/2010 & SWNSH-3-TC4-LDISC & 3 & & & & & & & & \\
\hline TECKSWR3 & SWNSH-3-TC4-R & TC4-NSH-R-R3 & 6/13/2010 & SWNSH-3-TC4-R & 0 & & 248 & 0.1 & 14.3 & 116 & 10.8 & 23 & 7.7 \\
\hline TECKSWR3 & SWNSH-3-TC5-L & TC5-NSH-L-R3 & 6/14/2010 & SWNSH-3-TC5-L & 0 & 0.5 & 232 & & 16.6 & 115 & 9.6 & 18 & 7.56 \\
\hline TECKSWR3 & SWNSH-3-TC5-LDISA & TC5-NSH-L(d)-R3 & 6/14/2010 & SWNSH-3-TC5-LDISA & 1 & 0.33 & 230 & & 16.8 & 103 & 10 & 14 & 7.5 \\
\hline TECKSWR3 & SWNSH-3-TC5-LDISB & TC5-NSH-L(d)-R3 & 6/14/2010 & SWNSH-3-TC5-LDISB & 2 & & & & & & & & \\
\hline TECKSWR3 & SWNSH-3-TC5-LDISC & TC5-NSH-L(d)-R3 & 6/14/2010 & SWNSH-3-TC5-LDISC & 3 & & & & & & & & \\
\hline TECKSWR3 & SWNSH-3-TC5-R & TC5-NSH-R-R3 & 6/14/2010 & SWNSH-3-TC5-R & 0 & 0.5 & 231 & & 16 & 120 & 10.5 & 18 & 7.75 \\
\hline TECKSWR3 & SWNSH-3-TC5-RDISA & TC5-NSH-R(d)-R3 & 6/14/2010 & SWNSH-3-TC5-RDISA & 1 & 0.5 & 231 & & 15.8 & 120 & 10.5 & 14 & 7.74 \\
\hline TECKSWR3 & SWNSH-3-TC5-RDISB & TC5-NSH-R(d)-R3 & 6/14/2010 & SWNSH-3-TC5-RDISB & 2 & & & & & & & & \\
\hline TECKSWR3 & SWNSH-3-TC5-RDISC & TC5-NSH-R(d)-R3 & 6/14/2010 & SWNSH-3-TC5-RDISC & 3 & & & & & & & & \\
\hline TECKSWR3 & SWNSH-3-TC6-LA & TC6-NSH-L-R3 & 6/15/2010 & SWNSH-3-TC6-LA & 1 & 0.4 & 177 & & 17 & 107 & 9.4 & 36 & 7.8 \\
\hline TECKSWR3 & SWNSH-3-TC6-LB & TC6-NSH-L-R3 & 6/15/2010 & SWNSH-3-TC6-LB & 2 & & & & & & & & \\
\hline TECKSWR3 & SWNSH-3-TC6-LC & TC6-NSH-L-R3 & 6/15/2010 & SWNSH-3-TC6-LC & 3 & & & & & & & & \\
\hline TECKSWR3 & SWNSH-3-TC6-LDISA & TC6-NSH-L(d)-R3 & 6/15/2010 & SWNSH-3-TC6-LDISA & 1 & 0.7 & 169 & & 17.5 & 106 & 9.4 & 26 & 7.8 \\
\hline TECKSWR3 & SWNSH-3-TC6-LDISB & TC6-NSH-L(d)-R3 & 6/15/2010 & SWNSH-3-TC6-LDISB & 2 & & & & & & & & \\
\hline TECKSWR3 & SWNSH-3-TC6-LDISC & TC6-NSH-L(d)-R3 & 6/15/2010 & SWNSH-3-TC6-LDISC & 3 & & & & & & & & \\
\hline TECKSWR3 & SWNSH-3-TC6-R & TC6-NSH-R-R3 & 6/15/2010 & SWNSH-3-TC6-R & 0 & 0.3 & 167 & & 17.7 & 108 & 10.3 & 23 & 8 \\
\hline TECKSWR3 & SWNSH-3-TC6-RDISA & TC6-NSH-R(d)-R3 & 6/15/2010 & SWNSH-3-TC6-RDISA & 1 & 0.8 & 166 & & 16.5 & 110 & 10.6 & 5 & 8 \\
\hline TECKSWR3 & SWNSH-3-TC6-RDISB & TC6-NSH-R(d)-R3 & 6/15/2010 & SWNSH-3-TC6-RDISB & 2 & & & & & & & & \\
\hline TECKSWR3 & SWNSH-3-TC6-RDISC & TC6-NSH-R(d)-R3 & 6/15/2010 & SWNSH-3-TC6-RDISC & 3 & & & & & & & & \\
\hline TECKSWR3 & SWNSH-3-TC7-L & TC7-NSH-L-R3 & 6/17/2010 & SWNSH-3-TC7-L & 0 & 0.5 & 238 & & 16 & 115 & 7 & 1 & 7.9 \\
\hline
\end{tabular}

Table H-3. Field Measurements made during the Third Round of Surface Water Sampling (Summer 2010
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Survey & Sample Number & Survey Station & Date & Sample ID & Field Replicate & Depth to Water Level ( m total) & \begin{tabular}{l}
Oxidation Reduction \\
Potential (mV total)
\end{tabular} & Total Dissolved Solids ( \(\mathrm{g} / \mathrm{L}\) total) & Temperature (degC total) & Conductivity ( \(\mu \mathrm{S} / \mathrm{cm}\) total) & Dissolved Oxygen ( \(\mathrm{mg} / \mathrm{L}\) total) & Turbidity (NTU total) & \[
\begin{gathered}
\mathrm{pH} \\
\text { (pH total) }
\end{gathered}
\] \\
\hline TECKSWR3 & SWNSH-3-TC7-LDISA & TC7-NSH-L(d)-R3 & 6/17/2010 & SWNSH-3-TC7-LDISA & 1 & 0.5 & 237 & & 15.7 & 114 & 8 & 0.4 & 7.95 \\
\hline TECKSWR3 & SWNSH-3-TC7-LDISB & TC7-NSH-L(d)-R3 & 6/17/2010 & SWNSH-3-TC7-LDISB & 2 & & & & & & & & \\
\hline TECKSWR3 & SWNSH-3-TC7-LDISC & TC7-NSH-L(d)-R3 & 6/17/2010 & SWNSH-3-TC7-LDISC & 3 & & & & & & & & \\
\hline TECKSWR3 & SWNSH-3-TC7-R & TC7-NSH-R-R3 & 6/17/2010 & SWNSH-3-TC7-R & 0 & 0.4 & 233 & & 15.6 & 119 & 7.7 & 0 & 7.86 \\
\hline TECKSWR3 & SWNSH-3-TC7-RDISA & TC7-NSH-R(d)-R3 & 6/17/2010 & SWNSH-3-TC7-RDISA & 1 & 0.4 & 239 & & 16 & 119 & 7.6 & 0.5 & 7.9 \\
\hline TECKSWR3 & SWNSH-3-TC7-RDISB & TC7-NSH-R(d)-R3 & 6/17/2010 & SWNSH-3-TC7-RDISB & 2 & & & & & & & & \\
\hline TECKSWR3 & SWNSH-3-TC7-RDISC & TC7-NSH-R(d)-R3 & 6/17/2010 & SWNSH-3-TC7-RDISC & 3 & & & & & & & & \\
\hline TECKSWR3 & SWNSH-3-TC8-LDISA & TC8-NSH-L(d)-R3 & 6/9/2010 & SWNSH-3-TC8-LDISA & 1 & 0.6 & 252 & & 11.9 & 94 & 12.5 & 32 & 7.5 \\
\hline TECKSWR3 & SWNSH-3-TC8-LDISB & TC8-NSH-L(d)-R3 & 6/9/2010 & SWNSH-3-TC8-LDISB & 2 & & & & & & & & \\
\hline TECKSWR3 & SWNSH-3-TC8-LDISC & TC8-NSH-L(d)-R3 & 6/9/2010 & SWNSH-3-TC8-LDISC & 3 & & & & & & & & \\
\hline TECKSWR3 & SWNSH-3-TC9-L & TC9-NSH-L-R3 & 6/7/2010 & SWNSH-3-TC9-L & 0 & 0.5 & & & 12 & 121 & & 4 & 8.4 \\
\hline TECKSWR3 & SWNSH-3-TC9-R & TC9-NSH-R-R3 & 6/8/2010 & SWNSH-3-TC9-R & 0 & 0.4 & & & 11.1 & 117 & 9 & 2 & 8.45 \\
\hline
\end{tabular}```

