UPPER COLUMBIA RIVER

FINAL Soil Study Data Summary Report

Prepared for

Teck American Incorporated

P.O. Box 3087 Spokane, WA 99220-3087

Prepared by

200 West Mercer, Suite 401 Seattle, WA 98119

In Association and Consultation with
Exponent
Parametrix, Inc.
ENVIRON

October 2015

CONTENTS

LIS	ST OF	FIGUI	RES	vi
			j	
			ES	
			AND ABBREVIATIONS	
Uľ	N115 (JF MEA	ASURE	xv
1	INTI		CTION	
	1.1		KGROUND	
	1.2	REPC	ORT ORGANIZATION	1-1
2	2014	SOIL S	STUDY DESIGN	2-1
	2.1	PURF	POSE OF STUDY	2-1
	2.2	DATA	A QUALITY OBJECTIVES	2-1
		2.2.1	Step 1 – State the Problem	2-1
		2.2.2	Step 2 – Identify the Goals of the Study	2-2
		2.2.3	Step 3 – Identify Information Inputs	2-3
		2.2.4	Step 4 – Define the Boundaries of the Study	2-4
		2.2.5	Step 5 – Develop the Analytical Approach	2-5
		2.2.6	Step 6 – Specify Performance or Acceptance Criteria	2-7
		2.2.7	Step 7 – Develop the Plan for Obtaining the Data	2-9
	2.3	STUD	DY DESIGN	2-9
		2.3.1	Overall Design	2-9
		2.3.2	Selection of Sampling Areas	2-10
		2.3.3	Identification of Target DUs and Sampling Locations	2-11
3	MET	HODS		3-1
	3.1	FIELI	O METHODS	3-1
		3.1.1	Sampling Locations	3-1
		3.1.2	Methods for Sample Collection	3-2
		3.1.3	Field Changes and Deviations	3-4
	3.2	LABC	DRATORY METHODS	
		3.2.1	Methods for Chemical Analysis	3-6
		3.2.2	Laboratory Deviations	
	3.3	DATA	A EVALUATION APPROACH	3-7
		3.3.1	Methods	3-7
		3.3.2	Deviations from Planned Data Evaluation Approach	3-8
4	VAL	IDATI	ON ASSESSMENT	4-1
	4.1		RALL DATA QUALITY	

	4.2	SAMI	PLE TRANSPORT AND HOLDING TIMES	4-2
	4.3	META	ALS	4-3
		4.3.1	Calibration	4-3
		4.3.2	Blanks	4-3
		4.3.3	Matrix Spikes	4-3
		4.3.4	Laboratory Control Samples	4-3
		4.3.5	Laboratory Duplicates, Field Split Samples, and Triplicate	
			Samples	
		4.3.6	Interference Check Samples	
		4.3.7	Serial Dilutions	
		4.3.8	Internal Standards	
	4.4	CON	VENTIONAL PARAMETERS	4-4
		4.4.1	Laboratory and Field Duplicates and Triplicates	4-4
	4.5	IVBA		4-5
		4.5.1	Calibration	4-5
		4.5.2	Blanks	4-5
		4.5.3	Matrix Spikes	4-5
		4.5.4	Laboratory Control Samples and Standard Reference Material	4-6
		4.5.5	Laboratory Duplicates and Field Split Samples	4-6
		4.5.6	Interference Check Samples	4-6
		4.5.7	Serial Dilutions	4-6
		4.5.8	Internal Standards	4-6
5	RESU	ULTS		5-1
	5.1	AERI	AL DEPOSITION AREAS	5-2
		5.1.1	Metals and Conventional Parameters	5-2
		5.1.2	IVBA	5-2
	5.2	RELIG	CT FLOODPLAIN DEPOSITION AREAS	5-2
		5.2.1	Metals and Conventional Parameters	5-3
		5.2.2	IVBA	
	5.3	WINI	DBLOWN SEDIMENT DEPOSITION AREAS	5-3
		5.3.1	Metals and Conventional Parameters	5-3
		5.3.2	IVBA	5-3
	5.4	FIELI	O QC SUMMARY	5-3
		5.4.1	Aerial Deposition Areas	5-4
		5.4.2	Relict Floodplain Deposition Areas	
		5.4.3	Windblown Sediment Deposition Areas	
	5.5	EVAI	LUATION OF REPORTING LIMITS FOR NONDETECTED	
			PLES	5-5

Windward iv

	5.6	COMI	PARISON WITH SCREENING LEVELS	5-5
		5.6.1	Ecological Screening Levels	5-6
		5.6.2	Human Health Screening Levels	5-7
6	SUM	MARY	AND RECOMMENDATIONS	6-1
7	REFE	RENCI	ES	7-1
7	REFE	RENCI	ES	7- 1
-			Field Activity Report	7-1

Windward v

LIST OF FIGURES

Figure 5-1a	pH in Bulk Soil Samples by Deposition Area
Figure 5-1b	Percent Solids in Bulk Soil Samples by Deposition Area
Figure 5-1c	Total Fines in Bulk Soil Samples by Deposition Area
Figure 5-2a	Percent Solids in < 2-mm Soil Fractions by Deposition Area
Figure 5-2b	Organic Carbon in < 2-mm Soil Fractions by Deposition Area
Figure 5-2c	Cation Exchange Capacity in < 2-mm Soil Fractions by Deposition Area
Figure 5-3	Percent solids in < 149- μ m Soil Fractions by Deposition Area
Figure 5-4a	Aluminum Concentrations in < 2-mm Soil Fractions by Deposition Area
Figure 5-4b	Antimony Concentrations in < 2-mm Soil Fractions by Deposition Area
Figure 5-4c	Arsenic Concentrations in < 2-mm Soil Fractions by Deposition Area
Figure 5-4d	Barium Concentrations in < 2-mm Soil Fractions by Deposition Area
Figure 5-4e	Beryllium Concentrations in < 2-mm Soil Fractions by Deposition Area
Figure 5-4f	Cadmium Concentrations in < 2-mm Soil Fractions by Deposition Area
Figure 5-4g	Calcium Concentrations in < 2-mm Soil Fractions by Deposition Area
Figure 5-4h	Chromium Concentrations in < 2-mm Soil Fractions by Deposition Area
Figure 5-4i	Cobalt Concentrations in < 2-mm Soil Fractions by Deposition Area
Figure 5-4j	Copper Concentrations in < 2-mm Soil Fractions by Deposition Area
Figure 5-4k	Iron Concentrations in < 2-mm Soil Fractions by Deposition Area

Windward

Figure 5-4l	Lead Concentrations in < 2-mm Soil Fractions by Deposition Area
Figure 5-4m	Magnesium Concentrations in < 2-mm Soil Fractions by Deposition Area
Figure 5-4n	Manganese Concentrations in < 2-mm Soil Fractions by Deposition Area
Figure 5-4o	Mercury Concentrations in < 2-mm Soil Fractions by Deposition Area
Figure 5-4p	Molybdenum Concentrations in < 2-mm Soil Fractions by Deposition Area
Figure 5-4q	Nickel Concentrations in < 2-mm Soil Fractions by Deposition Area
Figure 5-4r	Potassium Concentrations in < 2-mm Soil Fractions by Deposition Area
Figure 5-4s	Selenium Concentrations in < 2-mm Soil Fractions by Deposition Area
Figure 5-4t	Silver Concentrations in < 2-mm Soil Fractions by Deposition Area
Figure 5-4u	Sodium Concentrations in < 2-mm Soil Fractions by Deposition Area
Figure 5-4v	Thallium Concentrations in < 2-mm Soil Fractions by Deposition Area
Figure 5-4w	Vanadium Concentrations in < 2-mm Soil Fractions by Deposition Area
Figure 5-4x	Zinc Concentrations in < 2-mm Soil Fractions by Deposition Area
Figure 5-5a	Aluminum Concentrations in $<$ 149- μ m Soil Fractions by Deposition Area
Figure 5-5b	Antimony Concentrations in $<$ 149- μ m Soil Fractions by Deposition Area
Figure 5-5c	Arsenic Concentrations in < 149-µm Soil Fractions by Deposition Area

Windward viii

Figure 5-5d	Barium Concentrations in < 149-μm Soil Fractions by Deposition Area
Figure 5-5e	Beryllium Concentrations in $<$ 149- μ m Soil Fractions by Deposition Area
Figure 5-5f	Cadmium Concentrations in $<$ 149- μ m Soil Fractions by Deposition Area
Figure 5-5g	Calcium Concentrations in $<$ 149- μ m Soil Fractions by Deposition Area
Figure 5-5h	Chromium Concentrations in $<$ 149- μ m Soil Fractions by Deposition Area
Figure 5-5i	Cobalt Concentrations in < 149-µm Soil Fractions by Deposition Area
Figure 5-5j	Copper Concentrations in < 149-µm Soil Fractions by Deposition Area
Figure 5-5k	Iron Concentrations in $<$ 149- μ m Soil Fractions by Deposition Area
Figure 5-5l	Lead Concentrations in $<$ 149- μ m Soil Fractions by Deposition Area
Figure 5-5m	Magnesium Concentrations in $<$ 149- μ m Soil Fractions by Deposition Area
Figure 5-5n	Manganese Concentrations in $<$ 149- μ m Soil Fractions by Deposition Area
Figure 5-50	Mercury Concentrations in $<$ 149- μ m Soil Fractions by Deposition Area
Figure 5-5p	Molybdenum Concentrations in $<$ 149- μ m Soil Fractions by Deposition Area
Figure 5-5q	Nickel Concentrations in < 149-µm Soil Fractions by Deposition Area
Figure 5-5r	Potassium Concentrations in $<$ 149- μ m Soil Fractions by Deposition Area
Figure 5-5s	Selenium Concentrations in < 149-µm Soil Fractions by Deposition Area

Windward ix

Figure 5-5t	Silver Concentrations in $<$ 149- μ m Soil Fractions by Deposition Area
Figure 5-5u	Sodium Concentrations in $<$ 149- μ m Soil Fractions by Deposition Area
Figure 5-5v	Thallium Concentrations in $<$ 149- μ m Soil Fractions by Deposition Area
Figure 5-5w	Vanadium Concentrations in < 149- μ m Soil Fractions by Deposition Area
Figure 5-5x	Zinc Concentrations in $<$ 149- μ m Soil Fractions by Deposition Area
Figure 5-6a	Percent Bioaccessible Aluminum in < 149- μ m Soil Fractions by Deposition Area
Figure 5-6b	Percent Bioaccessible Antimony in < 149- μ m Soil Fractions by Deposition Area
Figure 5-6c	Percent Bioaccessible Arsenic in $<$ 149- μ m Soil Fractions by Deposition Area
Figure 5-6d	Percent Bioaccessible Barium in $<$ 149- μ m Soil Fractions by Deposition Area
Figure 5-6e	Percent Bioaccessible Beryllium in $<$ 149- μ m Soil Fractions by Deposition Area
Figure 5-6f	Percent Bioaccessible Cadmium in < 149- μ m Soil Fractions by Deposition Area
Figure 5-6g	Percent Bioaccessible Calcium in $<$ 149- μ m Soil Fractions by Deposition Area
Figure 5-6h	Percent Bioaccessible Chromium in $<$ 149- μ m Soil Fractions by Deposition Area
Figure 5-6i	Percent Bioaccessible Cobalt in < 149- μ m Soil Fractions by Deposition Area
Figure 5-6j	Percent Bioaccessible Copper in $<$ 149- μ m Soil Fractions by Deposition Area
Figure 5-6k	Percent Bioaccessible Iron in < 149-μm Soil Fractions by Deposition Area

Windward x

Figure 5-6l	Percent Bioaccessible Lead in < 149- μ m Soil Fractions by Deposition Area
Figure 5-6m	Percent Bioaccessible Magnesium in < 149- μ m Soil Fractions by Deposition Area
Figure 5-6n	Percent Bioaccessible Manganese in < 149- μ m Soil Fractions by Deposition Area
Figure 5-60	Percent Bioaccessible Mercury in < 149- μ m Soil Fractions by Deposition Area
Figure 5-6p	Percent Bioaccessible Molybdenum in < 149- μ m Soil Fractions by Deposition Area
Figure 5-6q	Percent Bioaccessible Nickel in < 149-µm Soil Fractions by Deposition Area
Figure 5-6r	Percent Bioaccessible Potassium in < 149- μ m Soil Fractions by Deposition Area
Figure 5-6s	Percent Bioaccessible Selenium in $<$ 149- μ m Soil Fractions by Deposition Area
Figure 5-6t	Percent Bioaccessible Silver in < 149- μ m Soil Fractions by Deposition Area
Figure 5-6u	Percent Bioaccessible Sodium in < 149- μ m Soil Fractions by Deposition Area
Figure 5-6v	Percent Bioaccessible Thallium in < 149- μ m Soil Fractions by Deposition Area
Figure 5-6w	Percent Bioaccessible Vanadium in < 149- μ m Soil Fractions by Deposition Area
Figure 5-6x	Percent Bioaccessible Zinc in < 149-µm Soil Fractions by Deposition Area

Windward xi

LIST OF MAPS

Map 2-1	Soil Study Areas
Map 2-2	Decision Unit Locations in the Aerial Deposition Areas
Map 2-3	Decision Unit Locations in the Relict Floodplain Deposition Areas
Map 2-4	Decision Unit Locations in the Windblown Sediment Deposition Areas
Map 5-1	Spatial Distribution of Arsenic Concentrations in the < 2-mm Fraction of Soil Collected from the Aerial Deposition Areas
Map 5-2	Spatial Distribution of Barium Concentrations in the < 2-mm Fraction of Soil Collected from the Aerial Deposition Areas
Map 5-3	Spatial Distribution of Chromium Concentrations in the < 2-mm Fraction of Soil Collected from the Aerial Deposition Areas
Map 5-4	Spatial Distribution of Cobalt Concentrations in the < 2-mm Fraction of Soil Collected from the Aerial Deposition Areas
Map 5-5	Spatial Distribution of Copper Concentrations in the < 2-mm Fraction of Soil Collected from the Aerial Deposition Areas
Map 5-6	Spatial Distribution of Manganese Concentrations in the < 2-mm Fraction of Soil Collected from the Aerial Deposition Areas
Map 5-7	Spatial Distribution of Nickel Concentrations in the < 2-mm Fraction of Soil Collected from the Aerial Deposition Areas
Map 5-8	Spatial Distribution of Selenium Concentrations in the < 2-mm Fraction of Soil Collected from the Aerial Deposition Areas
Map 5-9	Spatial Distribution of Arsenic Concentrations in the < 2-mm Fraction of Soil Collected from the Relict Floodplain Deposition Areas
Map 5-10	Spatial Distribution of Barium Concentrations in the < 2-mm Fraction of Soil Collected from the Relict Floodplain Deposition Areas
Map 5-11	Spatial Distribution of Chromium Concentrations in the < 2-mm Fraction of Soil Collected from the Relict Floodplain Deposition Areas
Map 5-12	Spatial Distribution of Cobalt Concentrations in the < 2-mm Fraction of Soil Collected from the Relict Floodplain Deposition Areas
Map 5-13	Spatial Distribution of Copper Concentrations in the < 2-mm Fraction of Soil Collected from the Relict Floodplain Deposition Areas

Windward xiii

- Map 5-14 Spatial Distribution of Selenium Concentrations in the < 2-mm Fraction of Soil Collected from the Relict Floodplain Deposition Areas
- Map 5-15 Spatial Distribution of Antimony Concentrations in the < 2-mm Fraction of Soil Collected from the Windblown Sediment Deposition Areas
- Map 5-16 Spatial Distribution of Cadmium Concentrations in the < 2-mm Fraction of Soil Collected from the Windblown Sediment Deposition Areas
- Map 5-17 Spatial Distribution of Lead Concentrations in the < 2-mm Fraction of Soil Collected from the Windblown Sediment Deposition Areas
- Map 5-18 Spatial Distribution of Zinc Concentrations in the < 2-mm Fraction of Soil Collected from the Windblown Sediment Deposition Areas
- Map 5-19 Spatial Distribution of Arsenic Concentrations in the < 149- μ m Fraction of Soil Collected from the Aerial Deposition Areas
- Map 5-20 Spatial Distribution of Lead Concentrations in the < 149-μm Fraction of Soil Collected from the Aerial Deposition Areas
- Map 5-21 Spatial Distribution of Arsenic Concentrations in the < 149-μm Fraction of Soil Collected from the Relict Floodplain Deposition Areas
- Map 5-22 Spatial Distribution of Lead Concentrations in the < 149-µm Fraction of Soil Collected from the Relict Floodplain Deposition Areas

Windward xiv

LIST OF TABLES

Table 2-1	Target Method Detection Limits and Method Reporting Limits			
Table 2-2	Summary of Target Sampling Locations			
Table 3-1	Summary of Sampling Locations			
Table 3-2	Summary of Total Samples Collected in the Field			
Table 3-3a	Aerial Deposition Area Planned and Sampled Decision Units			
Table 3-3b	Relict Floodplain Deposition Area Planned and Sampled Decision Unit			
Table 3-3c	Windblown Sediment Deposition Area Planned and Sampled Decision Units			
Table 3-4	Soil Sample Analysis Summary			
Table 3-5	Analytical Methods for Soil Samples			
Table 4-1a	Aerial Deposition Area Summary of Qualifiers for Bulk Soil Sample Conventional Parameter Results			
Table 4-1b	Aerial Deposition Area Summary of Qualifiers for < 2-mm Fraction Metals and Conventional Parameter Results			
Table 4-1c	Aerial Deposition Area Summary of Qualifiers for $<$ 149- μm Fraction Metals and Conventional Parameter Results			
Table 4-2a	Relict Floodplain Deposition Area Summary of Qualifiers for Bulk Soil Sample Conventional Parameter Results			
Table 4-2b	Relict Floodplain Deposition Area Summary of Qualifiers for < 2-mm Fraction Metals and Conventional Parameter Results			
Table 4-2c	Relict Floodplain Deposition Area Summary of Qualifiers for $<$ 149- $\!\mu m$ Fraction Metals and Conventional Parameter Results			
Table 4-3a	Windblown Sediment Deposition Area Summary of Qualifiers for Bulk Soil Sample Conventional Parameter Results			
Table 4-3b	Windblown Sediment Deposition Area Summary of Qualifiers for < 2-mm Fraction Metals and Conventional Parameter Results			
Table 4-4	Summary of Qualifiers for IVBA Results			
Table 5-1a	Aerial Deposition Area Summary Statistics for Bulk Soil Sample Conventional Parameter Results			

Windward xv

Table 5-1b	Aerial Deposition Area Summary Statistics for < 2-mm Fraction Metals and Conventional Parameter Results				
Table 5-1c	Aerial Deposition Area Summary Statistics for $<$ 149- μ m Fraction Metals and Conventional Parameter Results				
Table 5-2a	Relict Floodplain Deposition Area Summary Statistics for Bulk Soil Sample Conventional Parameter Results				
Table 5-2b	Relict Floodplain Deposition Area Summary Statistics for < 2-mm Fraction Metals and Conventional Parameter Results				
Table 5-2c	Relict Floodplain Deposition Area Summary Statistics for < 149- _L Fraction Metals and Conventional Parameter Results				
Table 5-3a	Windblown Sediment Deposition Area Summary Statistics for Bulk Soi Sample Conventional Parameter Results				
Table 5-3b	Windblown Sediment Deposition Area Summary Statistics for < 2-mm Fraction Metals and Conventional Parameter Results				
Table 5-4	Summary Statistics for IVBA Results				
Table 5-5	Relative Bioavailability (RBA) Data for Lead from the < 149- μ m Fraction				
Table 5-6	Lead Data from < 149-µm Fraction Adjusted for Bioavailability				
Table 5-7a	Aerial Deposition Area Summary of Field Split and Triplicate Sample Results for Bulk Soil Samples				
Table 5-7b	Aerial Deposition Area Summary of Field Split and Triplicate Sample Results for the < 2-mm Soil Fraction				
Table 5-7c	Aerial Deposition Area Summary of Field Split and Triplicate Sample Results for the $\!<\!149\text{-}\mu m$ Soil Fraction				
Table 5-8a	Relict Floodplain Deposition Area Summary of Field Split and Triplicate Sample Results for Bulk Soil Samples				
Table 5-8b	Relict Floodplain Deposition Area Summary of Field Split and Triplicate Sample Results for the < 2-mm Soil Fraction				
Table 5-8c	Relict Floodplain Deposition Area Summary of Field Split and Triplicate Sample Results for the $\!<$ 149- $\!\mu m$ Soil Fraction				
Table 5-9a	Windblown Sediment Deposition Area Summary of Field Split and Triplicate Sample Results for Bulk Soil Samples				

Windward xvi

Table 5-9b	Windblown Sediment Deposition Area Summary of Field Split and Triplicate Sample Results for the < 2-mm Soil Fraction				
Table 5-10	Comparison of Actual Method Reporting Limits with Analytical Concentration Goals for Nondetected Samples				
Table 5-11a	Summary of Metals Data Compared with Available Eco-SSLs				
Table 5-11b	Comparison of Aerial Deposition Area Metals Data from the < 2-mm Fraction with Available Eco-SSLs				
Table 5-11c	Comparison of Relict Floodplain Deposition Area Metals Data from the < 2-mm Fraction with Available Eco-SSLs				
Table 5-11d	Comparison of Windblown Sediment Deposition Area Metals Data from the < 2-mm Fraction with Available Eco-SSLs				
Table 5-12a	Summary of Metals Data from < 149-µm Fraction Compared with Available Human Health Screening Levels				
Table 5-12b	Comparison of Aerial Deposition Area Metals Data from < 149- μ m Fraction with Available Human Health Screening Levels				
Table 5-12c	Comparison of Relict Floodplain Deposition Area Metals Data from $\!<\!149\text{-}\mu m$ Fraction with Available Human Health Screening Levels				

Windward xvii

ACRONYMS AND ABBREVIATIONS

ACG analytical concentration goal

AD aerial deposition

ADA aerial deposition area
ALS ALS Environmental
ARCADIS ARCADIS U.S., Inc.

BERA baseline ecological risk assessment

CEC cation exchange capacity

COC chain-of-custody

CSM conceptual site model

DL detection limit

DQO data quality objective

DU decision unit

Eco-SSL ecological soil screening level

ESI Environmental Standards, Inc.

EPA U.S. Environmental Protection Agency

FSP field sampling plan

GPS global positioning system

HHRA human health risk assessment ICP inductively coupled plasma

ICS incremental composite sampling

ID identification

ITRC Interstate Technology & Regulatory Council

IVBA in vitro bioaccessibility assay

LCS laboratory control sample

MDL method detection limit
MRL method reporting limit

MS/MSD matrix spike/matrix spike duplicate

%Ds percent differences

QA/QC quality assurance and quality control

QAPP quality assurance project plan

Windward xix

RBA relative bioavailability
RBC risk-based concentration

RF relict floodplain

RFDA relict floodplain deposition area

RI/FS remedial investigation and feasibility study

RL reporting limit

RM river mile

RPD relative percent difference
RSD relative standard deviation
SOP standard operating procedure

SRC Syracuse Research Corporation

TAL target analyte list

TAI Teck American Incorporated

TOC total organic carbon

UCR Upper Columbia River

USBR U.S. Bureau of Reclamation

USGS U.S. Geological Survey
WS windblown sediment

WSDA windblown sediment deposition area

Windward xx

UNITS OF MEASURE

ac acre(s)

cm centimeter(s)

g gram(s)
gal. gallon(s)
in. inch(es)

m meter(s)

mg/kg milligrams per kilogram

mm millimeter(s)

μm micrometer(s)

mi² square mile(s)

Windward xxi

1 INTRODUCTION

This report presents the results for the 2014 Soil Study (herein referred to as "the study") conducted for the Upper Columbia River (UCR) Site, herein referred to as the Site.¹ Analyses were conducted under the U.S. Environmental Protection Agency (EPA)-approved quality assurance project plan (QAPP) for the study (Exponent et al. 2014). The study was conducted as part of the remedial investigation and feasibility study (RI/FS) for the Site to evaluate if there is unacceptable risk to ecological receptors and people from exposure to metals in the upland soils. Data needs addressed by this study are intended to support the conduct of the baseline ecological risk assessment (BERA) (to be completed by Teck American Incorporated [TAI]) and the baseline human health risk assessment (HHRA) (to be completed by EPA).

1.1 BACKGROUND

A review of historical soil data from soil samples collected adjacent to the UCR identified gaps in the data necessary to evaluate ecological and human health risks (Exponent et al. 2014). These data gaps included the need for additional soil data to evaluate upland areas potentially affected by point sources (e.g., aerial deposition of smelter particulates), historical fluvial deposition of sediment onto relict floodplains, and re-deposition of windblown sediment. In addition, historical soil data sets did not include parameters needed to determine the bioavailability of metals to soil organisms (i.e., cation exchange capacity [CEC], total organic carbon [TOC], and pH) or the bioaccessibility of lead in soil to which people may be exposed (i.e., *in vitro* bioaccessibility assay [IVBA]) (USEPA 2007a).

1.2 REPORT ORGANIZATION

This report is organized into the following sections:

• **Section 1 – Introduction.** This section provides background information for the study and outlines the report organization.

¹ The Site, as defined in the June 2, 2006, Settlement Agreement (USEPA 2006b), is "the areal extent of hazardous substances contamination within the United States in or adjacent to the Upper Columbia River, including the Franklin D. Roosevelt Lake ("Lake Roosevelt"), from the border between the United States and Canada downstream to the Grand Coulee Dam, and all suitable areas in proximity to such contamination necessary for implementation of the response actions…."

- **Section 2 Study Design.** This section describes the purpose and objectives of the study and provides an overview of the study design.
- Section 3 Methods. This section provides the methods used for the study, including target sampling locations, collection methods, field analyses, laboratory analyses, and the approach used to summarize the data for the data report. This section also discusses any changes or deviations from the QAPP and field sampling plan (FSP).
- Section 4 Validation Assessment. This section provides an overview of the validation assessment conducted for the analytical results of the study samples.
- Section 5 Results. This section presents a summary of the field and analytical results and provides a comparison of the results with soil screening levels.
- Section 6 Summary and Recommendations. This section presents a summary of the results and provides recommendations.
- **Section 7 References.** This section presents bibliographic information for the documents cited within this report.

Figures, maps, and data tables are provided following Section 7. Appendices and the raw data are provided in electronic format (see enclosed CD-ROM). Data may also be obtained directly from the project database, accessible at: http://teck-ucr.exponent.com.

2 2014 SOIL STUDY DESIGN

2.1 PURPOSE OF STUDY

The purpose of the study was to collect information on concentrations of analytes in upland soil. This information will be used to evaluate whether there is unacceptable risk to ecological and human receptors from exposure to metals in the upland soil adjacent to the UCR (Exponent et al. 2014).

2.2 DATA QUALITY OBJECTIVES

As described in the QAPP (Exponent et al. 2014), EPA's seven-step data quality objective (DQO) process (USEPA 2006a) was used to guide the study design for the collection of upland soil. The DQO process is used to determine the type, quantity, and quality of data needed to achieve study goals and establishes performance and acceptance criteria for the data. The seven steps of the DQO process are listed below and discussed in the subsections that follow.

- 1. State the problem
- 2. Identify the goals of the study
- 3. Identify information inputs
- 4. Define the boundaries of the study
- 5. Develop the analytical approach
- 6. Specify performance or acceptance criteria
- 7. Develop the plan for obtaining the data.

2.2.1 Step 1 – State the Problem

The preliminary conceptual site model (CSM) for the UCR RI/FS (Parametrix et al. 2010) identified soil as a potential exposure pathway for ecological receptors (i.e., terrestrial invertebrates, amphibians, reptiles, plants, birds, and mammals) and human receptors. As presented in the QAPP (Exponent et al. 2014), the spatial extent of historical soil data was limited and considered to be insufficient to evaluate potential risks to ecological and human receptors. Therefore, additional soil data were collected during the study to evaluate three types of areas, representing different soil transport mechanisms, where concentrations of analytes in soil might present an unacceptable risk to ecological and human receptors.

These three types of areas are:

- Aerial deposition areas (ADAs)—areas potentially influenced by smelter particulate deposition in the northern portion of the Site
- Relict floodplain deposition areas (RFDAs)—areas that may have been inundated under historical hydraulic conditions in the UCR
- Windblown sediment deposition areas (WSDAs)—areas where sediment from the UCR shoreline may have been transported by the wind during periods of water drawdown.

At the direction of EPA, the analytes evaluated in this study included EPA's target analyte list (TAL) metals² and molybdenum (USEPA 2012a). In addition, data that were not available in the historical data sets but were needed to determine the bioavailability of metals to soil organisms (i.e., CEC, TOC, and pH) and the bioaccessibility of lead in soil to which people may be exposed (i.e., IVBA) were also evaluated in the study.³

2.2.2 Step 2 – Identify the Goals of the Study

The primary goal of the study was to generate data to be used in characterizing the exposure of ecological and human receptors to upland soil. As presented in the QAPP (Exponent et al. 2014), the primary questions developed to meet this goal were:

- Where have analyte concentrations in soil been influenced by the deposition of particulates in air emissions, sediment onto relict floodplains adjacent to the UCR, or re-deposition of windblown sediment?
- What are the concentrations of analytes in soil that have potentially been influenced by the deposition of particulates in air emissions, sediment onto relict floodplains adjacent to the UCR, or re-deposition of windblown sediment?
- Do analyte concentrations in soil pose an unacceptable risk to ecological or human receptors?

Windward 2-2

-

² TAL metals include aluminum, antimony, arsenic, barium, beryllium, cadmium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, mercury, nickel, potassium, selenium, silver, sodium, thallium, vanadium, and zinc (USEPA 2015) (see http://www.epa.gov/superfund/programs/clp/ismtarget.htm).

³ At the direction of EPA, IVBA was expanded to include TAL metals and molybdenum rather than just lead as specified in the QAPP (Exponent et al. 2014). Documentation regarding the rationale for this decision is provided in Appendix B.

The specific risk questions that will be addressed in the BERA and HHRA using the data collected in this study include:

- Is reproduction, growth, or survival of terrestrial invertebrates or plants adversely affected by chemicals of potential concern (COPCs⁴) in UCR soil?
- Are COPCs in UCR soil at concentrations that will adversely affect reproduction, growth, or survival of amphibians or reptiles (herpetofauna) during adult life stages?
- Are COPCs in UCR soil at concentrations that will adversely affect reproduction, growth, or survival of terrestrial birds or mammals?
- Is the health of people working, recreating, or living on the Site adversely affected by COPCs in UCR soil?

2.2.3 Step 3 – Identify Information Inputs

Careful consideration was given to identify the types and sources of information needed to determine whether exposure to soil at the Site poses unacceptable risks to ecological or human receptors. This information included the following:

- Analytical data for TAL metals and molybdenum in the < 2-mm fraction of soil collected from the three area types (i.e., ADAs, RFDAs, and WSDAs) for use in the BERA
- Analytical data for TAL metals and molybdenum in the < 149-µm fraction of soil⁵ collected from two area types (i.e., ADAs and RFDAs) for use in the HHRA⁶
- Grain size distribution in bulk soil samples

⁴ Screens of chemicals of interest will identify COPCs to be carried forward into the BERA and HHRA.

 $^{^5}$ As specified in the QAPP (Exponent et al. 2014), a No. 100 sieve (mesh size of 149 μ m) was used to collect the soil fraction for analysis of data for the HHRA. The laboratory reports and validation reports refer to this fraction as the 150- μ m fraction.

⁶ WSDAs were focused on evaluating risks to ecological receptors (USEPA 2012a). Prior sampling showed that beaches sampled nearest the WSDAs (i.e., Summer Island and Marcus Flats Island for the Marcus Flats WSDAs and Seven Bays for the Columbia Beach WSDAs) had no lead or arsenic concentrations above human health soil screening levels (USEPA 2012c).

- Soil data for geochemical parameters that could affect the bioavailability of metals to ecological receptors (i.e., pH [bulk soil samples⁷] and TOC and CEC [< 2-mm soil fraction]) from the three area types (i.e., ADAs, RFDAs, and WSDAs)
- IVBA analyses on 20 percent of the soil samples from two area types (i.e., ADAs and RFDAs) that had lead concentrations > 100 mg/kg
- Soil screening levels (i.e., ecological soil screening levels [Eco-SSLs] and human [i.e., residential] soil screening levels).

2.2.4 Step 4 – Define the Boundaries of the Study

The Site encompasses the UCR from the U.S.-Canada border (river mile [RM] 745) to the Grand Coulee Dam (approximately RM 596) and includes Franklin D. Roosevelt Lake. As discussed in Step 1, three types of areas within the Site were selected to represent three different means of soil deposition: aerial deposition from smelter stacks (ADAs), sediment deposition on relict floodplains (RFDAs), and re-deposition of windblown sediment during low water (drawdown) conditions (WSDAs). These areas are shown on Map 2-1 and described in more detail, below.

- <u>Aerial Deposition Areas.</u> ADAs are areas located within the northernmost 100 mi² of the Site and extend south from the U.S.-Canada border. The eastern border follows the ridge east of the UCR toward Northport, Washington. The western border is bisected by drainages and extends northwesterly along a straight line to the U.S.-Canada border.
- Relict Floodplain Deposition Areas. For the purpose of the study, relict floodplains are areas that may have been subjected to flooding under past flow conditions but are not expected to be inundated under current pool level management controls. The relict floodplain is the delineated area between high-pool seasonally inundated lands and the maximum pre-1973 strandline. The five largest UCR relict floodplains are located near Northport, Washington. All five of these floodplains were designated as RFDAs for the study.
- Windblown Sediment Deposition Areas. Areas on the west bank of northern Marcus Flats and just north of Seven Bays at Columbia Beach were identified as WSDAs because they represent locations where the windblown re-deposition of

Windward 2-4

-

⁷ pH was measured in the bulk soil sample rather than in the < 2-mm soil fraction as specified in the QAPP (Exponent et al. 2014) so that the measurement would not be influenced (i.e., altered) by the soil drying and sieving process.

sediment is most likely to occur and represent a possible worst-case scenario. Sampling locations were selected based on site-specific wind dynamics and further refined to avoid areas adjacent to nearby mining activities.

In addition to spatial factors, the timing for sampling was also considered. The only temporal consideration for the soil sampling event was that the soil needed to be accessible (i.e., not snow-covered or frozen). Thus, the targeted time frame for sampling was between June and October.

2.2.5 Step 5 – Develop the Analytical Approach

Except for the soil screening levels, all of the information listed in Step 3 was collected as part of the study. The Eco-SSLs presented in the QAPP (Exponent et al. 2014) are the lowest of the screening levels adopted by EPA for plants, soil invertebrates, birds, and mammals (USEPA 2010a).8 The human health soil screening levels presented in the QAPP were derived by Syracuse Research Corporation (SRC 2013) and represent residential risk-based screening levels for soil. With the exception of antimony, arsenic, and mercury, all of the SRC (2013) screening levels were calculated using EPA's regional screening level calculator and default values.9 SRC (2013) adjusted the screening levels for antimony and mercury to reflect changes to the default reference dose values for those metals. SRC (2013) also adjusted the human health screening level for arsenic for natural background. The target method detection limits (MDLs) and method reporting limits (MRLs) (Table 2-1) for analytical methods selected for the study were five-fold lower than the Eco-SSLs and the human health soil screening levels.

The analytical approaches adopted for the study are intended to provide quality data for evaluating whether there are unacceptable risks to ecological or human receptors exposed to soil from the Site. Soil samples were collected using incremental composite sampling

⁸ According to EPA (USEPA 2010a), the metals with Eco-SSLs are those that typically exist as cationic species.

⁹ The comparison with screening values provided in this data report are for screening purposes only and are only intended to identify chemicals that should be evaluated in the risk assessments. They do not represent cleanup or action levels (USEPA 2002, 2003).

¹⁰ The human health screening level for arsenic was based on the 2012 default arsenic residential soil screening level for a 1-in-1-million risk level (USEPA 2012b) plus an estimate of the concentration of arsenic in natural background (9 mg/kg). Since SRC's development of this screening level, EPA's 2012 default arsenic screening level (0.39 mg/kg) has been updated to include a default oral relative bioavailability assumption of 0.6 or 60 percent for arsenic in soil. The current default arsenic screening level is 0.67 mg/kg. However, for the purpose of this report, the screening value identified in the QAPP was used.

(ICS) methods (ITRC 2012) within specifically selected decision units (DUs). ICS methods are designed to reduce variability in the data and provide more accurate estimates of the mean soil concentrations to which ecological or human receptors are exposed than those obtained from single, discrete soil samples.

Soil samples collected using the ICS method were sieved into two fractions (< 2-mm and < 149- μ m). Analytical data from the < 2-mm and < 149- μ m fractions will be used for the evaluation of risk to ecological and human receptors, respectively.

The data were compared with soil screening levels to determine if additional data are needed. The Eco-SSLs and human health soil screening levels used in this screening process are provided in Section 5.6; they are conservative screening levels to be used only for initial screening purposes and are only intended to identify chemicals for further evaluation in the risk assessments. In the risk assessments, the site-specific bioavailability of metals to ecological receptors in the < 2-mm fraction will be determined using the relationships among pH, CEC, and TOC, which affect the ability of organisms to take up metals from soils (e.g., Smolders et al. 2009; Checkai et al. 2014). Site-specific adjustments may be made for copper, nickel, zinc, cobalt, and molybdenum using pH, CEC, and TOC.¹¹ In addition, IVBA results from the < 149-µm fraction may be used to calculate relative bioavailability (RBA) values for metals in the < 2-mm fraction.¹² The RBA adjustment for the < 2-mm fraction will be conducted in the BERA.

IVBA results for lead in the < 149- μ m fraction have been used to calculate site-specific oral RBA values for lead in soil. In addition, arsenic concentrations in the < 149- μ m fraction have been adjusted for EPA's default RBA of 60 percent arsenic in soil (USEPA 2012b). Spatial representations of results for metals concentrations in the < 149- μ m fraction have been prepared to identify locations where concentrations exceed human health risk-based concentrations (RBCs). The spatial evaluation of data from the < 2-mm fraction will be conducted as part of the BERA, and data may be adjusted for bioavailability. Locations

¹¹ A simplified Excel-based calculator for conducting the site-specific bioavailability adjustments is available at the following website:

http://www.arche-consulting.be/metals-csa-toolbox/soil-pnec-calculator.

¹² At the direction of EPA, IVBA was expanded to include TAL metals and molybdenum rather than just lead as specified in the QAPP. The usability of the IVBA data to assess RBA for metals in the < 2-mm fraction will be determined in conjunction with EPA.

¹³ Maps have only been prepared for metals with concentrations exceeding human health RBCs.

exceeding screening levels will be compared against regional background concentrations.¹⁴

2.2.6 Step 6 – Specify Performance or Acceptance Criteria

Performance or acceptance criteria are derived to minimize the possibility of either making erroneous conclusions or failing to keep uncertainty regarding the estimates to within acceptable levels.

The sampling goal was to collect 100 percent of the targeted samples. Reserve DUs were established to mitigate sample collection challenges in specific areas (e.g., impassable roads, flooding, rocky outcrops, cultural resource issues, lack of landowner permission, steep terrain, or erosion). For sampling challenges within DUs, procedures were established to shift increment locations if it was not possible to sample a targeted increment location listed in the QAPP.

Soil sampling and analysis were conducted using standard EPA-approved methods. DQOs followed EPA guidelines for precision, accuracy, representativeness, completeness, comparability, and analytical sensitivity. Composite samples were submitted to the analytical laboratory for ICS processing and subsampling according to the Interstate Technology & Regulatory Council (ITRC) guidance (ITRC 2012) and EPA-approved laboratory standard operating procedures (SOPs). Composited samples were homogenized, sieved into fractions (< 2-mm and < 149- μ m), and subsampled at the analytical laboratory. Metals analysis was conducted on a 2 g subsample, which is greater than the standard mass of 1 g (dry weight) for EPA Method 3050B but the minimum mass required to obtain a representative sample using ICS methods (Crumbling 2014).

Field quality control included the following:15

- Triplicate samples were collected from a total of 22 DUs. A detailed breakdown of triplicate samples by area is described below.
 - Primary ADA (includes reserve DUs in the reserve sampling area)—10 DUs were sampled in triplicate in the primary ADA (8 in the main area and 2 in

¹⁴ An agreement on soil background concentrations for use in the risk assessments has not been reached. Therefore, the comparison with background will be conducted as part of the risk assessments.

¹⁵ According to the QAPP, field quality control includes the use of trip blanks. Trip blanks are used to assess the contamination of volatile compounds during sample transport; however, because volatile compounds were not being assessed in this study, trip blanks were deemed unnecessary and, therefore, not included.

the reserve area). Of the 107 DUs sampled in the primary ADA, slightly less than 10 percent were sampled in triplicate (i.e., 10 of 107 or 9.4 percent), which met the QAPP requirement. This requirement specified that slightly under 10 percent of the DUs from the primary ADA be collected in triplicate because several additional sampling DUs were added at the request of EPA without the stipulation that additional triplicate locations be added to meet the 10 percent minimum criterion.

- High-density ADA—Six DUs were sampled in triplicate in the high-density ADA. Of the 35 DUs sampled in the high-density ADA, 17 percent were sampled in triplicate, which met the QAPP requirement that at least 10 percent of the DUs from the high-density ADA be collected in triplicate.
- RFDA—4 DUs were sampled in triplicate in the RFDA, one from each of the 4 RFDAs sampled (RFA, RFB, RFC, and RFD) as specified in the QAPP. Of the 16 DUs sampled in the RFDA, 25 percent were sampled in triplicate, which is above the minimum QAPP requirement that at least 10 percent of the DUs from the RFDA be collected in triplicate.
- WSDA—2 DUs were sampled in triplicate in the WSDA: one DU in the Columbia Beach North deposition area and one DU in the Marcus Flats East deposition area. Of the 13 DUs sampled in the WSDA, 15 percent were sampled in triplicate, which is above the minimum QAPP requirement that at least 10 percent of the DUs from the WSDA be collected in triplicate.
- Two types of split samples were prepared. These samples were collected in the same manner as standard samples in accordance with the QAPP and as summarized below:
 - Field split samples were pre-selected for certain DUs to assess the homogeneity of samples collected in the field. ALS Environmental (ALS) performed sample homogenization and took two aliquots of sample from the homogenized soil to generate the field split samples. Field split samples were prepared from 10 percent of the collected samples.
 - EPA split samples were pre-selected by EPA representatives for chemical analysis as part of their quality assurance and quality control (QA/QC) program. ALS performed sample homogenization and took two aliquots of sample from the homogenized soil to generate the EPA split sample. EPA split samples were prepared from 15 percent of the collected samples.
 - Equipment rinsate blanks were collected to identify possible contamination from the sampling environment or sampling equipment.

Laboratory quality control included the following:

- Matrix spike/matrix spike duplicate (MS/MSD) quality control was conducted for every 20 samples during analysis.
- Laboratory blanks were used to identify possible contamination from the preparation methods (i.e., sieving).

2.2.7 Step 7 – Develop the Plan for Obtaining the Data

A resource-effective design for collecting and processing the upland soil samples that would achieve the performance criteria for the study was described in the QAPP (Exponent et al. 2014). TAI and its technical team worked with potentially affected parties to assess the effects of the planned work and seek ways to avoid, minimize, or mitigate any adverse effects on properties with historical significance. A study-specific cultural resources coordination plan (Appendix B of the QAPP) provided relevant background information about Site-related cultural resources, defined measures for protecting resources, and defined procedures for consulting with the appropriate state, federal, and tribal parties with interests in the cultural resources of the Site.

2.3 STUDY DESIGN

This section summarizes the study design for the collection of soil samples and the rationale for the design, as presented in detail in the QAPP (Exponent et al. 2014). The sampling approach was developed based on the primary objective of the study, which was to collect information on analytes in upland soils adjacent to the UCR for use in the BERA and HHRA.

2.3.1 Overall Design

Soil samples were collected from predetermined DUs within three area types (i.e., ADAs, RFDAs, and WSDAs) following ICS methods (ITRC 2012). Increment samples (increments) were collected from the top 7.5 cm (3 in.) of soil at 30 increment locations within each DU (or 90 increment locations if the DU was sampled in triplicate). Increments were composited in the field to create one sample representing the entire DU. At the analytical laboratory, composite samples were homogenized and sieved into two soil fractions (i.e., < 2-mm and < 149-µm). Data for analyte concentrations in the two fractions will be used in the BERA and HHRA, respectively and are therefore discussed separately in this report. Data for select conventional soil parameters (e.g., CEC, TOC, and pH will be used to assess the RBA of metals in soil to ecological receptors. IVBA analysis was

conducted on a subset (i.e., slightly more than 20 percent) of the < 149- μ m fraction samples with lead concentrations > 100 mg/kg. IVBA data for lead provide an estimate of the site-specific oral RBA for lead in soil. ¹⁶

2.3.2 Selection of Sampling Areas

Soil samples were collected from the ADAs, RFDAs, and WSDAs as shown in Maps 2-2 through 2-4. The QAPP (Exponent et al. 2014) includes detailed information regarding how the sampling areas were defined and selected; brief summaries (by area type) are provided in the subsections below.

2.3.2.1 Aerial Deposition Areas

ADAs are lands adjacent to the UCR and within the river valley that most likely received aerial deposition from historical smelter stack emissions. Two ADAs were designated for sampling: the ADA high-density area, which comprises a 23-mi² corridor along the section of the UCR immediately downstream of the U.S.-Canada border and the ADA primary area, which comprises approximately 99 mi² (Map 2-2). The ADA high-density area was designated for a more extensive sampling due to the perceived likelihood of higher historical deposition rates in that area. In addition to these two subareas, a 16-mi² reserve area situated east of the ADA primary area was designated for sampling in the event that the target number of samples could not be collected from the high-density and primary areas (Map 2-2).

2.3.2.2 Relict Floodplain Deposition Areas

For the purpose of this evaluation, the RFDAs were defined as areas of the Site that were flooded under pre-1973 flow conditions but are not expected to flood under current flow and pool level management controls because changes in upstream flow regulations since 1973 have altered the magnitude of flood events. Thus, in the RFDAs, there is a potential for contamination from historical sediment deposition to exist beyond the present-day floodplain limits. The RFDAs are the areas between the maximum pre-1973 and post-1973 high-pool flood levels on the UCR. Five RFDAs that ranged in size from approximately 81 ac (0.13 mi²) to 268 ac (0.42 mi²) were designated for sampling (RFA through RFE; Map 2-3).

¹⁶ IVBA data for all metals were obtained at the request of EPA and may be used to estimate the RBA in the < 2-mm-fraction for use in the BERA.

2.3.2.3 Windblown Sediment Deposition Areas

WSDAs were determined by analyzing wind conditions (i.e., speed, direction, and frequency), concentrations of analytes in nearshore sediment, and percent fines in sediment along the UCR. Wind data were gathered from meteorological data collection systems operated by the U.S. Geological Survey (USGS) and U.S. Bureau of Reclamation (USBR) and used to generate plots of wind speed patterns. The areas with the maximum winds, highest percent fines, and highest concentrations of critical analytes were selected to represent soil in areas with the greatest probability of having the highest analyte concentrations from the re-deposition of windblown sediment. The combined analyses indicated that Marcus Flats and Seven Bays on the left bank (east side) of the UCR (Map 2-4) represented the reasonable worst-case scenario for the enrichment of soils by analytes in windblown sediment. Marcus Flats had the highest analyte concentrations in bank sediment, and Seven Bays had the highest percentage of particles of a size most likely to be transported by wind. Thus, two beach areas each at Marcus Flats (East and West) and near Seven Bays (Columbia Beach North and South) were designated as WSDAs (Map 2-4).

2.3.3 Identification of Target DUs and Sampling Locations

The QAPP (Exponent et al. 2014) included detailed information regarding the selection of DUs within the three sampling areas. The process is briefly summarized by area type in the subsections below. Maps 2-2 through 2-4 show the locations of DUs in each area.

2.3.3.1 Aerial Deposition Areas

A total of 142 DUs were targeted for sampling in the ADAs: 39 in the ADA high-density area and 103 in the ADA primary area. In addition, reserve DUs were pre-selected for sampling in the event that the target number of DUs in the ADA high-density and primary areas could not be sampled: 7 in the high-density area, 19 in the primary area, and 16 in the reserve area (Table 2-2). The selection of DUs within the ADAs considered factors such as accessibility for sample collection (e.g., areas with less than 30-degree slope due to safety concerns, areas within 550 m of roads to minimize travel time for field personnel to reach sampling locations). DUs were not located within 50 m of roads and railways or within no-sample buffer zones established for active and abandoned mine sites.¹⁷ DUs

¹⁷ A 500-m no-sample buffer zone was established for mine sites within the ADAs that were sampled as part of the assessment detailed in the START-2 report (START-2 2002). A 100-m no-sample buffer was established around the other known mine sites in the study area, including those identified as "producer," "past producer," "occurrence," "prospect," or "unknown."

were also excluded from areas within relict floodplain depositional areas or areas near the surface of the Columbia River at full pool elevation. Using these criteria, a total of 63.94 square miles (mi²) were removed from the ADAs (10.62 mi² from the ADA high-density area, 44.48 mi² from the ADA primary area, and 8.84 mi² from the ADA reserve area. Specific details on the area removed from the ADAs due to exclusion features are provided in Table B1-4 of the QAPP (Exponent et al. 2014).

2.3.3.2 Relict Floodplain Deposition Areas

A total of 29 DUs were targeted for sampling in the RFDAs, with 3 to 9 DUs selected per RFDA (Table 2-2). Locations of DUs (Map 2-3) were determined based on the direction and magnitude of flood events and vegetation type.

2.3.3.3 Windblown Sediment Deposition Areas

Two beach areas each at Marcus Flats and Columbia Beach were designated as the WSDAs. The beach areas were identified as being relatively undisturbed because they had no roads, railways, mines, or other sources of dust-producing activity. DUs at each beach area were located within two elongated polygons situated perpendicular to the primary direction of onshore winds. Seven target DUs were selected for each polygon, for a total of 28 DUs (Table 2-2 and Map 2-4). The WSDAs were not evaluated for human health because WSDA sampling was focused on evaluating risks to ecological receptors (USEPA 2012a). Prior sampling showed that the beaches sampled nearest the WSDAs (i.e., Summer Island and Marcus Island for the Marcus Flats WSDAs and Seven Bays for the Columbia Beach WSDAs) had no lead or arsenic concentrations above human health soil screening levels (USEPA 2012c).

Map B1-2 of the QAPP (Exponent et al. 2014) shows the buffer zones established for the mine locations.

3 METHODS

3.1 FIELD METHODS

The sampling program for the study was outlined in the QAPP (Exponent et al. 2014), which included the FSP as Appendix A. The FSP detailed the procedures and methods for sample collection and processing, field quality control, sample documentation, packaging, and transport, field documentation, laboratory analyses, and data management and reporting.

Field sampling was conducted by ARCADIS U.S., Inc. (ARCADIS). Upland soil samples were collected from the three area types within the Site (i.e., ADAs, RFDAs, and WSDAs) between September 8 and October 23, 2014. Sampling activities were conducted under the direct oversight of EPA or their authorized representatives. Cultural resource monitors from the Confederated Tribes of the Colville Reservation, the National Park Service, and/or the Spokane Tribe of Indians and archaeologists¹⁸ from URS Corporation were also present during sampling activities to provide oversight for the protection of cultural artifacts in accordance with the protocols outline in the cultural resources coordination plan (Appendix B of the QAPP [Exponent et al. 2014]). The sampling locations, sample collection methods, and field documentation are documented in the field activity report prepared by ARCADIS, which is included as Appendix A of this report. Field changes and deviations from the QAPP are also detailed in the field activity report (Appendix A) and summarized in Section 3.1.3.

3.1.1 Sampling Locations

As specified in the QAPP (Exponent et al. 2014) and discussed in Section 2.3, upland soil composite samples were targeted for collection from 199 DUs (142 from ADAs, 29 from RFDAs, and 28 from WSDAs). Because of access constraints (e.g., steep terrain, permission not provided by land owner), not all targeted DUs were sampled. Samples were collected from a total of 171 DUs (142 from ADAs, 16 from RFDAs, and 13 from WSDAs) (Maps 2-2 through 2-4 and Table 3-1). Increments were collected from 30 predetermined locations within each DU (or 90 increment locations if the DU was sampled in triplicate). ¹⁹ The

¹⁸ Archaeological monitoring was conducted by professional archaeologists meeting the Secretary of Interior's Professional Qualification Standards, as outlined in 36 Code of Federal Regulations Part 61.

¹⁹ Only 15 increments were collected from ADA-101 because the terrain was too steep to collect all 30 increments; see Appendix A.

increment locations were identified using a hand-held global positioning system (GPS) unit. Increments were generally collected within 2 to 10 m of the predetermined location. In some instances (because of steep slopes, access restrictions, or limited accuracy of the GPS units), sample increments were collected more than 10 m from the predetermined location. Table 3 of Appendix A indicates which sample increments were collected, either more than 2 m or more than 10 m, from the predetermined location. The coordinates for the new locations are provided on the Increment Collection Forms in Appendix D of the field activity report (Appendix A).

3.1.2 Methods for Sample Collection

This section summarizes the collection and field processing methods of soil samples, which were carried out in accordance with the methods presented in the QAPP (Exponent et al. 2014) and FSP (Appendix A of the QAPP). Field QC samples included triplicate, field split, EPA split, and equipment rinsate blank samples.

3.1.2.1 Incremental Composite Sampling

Within each DU, increments were collected at predetermined locations using ICS methods in accordance with the QAPP (Exponent et al. 2014). Once the locations had been cleared of any surface debris, increments were collected from the top 0 to 7.5 cm (0 to 3 in.) of soil using a 5-cm-diameter AMS core sampler (soil punch). Each increment was placed in a dedicated plastic zippered storage bag and examined for cultural materials by a cultural resource monitor and/or archaeologist. Once the soil increment passed the cultural inspection, sampling continued. Sample buckets were labeled at the time of sampling. Labels included the alphanumeric sample identification (ID), as detailed in Section 2.6 of Appendix A of the QAPP, sampler's initials, and sample date and time.

Upon the completion of sampling at a DU, all 30 increments for that DU were composited in a laboratory-decontaminated 2-gal. plastic bucket to form a single incremental composite sample representative of the entire DU. Field observations and sampling activities were recorded in the field notebook and on a tablet computer. Sample collection equipment was grossly decontaminated (i.e., brushed off) between increments at the same DU and fully decontaminated between DUs in accordance with the procedures detailed in Appendix A of the QAPP (Exponent et al. 2014). Samples were placed on ice and stored in a secured, refrigerated truck located in the field. At least once a week, samples were transported by ARCADIS personnel to the analytical laboratory, ALS, in Kelso, Washington. At ALS, the contents of each bucket were homogenized and processed as described in Section 3.2 of this report. The sample ID was recorded on the appropriate

field sampling form in the tablet and on the chain-of-custody (COC) form. Sample labeling details and completed COC forms are provided in the field activity report (Appendix A).

A total of 215 composite samples were collected (using ICS methods) from 171 DUs and submitted to ALS for analysis (see Section 3.2). This number includes triplicate samples collected (using ICS methods) at 22 of the DUs (Section 3.1.2.2).²⁰ Table 3-2 identifies the numbers of incremental composite samples collected in each area. Tables 3-3a through 3-3c provide information for each of the composite samples in the three deposition areas, respectively. Details regarding the ICS are provided in the field activity report (Appendix A).

3.1.2.2 Triplicate Samples

A select number of DUs at each of the three sampling areas were sampled in triplicate to assess the precision of the sampling process in accordance with the QAPP (Exponent et al. 2014). Triplicate DUs were assigned based on a select percentage of DUs. Triplicate samples were collected from 22 DUs using ICS methods (Table 3-1) for a total of 66 triplicate samples. Table 3-2 provides the number of triplicate samples collected within each sampling area. Additional information regarding the triplicate samples is provided in the field activity report (Appendix A).

3.1.2.3 Split Samples

As specified in the QAPP (Exponent et al. 2014), two types of split samples were prepared from designated increment composite samples: field split samples and EPA split samples. Split samples were collected from pre-selected DUs to assess the homogeneity of samples collected in the field. A total of 22 (or at least 10 percent) field split samples were prepared and analyzed by ALS, as described in Section 3.2.

EPA split samples were selected by EPA for chemical analysis as part of their QA/QC program. EPA split samples were prepared by ALS from 32 (at least 15 percent) of the collected incremental composite samples and sent to the EPA for analysis, as described in Section 3.2 of this report.

3.1.2.4 Equipment Rinsate Blank Samples

In accordance with Appendix A of the QAPP (Exponent et al. 2014), equipment rinsate blank samples were collected to evaluate equipment decontamination procedures.

²⁰ The total number of samples collected using ICS methods does not include the field split samples, which were prepared in the laboratory.

Multiple soil punches were used to collect increments at each DU. Soil punches were decontaminated in a manner similar to that used to decontaminate equipment between DUs. To collect a single equipment rinsate blank representative of all soil punches used at a given DU, deionized water was poured over the decontaminated soil punches into a laboratory-supplied sample jar. A total of 22 equipment rinsate blanks were collected from 22 DUs during the field sampling effort. Table 3-1 provides the number of DUs within each sampling area that had equipment rinsate blanks collected. The analysis of equipment rinsate blanks is described in Section 3.2 of this report.

3.1.3 Field Changes and Deviations

Procedures presented in the QAPP (Exponent et al. 2014) were followed to the extent possible during implementation of the study. Modifications to the QAPP were categorized as either "changes" or "deviations." Changes and deviations are summarized in Sections 4.1 and 4.2 of the field activity report (Appendix A).

Changes that were identified prior to the initiation of field work and during implementation of the study were documented on change request forms. Eight change request forms were prepared, submitted, and approved by EPA. The EPA-approved forms are included in the field activity report (Appendix A). The following types of changes were documented in the change request forms:

- Increments in 15 DUs were relocated because they were in areas where access to properties was not granted by the land owner.
- The triplicate selection was adjusted to meet the QAPP requirement to have one triplicate DU per RFDA.
- Increments in DUs were moved because the pre-selected increment locations were in areas that were too steep to sample.
- The boundaries for 13 DUs were adjusted in areas where access to the DUs was not granted by the land owners.
- New DUs were selected to replace two DUs that were in areas that were too steep to sample.
- One DU in the ADAs was not sampled because it was located in an area that was too steep to sample, and no suitable alternative location was identified.

Deviations from the QAPP that were identified during implementation of the study and subsequent corrective actions, if required, were documented on deviation/corrective action report forms included in Appendix A. The following deviations were documented in the deviation/corrective action reports:

- Nine increments were collected just outside of the DU boundary but still on property where TAI had permission to sample, due to limited GPS accuracy, terrain restrictions, and/or potential typographical errors.
- Fifteen of the 30 increments in DU ADA-101 were not collected due to access concerns and steep terrain.
- Forty-three increments were collected more than 2 m from the predetermined increment locations due to physical or access restrictions.
- Actual sampling coordinates were not recorded for 16 increments due to equipment malfunction (12 increments) or typographical errors (4 increments).

In addition to the deviations listed above, increments were identified after the completion of sample collection that had been collected more than 2 m from the predetermined increment location due to discrepancies between the proposed coordinates and the coordinates recorded during sample collection. Information is provided in Table 3 of Appendix A.

The majority of the sampling changes and deviations did not affect the sampling procedure and consisted primarily of the relocation of increments due to GPS malfunction or inaccuracy, safety concerns, lack of access across private property, or sampling obstacles such as the presence of cobbles or a lack of soil.

3.2 LABORATORY METHODS

Following the procedures specified in the QAPP (Exponent et al. 2014), soil samples were processed and analyzed by ALS. Upon receipt at ALS, all incremental composite samples were stored at room temperature, and an aliquot was taken from each sample for the analysis of grain size distribution and pH. The remaining sample underwent ICS processing according to the QAPP and was apportioned for sieving into two fractions: < 2-mm for ecological risk assessments (for ADA, RFDA, and WSDA DUs) and < 149-µm for human health risk assessments (for ADA and RFDA DUs). No < 149-µm fraction was prepared for samples collected from the WSDAs because WSDA sampling was focused on evaluating risks to ecological receptors as discussed in Section 2.3.3.3. Any laboratory deviations from the QAPP are discussed in Section 3.2.2.

Table 3-4 summarizes the analyses conducted on the two fractions of soil from the three sampling areas. The < 2-mm fraction was analyzed for total solids, CEC, TOC, and TAL metals, plus molybdenum. The < 149- μ m fraction was analyzed for total solids and TAL metals, plus molybdenum.

Approximately 20 percent of the samples with lead concentrations > 100 mg/kg were selected for IVBA analysis in consultation with EPA (see Appendix B). A subsample of the < 149-µm fraction was apportioned for IVBA analysis and archived until results from the TAL metals and molybdenum analysis were completed. Soil samples for IVBA analysis were originally planned for the analysis of only lead (Exponent et al. 2014). However, at EPA's request, the IVBA analysis was later expanded to include all TAL metals (Appendix B).

Field split samples were prepared by ALS after homogenization and were assigned their own sample IDs. EPA split samples were also prepared by ALS after homogenization using ICS methods for subsampling, and were provided to EPA for separate analysis (Appendix A).

The 22 equipment rinsate blank samples collected in the field, as well as 30 sieve blanks prepared by ALS, were also analyzed for TAL metals and molybdenum.

3.2.1 Methods for Chemical Analysis

ALS prepared and analyzed all soil samples in accordance with the protocols and procedures specified in the QAPP (Exponent et al. 2014), as presented in Table 3-5. Soil samples for metals analyses were prepared with acid digestion following EPA methods 3050B and 7471B. Samples were analyzed for metals according to EPA methods 6010C, 6020A, and 7471B (see Table 3-5). Samples for IVBA were prepared according to EPA 9200.2-86 and analyzed according to EPA 6010B. Analytical concentration goals (ACGs) and MRLs are detailed in the QAPP.

3.2.2 Laboratory Deviations

Laboratory methods included two changes related to procedures specified in the QAPP (Exponent et al. 2014). The QAPP states that pH would be measured in the < 2-mm fraction of each soil sample and grain size would be measured in both the < 2-mm fraction and the < 149- μ m fraction; however, prior to sample collection the decision was made to analyze pH and grain size in the bulk soil sample so that the measurement would not be influenced (i.e., altered) by the soil drying and sieving process. In addition, soil samples were stored at room temperature after receipt in the laboratory rather than at 4°C (\pm 2 °C) as stated in the QAPP, and then air dried and sieved prior to analysis. The storage temperature is not as critical for chemicals that are known to be stable (i.e., total metals) as for chemicals that can be volatilized (e.g., mercury, volatile and semivolatile organic compounds) or degraded (e.g., organic compounds). EPA's national functional guidelines for inorganic Superfund data review (USEPA 2010b) leaves data qualification resulting

from not adhering to sample storage requirements of 4 °C (±2 °C) up to the discretion of the data reviewer. No laboratory method deviations were noted in the data validation reports (available on the "Downloads" page in the project database [http://teck-ucr.exponent.com]).

3.3 DATA EVALUATION APPROACH

The QAPP (Exponent et al. 2014) included procedures for the documentation of field, laboratory, and data validation. The data management plan detailed information related to the storage and handling of all project data.

3.3.1 Methods

Sampling efforts were documented in field notebooks and forms, COCs, and GPS files. Deviations from the sampling plan were noted in the field and detailed in the field activity report (Appendix A). All documents were scanned and converted to electronic pdf files. Laboratory data were stored at the analytical laboratory and uploaded to the project database. Data were validated by an independent reviewer, Environmental Standards, Inc. (ESI). Data validation reports and the field activity report were submitted to EPA.

Validated data are tabulated and summarized in this report. Section 5 includes summary statistics for soil data (i.e., number of detections, range, and mean) and a field quality control sample assessment. Field split sample relative percent differences (RPDs) and field triplicate relative standard deviations (RSDs) were evaluated based on control limits of 20 and 35 percent, respectively. Results for each of the DUs are provided in figures, maps, and tables in Section 5; field split and triplicate sample replicates are averaged for applicable DUs.

The site-specific bioavailability of metals to ecological receptors in the < 2-mm fraction using select conventional parameters (e.g., pH, CEC, and TOC) has not been determined for this data report. This evaluation will be conducted as part of the BERA. For the HHRA, the IVBA results for lead in the < 149- μ m fraction have been used to calculate oral RBA values for lead in soil. The human health screening level for lead includes a default

Windward 3-7

-

²¹ A simplified Excel-based calculator for conducting the site-specific bioavailability adjustments is available at the following website:

http://www.arche-consulting.be/metals-csa-toolbox/soil-pnec-calculator.

 $^{^{22}}$ EPA default RBA = 60% (USEPA 2007a); empirical lead soil concentrations are multiplied by this ratio before comparison to the human health soil screening value to account for differences in bioavailability relative to the screening value.

RBA adjustment of 60 percent. To ensure appropriate comparison of upland soil lead concentrations to the lead screening level, soil concentrations are multiplied by the ratio of the site-specific soil lead RBA value to EPA's default RBA. In addition, arsenic concentrations in the < 149- μ m fraction have been adjusted for EPA's default RBA of 60 percent arsenic in soil (USEPA 2012b).

3.3.2 Deviations from Planned Data Evaluation Approach

There were no changes to the data evaluation approach addressed in the field activity report (Appendix A) or in the data validation reports (available on the "Downloads" page in the project database [http://teck-ucr.exponent.com]).

4 VALIDATION ASSESSMENT

Data validation were performed by ESI of Valley Forge, Pennsylvania in accordance with the QAPP (Exponent et al. 2014) based on EPA guidance from the following documents:

- Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use (EPA 540-R-08-005) (USEPA 2009)
- USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (EPA 540-R-04-004) (USEPA 2004)

Stage 2B validation was conducted for the majority of the soil data. Approximately 15 percent of the data underwent Stage 4 validation, which was in accordance with the QAPP (Exponent et al. 2014). Data were qualified, as needed, based on an evaluation of laboratory and field QC criteria, including holding times, initial and continuing calibration results, blank concentrations, laboratory duplicate and field split RPDs, field triplicate RSDs, serial dilution percent differences (%Ds), and the recoveries of laboratory control samples (LCSs), internal standards, and MS/MSDs. ESI data validation reports are available on the "Downloads" page in the project database (http://teck-ucr.exponent.com). The results of the data validation are summarized in the following subsections.

4.1 OVERALL DATA QUALITY

A summary of the qualifiers assigned to the metals and conventional parameter data (i.e., pH, TOC, CEC, total solids, and grain size) are presented in Tables 4-1a through 4-1c for the ADAs, Tables 4-2a through 4-2c for the RFDAs, and Tables 4-3a and 4-3b for the WSDAs.²³ All data are usable with the qualifiers presented. The IVBA data are usable as qualified, with the exception of four IVBA results for molybdenum that were qualified as unusable (see Section 4.5.3). The data qualifiers were applied by ESI and included the following:

 "J"—The concentration was considered estimated due to one or more of the following: exceedance of project-specific holding time; analytical interference; LCS, MS/MSD, or reporting limit (RL) standard recovery not within acceptable

²³ The numbers of qualified samples presented in the tables (obtained from the project database) do not include laboratory QC samples and are not always consistent with the numbers of qualified samples presented in text (obtained from ESI), which do include laboratory QC samples.

range; high %D, RPD, or RSD for field or laboratory quality control; or the concentration is between the MDL and the MRL.

- "R"—The data point was unusable (i.e., rejected).
- "U"—The analyte was not detected at or above the MDL.
- "UJ"—The analyte was not detected, but the detection limit is likely higher than reported due to low bias.
- "U*"—The analyte was considered "not detected" because a similar concentration
 was detected in an associated blank sample. ESI considered the sample weight,
 percent solids, and dilution factor when evaluating blank contamination. For
 results qualified "U*," the MDL was changed to the concentration of the method
 blank.

Note that the numbers of qualified samples presented in Tables 4-1 through 4-4 (obtained from the project database) do not include laboratory QC samples, whereas the numbers of qualified samples presented in the text (obtained from the data validator) include laboratory QC samples. Therefore, the numbers in the text and the tables are not always consistent.

4.2 SAMPLE TRANSPORT AND HOLDING TIMES

There were no sample transport issues or exceedances of transport holding times. The QAPP-specified (Exponent et al. 2014) laboratory holding time of 14 days for pH was exceeded for 265 samples. Affected samples were qualified as estimated ("J" flagged).

The CEC data for many samples were originally qualified as estimated ("J" flagged) due to exceedance of the QAPP-specified (Exponent et al. 2014) holding time of 14 days. The qualifiers for holding time were initially applied based on the length of time between sample collection and analysis. However, because the samples were dried within 14 days of collection and the CEC is fixed upon drying, the "J" qualifiers related to hold time were subsequently deemed unnecessary. ESI issued an addendum to the data validation report that is available on the "Downloads" page in the project database (http://teck-ucr.exponent.com). The unnecessary qualifiers were removed from the project database and are not included in this report.

4.3 METALS

The soil metals data are usable as qualified; there are no rejected data for the metals analyses. Samples with reported results between the detection limit (DL) and reporting limit (RL) were qualified as estimated ("J" flagged). Numbers and percentages of qualified samples are presented in Tables 4-1b and 4-1c for the ADAs, Tables 4-2b and 4-2c for the RFDAs, and Table 4-3b for the WSDAs.

In addition, there were no rejected metals data for the 22 equipment rinsate blanks or the 30 laboratory sieve blanks.

4.3.1 Calibration

The nondetected concentrations of selenium in four samples were qualified "UJ" due to a low RL standard recovery.

4.3.2 Blanks

Concentrations of sodium in 29 samples were qualified as nondetected ("U*" flagged) due to the presence of the analyte at similar concentrations in an associated laboratory blank. The nondetected concentrations of magnesium in three samples were qualified "UJ" due to significant negative instrument bias in the associated calibration blanks. Concentrations of magnesium and/or calcium in five samples were qualified as estimated ("J" flagged) due to significant negative instrument bias in the associated calibration blanks.

4.3.3 Matrix Spikes

Concentrations of antimony, barium, cadmium, calcium, chromium, lead, manganese, potassium, and/or zinc in 486 samples were qualified as estimated ("J" flagged) due to MS/MSD recoveries or RPDs that were not within control limits. MS/MSD recoveries and RPDs are provided in the laboratory reports available on the "Downloads" page in the project database (http://teck-ucr.exponent.com).

4.3.4 Laboratory Control Samples

Concentrations of aluminum, antimony, molybdenum, and/or thallium in 122 samples were qualified as estimated ("J" flagged) due to LCS recoveries that were not within control limits.

4.3.5 Laboratory Duplicates, Field Split Samples, and Triplicate Samples

Concentrations of aluminum, antimony, arsenic, barium, beryllium, cadmium, calcium, chromium, cobalt, iron, lead, magnesium, manganese, mercury, molybdenum, nickel, potassium, sodium, and/or vanadium in 134 samples were qualified as estimated ("J" flagged) due to laboratory duplicate or field split RPDs, or triplicate RSDs that were not within control limits.

4.3.6 Interference Check Samples

Concentrations of magnesium, potassium, and/or sodium in 88 samples were qualified as estimated ("J" flagged) due to inductively coupled plasma (ICP) interference.

4.3.7 Serial Dilutions

Concentrations of antimony, beryllium, cadmium, magnesium, molybdenum, sodium, silver and/or thallium in 238 samples were qualified as estimated ("J" flagged) due to high serial dilution percent difference.

4.3.8 Internal Standards

All metals internal standard results were within acceptable limits.

4.4 CONVENTIONAL PARAMETERS

The soil conventional parameters data (i.e., pH, TOC, CEC, total solids, and grain size) are usable as qualified. There are no rejected data for conventional parameters analyses. Samples with reported results between the DL and RL were qualified as estimated ("J" flagged). Numbers and percentages of qualified samples are presented in Tables 4-1a through 4-1c, 4-2a through 4-2c, and 4-3a through 4-3b for the ADAs, RFDAs, and WSDAs, respectively.

4.4.1 Laboratory and Field Duplicates and Triplicates

Concentrations of CEC and/or TOC in 40 out of 274 samples (14.6%) were qualified as estimated ("J" flagged) due to laboratory duplicate or field split RPDs, or triplicate RSDs that were not within control limits.

4.5 IVBA

The IVBA data are usable as qualified with the exception of four samples for molybdenum listed below in Section 4.5.3. Numbers of qualified samples are listed in Table 4-4. Samples with reported positive results between the DL and RL were qualified as estimated ("J" flagged).

IVBA data are reported as percent bioaccessible based on the concentrations of analyte detected in the soil sample and in a liquid extract. Bioaccessibility percentages calculated from qualified data are qualified as estimated ("J" flagged). Results qualified as not detected due to blank contamination ("U*" flagged) were not excluded from the bioaccessibility calculations. However, bioaccessibility percentages were not calculated for "U" or "R" flagged data, as indicated by "NC" in Table 4-4. The qualifiers detailed in Sections 4.5.1 through 4.5.8 apply to the IVBA soil concentrations (as opposed to the reported bioaccessibility percentages).

4.5.1 Calibration

All calibration standard recoveries for IVBA analyses were within control limits.

4.5.2 Blanks

Concentrations of molybdenum or sodium in 19 samples were qualified as nondetected ("U*" flagged) due to the presence of the analyte in an associated laboratory blank.

4.5.3 Matrix Spikes

Concentrations of molybdenum in 12 samples were qualified as unusable ("R" flagged for nondetected results) or estimated ("J" flagged for detected results) due to very low matrix spike recoveries. The IVBA analyses for molybdenum were rejected in the following samples:

- ADA-061-150um
- ADA-061-150umDUP (laboratory duplicate)
- ADA-057-150um
- ADA-057-150umDUP (laboratory duplicate).

The nondetected concentrations of molybdenum or selenium in five samples were qualified "UJ" due to low MS recoveries.

Concentrations of antimony, iron, manganese, and/or molybdenum in 33 samples were qualified as estimated ("J" flagged) due to MS/MSD recoveries that were not within control limits.

4.5.4 Laboratory Control Samples and Standard Reference Material

All LCS and standard reference material results for IVBA analyses were within acceptable limits.

4.5.5 Laboratory Duplicates and Field Split Samples

All laboratory and field split sample results for IVBA analyses were within acceptable limits.

4.5.6 Interference Check Samples

All interference check results for IVBA analyses were within acceptable limits.

4.5.7 Serial Dilutions

Concentrations of lead in 19 samples were qualified as estimated ("J" flagged) due to a high serial dilution percent difference.

4.5.8 Internal Standards

All internal standard results for IVBA analyses were within acceptable limits.

5 RESULTS

The following sections include summary statistics for all usable data, an evaluation of method reporting limits for nondetected samples, and a comparison of detected values with screening levels for ecological and human receptors. Summary statistics for each sampling area and analyte include the number of detected values and the minimum, maximum, and mean values. Summary statistics are presented in Tables 5-1a through 5-1c, 5-2a through 5-2c, and 5-3a and 5-3b for ADA, RFDA, and WSDA areas, respectively. Table 5-4 provides summary statistics for IVBA results (for ADA and RFDA samples). Figures 5-1a through 5-1c, 5-2a through 5-2c, and 5-3 show the results for conventional parameters in the bulk soil, < 2-mm fractions, and < 149-µm fractions, respectively. Figures 5-4a through 5-4x and 5-5a through 5-5x show results for metals in the < 2-mm and < 149-µm fractions, respectively. IVBA results for the TAL metals and molybdenum in the < 149-µm fraction are shown in Figures 5-6a through 5-6x. Rejected IVBA data (i.e., four molybdenum results) are not used in the data summaries; however, all data are included in the project database.

In accordance with the draft data management plan (Exponent 2010), nondetected results are represented in calculations as one-half of the MDL. For field split samples and triplicate samples, the average of the replicate results is used to calculate the minimum, maximum, and mean values. Data for EPA split samples, equipment rinsate blanks, and laboratory QA/QC samples, such as MS/MSDs, are not included in the data summaries.

The QAPP (Exponent et al. 2014) identified the soil screening levels for ecological receptors and humans that would be used to determine ACGs for TAL metals and molybdenum. If no screening level was available, then the laboratory MRL was used as the ACG. Nondetected results for metals were compared with a value that was 10 times the ACG, as summarized in Section 5.4.

As discussed in Section 2.2.4, metals data for ecological receptors (i.e., concentrations in the < 2-mm fraction) were compared with available Eco-SSLs. Metals data for human health (i.e., concentrations in the < 149-µm fraction) were compared with human health screening levels.²⁴ Screening levels are for comparison purposes only and are only intended to identify chemicals for further evaluation in the risk assessments. They do not represent cleanup or action levels (USEPA 2003, 2002).

²⁴ Lead data were adjusted for site-specific relative bioavailability (RBA) and arsenic data were adjusted for 60 percent soil arsenic oral RBA prior to comparing the data to screening levels.

5.1 AERIAL DEPOSITION AREAS

For the ADAs, incremental composite samples were collected from 142 DUs as planned (a sampling completion rate of 100 percent [Appendix A]). Samples were collected from 35 DUs in the high-density area (6 of which were reserve locations), 91 DUs in the primary area (11 of which were reserve locations), and 16 DUs in the reserve area (see Table 3-2). Only 15 of the 30 planned increments were collected from one DU (ADA-101) due to access concerns and steep terrain (Deviation Report No. 2 [Appendix A]).

Triplicate samples (48) were collected from 16 of the DUs (6 from the high-density area and 10 from the primary area as shown in Table 3-1) for a total of 174 incremental composite samples collected in the ADA.

5.1.1 Metals and Conventional Parameters

Summary statistics for metals and conventional parameter data for the high-density and primary areas of the ADA are presented in Table 5-1a for bulk soil, Table 5-1b for the < 2-mm fraction, and Table 5-1c for the < 149- μ m fraction.

5.1.2 IVBA

The IVBA analysis was conducted on samples (< 149-µm fraction) from 11 DUs in both the high-density area and the primary area. The IVBA analysis also was conducted on one set of triplicate samples from the primary area (ADA-016). Molybdenum results for two samples in the primary area were not usable ("R" qualified). Summary statistics for the IVBA data are presented in Table 5-4. The data are reported as percent bioaccessible. For lead, EPA has a validated method for relating lead IVBA results to lead oral RBA in soil (USEPA 2007a). Lead RBA is an exposure input for assessing lead risks to humans. Table 5-5 summarizes lead RBA values extrapolated from each IVBA result. Based on the lead RBA results for ADA samples with IVBA results, the average lead RBA for the ADA is 71 percent. Table 5-6 provides the RBA-adjusted lead concentrations using the average RBA for the ADA for DUs without IVBA results.

5.2 RELICT FLOODPLAIN DEPOSITION AREAS

For the RFDAs, 24 incremental composite samples were collected from 16 DUs, including triplicate samples collected from four DUs (one DU from each RFDA was sampled in triplicate) (see Table 3-2). The sampling completion rate for the RFDA was 55 percent (Appendix A).

5.2.1 Metals and Conventional Parameters

Summary statistics for metals and conventional parameters in the four RFDAs are presented in Table 5-2a for bulk soil, Table 5-2b for the < 2-mm fraction, and Table 5-2c for the < 149- μ m soil fraction.

5.2.2 IVBA

The IVBA analysis was conducted on samples (< 149-µm fraction) from three DUs in the RFDA. One set of triplicate samples from a DU in RFA (RFA-001) underwent IVBA analysis. Summary statistics for the IVBA data are presented in Table 5-4. The data are reported as percent bioaccessible. Table 5-5 summarizes lead RBA values extrapolated from each IVBA result. Table 5-6 provides RBA-adjusted lead concentrations. Empirical lead concentrations were adjusted using the ratio of site-specific RBA to EPA's default RBA (see Table 5-5). The ratio of the DU-specific RBA to EPA's default RBA was used when available. For ADA and RFDA DUs that did not have IVBA measured directly (i.e., those not listed in Table 5-5), the average RBA ratio for the ADA overall (including primary and high density) or the RFDA reported in Table 5-5 was applied.

5.3 WINDBLOWN SEDIMENT DEPOSITION AREAS

For the WSDAs, 17 incremental composite samples were collected from 13 DUs, including triplicate samples collected from two DUs (one DU each from Columbia Beach North and Marcus Flats East was sampled in triplicate) (see Table 3-2). The sampling completion rate for the WSDA was 46 percent (Appendix A).

5.3.1 Metals and Conventional Parameters

Summary statistics for metals and conventional parameters in the WSDAs are presented in Table 5-3a for bulk soil and Table 5-3b for the < 2-mm fraction.

5.3.2 IVBA

There were no IVBA samples planned or analyzed for the WSDAs (Appendix B).

5.4 FIELD QC SUMMARY

Field split RPDs and triplicate RSDs are summarized in Tables 5-7a through 5-9b. A control limit of 20 percent was used to evaluate field split RPDs and a control limit of

35 percent was used to evaluate triplicate RSDs. The sections below discuss field split RPDs and triplicate RSDs by area²⁵.

5.4.1 Aerial Deposition Areas

Field QC results for the ADA samples are summarized by splits and triplicates in Table 5-7a for bulk soil samples, Table 5-7b for the < 2-mm fraction, and Table 5-7c for the < 149- μ m fraction. Total field QC results greater than control limits are as follows (summarized by soil fraction and analyte group):

- Bulk fraction
 - Grain size 38out of 208 data points (18.3percent)
 - Other conventional parameters 0 out of 68 data points
- < 2-mm-fraction
 - Metals—37 out of 816 data points (4.5 percent)
 - Conventional parameters 21 out of 102 data points (20.6 percent)
- < 149-µm fraction
 - Metals 4 out of 816 data points (0.5 percent)
 - Conventional parameters 0 out of 34 data points

5.4.2 Relict Floodplain Deposition Areas

Field quality control results for the RFDA samples are summarized by splits and triplicates in Table 5-8a for bulk soil samples, Table 5-8b for the < 2-mm fraction, and Table 5-8c for the < 149- μ m fraction. Total field quality control results greater than control limits are as follows (summarized by sieve fraction and analyte group):

- Bulk fraction
 - Grain size 24 out of 52 data points (46.2 percent)
 - Other conventional parameters—0 out of 12 data points
- < 2-mm fraction
 - Metals—7 out of 145 data points (4.8 percent)
 - Conventional parameters 0 out of 17 data points

²⁵ The QAPP did not specify a quality objective for grain size RPDs. Therefore, field QC summaries for grain size are based on triplicate sample RSDs only.

- < 149-µm fraction
 - Metals 6 out of 144 data points (4.2 percent)
 - Conventional parameters 0 out of 6 data points

5.4.3 Windblown Sediment Deposition Areas

Field quality control results for the WSDA samples are summarized by splits and triplicates in Table 5-9a for the bulk soil samples and Table 5-9b for the < 2-mm fraction. Total field quality control results greater than control limits are as follows (summarized by sieve fraction and analyte group):

- Bulk fraction
 - Grain size 6 out of 26 data points (23.1 percent)
 - Other conventional parameters—0 out of 8 data points
- < 2-mm fraction
 - Metals 5 out of 96 data points (5.2 percent)
 - Conventional parameters—1 out of 12 data points (8.3 percent)

5.5 EVALUATION OF REPORTING LIMITS FOR NONDETECTED SAMPLES

Target MDLs, MRLs, and ACGs for metals were included in the QAPP (Exponent et al. 2014) (target MDLs and MRLs are presented in Table 2-1). Table 5-10 shows the minimum and maximum MRLs for nondetected metals results (applicable to only a portion of the sodium data in the ADAs and one selenium data point in the WSDAs). The MRLs for all nondetected data points are less than 10 times the ACG.

For conventional parameters, target MDLs and MRLs for total solids and TOC were detailed in the QAPP (Exponent et al. 2014). However, there are no nondetected results for conventional parameters. The QAPP did not include MDLs, MRLs, or ACGs for IVBA.

5.6 COMPARISON WITH SCREENING LEVELS

Data were compared with conservative screening levels protective of ecological receptors and human health. This section summarizes the comparisons with the ecological and human health screening levels by area. This comparison is for screening purposes only and is only intended to identify chemicals that should be evaluated in the risk assessments. They do not represent cleanup or action levels (USEPA 2003, 2002).

5.6.1 Ecological Screening Levels

Results from the < 2-mm fraction were compared with Eco-SSLs using the values presented in the QAPP (Exponent et al. 2014), which were the lowest of the screening levels adopted by EPA for plants, soil invertebrates, birds, and mammals (USEPA 2010a). ²⁶ Eco-SSLs were available for 15 of the 24 metals analyzed in the study. ²⁷ Figures 5-4a through 5-4x provide a comparison of the metals data for DUs from each area with ecological screening levels, when available. Table 5-11a summarizes the number of DUs from the ADAs, RFDAs, and WSDAs that are greater than the available Eco-SSLs. Maps 5-1 through 5-18 provide a spatial representation of DUs with metals concentrations in the <2-mm fraction that are greater than the Eco-SSLs. Maps are not provided when either no DUs or all DUs had concentrations greater than the screening level. Comparisons with ecological screening levels are discussed by area in the following subsections.

5.6.1.1 Aerial Deposition Areas

Comparisons of available Eco-SSLs with metals data from the ADAs are presented in Table 5-11b. Of the 142 DUs sampled from the ADAs, none had concentrations greater than the Eco-SSL for beryllium (21 mg/kg) or silver (4.2 mg/kg). All DUs had concentrations greater than the Eco-SSL for antimony (0.27 mg/kg), cadmium (0.36 mg/kg), lead (11 mg/kg), vanadium (7.8 mg/kg), and zinc (46 mg/kg). Some of the DUs had concentrations greater than the Eco-SSLs for the remaining eight metals as follows: 41 for arsenic (18 mg/kg), 59 for barium (330 mg/kg), 26 for chromium (26 mg/kg), 5 for cobalt (13 mg/kg), 21 for copper (28 mg/kg), 141 for manganese (220 mg/kg), 10 for nickel (38 mg/kg), and 19 for selenium (0.52 mg/kg).

5.6.1.2 Relict Floodplain Deposition Areas

Comparisons of available Eco-SSLs with metals data from the RFDAs are presented in Table 5-11c. Of the 16 DUs sampled from the RFDAs, none had concentrations greater than the Eco-SSL for beryllium (21 mg/kg), nickel (38 mg/kg), or silver (4.2 mg/kg). All DUs had concentrations greater than the Eco-SSL for antimony (0.27 mg/kg), cadmium (0.36 mg/kg), lead (11 mg/kg), manganese (220 mg/kg), vanadium (7.8 mg/kg), and zinc (46 mg/kg). Thirteen DUs had concentrations greater than the Eco-SSL for copper (28 mg/kg), and nine DUs had concentrations greater than the Eco-SSL for chromium (26

²⁶ Eco-SSLs exist for metals that are typically present as cations and can form complexes with inorganic material in soil.

²⁷ Metals with Eco-SSLs are antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, lead, manganese, nickel, selenium, silver, vanadium, and zinc.

mg/kg) and selenium (0.52 mg/kg). Five DUs had concentrations greater than the Eco-SSLs for the three remaining metals (i.e., arsenic [18 mg/kg], barium [330 mg/kg], and cobalt [13 mg/kg]).

5.6.1.3 Windblown Sediment Deposition Areas

Comparisons of available Eco-SSLs with metals data from the WSDAs are presented in Table 5-11d. Of the 13 DUs sampled from the WSDAs, none had concentrations greater than the Eco-SSL for 9 of the 14 metals (i.e., arsenic [18 mg/kg], barium [330 mg/kg], beryllium [21 mg/kg], chromium [26 mg/kg], cobalt [13 mg/kg], copper [28 mg/kg], nickel [38 mg/kg], selenium [0.52 mg/kg], and silver [4.2 mg/kg]). All DUs had concentrations greater than the Eco-SSL for manganese (220 mg/kg) and vanadium (7.8 mg/kg). For the remaining four metals, 11 DUs had concentrations greater than the Eco-SSL for zinc (46 mg/kg), 8 DUs had concentrations that were greater than the Eco-SSL for antimony (0.27 mg/kg) and lead (11 mg/kg), and 7 DUs had concentrations greater than the Eco-SSL for cadmium (0.36 mg/kg).

5.6.2 Human Health Screening Levels

Results from the < 149-μm fraction were compared with human health screening levels presented in the QAPP (Exponent et al. 2014). Human health screening levels were available for 19 of the 23 TAL metals analyzed.²⁸ Four of the TAL metals (calcium, magnesium, potassium, and sodium) are essential nutrients and do not have human health screening levels. The QAPP did not include a screening level for molybdenum (which is not a TAL metal); however, for the purposes of evaluation in this report, a screening value of 390 mg/kg was used based on EPA's regional screening level table updated as of January 2015. Figures 5-5a through 5-5x present the metals data compared with human health screening levels, for those metals with human health RBCs. Maps 5-19 through 5-22 provide a spatial representation of concentrations in the < 149-μm fraction for metals that are greater than the human health RBCs (i.e., arsenic and lead). Table 5-12a summarizes the number of DUs from the ADAs and RFDAs that are greater than the available screening levels. For lead, data were adjusted for soil lead RBA prior to comparison.²⁹ In addition, arsenic concentrations were adjusted for 60 percent soil arsenic

²⁸ The following metals were used for the comparisons of screening levels with the < 149-μm fraction of soil: aluminum, antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, iron, lead, manganese, molybdenum, nickel, selenium, silver, thallium, vanadium, and zinc.

²⁹ The human health screening level for lead includes a default RBA adjustment of 60 percent. To ensure appropriate comparison of upland soil lead concentrations to the lead screening level, soil

oral RBA. Comparisons to human health screening levels are discussed by area in the following subsections.

5.6.2.1 Aerial Deposition Areas

Comparisons of human health soil screening levels with metals data for the 142 DUs in the ADAs are presented in Table 5-12b. Arsenic and lead were the only metals detected at levels that were greater than human health screening levels. For arsenic, the screening level (9.39 mg/kg) was exceeded at 68 of 142 DUs after adjusting for 60 percent soil arsenic oral RBA (Map 5-19). For lead, 21 of 142 DUs had concentrations greater than the human health screening level of 400 mg/kg after adjusting for the ratio of site-specific RBA of lead to EPA's default RBA (Map 5-20).

5.6.2.2 Relict Floodplain Deposition Areas

Comparisons of human health soil screening levels with metals data for the RFDAs are presented in Table 5-12c. Of the 16 DUs in the RFDAs, arsenic and lead were the only metals detected at levels that were greater than the human health screening levels. After adjusting for 60 percent soil arsenic RBA, arsenic concentrations exceeded the screening level of 9.39 mg/kg at 8 of 16 DUs (Map 5-21). For lead, concentrations at 2 of 16 DUs exceeded the screening level of 400 mg/kg after adjusting for the ratio of site-specific RBA of lead to EPA's default RBA (Map 5-22).

concentrations are multiplied by the ratio of the site-specific soil lead RBA value to EPA's default RBA.

6 SUMMARY AND RECOMMENDATIONS

The purpose of this study was to collect additional soil data to evaluate upland areas adjacent to the UCR potentially affected by point sources (e.g., aerial deposition of smelter particulates), historical fluvial deposition of sediment onto relict floodplains, and redeposition of windblown sediment. These data will be used to assess risk to ecological and human receptors from exposure to metals in the upland soil adjacent to the UCR. The study measured analyte concentrations in soil samples collected from three areas (i.e., ADAs, RFDAs, and WSDAs).

The sampling design, as described in the QAPP (Exponent et al. 2014), used a compositing approach whereby increments were collected from the top 7.5 cm (3 in.) of soil at 30 increment locations within each DU. A total of 215 composite samples were collected between September 8 and October 23, 2014, at 171 DUs (142 from ADAs, 16 from RFDAs, and 13 from WSDAs).

The number of DUs sampled in the ADA included 35 DUs in the high-density area and 107 DUs in the primary area, of which 16 were from the reserve area. Overall, the collected and analyzed samples for the ADA met targets in the QAPP (Exponent et al. 2014). The selected DU locations in the RFDAs were informed largely by the direction and magnitude of different modeled flood events, as discussed in the QAPP (Exponent et al. 2014). The RFDAs were intended to represent five different relict floodplains. Samples from 55 percent of the RFDA DUs could not be collected either because access to the DU was denied or no response was received from the landowner after multiple requests. All five targeted DU samples from RFA were collected and analyzed. A portion of the DUs in each of RFB through RFD could not be collected, and no samples in RFE could be collected (Map 2-3).

The QAPP (Exponent et al. 2014) stated that Marcus Flats and Columbia Beach were predicted to represent a reasonable worst-case scenario for the enrichment of soil by chemicals in windblown sediment and "soil sampling in these areas will provide confirmatory data about whether or not this possibility is realized." For the WDSA, samples were collected and analyzed from Marcus Flats and Columbia Beach (Map 2-4). Samples from 46 percent WSDA DUs could not be collected because access was denied or no response was received from the landowner after multiple requests. All seven targeted Marcus Flats East DU samples were collected and analyzed. Samples could not be obtained from the Marcus Flats West DUs. For both Columbia Beach North and South, some of the more upland DUs (3 of 7 at Columbia Beach North and 2 of 7 at Columbia Beach South) could not be sampled. Previous beach sampling efforts have identified no

human health risks from exposed sediment at the Marcus Flats area and the Seven Bays area (which includes Columbia Beach) (USEPA 2012a).

The total number of field-collected samples (i.e., 215) included 66 triplicate samples collected in 22 of the DUs. The increment locations were identified using a hand-held GPS unit. Increments were generally collected within 2 to 10 m of the predetermined location. Because of access constraints (e.g., steep terrain, permission not provided by landowner), the predetermined increment locations within DUs sometimes required adjustment, and, as just discussed, not all 199 targeted DUs could be sampled. Sampling activities were conducted under the direct oversight of EPA or their authorized representatives.

Soil samples were processed and analyzed in accordance with the QAPP (Exponent et al. 2014). Samples were sieved into two fractions: < 2-mm for ecological risk assessments (for ADA, RFDA, and WSDA DUs) and < 149-µm for human health risk assessments (for ADA and RFDA DUs). ³⁰ Prior to sieving, an aliquot was taken from each sample for the analysis of grain size, total solids, and pH to inform contaminant bioavailability. The < 2-mm fraction was analyzed for total solids, CEC, TOC, and EPA's TAL metals, plus molybdenum. The < 149- µm fraction was analyzed for total solids and TAL metals, plus molybdenum. Approximately 20 percent of the samples with lead concentrations > 100 mg/kg were selected for IVBA analysis to assess the RBA of lead in soil to which people might be exposed. Laboratory methods included one change related to procedures specified in the QAPP; pH was analyzed in the unsieved bulk fraction of each sample (rather than analyzing pH after drying and sieving the samples). No other laboratory method deviations were noted in the data validation reports. All chemical analyses specified in the QAPP were performed. ³¹

Quality assurance and validation of soil chemistry data were performed in accordance with the QAPP (Exponent et al. 2014). Qualifiers were assigned to the metals and conventional parameter data, as appropriate. The MRLs for all nondetected data points for metals were less than 10 times the ACG. All conventional parameters were detected in all samples. The IVBA data are usable as qualified, with the exception of four IVBA results for molybdenum that were flagged as rejected.

³⁰ The WSDAs were not evaluated for human health because WSDA sampling was focused on evaluating risks to ecological receptors (USEPA 2012a). Prior sampling showed that the beaches sampled nearest the WSDAs (i.e., Summer Island and Marcus Island for the Marcus Flats WSDAs and Seven Bays for the Columbia Beach WSDAs) had no lead or arsenic concentrations above human health soil screening levels (USEPA 2012c).

³¹Note that the QAPP specified only IVBA analysis for lead. However, IVBA was performed for all TAL metals and molybdenum at EPA's request (see Appendix B).

DU-specific sampling results representing an estimate of the mean analyte concentration for each sampling area were compared with conservative screening levels that can be used to identify analytes and areas of potential concern for further evaluation in the ecological and human health risk assessments. Results from the < 2-mm fractions were compared with Eco-SSLs, and results from the < 149-µm fraction were compared with residential risk-based screening levels for soils. For the ecological screening, at least one DU from the ADA had concentrations greater than the Eco-SSLs for antimony, arsenic, barium, cadmium, chromium, cobalt, copper, lead, manganese, nickel, selenium, vanadium, and zinc. At least one DU in the RFDA had concentrations greater than Eco-SSLs for all these metals except nickel. In the WSDA, at least one DU had concentrations greater than the Eco-SSLs for antimony, cadmium, lead, manganese, vanadium, and zinc. None of the DUs in any of the areas had concentrations for beryllium or silver greater than the screening levels.

For the human health screening in both the ADAs and RFDAs, only arsenic and lead were at concentrations greater than screening levels. Lead and arsenic concentrations were RBA adjusted prior to comparing to screening levels. Lead was adjusted by the ratio of site-specific RBA to EPA's default RBA and arsenic was adjusted for 60 percent soil arsenic oral RBA. All other metal concentrations in ADA and RFDA DUs were less than the human health screening levels.

7 REFERENCES

- Checkai, R., E. Van Genderen, J.P. Sousa, G. Stephenson, and E. Smolders. 2014.

 Deriving site-specific clean-up criteria to protect ecological receptors (plants and soil invertebrates) exposed to metal or metalloid soil contaminants via the direct contact exposure pathway. Integ. Environ. Assess. Manag. 10:346-357.
- Crumbling, D. 2014. Hot spots: incremental sampling methodology (ISM) FAQs. U.S. Environmental Protection Agency.
- Exponent. 2010. Upper Columbia River data management plan, Amendment No. 1. Prepared for Teck American Incorporated. Exponent, Bellevue, WA.
- Exponent, HDR, Parametrix, and Cardwell Consulting. 2014. Upper Columbia River final soil study quality assurance project plan. Prepared for Teck American Incorporated. Exponent, HDR, Parametrix, and Cardwell Consulting, Bellevue, WA.
- ITRC (Interstate Technology & Regulatory Council). 2012. Technical and regulatory guidance. Incremental sampling methodology. Interstate Technology & Regulatory Council, Washington, D.C.
- Parametrix, Integral, and Exponent. 2010. Draft Upper Columbia River baseline screening-level ecological risk assessment (SLERA). Prepared for Teck American Incorporated. Parametrix, Inc., Bellevue, WA; Integral Consulting Inc., Seattle, WA; Exponent, Bellevue, WA.
- Smolders, E., K. Oorts, P. Van Sprang, I. Schoeters, C.R. Janssen, S.P. McGrath, and M.J. McLaughlin. 2009. Toxicity of trace metals in soil as affected by soil type and aging after contamination: using calibrated bioavailability models to set ecological soil standards. Environ. Toxicol. Chem. 28(8):1633-1642.
- SRC (Syracuse Research Corporation). 2013. Memorandum: Upper Columbia River 2009-2011 subsurface sediment screen. Prepared by SRC for submittal to the U.S. Environmental Protection Agency. June 6, 2013.
- START-2. 2002. Preliminary assessments and site inspections report, Upper Columbia River mines and mills, Stevens County, Washington. Prepared for US Environmental Protection Agency Region 10. Region 10 Superfund Technical Assessment and Response Team, Seattle, WA.

- USEPA (U.S. Environmental Protection Agency). 2002. Supplemental guidance for developing soil screening levels for Superfund sites. OSWER 9355.4-24. Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency, Washington, D.C.
- USEPA. 2003. Guidance for developing ecological soil screening levels (Eco-SSLs).

 OSWER Directive 9285.7-55 [online]. Office of Solid Waste and Emergency
 Response, U.S. Environmental Protection Agency, Washington, D.C. Updated
 November 2003. Available at: http://rais.ornl.gov/documents/ecossl.pdf.
- USEPA. 2004. USEPA contract laboratory program national functional guidelines for inorganic data review. EPA 540-R-04-004. Office of Emergency and Remedial Response, U.S. Environmental Protection Agency, Washington, D.C.
- USEPA. 2006a. Guidance on systematic planning using the data quality objectives process. EPA/240/B-06/001, EPA QA/G-4. Office of Environmental Information, U.S. Environmental Protection Agency, Washington, D.C.
- USEPA. 2006b. Settlement agreement for implementation of remedial investigation and feasibility study at the Upper Columbia River site. Agreement between the U.S. Environmental Protection Agency and Teck Cominco American Inc. June 2, 2006. U.S. Environmental Protection Agency.
- USEPA. 2007a. Estimation of relative bioavailability of lead in soil and soil-like materials using *in vivo* and *in vitro* methods. OSWER 9285.7-77. U.S. Environmental Protection Agency, Washington, D.C.
- USEPA. 2007b. Ecological soil screening level for manganese. Interim Final. OSWER Directive 9285.7-71. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, Washington, D.C. April 2007.
- USEPA. 2009. Guidance for labeling externally validated laboratory analytical data for Superfund use. OSWER 9200.1-85. EPA 540-R-08-005. Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency, Washington, D.C.
- USEPA. 2010a. Ecological soil screening levels (Eco-SSL) [online]. U.S. Environmental Protection Agency, Washington, D.C. Updated September 14, 2009. Accessed September 7, 2010. Available at: http://www.epa.gov/ecotox/ecossl/.
- USEPA. 2010b. USEPA contract laboratory program national functional guidelines for inorganic Superfund data review. OSWER 9240.1-51; EPA-540-R-10-011. Office of Superfund Remediation and Technology Innovation, US Environmental Protection Agency, Washington, DC.

- USEPA. 2012a. EPA Technical Team level of effort (LOE) for sampling and analysis of soil in the Upper Columbia River Basin (soil LOE). U.S. Environmental Protection Agency Technical Team.
- USEPA. 2012b. Recommendations for default value for relative bioavailability of arsenic in soil. OSWER 9200.1-113. U.S. Environmental Protection Agency, Washington, D.C.
- USEPA. 2012c. Beach study on the Upper Columbia River. Prepared by the US Environmental Protection Agency, Region 10, Seattle, WA.
- USEPA. 2015. Superfund Analytical Services/Contract Laboratory Program, ISM metals and cyanide target analyte lists and corresponding CRQLs [online]. U.S. Environmental Protection Agency. Available at: http://www.epa.gov/superfund/programs/clp/ismtarget.htm. Accessed February 2015.

FIGURES

Figure 5-1a. pH in Bulk Soil Samples by Deposition Area

Figure 5-1b. Percent Solids in Bulk Soil Samples by Deposition Area

Figure 5-1c. Total Fines in Bulk Soil Samples by Deposition Area

Figure 5–2a. Percent Solids in < 2–mm Soil Fractions by Deposition Area

Figure 5–2b. Organic carbon in < 2–mm Soil Fractions by Deposition Area

Figure 5–2c. Cation Exchange Capacity in < 2–mm Soil Fractions by Deposition Area

Figure 5-3. Percent Solids in < 149-µm Soil Fractions by Deposition Area

Figure 5-4a. Aluminum Concentrations in < 2-mm Soil Fractions by Deposition Area

Figure 5-4b. Antimony Concentrations in < 2-mm Soil Fractions by Deposition Area

Figure 5–4c. Arsenic Concentrations in < 2–mm Soil Fractions by Deposition Area

Figure 5-4d. Barium Concentrations in < 2-mm Soil Fractions by Deposition Area

Figure 5-4e. Beryllium Concentrations in < 2-mm Soil Fractions by Deposition Area

Figure 5–4f. Cadmium Concentrations in < 2–mm Soil Fractions by Deposition Area

Figure 5–4g. Calcium Concentrations in < 2–mm Soil Fractions by Deposition Area

Figure 5-4h. Chromium Concentrations in < 2-mm Soil Fractions by Deposition Area

Figure 5-4i. Cobalt Concentrations in < 2-mm Soil Fractions by Deposition Area

Figure 5–4j. Copper Concentrations in < 2–mm Soil Fractions by Deposition Area

Figure 5-4k. Iron Concentrations in < 2-mm Soil Fractions by Deposition Area

Figure 5–4l. Lead Concentrations in < 2–mm Soil Fractions by Deposition Area

Figure 5-4m. Magnesium Concentrations in < 2-mm Soil Fractions by Deposition Area

Figure 5-4n. Manganese Concentrations in < 2-mm Soil Fractions by Deposition Area

Figure 5-4o. Mercury Concentrations in < 2-mm Soil Fractions by Deposition Area

Figure 5-4p. Molybdenum Concentrations in < 2-mm Soil Fractions by Deposition Area

Figure 5–4q. Nickel Concentrations in < 2–mm Soil Fractions by Deposition Area

Figure 5–4r. Potassium Concentrations in < 2–mm Soil Fractions by Deposition Area

Figure 5–4s. Selenium Concentrations in < 2–mm Soil Fractions by Deposition Area

Figure 5-4t. Silver Concentrations in < 2-mm Soil Fractions by Deposition Area

Figure 5-4u. Sodium Concentrations in < 2-mm Soil Fractions by Deposition Area

Figure 5–4v. Thallium Concentrations in < 2–mm Soil Fractions by Deposition Area

Figure 5-4w. Vanadium Concentrations in < 2-mm Soil Fractions by Deposition Area

Figure 5-4x. Zinc Concentrations in < 2-mm Soil Fractions by Deposition Area

Figure 5–5a. Aluminum Concentrations in < 149–µm Soil Fractions by Deposition Area

Figure 5–5b. Antimony Concentrations in < 149–µm Soil Fractions by Deposition Area

Figure 5–5c. Arsenic Concentrations in < 149–µm Soil Fractions by Deposition Area

Figure 5–5d. Barium Concentrations in < 149–µm Soil Fractions by Deposition Area

Figure 5–5e. Beryllium Concentrations in < 149–µm Soil Fractions by Deposition Area

Figure 5–5f. Cadmium Concentrations in < 149–µm Soil Fractions by Deposition Area

Figure 5–5g. Calcium Concentrations in < 149–µm Soil Fractions by Deposition Area

Figure 5–5h. Chromium Concentrations in < 149–µm Soil Fractions by Deposition Area

Figure 5-5i. Cobalt Concentrations in < 149-µm Soil Fractions by Deposition Area

Figure 5–5j. Copper Concentrations in < 149–µm Soil Fractions by Deposition Area

Figure 5–5k. Iron Concentrations in < 149–µm Soil Fractions by Deposition Area

Figure 5–5I. Lead Concentrations in < 149–µm Soil Fractions by Deposition Area

Figure 5–5m. Magnesium Concentrations in < 149–µm Soil Fractions by Deposition Area

Figure 5–5n. Manganese Concentrations in < 149–µm Soil Fractions by Deposition Area

Figure 5–5o. Mercury Concentrations in < 149–µm Soil Fractions by Deposition Area

Figure 5–5p. Molybdenum Concentrations in < 149–µm Soil Fractions by Deposition Area

Figure 5–5q. Nickel Concentrations in < 149–µm Soil Fractions by Deposition Area

Figure 5–5r. Potassium Concentrations in < 149–µm Soil Fractions by Deposition Area

Figure 5–5s. Selenium Concentrations in < 149–µm Soil Fractions by Deposition Area

Figure 5–5t. Silver Concentrations in < 149–µm Soil Fractions by Deposition Area

Figure 5–5u. Sodium Concentrations in < 149–µm Soil Fractions by Deposition Area

Figure 5–5v. Thallium Concentrations in < 149–µm Soil Fractions by Deposition Area

Figure 5–5w. Vanadium Concentrations in < 149–µm Soil Fractions by Deposition Area

Figure 5–5x. Zinc Concentrations in < 149–µm Soil Fractions by Deposition Area

Figure 5-6a. Percent Bioaccessible Aluminum in < 149-µm Soil Fractions by Deposition Area

Figure 5-6b. Percent Bioaccessible Antimony in < 149-µm Soil Fractions by Deposition Area

Figure 5–6c. Percent Bioaccessible Arsenic in < 149–µm Soil Fractions by Deposition Area

Figure 5-6d. Percent Bioaccessible Barium in < 149-µm Soil Fractions by Deposition Area

Figure 5-6e. Percent Bioaccessible Beryllium in < 149-µm Soil Fractions by Deposition Area

Figure 5-6f. Percent Bioaccessible Cadmium in < 149-µm Soil Fractions by Deposition Area

Figure 5–6g. Percent Bioaccessible Calcium in < 149–µm Soil Fractions by Deposition Area

Figure 5-6h. Percent Bioaccessible Chromium in < 149-µm Soil Fractions by Deposition Area

Figure 5-6i. Percent Bioaccessible Cobalt in < 149-µm Soil Fractions by Deposition Area

Figure 5-6j. Percent Bioaccessible Copper in < 149-µm Soil Fractions by Deposition Area

Figure 5-6k. Percent Bioaccessible Iron in < 149-µm Soil Fractions by Deposition Area

Figure 5-6l. Percent Bioaccessible Lead in < 149-µm Soil Fractions by Deposition Area

Figure 5-6m. Percent Bioaccessible Magnesium in < 149-µm Soil Fractions by Deposition Area

Figure 5-6n. Percent Bioaccessible Manganese in < 149-µm Soil Fractions by Deposition Area

Figure 5-6o. Percent Bioaccessible Mercury in < 149-µm Soil Fractions by Deposition Area

Figure 5-6p. Percent Bioaccessible Molybdenum in < 149-µm Soil Fractions by Deposition Area

Figure 5-6q. Percent Bioaccessible Nickel in < 149-µm Soil Fractions by Deposition Area

Figure 5-6r. Percent Bioaccessible Potassium in < 149-µm Soil Fractions by Deposition Area

Figure 5-6s. Percent Bioaccessible Selenium in < 149-µm Soil Fractions by Deposition Area

Figure 5-6t. Percent Bioaccessible Silver in < 149-µm Soil Fractions by Deposition Area

Figure 5-6u. Percent Bioaccessible Sodium in < 149-µm Soil Fractions by Deposition Area

Figure 5-6v. Percent Bioaccessible Thallium in < 149-µm Soil Fractions by Deposition Area

Figure 5-6w. Percent Bioaccessible Vanadium in < 149-µm Soil Fractions by Deposition Area

Figure 5-6x. Percent Bioaccessible Zinc in < 149-µm Soil Fractions by Deposition Area

MAPS

TABLES

Table 2-1. Target Method Detection Limits and Method Reporting Limits

	Analytical	Analytical
	Laboratory	Laboratory
Analyte	MDL	MRL
Conventional Parameters		
CEC	NA	NA
Grain size distribution	NA	NA
Moisture content	NA	NA
Total solids (percent of whole weight)	0.01	0.01
TOC (percent)	0.02	0.05
рН	NA	NA
Metals/Metalloids (mg/kg dw)		
Aluminum	0.6	2
Antimony	0.02	0.05
Arsenic	0.2	0.5
Barium	0.02	0.05
Beryllium	0.005	0.02
Cadmium	0.009	0.02
Calcium	1	4
Chromium	0.07	0.2
Cobalt	0.009	0.02
Copper	0.04	0.1
Iron	2	4
Lead	0.02	0.05
Magnesium	0.2	2
Manganese	0.02	0.05
Mercury	0.002	0.02
Molybdenum	0.02	0.05
Nickel	0.09	0.2
Potassium	10	40
Selenium	0.07	0.2
Silver	0.005	0.02
Sodium	5	40
Thallium	0.002	0.02
Vanadium	0.08	0.2
Zinc	0.2	0.5

Notes:

Method detection limits/method reporting limits (MDLs/MRLs) are on a dry weight basis.

The MRL is provided on a dry-weight basis and assumes 50% moisture in the samples. The MRL for project samples will vary with the actual moisture content of the sample.

NA - not applicable, no MDL or MRL available for this method

CEC - cation exchange capacity

TOC - total organic carbon

Table 2-2. Summary of Target Sampling Locations

Sampling Area	Number of Target DUs
ADA	
High-density	39 ^a
Primary	103 ^b
Reserve	16
Total	142 ^c
RFDA	
RFA	5
RFB	9
RFC	8
RFD	3
RFE	4
Total	29
WSDA	
Columbia Beach North	7
Columbia Beach South	7
Marcus Flats East	7
Marcus Flats West	7
Total	28
All Areas	
Total	199
Motoci	

ADA - aerial depostion area

DU - decision unit

RFDA - relict flood plain deposition area

RFA, RFB, RFC, RFD, RFE - relict flood plain deposition areas A, B, C, D, and E

^a In addition to the target DUs in the high-density ADA, an additional 7 DUs were designated as reserve DUs to be used in the event that a target DU was unavailable for sampling.

^b In addition to the target DUs in the primary ADA, an additional 19 DUs were designated as reserve DUs to be used in the event that a target DU was unavailable for sampling.

^c The 16 DUs in the reserve area are not included in the total number of target DUs.

Table 3-1. Summary of Sampling Locations

	<u> </u>	N	lumber of DUs Sa	ampled for QC b	у Туре
Sampling Area	Number of DUs Sampled	EPA Split	Field Split	Triplicate	Field Equipment Rinsate Blanks
ADA					
High-density	35	10	6	6	6
Primary	91	17	10	8	10
Reserve	16	0	2	2	0
RFDA					
RFA	5	2	1	1	1
RFB	3	0	0	1	1
RFC	6	0	1	1	1
RFD	2	0	0	1	1
RFE	0	0	0	0	0
WSDA					
Columbia Beach North	4	2	1	1	1
Columbia Beach South	2	0	0	0	0
Marcus Flats East	7	1	1	1	1
Marcut Flats West	0	0	0	0	0
All Areas					
Total	171	32	22	22	22

ADA - areal deposition area

DU - decision unit

EPA - U.S. Environmental Protection Agency

QC - quality control

RFDA - relict flood plain deposition area

RFA, RFB, RFC, RFD - relict flood plain deposition areas A, B, C, and D

Table 3-2. Summary of Total Samples Collected in the Field

	Number of DUs	Number of Triplicate Samples	Total Number of Samples
Sampling Area	Sampled	Per Sampling Area	Per Sampling Area
ADA			
High-density	35	18	47
Primary	91	24	107
Reserve	16	6	20
Total	142	48	174
RFDA			
RFA	5	3	7
RFB	3	3	5
RFC	6	3	8
RFD	2	3	4
RFE	0	0	0
Total	16	12	24
WSDA			
Columbia Beach North	4	3	6
Columbia Beach South	2	0	2
Marcus Flats East	7	3	9
Marcus Flats West	0	0	0
Total	13	6	17
All Areas			
Total	171	66	215

ADA - areal deposition area

DU - decision unit

RFDA - relict flood plain deposition area

RFA, RFB, RFC, RFD - relict flood plain depositional areas A, B, C, and D

Table 3-3a. Aerial Deposition Area Planned and Sampled Decision Units

			-					
-	Solumos	Reserve	Collection Date	Increments	QC Samples	showmon)	X	Y Y
	Sampled:		CONSCION DAIG	Sampled	Collected	COLUMBIA	COOLUMITATE	Cooldinate
High-density								
ADA-123	S N	% 8	ns	ns		No access	su	su
ADA-124	Yes	S S	10/4-10/5/2014	06	Soil triplicate, EPA split		445930.85	5418412.10
ADA-125	Yes	8	10/23/2014	30	EPA split		446414.68	5419058.76
ADA-126	Yes	8	9/12/2014	30	EPA split		444790.43	5419389.35
ADA-127	Yes	8	10/15/2014	30			447387.57	5419964.38
ADA-128	Yes	8	10/3/2014	30			443076.44	5420042.99
ADA-129	2	8	ns	ns		No access	ns	ns
ADA-130	8	Yes	ns	ns		No access	ns	ns
ADA-131	Yes	Yes	9/19/2014	06	Soil triplicate, EPA split		449312.85	5421241.76
ADA-132	Yes	9 2	9/16/2014	30	Field split		444488.36	5421679.27
ADA-133	Yes	8	9/24/2014	30			442921.06	5422266.30
ADA-134	2	9 2	ns	ns		No access	Su	ns
ADA-135	Yes	Yes	9/18/2014	06	Soil triplicate		445774.68	5421960.23
ADA-136	Yes	No	9/11/2014	30	EPA split		443716.50	5422241.23
ADA-137	9 N	S S	ns	ns		No access	su	su
ADA-138	9 N	S S	ns	ns		No access	su	su
ADA-139	Yes	No	10/14/2014	30			451060.27	5422224.62
ADA-140	Yes	S S	9/16/2014	30			449270.55	5422882.66
ADA-141	Yes	S S	9/23/2014	30	Field split		442596.58	5422858.29
ADA-142	Yes	No	9/25/2014	30			444830.00	5422890.11
ADA-143	Yes	No	9/15/2014	30			446410.86	5422879.56
ADA-144	Yes	No	9/30/2014	30	EPA split		448020.85	5422887.43
ADA-145	Yes	No	9/24/2014	30			444382.50	5423458.64
ADA-146	Yes	9 8	10/3/2014	30			445773.07	5423271.65
ADA-147	Yes	N _o	9/30/2014	30			447710.68	5423527.46
ADA-148	Yes	No	10/6/2014	30	EPA split		448959.94	5423535.21
ADA-149	No	N _o	ns	ns		No access	su	su
ADA-150	Yes	No	10/7/2014	30			449934.27	5423856.82
ADA-151	Yes	Yes	10/5/2014	30			450555.29	5423841.69
ADA-152	Yes	Yes	10/9/2014	30			453062.12	5423855.41
ADA-153	Yes	_S	9/21/2014	30			445801.86	5424216.90
ADA-154	Yes	Yes	9/20-9/21/2014	06	Soil triplicate		446452.64	5424466.44
ADA-155	Yes	No	9/16/2014	30			447068.93	5424510.59
ADA-156	Yes	%	10/8/2014	30	Field split		448330.16	5424459.87
ADA-157	N _o	No	ns	ns		No access	su	su

Table 3-3a. Aerial Deposition Area Planned and Sampled Decision Units

DΩ	Sampled?	DU?	Collection Date	Sampled	Collected	Comments	Coordinate ^a	Coordinate ^a
High-density (continued)	(continued)							
ADA-158	Yes	Yes	10/7-10/8/2014	06	Soil triplicate, EPA split		450891.77	5424829.20
ADA-159	Yes	8	10/4-10/5/2014	06	Soil triplicate, EPA split		448001.19	5425158.28
ADA-160	Yes	2	10/4/2014	30			449285.64	5425128.87
ADA-161	Yes	2	10/3/2014	30	Field split		450672.59	5426008.88
ADA-162	Yes	8	10/10/2014	30	Field split		452001.67	5425721.97
ADA-163	8 N	9	us	SU		No access	us	SU
ADA-164	Yes	9	9/30/2014	30	Field split		454291.44	5425621.71
ADA-165	Yes	8	9/17/2014	30			451970.55	5426465.76
ADA-166	2	8	ns	ns		No access	ns	ns
ADA-167	8 N	9	us	SU		No access	ns	SU
ADA-168	Yes	8	10/15/2014	30	EPA split		454736.09	5427633.42
Primary								
ADA-001	Yes	9N	9/13/2014	30	EPA split		430454.64	5408511.52
ADA-002	Yes	N N	10/10/2014	30			433403.18	5408902.29
ADA-003	N _O	Yes	ns	su		No access	su	su
ADA-004	Yes	N N	10/10/2014	30			434841.35	5409509.76
ADA-005	Yes	N N	10/9/2014	30			433970.68	5410114.95
ADA-006	Yes	% 8	10/11/2014	30	Field split		431738.01	5410479.8
ADA-007	N _O	9	ns	su		No access	su	su
ADA-008	Yes	% 8	10/12/2014	30	EPA split		431121.98	5411071.92
ADA-009	N _O	%	ns	su		No access	su	su
ADA-010	Yes	oN N	10/2/2014	30			431882.23	5411419.95
ADA-011	%	Yes	ns	su		No access	su	su
ADA-012	N _O	9	ns	su		No access	su	su
ADA-013	N _O	Yes	ns	su		No access	su	su
ADA-014	N _O	9	ns	su		No access	su	su
ADA-015	Yes	9	9/14/2014	30	Field split		431758.61	5412692.02
ADA-016	Yes	Yes	9/24-9/25/2014	06	Soil triplicate, EPA split		433047.91	5412676.30
ADA-017	Yes	No	10/1/2014	30			436223.22	5412670.32
ADA-018	Yes	%	10/1/2014	30			436860.07	5412665.23
ADA-019	Yes	%	10/12/2014	30			432246.75	5413794.69
ADA-020	Yes	Yes	9/13-9/14/2014	06	Soil triplicate		434933.00	5413770.79

Upper Columbia River Soil Study Data Summary and Data Gap Report

Table 3-3a. Aerial Deposition Area Planned and Sampled Decision Units

			-					
ā		Reserve		Increments	QC Samples	ć	×	\ :\ :
nn	sampled?	DO:	Collection Date	Sampled	Collected	Comments	Coordinate	Coordinate
Primary (continued)	tinued)							
ADA-021	Yes	No	10/1/2014	30			433865.15	5414541.12
ADA-022	<u>8</u>	9	ns	ns		No access	ns	ns
ADA-023	Yes	S N	9/13/2014	06	Soil triplicate, EPA split		436536.75	5414561.05
ADA-024	Yes	8	10/1/2014	30			437401.59	5413570.48
ADA-025	Yes	8	9/18/2014	30			441302.78	5413328.80
ADA-026	Yes	8	9/17/2014	30			443474.57	5413075.78
ADA-027	2	8	na	na		No access	na	na
ADA-028	Yes	8	10/3/2014	30	EPA split		440972.65	5414580.01
ADA-029	8	8	na	na		No access	na	na
ADA-030	8	8	na	na		No access	na	na
ADA-031	8 8	8	na	na		No access	na	na
ADA-032	2	Yes	na	na		No access	na	na
ADA-033	Yes	8	9/24/2014	30			449613.36	5414585.04
ADA-034	Yes	8	10/10/2014	30	EPA split		449958.59	5413313.93
ADA-035	Yes	Yes	10/4/2014	30			443883.84	5415485.41
ADA-036	_S	Yes	ns	ns		No access	ns	ns
ADA-037	_S	No	ns	ns		No access	ns	ns
ADA-038	<u>8</u>	9	ns	ns		No access	ns	ns
ADA-039	Yes	No	10/1/2014	30			451394.89	5415894.16
ADA-040	<u>8</u>	8	ns	su		No access	su	SU
ADA-041	N _O	Yes	ns	su		No access	ns	ns
ADA-042	Yes	9	10/9/2014	30			446424.57	5416827.09
ADA-043	Yes	No	10/4/2014	30	Field split		448286.60	5417171.67
ADA-044	Yes	No	9/18/2014	30	Field split		437517.69	5417874.07
ADA-045	Yes	No	10/9/2014	30			443775.55	5417445.40
ADA-046	Yes	No	10/2/2014	30			444800.65	5417460.34
ADA-047	Yes	9N	10/1/2014	30	EPA split		439605.07	5417642.93
ADA-048	Yes	9N	10/23/2014	30			448627.38	5418004.96
ADA-049	Yes	8	9/18/2014	30	EPA split		450330.43	5417827.86
ADA-050	Yes	9N	10/5/2014	30			440794.62	5418192.02
ADA-051	Yes	9N	10/23/2014	30		1 of the 30 coordinates not collected due to tablet issues	448031.66	5418403.88
ADA-052	Yes	8	10/3/2014	30			439725.88	5418827.27
ADA-053	Yes	Yes	10/8/2014	30			438078.38	5419121.05
ADA-054	Yes	8	10/1/2014	30			441048.01	5419092.79
ADA-055	Yes	S N	10/8-10/9/2014	06	Soil triplicate, EPA solit		448657.67	5419068.48

Upper Columbia River Soil Study Data Summary and Data Gap Report

Table 3-3a. Aerial Deposition Area Planned and Sampled Decision Units

na 	Sampled?	Reserve DU?	Collection Date	Increments Sampled	QC Samples Collected	Comments	X Coordinate ^a	γ Coordinate ^a
Primary (continued)	tinued)							
ADA-056	Yes	9	9/16/2014	30			437163.92	5419361.96
ADA-057	Yes	2	10/8/2014	30			439041.12	5419194.04
ADA-058	Yes	8	9/20/2014	30			450578.68	5419381.02
ADA-059	Yes	8	10/7/2014	30			438831.39	5420042.20
ADA-060	Yes	<u>8</u>	10/6-10/7/2014	06	Soil triplicate, EPA split	1 of the 30 coordinates not collected due to tablet issues	440728.23	5419720.32
ADA-061	Yes	2	9/17/2014	30			437829.58	5420006.53
ADA-062	Yes	2	10/7/2014	30			440695.13	5420497.95
ADA-063	Yes	Yes	9/18/2014	30	Field split		450559.98	5420322.58
ADA-064	Yes	2	9/16/2014	30			437775.04	5420643.94
ADA-065	Yes	2	10/8/2014	30			441470.61	5420669.41
ADA-066	Yes	2	10/7/2014	30			442276.59	5420593.92
ADA-067	Yes	2	9/18/2014	30			449938.4	5420651.82
ADA-068	2	2	ns	ns		No access	SU	ns
ADA-069	2	2	ns	ns		No access	us	ns
ADA-070	Yes	Yes	10/2/2014	30			440339.16	5421308.01
ADA-071	Yes	9	10/8/2014	30	EPA split		441300.44	5421267.67
ADA-072	No	_o N	ns	ns		No access	ns	ns
ADA-073	Yes	9	10/4/2014	30			440978.67	5421926.71
ADA-074	9	9	ns	ns		No access	ns	ns
ADA-075	_o	Yes	ns	ns		No access	ns	ns
ADA-076	Yes	9	10/14/2014	30			452331.28	5422468.07
ADA-077	9	9	ns	ns		No access	ns	ns
ADA-078	Yes	Yes	9/30/2014	30			439741.01	5422599.58
ADA-079	Yes	9	10/14/2014	30	EPA split		454236.08	5421793.21
ADA-080	9 N	8	ns	ns		No access	su	ns
ADA-081	Yes	_S	10/8/2014	30			440149.13	5423520.90
ADA-082	Yes	9	10/4/2014	30	Field split	1 of the 30 coordinates not collected due to tablet issues	441235.76	5423892.46
ADA-083	9 N	8	ns	ns		DU not sampled; unsafe to access steep terrain	su	ns
ADA-084	Yes	_o N	10/10/2014	30	Field split		454849.78	5423489.49
ADA-085	Yes	8	9/18/2014	30	Field split		461012.08	5423701.15
ADA-086	9 N	8	ns	ns		No access	su	ns
ADA-087	No	_o N	ns	ns		No access	ns	ns
ADA-088	Yes	_o N	10/3/2014	30			442908.22	5424496.56
ADA-089	Yes	9	10/7/2014	30			444826.92	5424835.38
ADA-090	Yes	9	10/7/2014	30	Field split	1 of the 30 coordinates not collected due to tablet issues	442011.75	5424972.58
ADA-091	Yes	9	10/3/2014	30	EPA split		445538.96	5425089.27

Table 3-3a. Aerial Deposition Area Planned and Sampled Decision Units

Find split 1 of the 30 coordinates not collected due to tablet issues 455156.03	na	Sampled?	Reserve DU?	Collection Date	Increments Sampled	QC Samples Collected	Comments	X Coordinate ^a	Y Coordinate ^a
Yes No 1062/2014 30 EPA split 1 of the 30 coordinates not collected due to tablet issues 4455/66 2 Yes Yes 10772014 30 EPA split 1 of the 30 coordinates not collected due to tablet issues 4455/66 2 Yes No 992/20014 30 EPA split 1 of the 30 coordinates not collected due to tablet issues 4457/65 20 Yes No 992/20014 30 EPA split 1 of the 30 coordinates not collected due to tablet issues 4457/65 20 Yes No 1071/2014 30 EPA split 1 of the 30 coordinates not collected due to tablet issues 4457/65 20 Yes No 1071/2014 30 EPA split 1 of the 30 coordinates not collected due to tablet issues 4457/65 20 Yes No 1071/2014 30 EPA split 1 of the 30 coordinates not collected due to tablet issues 4458/67 2 Yes No 1071/2014 30 EPA split 1 of the 30 coordinates not collected due to tablet issues 4458/67 20 Yes No 1071/2014 30 EPA split 1 of th	Primary (cor	ntinued)							
Yes Yes 94722014 30 EPA split 1 of the 30 coordinates not collected due to tablet issues 445958 87 Yes No 1109/2014 30 EPA split 1 of the 30 coordinates not collected due to tablet issues 445678 33 Yes No 99/25/2014 30 EPA split 1 of the 30 coordinates not collected due to tablet issues 442676 20 No 100 101/2014 30 EPA split No access 1 of the 30 coordinates not collected due to tablet issues 442676 20 No 100/12/2014 15 0 1 of the 30 coordinates not collected due to tablet issues 442676 20 No 100/12/2014 15 0 1 of the 30 coordinates not collected due to tablet issues 442676 20 Yes No 100/12/2014 15 0 1 of the 30 coordinates not collected due to tablet issues 442676 20 Yes No 100/12/2014 30 EPA split 1 of the 30 coordinates not collected due to tablet issues 442676 20 Yes No 100/12/2014 30 EPA split 1 of the 30 coordinates not collected due	ADA-092	Yes	9V	10/6/2014	30			455156.03	5424892.13
Yes Yes 104172014 30 EPA split 1 of the 30 coordinates not collected due to tablet issues 44255 9.6.3 Yes No 9,2772014 30 EPA split 1 of the 30 coordinates not collected due to tablet issues 444567.98 Yes No 9,2772014 30 No No 444667.53 No Yes 101712014 30 No No 444667.53 Yes No 101722014 30 No No 444667.53 Yes No 10172014 30 No No 444667.13 Yes No 10172014 30 EPA split No 44669.14 Yes No 10172014 30 EPA split A676014 30 A676012 Yes No 101762014 30 EPA split A676012 A676013 Yes No 101762014 30 EPA split A676014 30 A676013 Yes No 101762014 30	ADA-093	Yes	Yes	9/17/2014	30			459485.85	5425132.23
Yes No 1092/2014 30 Additional and a construction of the plate issues 445678 30 Yes No 9/27/2014 30 20 the 30 coordinates not collected due to tablet issues 445678 30 No 9/27/2014 30 No 20 the 30 coordinates not collected due to tablet issues 445678 30 No 10/17/2014 15 No 16 of 30 increments not collected due to tablet issues 445678 31 Yes No 10/17/2014 30 Soli triplicate 450746 37 Yes No 10/17/2014 30 Soli triplicate 460746 37 Yes No 10/17/2014 30 EPA split 446493 30 Yes No	ADA-094	Yes	Yes	10/17/2014	30	EPA split	1 of the 30 coordinates not collected due to tablet issues	442935.87	5425460.01
Yes No 99/27/2014 30 Of the 30 coordinates not collected due to tablet issues 444567.20 Yes No - 10/71/2014 30 No accesss Access Accesss Access Access <t< td=""><td>ADA-095</td><td>Yes</td><td>8</td><td>10/9/2014</td><td>30</td><td></td><td></td><td>443519.63</td><td>5425506.74</td></t<>	ADA-095	Yes	8	10/9/2014	30			443519.63	5425506.74
Yes No 922x2014 30 20 of the 30 coordinates not collected due to tablets seuses 445766.20 No No 100 100 100 100 100 445663.14 100 No Yes 100 100 100 100 100 445663.14 100 Yes No 100 100 30 Feld split 445663.14 445663.14 445663.14 445663.14 445663.14 445663.14 445663.14 445663.14 445663.14 445663.14 445663.14 445663.14 445663.14 445663.14 445663.14 445663.14 445663.04	ADA-096	Yes	8	9/27/2014	30			444567.93	5425426.22
No No No No 10 Yes 10f1/12014 30 No access 14556914 No Yes na No access 15 of 30 increments not collected due to safety concerns 445724,81 Yes No 10f1/22014 30 Hos 45724,81 Yes No 9/26/2014 30 Field split 467324,81 Yes No 10f1/22014 30 Soli triplicate 4673630 Yes No 10f1/22014 30 Soli triplicate 4630630.23 Yes No 10f1/22014 30 Soli triplicate 4630630.23 Yes No 10f1/22014 30 Soli triplicate 4630630.23 Yes No 10f1/22014 30 EPA split 4630630.23 Yes No 10f1/22014 30 EPA split 441309.86 Yes No 10f1/22014 30 EPA split 441309.86 Yes No 10f1/22014 30	ADA-097	Yes	8	9/25/2014	30		2 of the 30 coordinates not collected due to tablet issues	446756.20	5425504.42
Yee Yee 1011/2014 30 No access Yee No 109/2014 15 100 increments not collected due to safety concerns 445469.14 Yee No 109/2014 15 16 130 increments not collected due to safety concerns 459162.26 Yee No 109/2014 30 Fleid split 4607463.7 Yee No 1011/2014 30 Fleid split 4607463.7 Yee No 1011/2014 30 Soli triplicate 4607463.7 Yee No 1017/2014 30 Soli triplicate 44309.86 Yee No 1017/2014 30 EPA split 4400000000000000000000000000000000000	ADA-098	N _o	8	ns	ns		No access	ns	ns
Nb Yes na Nb access Nb Yes na 100 access Yes Nb 100/22014 15 30 increments not collected due to safety concerns 45724.81 Yes Nb 9/26/2014 30 Field split 450/146.37 Yes Nb 9/26/2014 30 Field split 460/2014 Yes Nb 101/12/2014 30 Field split 460/2018 Yes Nb 107/12/2014 30 Field split 460/2018 Yes Nb 107/12/2014 30 Soli triplicate 460/2018 41309 86 Yes Nb 107/12/2014 30 EPA split 10 ft the 30 coordinates not collected due to tablet issue 460/20078 Yes Nb 107/12/2014 30 EPA split 10 ft the 30 coordinates not collected due to tablet issue 460/200.78 Yes Nb 107/2014 30 EPA split 10 ft the 30 coordinates not collected due to tablet issue 460/200.78 Yes Nb 10	ADA-099	Yes	Yes	10/11/2014	30			445469.14	5426068.74
Yes No 10/12/2014 15 To 30 increments not collected due to safety concerns 45724.81 Yes No 10/92/2014 30 Hold Spite 463760.88 Yes No 9/20/2014 30 Field spite 463360.88 Yes No 10/11/2014 30 Soil triplicate 463360.28 Yes No 10/16/2014 90 Soil triplicate 44230.86 Yes No 10/10-10/11/2014 30 FPA spite 44200.08 Yes No 10/10-10/11/2014 30 EPA spite 44200.08 Yes No 10/10-10/11/2014 30 EPA spite 44200.30 Yes No 10/10-10/11/2014 30 EPA spite 44200.30 Yes No 10/10-10/11/2014 30 EPA spite 44200.30 Yes No 10/10-20/14 30 EPA spite 44200.30 Yes No 10/10-20/14 30 EPA spite 44200.30 <t< td=""><td>ADA-100</td><td>N_o</td><td>Yes</td><td>na</td><td>na</td><td></td><td>No access</td><td>na</td><td>na</td></t<>	ADA-100	N _o	Yes	na	na		No access	na	na
Yes No 109/2014 30 Amount of the control of the co	ADA-101	Yes	8	10/12/2014	15		15 of 30 increments not collected due to safety concerns	457234.81	5425998.13
Yes No 9/26/2014 30 Held solit Yes No 9/26/2014 30 Field solit 463360.88 Yes No 1/07/12/2014 30 Soil triplicate 462060.78 Yes No 1/07/12/2014 90 Soil triplicate 462060.78 Yes No 1/07/12/2014 90 Soil triplicate 441309.86 Yes No 9/30/2014 30 EPA split 441309.86 Yes No 1/07/2014 30 EPA split 441309.80 Yes No 1/07/2014 30 EPA split 441309.00 Yes No 1/07/2014 30 EPA split 442278.24 Yes No 1/07/2014 30 EPA split 442278.24 Yes No 1/08/2014 30 EPA split 442278.24 Yes No 1/08/2014 30 EPA split 442278.24 Yes No 1/08/2014 30	ADA-102	Yes	N	10/9/2014	30			459162.26	5426045.50
Yes No 9/20/2014 30 Field split 463360 88 Yes No 10/11/2014 30 Soil triplicate. 445360.28 Yes No 10/12/2014 90 Soil triplicate. 442080.86 Yes No 10/12/2014 30 EPA split 44309.86 Yes No 9/30/2014 30 EPA split 44003.76 Yes No 9/20/2014 30 EPA split 440003.78 Yes No 10/17/2014 30 EPA split 440003.78 Yes No 10/17/2014 30 EPA split 440003.78 Yes No 10/17/2014 30 EPA split 442009.09 Yes No 10/17/2014 <td< td=""><td>ADA-103</td><td>Yes</td><td>N</td><td>9/26/2014</td><td>30</td><td></td><td></td><td>460746.37</td><td>5426053.11</td></td<>	ADA-103	Yes	N	9/26/2014	30			460746.37	5426053.11
Yes No 10/11/2014 30 Field split 456630.28 Yes No 10/16/2014 90 Soli triplicate 44309.86 Yes No 10/10-10/11/2014 90 Soli triplicate 443933.42 Yes No 9/30/2014 30 EPA split 448933.42 Yes No 10/17/2014 24 448933.42 Yes No 10/17/2014 30 EPA split 448933.42 Yes No 10/17/2014 30 EPA split 440900.30 Yes No 10/17/2014 30 EPA split 442278.24 Yes No 10/17/2014 30 EPA split 442200.30 Yes No 10/17/2014 30 EPA split 442300.30 Yes No 10/10/2014 30 EPA split 442300.30 Yes Yes 9/30/2014 30 EPA split 442300.30 Yes Yes 9/30/2014 30 <td< td=""><td>ADA-104</td><td>Yes</td><td>9</td><td>9/20/2014</td><td>30</td><td></td><td></td><td>463360.88</td><td>5426078.09</td></td<>	ADA-104	Yes	9	9/20/2014	30			463360.88	5426078.09
Yes No 10/16/2014 90 Soil triplicate 462060.78 </td <td>ADA-105</td> <td>Yes</td> <td>_N</td> <td>10/11/2014</td> <td>30</td> <td>Field split</td> <td></td> <td>456630.28</td> <td>5426560.54</td>	ADA-105	Yes	_N	10/11/2014	30	Field split		456630.28	5426560.54
Yes No 10/2/2014 90 Soil triplicate, EPA split 441309.86 441309.86 Yes No 10/10-10/11/2014 30 EPA split 448933.42 450244.43 Yes No 9/30/2014 30 EPA split 1 of the 30 coordinates not collected due to tablet issues 45024.43 Yes No 10/7/2014 30 EPA split 1 of the 30 coordinates not collected due to tablet issues 45022.13 Yes No 10/7/2014 30 EPA split 442020.36 442020.36 Yes No 10/18/2014 30 EPA split 442030.39 44263.38 Yes No 10/9/2014 30 EPA split 44263.38 44263.38 Yes No 10/9/2014 30 EPA split 44263.39 4477643.39 Yes No 10/1/2014 30 No access No access A65443.39 Yes Yes 9/20/2014 30 Soil triplicate 457861.02 Yes Yes Yes	ADA-106	Yes	_N	10/16/2014	06	Soil triplicate		462060.78	5426417.34
Yes No 10/10-10/11/2014 90 Soil triplicate 448933.42 Yes No 9/30/2014 30 EPA split 1 of the 30 coordinates not collected due to tablet issues 450/24.43 Yes No 10/7/2014 24 A 4420/203.76 Yes No 10/7/2014 30 A 4420/203.76 Yes No 10/7/2014 30 A 4420/203.76 Yes No 10/7/2014 30 A 4420/203.76 Yes No 10/9/2014 30 A 4420/203.39 Yes No 10/9/2014 30 A 4420/203.39 Yes No 10/9/2014 30 A 4420/203.39 Yes Yes 9/30/2014 30 A 4420/203.39 Yes No 10/3/2014 30 A A A Yes No 10/1/2014 30 A A A Yes Yes 9	ADA-107	Yes	S N	10/2/2014	06	Soil triplicate, EPA split		441309.86	5426718.58
Yes No 9/30/2014 30 EPA split 450244.43 Yes No 9/36/2014 30 EPA split 1 of the 30 coordinates not collected due to tablet issues 451220.13 Yes No 10/17/2014 30 ACC	ADA-108	Yes	No	10/10-10/11/2014	06	Soil triplicate		448933.42	5426708.53
Yes No 9/26/2014 30 1 of the 30 coordinates not collected due to tablet issues 451220.13 Yes No 107/12014 24 44003.76 442003.76 Yes No 10/17/2014 30 44290.20 44290.36 Yes No 10/6/2014 30 44409.38 44409.38 Yes No 10/9/2014 30 EPA split 44543.39 Yes No 9/30/2014 30 EPA split 44543.39 Yes No 10/3/2014 30 A0 A4543.39 Yes No 10/3/2014 30 A0 A4589.73 Yes No 10/1/2014 30 A0 A4589.73 Yes 9/30/2014 30 A0 A4589.73 A57851.02 Yes Yes 9/20/2014 30 Soil triplicate A67821.97 A67111.06 Yes Yes 9/30/2014 30 Soil triplicate A6821.97 A61111.06 Yes <td>ADA-109</td> <td>Yes</td> <td>No</td> <td>9/30/2014</td> <td>30</td> <td>EPA split</td> <td></td> <td>450244.43</td> <td>5426703.66</td>	ADA-109	Yes	No	9/30/2014	30	EPA split		450244.43	5426703.66
Yes No 10/7/2014 24 440003.76 Yes No 10/17/2014 30 44278.24 Yes No 10/17/2014 30 44290.30 Yes No 10/18/2014 30 444099.4 Yes No 10/18/2014 30 444033.83 Yes No 10/9/2014 30 EPA split 444633.83 Yes No 9/30/2014 30 EPA split 4446837.73 Yes No 10/15/2014 30 No access 445037.3 Yes No 10/11/2014 30 No access 445008.1 Yes Yes 9/20/2014 30 Soil triplicate 451704.3 Yes Yes 9/23/2014 30 Soil triplicate 461133.20 Yes Yes 9/30/2014 30 Soil triplicate 4611130.0 Yes Yes 9/30/2014 30 Soil triplicate 461111.06 Yes Yes	ADA-110	Yes	9V	9/26/2014	30		1 of the 30 coordinates not collected due to tablet issues	451220.13	5426731.61
Yes No 10/17/2014 30 A42278.24 Yes No 9/20/2014 30 A42900.30 A42900.30 Yes No 10/6/2014 30 A44059.46 A44059.46 Yes No 10/9/2014 30 EPA split A44633.83 Yes No 10/3/2014 30 EPA split A46897.73 Yes No 10/3/2014 30 A46897.73 A47043.39 Yes No 10/15/2014 30 A67043.39 A47043.39 Yes No 10/15/2014 30 A67043.39 A47043.39 Yes Yes 9/20/2014 30 Soil triplicate A67165.10 A67185.02 Yes Yes 9/24/2014 30 Soil triplicate A6721.97 A67111.06 Yes Yes 9/30/2014 30 Soil triplicate A66221.97 A6221.97 Yes Yes 9/30/2014 30 Soil triplicate A62237.18	ADA-111	Yes	N _o	10/7/2014	24			440003.76	5427024.60
Yes No 9/20/2014 30 442900.30 Yes No 10/6/2014 30 444653.83 444653.83 Yes No 10/18/2014 30 EPA split 44543.39 Yes No 10/9/2014 30 EPA split 44543.39 Yes No 10/3/2014 30 EPA split 445743.39 Yes No 10/3/2014 30 EPA split 445743.39 No No 10/3/2014 30 No access 447704.37 Yes No 10/11/2014 30 No access 4457851.02 Yes Yes 9/20/2014 30 Soil triplicate 461139.20 Yes Yes 9/23/2014 30 Soil triplicate 461111.06 Yes Yes Yes 9/30/2014 30 Soil triplicate 46221.37 Yes Yes Yes Yes 9/30/2014 30 Access Access Yes Yes <t< td=""><td>ADA-112</td><td>Yes</td><td>N_o</td><td>10/17/2014</td><td>30</td><td></td><td></td><td>442278.24</td><td>5427342.19</td></t<>	ADA-112	Yes	N _o	10/17/2014	30			442278.24	5427342.19
Yes No 10/6/2014 30 H44059.46 Yes No 10/18/2014 30 EPA split 444533.83 Yes No 10/9/2014 30 EPA split 44543.39 Yes No 9/30/2014 30 EPA split 44543.39 Yes No 10/3/2014 30 EPA split 44543.39 Yes No 10/3/2014 30 EPA split 14543.39 No No 10/3/2014 30 No access 18 Yes No 10/11/2014 30 Soil triplicate 46153.29 Yes Yes 9/20/2014 30 Soil triplicate 461111.06 Yes Yes 9/24/2014 30 Soil triplicate 461111.06 Yes Yes 9/30/2014 30 Soil triplicate 46221.37 Yes Yes 9/30/2014 30 Soil triplicate 462347.18	ADA-113	Yes	9V	9/20/2014	30			442900.90	5426988.87
Yes No 10/18/2014 30 EPA split 444533.83 Yes No 10/9/2014 30 EPA split 445443.39 Yes No 9/30/2014 30 EPA split 446897.73 Yes No 10/3/2014 30 A47704.37 Yes No 10/3/2014 30 A449078.13 Yes No 10/15/2014 30 A49078.13 Yes No 10/11/2014 30 A61133.20 Yes Yes 9/20/2014 90 Soil triplicate 461139.20 Yes Yes 9/24/2014 30 A61111.06 Yes Yes 9/30/2014 30 A62121.97	ADA-114	Yes	9V	10/6/2014	30			444059.46	5427652.87
Yes No 109/2014 30 EPA split 445443.39 Yes No 9/30/2014 30 EPA split 446897.73 Yes Yes 9/30/2014 30 No access 447704.37 No No 10/15/2014 30 No access ns Yes No 10/15/2014 30 Soil triplicate 461532.93 Yes Yes 9/20/2014 30 Soil triplicate 461139.20 Yes Yes 9/24/2014 30 Soil triplicate 46111.06 Yes Yes 9/30/2014 30 Soil triplicate 46111.06 Yes Yes 9/30/2014 30 Soil triplicate 46111.106 Yes Yes 9/30/2014 30 Soil triplicate 46231.37	ADA-115	Yes	No	10/18/2014	30			444533.83	5427152.76
Yes No 9/30/2014 30 EPA split 446897.73 Yes Yes 9/30/2014 30 EPA split 447704.37 Yes No 10/3/2014 30 No access ns ns Yes No 10/15/2014 30 Soil triplicate 461532.93 461139.20 Yes Yes 9/20/2014 30 Soil triplicate 461111.06 461111.06 Yes Yes 9/30/2014 30 Soil triplicate 46221.37 Yes Yes 9/30/2014 30 Soil triplicate 46231.31 Yes Yes 9/30/2014 30 Soil triplicate 46231.31	ADA-116	Yes	9V	10/9/2014	30			445443.39	5427369.29
Yes Yes 9/30/2014 30 A47704.37 Yes No 10/3/2014 30 No access ns A49078.13 No n 10/15/2014 30 No access 457851.02 Yes No 10/11/2014 30 Soil triplicate 461532.93 Yes Yes 9/20/2014 30 A611139.20 Yes Yes 9/24/2014 30 A61111.06 Yes Yes 9/30/2014 30 A6231.31 Yes Yes 9/30/2014 30 A6231.31 Yes Yes 9/30/2014 30 A6231.31	ADA-117	Yes	No	9/30/2014	30	EPA split		446897.73	5427439.69
Yes No 10/3/2014 30 No access A49078.13 No No ns ns ns ns Yes No 10/15/2014 30 A61532.93 Yes Yes 9/20/2014 90 Soil triplicate 461139.20 Yes Yes 9/24/2014 30 461111.06 Yes Yes 9/30/2014 30 461111.06 Yes Yes 9/30/2014 30 46221.37 Yes Yes 9/30/2014 30 46231.31	ADA-118	Yes	Yes	9/30/2014	30			447704.37	5427630.14
No No ns No access ns ns Yes No 10/15/2014 30 467851.02 461532.93 Yes No 10/11/2014 30 Soil triplicate 461332.93 Yes Yes 9/23/2014 30 461139.20 Yes Yes 9/30/2014 30 461111.06 Yes Yes 9/30/2014 30 466221.97 Yes Yes 9/13/2014 30 Soil triplicate 462347.18	ADA-119	Yes	No	10/3/2014	30			449078.13	5427385.04
Yes No 10/15/2014 30 A57851.02 Yes No 10/11/2014 30 A61532.93 Yes Yes 9/20/2014 90 Soil triplicate 463116.51 Yes Yes 9/24/2014 30 461111.06 Yes Yes 9/30/2014 30 46121.106 Yes Yes 9/30/2014 30 46221.97 Yes Yes 9/13/2014 90 Soil triplicate 462347.18	ADA-120	N _o	N _o	ns	ns		No access	SU	ns
Yes No 10/11/2014 30 A61532.93 Yes Yes 9/20/2014 90 Soil triplicate 463116.51 Yes Yes 9/23/2014 30 461139.20 Yes Yes 9/24/2014 30 461111.06 Yes Yes 9/30/2014 30 46221.97 Yes Yes 9/13/2014 90 Soil triplicate 462347.18	ADA-121	Yes	9	10/15/2014	30			457851.02	5427244.43
Yes Yes 9/20/2014 90 Soil triplicate 463116.51 Yes Yes 9/24/2014 30 461139.20 Yes Yes 9/24/2014 30 461111.06 Yes Yes 9/30/2014 30 466221.97 Yes Yes 9/13/2014 90 Soil triplicate 462347.18	ADA-122	Yes	No	10/11/2014	30			461532.93	5427265.77
Yes Yes 9/23/2014 30 461139.20 Yes Yes 9/24/2014 30 461111.06 Yes Yes 9/30/2014 30 466221.97 Yes Yes 9/13/2014 90 Soil triplicate 462347.18	ADA-169	Yes	Yes	9/20/2014	06	Soil triplicate		463116.51	5421657.07
Yes Yes 9/24/2014 30 461111.06 Yes Yes 9/30/2014 30 A66221.97 Yes Yes 9/13/2014 90 Soil triplicate 462347.18	ADA-170	Yes	Yes	9/23/2014	30			461139.20	5422256.53
Yes Yes 9/30/2014 30 466221.97 Yes Yes 9/13/2014 90 Soil triplicate 462347.18	ADA-171	Yes	Yes	9/24/2014	30			461111.06	5422860.89
Yes Yes 9/13/2014 90 Soil triplicate 462347.18	ADA-172	Yes	Yes	9/30/2014	30			466221.97	5422885.95
	ADA-173	Yes	Yes	9/13/2014	06	Soil triplicate		462347.18	5423522.85

Table 3-3a. Aerial Deposition Area Planned and Sampled Decision Units

		Reserve		Increments	QC Samples		×	>
DO	Sampled?	DU?	Collection Date	Sampled	Collected	Comments	Coordinate ^a	Coordinate ^a Coordinate ^a
Primary (continued)	tinued)							
ADA-174	Yes	Yes	9/12/2014	30	Field split		463357.73	5423907.06
ADA-175	Yes	Yes	9/16/2014	30			464902.99	5423841.07
ADA-176	Yes	Yes	9/13/2014	30			465577.16	5423872.26
ADA-177	Yes	Yes	9/17/2014	30			466824.04	5424006.60
ADA-178	Yes	Yes	9/12/2014	30			466252.63	5424581.36
ADA-179	Yes	Yes	9/19/2014	30			463941.11	5424772.17
ADA-180	Yes	Yes	9/19/2014	30	Field split		463390.86	5425403.66
ADA-181	Yes	Yes	9/13/2014	30			464924.51	5426046.15
ADA-182	Yes	Yes	10/14/2014	30			464328.05	5426703.96
ADA-183	Yes	Yes	9/12/2014	30			468128.82	5426440.83
ADA-184	Yes	Yes	9/12/2014	30			467752.89	5427343.69
Market								

ADA - Aerial deposition area

DU - decision unit

EPA - U.S. Environmental Protection Agency

ns - not sampled

QC - quality control

^a Coordinates were calculated as the mean of the increment coordinates. Coordinates for decision units sampled in triplicate are from triplicate 'A'.

Table 3-3b. Relict Floodplain Deposition Area Planned and Sampled Decision Units

RFA RFA-001 Yes RFA-002 Yes RFA-003 Yes RFA-004 Yes RFA-005 Yes RFB-001 No RFB-003 Yes RFB-004 No RFB-005 No RFB-006 No RFB-007 No RFB-008 Yes RFC-001 No RFC-003 Yes RFC-004 Yes RFC-004 Yes RFC-005 Yes RFC-006 Yes RFC-006 Yes RFC-006 Yes RFC-007 Yes		Collection Date	Sampled	Collected	Comments	Coordinate	Coordinatea
A-001 A-002 A-003 A-004 A-005 A-005 A-005 A-006 A-005 A-006 A-005 A-006 A-006 A-006 A-006 A-006 A-007 A-007							
A-002 A-003 A-005 A-005 A-005 B-002 B-003 B-006 B-007 B-009 B-009 B-009 B-009 B-009 B-009 B-009 B-009 B-009 B-009 B-009	o N	9/11/2014	06	Soil triplicate, EPA split		446849.77	5421389.01
A-003 A-005 A-005 B-001 B-002 B-008 B-008 B-009 B-009 B-009 B-009 B-009 B-009 B-009 B-009 B-009 B-009 B-009	9N	9/9/2014	30	Field split		446822.53	5421184.20
A-004 A-005 B-001 B-002 B-003 B-006 B-008 B-009 B-	9N	9/11/2014	30			447209.18	5421476.67
A-005 3-001 3-002 3-003 3-005 3-006 3-006 3-009 3-009 3-009 3-009 3-009 3-009 3-009 3-009	9N	9/10/2014	30	EPA split		446882.55	5421050.59
3-001 3-002 3-002 3-004 3-005 3-006 3-008 3-009 3-009 3-009 3-009 3-009 3-009 3-009 3-009	9N	9/9/2014	30			447290.32	5421427.34
3-001 3-002 3-002 3-004 3-005 3-006 3-008 3-009 3-009 3-009 3-009 3-009 3-009 3-009 3-009 3-009							
3-002 3-003 3-005 3-005 3-006 3-008 3-009 3-009 3-009 3-009 3-009 3-009 3-009 3-009 3-009	9N	Su	ns		No access	su	su
3-003 3-005 3-005 3-006 3-007 3-009 3-009 3-009 3-009 3-009 3-009 3-009 3-009 3-009	9N	9/10/2014	30			443651.34	5421384.63
3-004 3-005 3-006 3-008 3-009 3-009 3-009 5-002 5-005 5-006	9N	9/8, 9/25/2014	06	Soil triplicate		443847.43	5421706.14
3-005 3-006 3-007 3-008 3-009 3-009 5-002 5-005 5-005	9N	Su	ns		No access	SU	ns
3-006 3-007 3-009 3-009 3-009 5-002 5-005 5-006	9	Su	ns		No access	Su	ns
3-007 3-008 3-009 3-009 5-002 5-003 5-005 5-006	9	Su	ns		No access	Su	ns
3-008 3-009 2-001 2-002 2-004 2-005 2-006	9	Su	ns		No access	SU	su
3-009 C-002 C-003 C-004 C-005 C-006 C-006		9/8/2014	30			444317.65	5421245.24
0-001 0-002 0-003 0-004 0-005 0-005	9 N	SU	ns		No access	SU	su
	oN	su	su		No access	su	su
	9 N	Su	ns		No access	SU	ns
	ON	9/9/2014	30	Field split		441435.41	5417548.98
	ON	9/9/2014	30			441582.87	5417581.77
	ON	9/9, 9/25/2014	06	Soil triplicate		441406.34	5417267.81
	No	9/11/2014	30			441613.67	5417207.39
	oN 8	9/10/2014	30			441350.94	5416878.35
RFC-008 Yes	No	9/9/2014	30			441541.13	5416843.18
RFD							
RFD-001 No	oN	su	su		No access	su	su
RFD-002 Yes	oN .	9/9/2014	30			438218.77	5414719.77
RFD-003 Yes	No	10/21/2014	90	Soil triplicate		437695.27	5414337.20
RFE							
RFE-001 No	oN	su	su		No access	su	su
RFE-002 No		ns	ns		No access	Su	ns
_		Su	ns		No access	su	su
RFE-004 No	No	ns	ns		No access	ns	ns

^a Coordinates were calculated as the mean of the increment coordinates. Coordinates for decision units sampled in triplicate are from triplicate 'A'.

DU - decision unit

ns - not sampled

QC - quality control RFA, RFB, RFC, RFD - relict flood plain depositional areas A, B, C, and D

Table 3-3c. Windblown Sediment Deposition Area Planned and Sampled Decision Units

				Increments	QC Samples		×	>
DO	Sampled?	Reserve DU?	Collection Date	Sampled	Collected	Comments	Coordinate ^a	Coordinate ^a
Columbia Beach North	n North							
CBN-001	Yes	No	9/23/2014	30	Field split		399620.83	5307771.2
CBN-002	Yes	N _O	9/24/2014	30			399711.62	5307823.61
CBN-003	Yes	ON.	9/24/2014	06	Soil triplicate, EPA split		399803.78	5307878.29
CBN-004	Yes	o _N	9/23/2014	30	EPA split		399883.97	5307920.73
CBN-005	9N	No	ns	ns		No access	SU	SU
CBN-006	9 N	S 0	SU	Su		No access	Su	Su
CBN-007	9 N	_o N	SU	Su		No access	SU	su
Columbia Beach South	South							
CBS-001	Yes	oN O	9/23/2014	30			399792.35	5307475.73
CBS-002	Yes	N _O	9/24/2014	30			399876.47	5307506.9
CBS-003	9N	_S	SU	ns		No access	SU	Su
CBS-004	9N	_S	SU	ns		No access	SU	Su
CBS-005	9 N	_S	SU	Su		No access	SU	su
CBS-006	No	No	ns	ns		No access	ns	su
CBS-007	9	S N	SU	ns		No access	ns	su
Marcus Flats East	st							
MFE-001	Yes	No	9/23/2014	30	Field split		423621.35	5392249.49
MFE-002	Yes	_S	9/23/2014	30			423595.26	5392357.05
MFE-003	Yes	N _O	9/22/2014	30	EPA split		423569.15	5392447.14
MFE-004	Yes	No	9/22/2014	30			423537.54	5392544.98
MFE-005	Yes	No	9/23/2014	30			423508.46	5392636.86
MFE-006	Yes	N _O	9/22/2014	30			423478.16	5392745.63
MFE-007	Yes	No	9/22/2014	90	Soil triplicate		423462.73	5392844.19
Marcus Flats West	est							
MFW-001	No	No	SU	su		No access	SU	su
MFW-002	No	No	ns	ns		No access	Su	su
MFW-003	_Q	o _N	ns	ns		No access	Su	su
MFW-004	N _O	No	ns	ns		No access	ns	su
MFW-005	No	No	ns	ns		No access	ns	su
MFW-006	9 N	o _N	ns	Su		No access	Su	su
MFW-007	2	<u>8</u>	SU	ns		No access	SU	SU

CBN - Columbia Beach North CBS - Columbia Beach South

DU - decision unit

MFE - Marcus Flats East

MFW - Marcus Flats West

ns - not sampled

QC - quality control

^a Coordinates were calculated as the mean of the increment coordinates. Coordinates for decision units sampled in triplicate are from triplicate 'A'.

Table 3-4. Soil Sample Analysis Summary

	,									
					ICS	ICS Composites				
		Bulk Soil			<2 mm	<2 mm Fraction		V	<149 µm Fraction	tion
Subarea	Grain Size	Hd	Solids	TAL Metals + Mo	TOC	Solids	CEC	TAL Metals + Mo	Solids	IVBA Subset: TAL Metals + Mo ^a
ADA										
High-density	×	×	×	×	×	×	×	×	×	×
Primary	×	×	×	×	×	×	×	×	×	×
RFDA										
RFA	×	×	×	×	×	×	×	×	×	×
RFB	×	×	×	×	×	×	×	×	×	us _p
RFC	×	×	×	×	×	×	×	×	×	us _p
RFD	×	×	×	×	×	×	×	×	×	×
WSDA										
Columbia Beach North	×	×	×	×	×	×	×	qsu	us _p	qsu
Columbia Beach South	×	×	×	×	×	×	×	gu	ns _p	us _p
Marcus Flats East	×	×	×	×	×	×	×	us _p	ns _p	us _p

CEC - cation exchange capacity

ICS - incremental composite sampling

ns - not sampled

RFDA - relict flood plain deposition area

RFA, RFB, RFC, RFD - relict flood plain depositional areas A, B, C, and D

TOC - total organic carbon

^a Approximately 20 percent of the samples with lead concentrations >100 mg/kg were selected for in vitro bioaccessibility assay (IVBA) analysis in consultation with EPA (Appendix B). A subsample of the <149-µm soil fraction was apportioned for IVBA analysis and archived until results from the target analyte list (TAL) metals and molybdenum (Mo) analysis were completed. Soil samples for IVBA analysis were originally planned only for the analysis of lead. However, per EPA request, IVBA analysis was later expanded to include all TAL metals.

^b No <149-µm fraction was prepared for samples collected from the wind blown sediment deposition areas (WSDAs).

ADA - Aerial deposition area

Soil Study Data Summary and Data Gap Report

Table 3-5. Analytical Methods for Soil Samples

	Sampl	Sample Preparation	Quantitati	Quantitative Analysis
Analytes	Protocol	Procedure	Protocol	Procedure
Conventional Parameters				
Grain size	NA	ΑN	PSEP	Sieves and pipette
Hd	ΑN	ΑN	EPA 9045D	Electrometric
CEC	EPA 9080	Displacement with ammonium acetate	EPA 9080	AAS
T0C	SOP: GEN-ASTM	ΑZ	ASTM D4129-05	Coulometric
Percent moisture	ΑN	ΑN	EPA 160.3	Gravimetric
TAL Metals/Metalloids				
Calcium (Ca), iron (Fe), magnesium (Mg), potassium (K), and sodium (Na)	EPA 3050B	Acid digestion	EPA 6010C	ICP-AES
Aluminum (Al), antimony (Sb), arsenic (As), barium (Ba), beryllium (Be), cadmium (Cd), chromium (Cr), cobalt (Co), copper (Cu), lead (Pb), manganese (Mn), nickel (Ni), selenium (Se), silver (Aq), thallium (TI), vanadium (V), and zinc (Zn) ^a	EPA 3050B	Acid digestion	EPA 6020A	ICP-MS
Mercury (Hg) (total)	EPA 7471B	Acid digestion/oxidation	EPA 7471B	CVAA
Molybdenum (Mo)	EPA 3050B	Acid digestion	EPA 6020A	ICP-MS
Lead (Pb) bioaccessibility	EPA 9200.2-86	Glycine extraction	EPA 6010B	ICP-AES
.0070[4				

Notes:

All methods subject to change upon consultation with the selected analytical laboratory

^a Metals may be reported by EPA Method 6010 rather than EPA Method 6020 if the analyte concentrations are sufficiently high

AAS - atomic absorption spectrometry

AES - atomic emission spectrometry

ALS - ALS Environmental

ASTM - American Society for Testing and Materials

CEC - cation exchange capacity

CVAA - cold vapor atomic absorption spectrometry

ICP - inductively coupled plasma

MS - mass spectrometry

NA - not applicable

PSEP - Puget Sound Estuary Program

SOP: GEN-ASTM - ALS standard operating procedure

TAL - target analyte list

TOC - total organic carbon

Table 4-1a. Aerial Deposition Area Summary of Qualifiers for Bulk Soil Sample Conventional Parameter Results

Analyte Samples F	Number of Samples	ᆁᇔᇩ	Accepted Results	Count of Results with No Flags	* Cou	Count of Accepted Re	epted Re	sults	Laboratory Flag		Count Results \	t of Val	Fig.		aboratory Flags.		% of Accep		N* Resu	esults	Valida Acc	Validator Accepte
ligh-density - Convention	onal Paramet	fers	53 (100%)	0	10	43		>		>	אַ	>	0	10	2			-	D			000000000000000000000000000000000000000
Solids	53		53 (100%)	53	0	0	0	0	0	0	0	0	0	0	0		0	0		0	0 0 0	0 0 0
Grain Size																						٠
Clay	53	0 (0%)	53 (100%)	53	0	0	0	0	0	0	0	0	0	0	0	П	0		0	0 0	0 0 0	0 0 0 0
Silt	53	0 (0%)	53 (100%)	53	0	0	0	0	0	0	0	0	0	0	0		0	0 0		0	0	0 0 0
Very fine sand	53	0 (0%)	53 (100%)	53	0	0	0	0	0	0	0	0	0	0	0		0		0	0 0	0 0 0	0 0 0 0
Fine sand	53	0 (0%)	53 (100%)	53	0	0	0	0	0	0	0	0	0	0	0		0		0	0 0	0 0 0	0 0 0 0
Medium sand	53	0 (0%)	53 (100%)	53	0	0	0	0	0	0	0	0	0	0	0		0		0	0 0	0 0 0	0 0 0 0
Coarse sand	53	0 (0%)	53 (100%)	53	0	0	0	0	0	0	0	0	0	0	0		0		0	0 0	0 0 0	0 0 0 0
Very coarse sand	53	0 (0%)	53 (100%)	53	0	0	0	0	0	0	0	0	0	0	0		0		0	0 0	0 0 0	0 0 0 0
Very fine gravel	53	0 (0%)	53 (100%)	53	0	0	0	0	0	0	0	0	0	0	0		0		0	0 0	0 0 0	0 0 0 0
Fine gravel	53	0 (0%)	53 (100%)	53	0	0	0	0	0	0	0	0	0	0	0		0		0	0 0	0 0 0	0 0 0 0
Medium gravel	53	0 (0%)	53 (100%)	53	0	0	0	0	0	0	0	0	0	0	0	П	0		0	0 0	0 0 0	0 0 0 0
Coarse gravel	53	0 (0%)	53 (100%)	53	0	0	0	0	0	0	0	0	0	0	0		0		0	0 0	0 0 0	0 0 0 0
Very coarse gravel	53	0 (0%)	53 (100%)	53	0	0	0	0	0	0	0	0	0	0	0		0		0	0 0	0 0 0	0 0 0 0
Cobbles	53	0 (0%)	53 (100%)	53	0	0	0	0	0	0	0	0	0	0	0		0		0	0 0	0 0 0	0 0 0 0
Primary - Conventional F	Parameters																					
Hd	139	0 (0%)	139 (100%)	0	29	110	0	0	0	0	135	0	0	21	79		0		0	0 0	0 0 0	0 0 0 97
Solids	139	0 (0%)	139 (100%)	139	0	0	0	0	0	0	0	0	0	0	0		0	0 0		0	0 0	0 0 0
Grain Size																						
Clay	139	0 (0%)	139 (100%)	139	0	0	0	0	0	0	0	0	0	0	0		0		0	0 0	0 0 0	0 0 0 0
Silt	139	0 (0%)	139 (100%)	139	0	0	0	0	0	0	0	0	0	0	0		0		0	0	0 0 0	0 0 0 0
Very fine sand	139	0 (0%)	139 (100%)	139	0	0	0	0	0	0	0	0	0	0	0		0	0 0		0	0 0	0 0 0
Fine sand	139	0 (0%)	139 (100%)	139	0	0	0	0	0	0	0	0	0	0	0		0		0	0	0 0 0	0 0 0 0
Medium sand	139	0 (0%)	139 (100%)	139	0	0	0	0	0	0	0	0	0	0	0		0		0	0 0	0 0 0	0 0 0 0
Coarse sand	139	0 (0%)	139 (100%)	139	0	0	0	0	0	0	0	0	0	0	0		0		0	0 0	0 0 0	0 0 0 0
Very coarse sand	139	0 (0%)	139 (100%)	139	0	0	0	0	0	0	0	0	0	0	0		0		0	0 0	0 0 0	0 0 0 0
Very fine gravel	139	0 (0%)	139 (100%)	139	0	0	0	0	0	0	0	0	0	0	0		0		0	0 0	0 0 0	0 0 0 0
Fine gravel	139	0 (0%)	139 (100%)	139	0	0	0	0	0	0	0	0	0	0	0				0	0 0	0 0 0	0 0 0 0
Medium gravel	139	0 (0%)	139 (100%)	139	0	0	0	0	0	0	0	0	0	0	0				0	0 0	0 0 0	0 0 0 0
Coarse gravel	139	0 (0%)	139 (100%)	139	0	0	0	0	0	0	0	0	0	0	0				0	0 0	0 0 0	0 0 0 0
Very coarse gravel	139	0 (0%)	139 (100%)	139	0	0	0	0	0	0	0	0	0	0	0		0		0	0 0	0 0 0	0 0 0 0
Cobbles	139	0 (0%)	139 (100%)	139	0	0	0	0	0	0	0	0	0	0	0		0		0	0 0	0 0 0	0 0 0 0

- * The result is an outlier. See case narrative. H The sample was analyzed as soon as possible after collection to minimize holding time.
- J The result is an estimated value that was detected outside the quantitation range.
- N The matrix spike sample recovery is not within control limits. See case narrative.

 U The analyte was analyzed for, but was not detected ("Non-detect") at or above the method reporting limit/method detection limit (MRL/MDL).

- Validator

 J Quantitation is approximate due to limitations identified during the QA review (data validation).

 U This analyte was not detected at or above the associated detection limit.

 U* This analyte should be considered "not-detected" because it was detected in an associated blank at a similar level.

The numbers of qualified samples (obtained from the project database) do not include laboratory QC samples, whereas the numbers of qualified samples presented in the text (obtained from the data validator) include laboratory QC samples. Therefore, the numbers in the text and the tables are not always consistent.

Table 4-1b. Aerial Deposition Area Summary of Qualifiers for < 2-mm Fraction Metals and Conventional Parameter Results

Potassium	Nickel	Molybdenum	Mercury	Manganese	Magnesium	Lead	Iron	Copper	Cohalt	Chromium	Calcium	Cadmiiim	Bervllium	Rarium	Antimony	Aluminum	Primary - Metals/Metalloids	Solids	Organic carbon	CEC	Primary - Conventional Parameters	Variadium	I hallium	Sodium	Silver	Selenium	Potassium	Nickel	Molybdenum	Mercury	Manganese	Magnesium	Iron	Copper	Cobalt	Chromium	Calcium	Cadmium	Barum	Arsenic	Antimony	Aluminum	nsity -	Solids	Organic carbon	CEC 53	High-density - Co	Analyte	
																	Metalloids				tional Parame																						Metals/Metalloids			Jilvelittoriai i a	nventional Pa	/te	
139	139	139	139	139	139	139	139	139	130	130	130	130	139	130	139	139		139	139	139	ofers	7 0	5 0	53	53	53	53	53	53	53	දු ද	y 8	53	53	53	53	53	53 8	ກ ຜູ	53	53	53		53 2	23 2	53	rameters	Samples	NIShor of
0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)		0 (0%)	0 (0%)		0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)		0 (0%)	0 (0%)	0 (0%)	0 (070)			0 (0%)	0 (0%)	0 (0%)		0 (0%)	0 (0%)		0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	ļ	0 (0%)	0 (0%)	0 (0%)	IXCOURG	Results	D 2: 2: 2:
139 (100%)	139 (100%)	139 (100%)	139 (100%)	139 (100%)	139 (100%)	139 (100%)		139 (100%)	139 (100%)		139 (100%)	139 (100%)	139 (100%)	139 (100%)	139 (100%)	139 (100%)		139 (100%)	139 (100%)	139 (100%)	33 (100%)	53 (100%)			53 (100%)	53 (100%)	53 (100%)		53 (100%)			53 (100%)	53 (100%)				53 (100%)		53 (100%)		53 (100%)	53 (100%)		53 (100%)	53 (100%)	53 (100%)	1 COORIG	Results	>
134	139	118	138	131	121	131	134	139	130	13.7	136	125	87	124	130	133		139	137	113	49	5 0	46	46	52	46	48	53	51	50	47	49	48	53	51	47	49	45	36	5 51	0	46		53	53	49	14011095	No Flags	Count of
C	0	19	0	8	2	0	OI (5 0	5 0	5 0	ω c	0	5 0	> 0		0 10		0	0	0	c	0 0	0 0	0	0	0	0	0		0	တ	ως	ο ω	0	0	0	2	0	0 0	0	0	ω		0	> c	0		*	Coun
C	0	0	0	0	0	0	0	0	0	0	0	0	> 0	0	0	0		0	0	0	c	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0		0	> c	0	:	I	Count of Accep
C	0	0	_	0	0	0	0	0	0	0	0	0	5	> <	0	0		0	0		c		0 0	2	0	7	0	0	0	0	0	5 0	0	0	0	0	0	0	0 0	0	0	0		0	> C	٥	,	د	oted Results
ω	0	0	0	0	0	∞	0	0	o -	_ <	> 1	14	> 1	2 0	134	0		0	0	0	1	\	c	0	0	0	2	0	0	0			0	0	0	4	0	ω (0	48	0			> c	> -	:	z	ılts Laboratory
Ν.	0	0	0	0	0	0	0	0	> -	7 0	0	0	0		0 0	0		0	0		-		0 0	0	0	0	ω	0	0	0			0	0	0	0	0			0	QI	0	-		> c	> -	-	Z	atory Flags
ŀ							+	+	+	+	+	+	+	+		H			0	-	_	+	+	+	-					+	+	+	0				+	+	+	-			-	0	> c	> -		_	77
5	0	21	_	8	18	8	2			∞ (ي در	14	3 2	7	139	0		0	2	26	1	\ \) \	1 4		7	Ŋ	0	2	ω	თ -	4 4	υ ω	0	2	6	4	∞ :	17	. 2	53	7			1 C	Δ	_	_	Count of Accepted Results Validator Flags
C	0	0	0	0	0	0	0									0		0	0						0	0	0	0	0	0	0		0	0	0	0	0	0		0	0	0	-	0	> C	> -	-	_	Accepte
-							+		+		+	+	+	+		-	_		0	\dashv	-	+	╁	-	+					-	+	+	0				-	+	+	+			-	0	+	-		Ç (ags
F							+	+	+	+	+	+	+	+		+			0 0	-											+		9					-						0	+	-		*	Laborat
H							+	+	+	+	+	+	+	+					0	-	ŀ	+	+	-	\vdash				-	-	+	+	0 0	H			-	+	+	\vdash			-	0	+	-			Laboratory Flags,
-							+	+	+	+	+	+	+	+	96	+			0	\dashv	ŀ	+	+	H	┝			4	+	\dashv	+	+	0	H			\dashv	+	+	\vdash			-	0	+	-	-	z	% of
F							+	+	+	+	+	+	+	+	4 0	H		0	0		-	+		+						+	+		0				+	+					-	0	- c	_ o	-	Z	Accepted Re
С	0	0	0	0	0	0	0	0	0	0	0	0	0			0		0	0		-	0 0		0	0	0	0	0	0	0	0	5 0	0	0	0	0	0	0	0 0	0	0	0		0) c	_ o	-	_	Results
4	0	15	_	6	13	6	_ (0	0	7 (7	ر د	10 5	37	<u> </u>	100	4		0	_	19	0	4 0	13	; œ	2	13	9	0	4	6	<u> </u>	4 α	o د	0	4	1	8	15	კ დ	4	100	13	-	0) (_ α		ے	Valic Ac
0	0	0	0	0	0	0	0	5								0		0	0	0		0 0			0	0	0	0	0	0			0	0	0	0	0	0		0	0	0		0		-		 	Validator Flags, % of Accepted Results
С	0	0	0	0	0	0	0	0					5 0		0 0	0		0	0	0	c	0 0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0		0	5 0	0		~	s, % of

Table 4-1b. Aerial Deposition Area Summary of Qualifiers for < 2-mm Fraction Metals and Conventional Parameter Results

	Number of	Reject	Accepted	Count of Results with	Cou	Count of Accep	epted Re	sults Lat	s Laboratory	Flags	Cou Result	Count of Accepted Results Validator Flags	epted or Flags	Lal	ooratory	_aboratory Flags, % o	of Accep	nted Resu	ılts	Valida Acce	tor Flags, % o	% of ults
Analyte	Samples	Results	Results	No Flags	*	н	J	Z	Z _*	U	J	U	∪ *	*	I	J	Z	N _*	Π	ل	C	Ç*
Primary - Metals/Metalloids (continued)	continued)																					
Selenium	139	0 (0%)	139 (100%)	114	0	0	25	0	0	0	25	0	0	0	0	18	0	0	0	18	0	0
Silver	139	0 (0%)	139 (100%)	126	0	0	0	0	0	0	13	0	0	0	0	0	0	0	0	9	0	0
Sodium	139	0 (0%)	139 (100%)	105	0	0	0	0	0	0	21	0	13	0	0	0	0	0	0	15	0	9
Thallium	139	0 (0%)	139 (100%)	120	0	0	0	0	0	0	19	0	0	0	0	0	0	0	0	14	0	0
Vanadium	139	0 (0%)	139 (100%)	139	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Zinc	139	0 (0%)	139 (100%)	135	0	0	0	4	0	0	4	0	0	0	0	0	З	0	0	3	0	0

The numbers of qualified samples (obtained from the project database) do not include laboratory QC samples, whereas the numbers of qualified samples presented in the text (obtained from the data validator) include laboratory QC samples. Therefore, the numbers in the text and the tables are not always consistent.

CEC - cation exchange capacity

Laboratory

- The result is an outlier. See case narrative.

 H The sample was analyzed as soon as possible after collection to minimize holding time.

 J The result is an estimated value that was detected outside the quantitation range.

 N The matrix spike sample recovery is not within control limits. See case narrative.

 U The analyte was analyzed for, but was not detected ("Non-detect") at or above the method reporting limit/method detection limit (MRL/MDL).

- Validator

 J Quantitation is approximate due to limitations identified during the QA review (data validation).
- U This analyte was not detected at or above the associated detection limit.

 U* This analyte should be considered "not-detected" because it was detected in an associated blank at a similar level.

Table 4-1c. Aerial Deposition Area Summary of Qualifiers for < 149-μm Fraction Metals and Conventional Parameter Results

	Number of Samples	Reject Results	Accepted Results	Count of Results with No Flags	Count	of Accep	Count of Accepted Results Lab	ults Labo	oratory Flags	ags	Cour Results	Count of Accepted Results Validator Fla	oted Flags U*	* Lab	Laboratory F	Flags,	%	% of	% of Accepted	% of Accepted	% of Accepted
High-density - Con Solids	53	Conventional Parameters 53 0 (0%)	53 (100%)	53	0	0	0	0	0	0	0	0	0		0	0			0 0	0 0 0	0 0 0 0
nsity -	Metals/Metalloids	ids					, -	-						1 -							
	53	0 (0%)	53 (100%)	46	οω	0	0	0 &	лО	0	7	0		\perp	o 6	0 0		0 0	0 0	0 0 0	000000000000000000000000000000000000000
Arsenic	53			53	0	0	0	0 8	0	0	0 8	0	0	Ц		0 0	0 0	0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Barium	53	0 (0%)	53 (100%)	49	0	0	0	0	0	0	4	0		0		0	0	0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0
Beryllium	53		53 (100%)	36	0	0	0	0	0	0	17	0			-	0 0	0 0	0 0	0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0
Calcium	දු ද	0 (0%)		51	2	0	0	0	0	0	20	0			+	4	0 0	0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0 0	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Chromium	53	0 (0%)	53 (100%)	49	0	0	0	4	0	0	4	0		0		0	0 0	0 0 0	0 0 0 8	0 0 0 8 0	0 0 0 8 0 0
Cobalt	53	0 (0%)	53 (100%)	53	0	0	0	0	0	0	0	0		0		0	0 0	0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0 0
Copper	53	0 (0%)	53 (100%)	53	J 0	0	0	0	0	0	٥ ٥	0	-	0	╁	0	0 0	0 0			
Lead	53 5	0 (0%)	53 (100%)	53	0	0	0	0	0	0	0 0	0	_	0	+	0 %	0 0	0 0			
Magnesium	53			49	ω	0	0	0	0	0	4	0	4	0	+	6	o 0	6 0	6 0 0	6 0 0 0 0	6 0 0 0 0 0
Manganese	53		53 (100%)	47	6	0	0	0	0	0	თ	0		0	+	1	11 0	11 0 0	11 0 0 0	11 0 0 0 0	11 0 0 0 0 0
Mercury	53			53	0	0	0	0	0	0	0	0		0		0	0 0	0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0 0
Molybdenum	53	0 (0%)	53 (100%)	51	_	0	0	0	0	0	2	0	Ш	0		2	2 0	2 0 0	2 0 0 0	2 0 0 0 0	2 0 0 0 0 0
Nickel	53			53	0	0	0	0	0	0	0	0	+	0	H	0	0 0		0 0 0	0 0 0 0	
Selenium	2 0	0 (0%)	53 (100%)	48	0	0	лС) N	<u>د</u> د		ט ת	0	$\overline{}$	0 0	+	0 0			2 0 0	4 0	4 0
Silver	53 2	0 (0%)	53 (100%)	52	0	0	0 0	0	0	0	C	0		0	+	0 0	0 0	0 0	0 0 0 0 0 0		
Sodium	53			49	0	0	0	0	0	0	2	0		2	+	0	0	0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0 0
Thallium	53		53 (100%)	46	0	0	0	0	0	0	7	0		0		0	0	0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0
Vanadium	53	0 (0%)	53 (100%)	53	0	0	0	0	0	0	0	0	-	0	H	0	0	0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0 0
Zinc *rimary - Conventi	53 0 (0° Conventional Parameters	0 (0%)	53 (100%)	49	0	0	0	4	0	0	4	0		0	H	0	0 0	0 0 0	0 0 0 8	0 0 0 8 0	0 0 0 8 0 0
	139	0 (0%)	139 (100%)	139	0	0	0	0	0	0	0	0		0	0 0		0	0 0	0 0 0	0 0 0 0	0 0 0 0 0
rimary - Metals/Metalloids	letalloids																				
Aluminum	139	0 (0%)	139 (100%)	133	2	0	0	0	0	0	6	0		0		_	1 0	1 0 0	1 0 0 0	1 0 0 0 0	1 0 0 0 0 0
Antimony	139	0 (0%)	139 (100%)	0	0	0	0	134	Οī	0	139	0		0		0	0 0	0 0 0	0 0 0 96	0 0 0 96 4	0 0 0 96 4 0
Arsenic	139			139	0	0	0	0	0	0	0	0	$\overline{}$	0	H	0	0	0 0 0	0 0 0	0 0 0 0 0	0 0 0 0 0
Barium	139			124	0	0	0	14	0	0	15	0		0	+	0	0	0000	0 0 0 10	0 0 0 10 0	0 0 0 10 0 0
Cadmin	120	0 (0%)	139 (100%)	125				2 0			2 2		_	> c	+						
Calcium	139			136	ω	0	0	0 1	0	0	ω	0		0	+	20 0	2 0	0 0	0 0 0	2 0 0 0 0 0 0	2 0 0 0 0 0 0 0 0 0
Chromium	139			131	0	0	0	_	7	0	∞	0		0	+	0	0	0 0 0	0 0 0 1	0 0 0 1 5	0 0 0 1 5 0
Cobalt	139	0 (0%)	139 (100%)	139	0	0	0	0	0	0	0	0		0		0	0	0 0 0	0 0 0	0 0 0 0 0	0 0 0 0 0 0
Copper	139			139	0	0	0	0	0	0	0	0		0	-	0	0	0 0 0	0 0 0	0 0 0 0	0 0 0 0 0
Iron	139			134	01	0	0	0	0	0	2	0	-	0	┝	4 0	4 0	0 0 0	0 0 0	0 0 0 0 0 0	4 0 0 0 0 0 0
Lead	139			131	0	0	0	0 00	0	0	∞	0		0	H	0	0	0 0	0 0 0	0 0 0 0 6 0	0 0 0 0 0 0
Magnesium	139			123	2	0	0	0	0	0	16	0		0	H)	0 0	0 0	0 0 0	0 0 0 0 0	1 0 0 0 0 0 0
Manganese	139			131	0 00	0	0	0	0	0	0 00	0		0	┝	o o	0 0	0 0	0 0	6 0 0 0	6 0 0 0 0 0 0
Mercury	139			139	0	0	0	0	0	0	0	0		0	+	20	0 0	20000	0000		
Nickel	139	0 (0%)	139 (100%)	139	0 19	0 0	0 0	0 0	0 0	0 0	0 3	0 0		0 0	0 0 0	+	0 4	0 0	0 0 0	0 0 0 0 0	
ASSI IM	139			134	0 0	0 0		ως	٥	0	טו כ	0		0 0	+	0 0					
Potassium	130	0 (0%)	139 (100%)	112	0 0	0 0	27	ο ω	O N		27	0 0		> c	+	0 0		0 0 0	0 0 0		
Silver	139		_ _	126	0	0	2 0	0	0	0	13	0		0	+	0 0	0 0	0 0 0	0 0 0 0 0		
Sodium	139			109	0	0	0	0	0	0	21	0		9	-	0	0	0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0 0

Table 4-1c. Aerial Deposition Area Summary of Qualifiers for < 149-μm Fraction Metals and Conventional Parameter Results

	Number of Reject	Reject	Accepted	Count of Results with	Cou	Count of Accepted Results Labo	epted Re	sults Lab	oratory Flags	-lags	Cou Results	Count of Accepted Results Validator Flags	pted r Flags	Lat	Laboratory Flags, % of Accepted Results	Flags, %	of Accep	ted Resi	ults	Valida Acce	ator Flags epted Res	r Flags, % of ted Results
•	- !		1]	*	-	-	-	*	-	-	-	*	*	=	-	2	*	-	-[*
Alalyto	Callipico	I Coulto	I Codito	I WO I lays			•		-	(•	((•		-	(•	((
Primary - Metals/Metalloids (continued	ls/Metalloids	(continued)																				
Thallium	139	0 (0%)	139 (100%)	120	0	0	0	0	0	0	19	0	0	0	0	0	0	0	0	14	0	0
Vanadium	139	0 (0%)	139 (100%)	139	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Zinc	139	0 (0%)	139 (100%)	135	0	0	0	4	0	0	4	0	0	0	0	0	ω	0	0	ω	0	0

Notes:

The numbers of qualified samples (obtained from the project database) do not include laboratory QC samples, whereas the numbers of qualified samples presented in the text (obtained from the data validator) include laboratory QC samples. Therefore, the numbers in the text and the tables are not always consistent.

Laboratory

- * The result is an outlier. See case narrative.

- H The sample was analyzed as soon as possible after collection to minimize holding time.

 J The result is an estimated value that was detected outside the quantitation range.

 N The matrix spike sample recovery is not within control limits. See case narrative.

 U The analyte was analyzed for, but was not detected ("Non-detect") at or above the method reporting limit/method detection limit (MRL/MDL).

- Validator

 J Quantitation is approximate due to limitations identified during the QA review (data validation).
- U This analyte was not detected at or above the associated detection limit.

 U* This analyte should be considered "not-detected" because it was detected in an associated blank at a similar level.

Table 4-2a. Relict Floodplain Deposition Area Summary of Qualifiers for Bulk Soil Sample Conventional Parameter Results

Table T Ea. Police I locapiani Deposition Anca Caminally of Maaninoto for Dairy Con Cample Convolucion I and		Alea Sullill	laly or whalling	S IOI DUIN OUI	Jallibie	COLIVELITIE	Jial raic		Kesulis			+ of Acce	<u> </u>							Validatr	אי דו	양 수
	Number of	Reject	Accepted	Results with	Cour	Count of Accepted Res	pted Res	sults Lab	ults Laboratory Flags	lags	Results	Results Validator Flags	r Flags	Lac	Laboratory Flags, %	lags, %	of Accep	of Accepted Results	ਲ 	Accep	Accepted Results	ults
Analyte	Samples	Results	Results	No Flags	*	н	J	Z	N _*	U	ل	C	*	*	н	J	z	Z _*	U	٦	U	Ç*
RFA - Conventional Parameters	ameters																					
рH	8	0 (0%)	8 (100%)	0	3	5	0	0	0	0	8	0	0	38	63	0	0	0	0	100	0	0
Solids	8			8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Grain Size																						
Clay	8	0 (0%)	8 (100%)	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Silt	8			œ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Very fine sand	œ			œ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Fine sand	Φ			œ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Medium sand	Φ		- 1	œ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coarse sand	8	0 (0%)	- 1	œ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Very coarse sand	Φ	0 (0%)		œ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Very fine gravel	Φ			œ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Fine gravel	∞	0 (0%)		œ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Medium gravel	∞	0 (0%)		œ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coarse gravel	8			œ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Very coarse gravel	8	0 (0%)	- 1	œ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Cobbles	8	0 (0%)	- 1	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RFB - Conventional Parameters	ameters																					
рН	5	0 (0%)	5 (100%)	0	2	3	0	0	0	0	5	0	0	40	60	0	0	0	0	100	0	0
Solids	Ŋ	0 (0%)	5 (100%)	ഗ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Grain Size																						
Clay	υ		5 (100%)	ı Oı	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Silt	ഗ	0 (0%)	5 (100%)	ഗ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Very fine sand	ı (J		5 (100%)	ו טו	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Fine sand	o o			ı o	0	0	c	C	0	0	C	0	0	0	0	0	0	0	0	0	C	C
Medium sand	ם ני	0 (0%)		ו ס	0	0	0	C	0	0	0	c	0	0	0	0	0	0 0	0 0	0	0	
Very coarse sand	ט ת	0 (0%)	5 (100%)	ט ת	0 0	0 0	0	0	0	0	0		0	0	0	0	0	0 0	0	0 0	0 0	
Very coalse saile	n (n (0	0	0	0					0	0	0	0	0		0		0	
Fine gravel	ט ת	0 (0%)	5 (100%)	ט ת	0	5 0	5 0	0	0	0	0	0	0	0	0	0	0	0			0	
Medium gravel	טז נ	0 (0%)	5 (100%)	טו נ	0	0	0 (0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0
Coarse gravel	O1		⊸ l.	OI (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Very coarse gravel	Οī			Ŋ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Cobbles	ഗ	0 (0%)	5 (100%)	ഗ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RFC - Conventional Parameters	ameters																					
рH	9	0 (0%)	9 (100%)	0	5	4	0	0	0	0	9	0	0	56	44	0	0	0	0	100	0	0
Solids	9	0 (0%)	9 (100%)	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Grain Size	D	0 (00/)			>	>	>			0	>)	>	>				>		>	
Clay	o (4			ی م	0 0	0 0		0		0			0 0	0	0	0	0	0 0			0 0	
Very fine sand	ه م	0 (0%)	9 (100%)	ی م		0 0	0						0	0							0	
Fine sand	٥٥	0 (0%)	9 (100%)	ه ا م	5 0	5 0	5	5 0	5	5 0	5	5 0	5	5 0	5 0	5 0	5 0	0	5 0	0	0	
Medium sand	9 (0 (0%)		ه و	5 0	5 0	5 0	5	5	0	5	0	0	5 0	5 0	5 0	5 0	0	5 0	0	5	
Coarse sand	ဖ ဖ			ပ္ (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Very coarse sand	9 (9 0	0 (0 ()	0 6	0	0	0 (0	0 (5	0 (0 (0 (0	0 (0 (0 (0
Very fine gravel	9	0 (0%)		9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Fine gravel	9			9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Medium gravel	9			9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coarse gravel	9	0 (0%)	9 (100%)	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Very coarse gravel	9	0 (0%)	9 (100%)	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Cobbles	9	0 (0%)	9 (100%)	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 4-2a. Relict Floodplain Deposition Area Summary of Qualifiers for Bulk Soil Sample Conventional Parameter Results

	Number of	Reject	Accepted	Count of Results with	Cour	Count of Accepted Res	epted Re	sults La	ults Laboratory Flags	Flags	Cou Resul	Count of Accepted sults Validator Fla	Count of Accepted Results Validator Flags		boratory	Flags, %	aboratory Flags, % of Accepted Results.	pted Res	ults	Valida Acce	ator Flags, % of epted Results	sults
Analyte	Samples	Results	Results	No Flags	*	т	J	z	Z _*	C	ر	∪	_	*	エ	ر	z	Z _*	⊂	ر	C	<u>~</u>
RFD - Conventional Parameters	rameters																					
pН	4	0 (0%)	4 (100%)	0	_	З	0	0	0	0	4	0	0	25	75	0	0	0	0	100	0	0
Solids	4	0 (0%)	4 (100%)	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Grain Size																						
Clay	4	0 (0%)	4 (100%)	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Silt	4	0 (0%)	4 (100%)	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Very fine sand	4	0 (0%)	4 (100%)	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Fine sand	4	0 (0%)	4 (100%)	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Medium sand	4	0 (0%)	4 (100%)	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coarse sand	4	0 (0%)	4 (100%)	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Very coarse sand	4	0 (0%)	4 (100%)	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Very fine gravel	4	0 (0%)	4 (100%)	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Fine gravel	4	0 (0%)	4 (100%)	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Medium gravel	4	0 (0%)	4 (100%)	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coarse gravel	4	0 (0%)	4 (100%)	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Very coarse gravel	4	0 (0%)	4 (100%)	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Cobbles	4	0 (0%)	4 (100%)	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Notes:

The numbers of qualified samples (obtained from the project database) do not include laboratory QC samples, whereas the numbers of qualified samples presented in the text (obtained from the data validator) include laboratory QC samples. Therefore, the numbers in the text and the tables are not always consistent.

RFA, RFB, RFC, RFD - relict flood plain depositional areas A, B, C, and D

<u>Laboratory</u>

- The result is an outlier. See case narrative.
- H The sample was analyzed as soon as possible after collection to minimize holding time. J The result is an estimated value that was detected outside the quantitation range.

- N The matrix spike sample recovery is not within control limits. See case narrative.

 U The analyte was analyzed for, but was not detected ("Non-detect") at or above the method reporting limit/method detection limit (MRL/MDL).

- Validator

 J Quantitation is approximate due to limitations identified during the QA review (data validation).

 U This analyte was not detected at or above the associated detection limit.

 U* This analyte should be considered "not-detected" because it was detected in an associated blank at a similar level.

Table 4-2b. Relict Floodplain Deposition Area Summary of Qualifiers for < 2-mm Fraction Metals and Conventional Parameter Results

Polassium	Nickel	Molybdenum	Mercury	Manganese	Magnesium	Lead	Iron	Copper	Cobol+	Chromium	Calcing	Gadmium	Barium	Arsenic	Antimony	Aluminum	RFB - Metals/Metalloids	Solids	Organic carbon	CFC	Zinc	Vanadium	Thallium	Sodium	Silver	Selenium	Potassium	Nickel	Molybdenum	Morganiese	Magaesium	Lead	Iron	Copper	Cobalt	Chromium	Calcium	Cadmium	Barium	Arsenic	Antimony	Aluminum	Solids RFA - Metals/Metalloids	Organic carbon	CEC	RFA - Conve		
		m		9													s/Metalloids		nod	CFC									3														:/Metalloids	hon		Conventional Parameters	Analyte	
C	יו טו	Ŋ	Ŋ	5	5	5 1	5 1	OI C	ח כ	ט ת	n C	ט ת	ו ני	ו טו	5	5		5	OI (8	8	8	8	8	&	ω (∞ (∞ ο	0 0	ο α	ο @	8	8	8	∞ (∞ (∞ α	0 00	8	8	8	&	ο		eters	Samples	Number of
0 (0%)		0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)		0 (0%)		0 (0%)	0 (0%)	0 (0%)	0 (0%)		0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0,0)	0 (0%)	0 (0%)	0 (0%)		0 (0%)	0 (0%)	0 (0%)	0 (0%)			Reject
5 (100%)	5 (100%)	5 (100%)	5 (100%)	5 (100%)	5 (100%)	5 (100%)		5 (100%)		5 (100%)						5 (100%)			5 (100%)	5 (100%)	8 (100%)	8 (100%)		- 1					8 (100%)				8 (100%)	_		8 (100%)		8 (100%)		8 (100%)	8 (100%)	8 (100%)	8 (100%)		8 (100%)		Results	Accepted
C	у О1	2	Ŋ	O ₁	σ	2	Ο Ι	OI C	n C	ט ת	n –	4 4	. O1	ו טו	0	5		5	OJ (ω	8	8	З	0	OI (ω (OJ (ω (0 0	ა 0	0 00	ο Φ	8	8	œ	ω (∞ (ת נג	0 00	8	0	8	&	ο Φ	Ŋ		No Flags	Count of Results with
c	0	0	0	0	0	0	0	0	0 0	0 0	0 0	0 0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0 0	0 0	0 0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0		*	Count
c	0	0	0	0	0	0	0	0					0	0	0	0		0	0	0	0	0	0	0	0	0	0		0		0 0	0	0	0	0	0		0 0	0	0	0	0	0	0	0		н	Count of Accepte
c	0	0	0	0	0	0	0	0		0		0 0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0		0 0	0	0	0	0	0		0 0	0	0	0	0	0	0	0		J	Q
_	0	0	0	0	0	0	0	0				0 0	0	0	വ	0		0	0	0	0	0	0	0	0	0	ω	0	0		0 0	0	0	0	0	0	0	0 0	0	0	8	0	0	0	0		z	Results Laboratory
c	0	0	0	0	0	0	0	0				0 0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0 0		0	0	0	0	0		0 0	0	0	0	0	0	0	0		Z _*	ratory Fla
c	0	0	0	0	0	0	0	0				0 0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0			0	0	0	0	0		0 0	0	0	0	0	0	0	0		U	
^	0	ω	0	0	0	ω	0	0			1 C		0	0	വ	0		0	0	9	0	0	Ŋ	8	ω	0	ω	0	∞ α	ס מ	0 0	0	0	0	0	0		ωσ	0	0	8	0	0	0	ω		ر	Count Results
c	0	0	0	0	0	0	0	0						0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	5	0 0	0	0	0	0	0	0	0		∪	Count of Accepted Results Validator Flags
c	0	0	0	0	0	0	0	0				0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5 0	0	0	0	0	0	0	0	0		*	pted r Flags
c	0	0	0	0	0	0	0	0					0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0			0	0	0	0	0	0	0 0	0	0	0	0	0	0	0		*	Lal
c	0	0	0	0	0	0	0	0				0 0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0		0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		Н	Laboratory
c	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	5 0	0 0	0	0	0	0	0	0	0		ر	Flags, %
4	60	0	0	0	0	0	0	0	0	0	0	0 0	0	0	100	0		0	0	0	0	0	0	0	0	0	38	0	0	0	0 0	0	0	0	0	0	5 0	0 0	0	0	100	0	0	0	0		z	<u></u>
c	0	0	0	0	0	0	0	0				0 0		0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0 0	0	0	0	0	0	0	0		Z _*	Accepted Results
c	0	0	0	0	0	0	0	0						0	0	0		0	0	0	0	0	0	0	0	0	0	0	0			0	0	0	0	0		0 0	0	0	0	0	0	0	0		∪	sults
4	30	60	0	0	0	60	0	0			5 8	8 6	3 0	0	100	0		0	0	40	0	0	63	100	38	0	38	0 8	100	3 0		0	0	0	0	0	> 8	2 G	0	0	100	0	0	0	38		د	Valid Acc
C	0	0	0	0	0	0	0	0						0	0	0		0	0	0	0	0	0	0	0	0	0	0	0			0	0	0	0	0	0		0	0	0	0	0	0	0		U	Validator Flags, % of Accepted Results
C	0	0	0	0	0	0	0	0						0	0	0		0	0	0	0	0	0	0	0	0	0	0	0		0 0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0		~	s, % of

Table 4-2b. Relict Floodplain Deposition Area Summary of Qualifiers for < 2-mm Fraction Metals and Conventional Parameter Results

							9															
	-		• •	Count of	Count	Count of Accepte	<u>o</u>	Results Laboratory Flags	ratory Fla	ags	Count	Count of Accepted Results Validator Flan	pted Flags	Lab	Laboratory F	Flags, %	of Accepted	ted Results	lts	Validato Accen	Validator Flags, % of Accented Results	llts
\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	Number of	Reject	Accepted	Results with	*	I	_	z	*	=	_ 3		- i	*	I		Z	<u>z</u>	=	- 3000		_ 6
loids	(continued)					-	-	-	-											-		
Selenium	5	0 (0%)	5 (100%)	4	0	0	_	0	0	0	_	0	0	0	0	20	0	0	0	20	0	0
Silver	Оī	0 (0%)		ω	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	40	0	0
Sodium	CJI	0 (0%)		O	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Thallium	5	0 (0%)	5 (100%)	4	0	0	0	0	0	0	_	0	0	0	0	0	0	0	0	20	0	0
Vanadium	5	0 (0%)		ı Oı	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Zinc	5	0 (0%)	5 (100%)	5	C	c	c	 -	C	c	c	С	c	c	C	c	c	c	c	 -	c	c
RFC - Conventional Parameters		> /> /> /)	>	>	>	>	>	>	>	>	>	>	>	>	>	5	>	>	>	>
CITC	O	0 (0%)		<u>ب</u> د	0 0	0	0 0	0	0 0	0	0			0	0	0	0	0	0	0 0		
Solids	ی م	0 (0%)	9 (100%)	س م	0	0	0	0	0	0	0	5 0	0	0	5 0	0	0	0	0	0	0	
RFC - Metals/Metalloids		- \ - : - /	- ()	•	,	,	,	,	•	,	,	,	,	,	•		,	,	,	,	•	•
Aluminum	9	0 (0%)	9 (100%)	4	0	0	0	0	0	0	Ŋ	0	0	0	0	0	0	0	0	56	0	0
Antimony	9	0 (0%)		0	0	0	0	9	0	0	9	0	0	0	0	0	100	0	0	100	0	0
Arsenic	9			9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Barium	9	0 (0%)	9 (100%)	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Beryllium	9	0 (0%)	9 (100%)	7	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	22	0	0
Cadmium	9	0 (0%)		9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Calcium	o (c	0 (0%)		ي س ح	0 0	0 0							0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0		
Cobalt	တ္ ဖ	0 (0%)	9 (100%)	ဖွ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
Copper	9	0 (0%)	_	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Iron	9	0 (0%)		9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Lead	9	0 (0%)	9 (100%)	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Magnesium	9			9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Manganese	9	0 (0%)		9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Mercury	0 0	0 (0%)		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 2		0
Nickel	ی م	0 (0%)	9 (100%)	٥٥	0	0	0	0	0	0	> -	0	0	0	0	0	0	0	0	> =	> c	
Potassium	9	0 (0%)		∞ (0	0	0	0	0	0	_ (0	0	0	0	0	0	0	0	<u></u>	0	0
Selenium	9	0 (0%)	⊸ I.	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Silver	9	0 (0%)	9 (100%)	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Sodium	9	0 (0%)	9 (100%)	6	0	0	0	0	0	0	ω	0	0	0	0	0	0	0	0	33	0	0
Thallium	9	0 (0%)		0 00	0	0	0	0	0	0		0	0	0	0	0	0	0	0	1	0	0
Vanadium	ယ	0 (0%)	-	ွ	C	C	c	c	C	c	c	c	C	c	c	C	C	c	c	c	c	C
Zinc	9	0 (0%)	9 (100%)	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CEC	4	0 (0%)	4 (100%)	4	٥	٥	٥	0	٥	0	0		٥			0	0	٥	٥	0	٥	0
Organic carbon	4	0 (0%)	4 (100%)	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Solids	4	0 (0%)	4 (100%)	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RFD - Metals/Metalloids																						
Aluminum	4	0 (0%)	4 (100%)	ω	0	0	0	0	0	0	_	0	0	0	0	0	0	0	0	25	0	0
Antimony	4	0 (0%)		0	0	0	0	4	0	0	4	0	0	0	0	0	100	0	0	100	0	0
Arsenic	4	0 (0%)		4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Barium	4	0 (0%)	4 (100%)		0	0	0	0	0	0	ω	0	0	0	0	0	0	0	0	75	0	0
Beryllium	4			4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Cadmium	4	0 (0%)	4 (100%)	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Calcium	4	0 (0%)	4 (100%)	_	0	0	0	0	0	0	ω	0	0	0	0	0	0	0	0	75	0	0
Chromium	4			4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Cobalt	4	0 (0%)	4 (100%)	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Copper	4 4	0 (0%)	4 (100%)	4 4	o c	0 0		0 0	0 0		0 0	0 0		0 0	0 0	0 0	0 0	0 0	0 0		0 0	
Iron	4	0 (0%)	4 (100%)	4	c	c	c	c	c	c	c	c	c	c	c	c	c	c	c	c	c	c

Table 4-2b. Relict Floodplain Deposition Area Summary of Qualifiers for < 2-mm Fraction Metals and Conventional Parameter Results

	Number of	Reject	Accepted	Count of Results with	Cou	Count of Accepted Results Laboratory Flags	epted Re	sults La	boratory	Flags	Cou Result	Count of Accepted Results Validator Flags	epted or Flags	Б	boratory	ratory Flags, % of	of Acce	Accepted Results	ults	Validat Acce	alidator Flags, % of Accepted Results	sults
Analyte	Samples	Results	Results	No Flags	*	т	ل	Z	Z _*	U	٦	C	∪ *	*	エ	J	z	Z _*	U	٦	∪	~
RFD - Metals/Metalloids (continued)	(continued)																					
Lead	4	0 (0%)	4 (100%)	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Magnesium	4	0 (0%)	4 (100%)	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Manganese	4	0 (0%)	4 (100%)	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Mercury	4	0 (0%)	4 (100%)	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Molybdenum	4	0 (0%)	4 (100%)	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Nickel	4	0 (0%)	4 (100%)	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Potassium	4	0 (0%)	4 (100%)	ω	0	0	0	0	0	0	_	0	0	0	0	0	0	0	0	25	0	0
Selenium	4	0 (0%)	4 (100%)	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Silver	4	0 (0%)	4 (100%)	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Sodium	4	0 (0%)	4 (100%)	ω	0	0	0	0	0	0	_	0	0	0	0	0	0	0	0	25	0	0
Thallium	4	0 (0%)	4 (100%)	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Vanadium	4	0 (0%)	4 (100%)	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Zinc	4	0 (0%)	4 (100%)	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Notes:

The numbers of qualified samples (obtained from the project database) do not include laboratory QC samples, whereas the numbers of qualified samples presented in the text (obtained from the data validator) include laboratory QC samples. Therefore, the numbers in the text and the tables are not always consistent.

RFA, RFB, RFC, RFD - relict flood plain depositional areas A, B, C, and D

CEC - cation exchange capacity

- * The result is an outlier. See case narrative.
- H The sample was analyzed as soon as possible after collection to minimize holding time.
- J The result is an estimated value that was detected outside the quantitation range. N The matrix spike sample recovery is not within control limits. See case narrative.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the method reporting limit/method detection limit (MRL/MDL).

- Validator

 J Quantitation is approximate due to limitations identified during the QA review (data validation).
- U This analyte was not detected at or above the associated detection limit.

 U* This analyte should be considered "not-detected" because it was detected in an associated blank at a similar level.

Table 4-2c. Relict Floodplain Deposition Area Summary of Qualifiers for < 149-µm Fraction Metals and Conventional Parameter Results

				Count of	Cour	nt of Acce	Count of Accepted Results Lab	ults Labo	oratory Flags	lags	Count of	t of Accepted	oted	Lab	Laboratory F	Flags, %	of Accel	Accepted Results	sults	<a>a	₹≝Ι	Validator Flags
Analyte	Number of Samples	Reject Results	Accepted Results	Results with	*	T	ے	z	z	_	J		C*	*	I		z	Z _*	_ _	- 1	_ اے	J Coopie
RFA - Conventional Parameters	nal Parame	ters							_									-	-			_
Solids	8	0 (0%)	8 (100%)	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0
RFA - Metals/Metalloids	alloids																					
Aluminum	8	0 (0%)	8 (100%)	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	\perp		0
Antimony	∞			0	0	0	0	ω	0	0	8	0	0	0	0	0	100	0	0	4	2	100
Arsenic	∞			8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	ွ	0
Barium	∞		_	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	\dashv		0
Beryllium	&	0 (0%)	_	ы	0	0	0	0	0	0	QI	0	0	0	0	0	0	0	0	\blacksquare	၇	63
Cadmium	8	0 (0%)	\sim 1	5	0	0	0	0	0	0	ω	0	0	0	0	0	0	0	0	\vdash	یں	38
Calcium	8	0 (0%)		8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	\square		0
Chromium	8	0 (0%)		8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Н		0
Cobalt	8		_	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Н		0
Copper	8	0 (0%)	8 (100%)	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Н		0
Iron	8	0 (0%)	8 (100%)	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Н		0
Lead	8	0 (0%)	8 (100%)	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	\vdash		0
Magnesium	8	0 (0%)	8 (100%)	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	\square		0
Manganese	œ	0 (0%)	_	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0
Mercury	∞	0 (0%)		8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	\vdash	0	0
Molybdenum	00	0 (0%)		0	0	0	0	0	0	0	8	0	0	0	0	0	0	0	0		1	100
Nickel	8	0 (0%)	8 (100%)	00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	\vdash	0	0
Potassium	8		1 -	ហ	0	0	0	ω	0	0	ω	0	0	0	0	0	38	0	0	+	ပ္ရ	38
Selenium	8	0 (0%)	8 (100%)	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	\vdash	0	0
Silver	œ			Ŋ	0	0	0	0	0	0	ω	0	0	0	0	0	0	0	0	H	ပ္	38
Sodium	00	0 (0%)		0	0	0	0	0	0	0	8	0	0	0	0	0	0	0	0	\vdash	10	100
Thallium	œ			ы	0	0	0	0	0	0	QI	0	0	0	0	0	0	0	0	\vdash	၇	63
Vanadium	8	0 (0%)	8 (100%)	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	\vdash	0	0
Zinc	8	0 (0%)	8 (100%)	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	H		0
RFB - Conventional Parameters	nal Parame	ters																				
Solids	5	0 (0%)	5 (100%)	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0
RFB - Metals/Metalloids	alloids																					
Aluminum	5	0 (0%)	5 (100%)	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		ြ	0
Antimony	σı	0 (0%)	5 (100%)	0	0	0	0	2	0	0	Ŋ	0	0	0	0	0	100	0	0	H	10	100
Arsenic	ഗ	0 (0%)	5 (100%)	ហ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	H		0
Barium	σı	0 (0%)	5 (100%)	ហ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	H	0	0
Beryllium	σı	0 (0%)	5 (100%)	4	0	0	0	0	0	0	_	0	0	0	0	0	0	0	0		N	20
Cadmium	თ	0 (0%)	5 (100%)	ω	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	Н	4	40
Calcium	თ	0 (0%)	_	ហ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0
Chromium	σı	0 (0%)	5 (100%)	ഗ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	\vdash	C	0
Cobalt	σı	0 (0%)	5 (100%)	ഗ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	H	C	0
Copper	σı	0 (0%)	5 (100%)	ហ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0
Iron	σı	0 (0%)	5 (100%)	ഗ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0
Lead	51		5 (100%)	2	0	0	0	0	0	0	ω	0	0	0	0	0	0	0	0		စ္က	60
Magnesium	Οī		5 (100%)	Ŋ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0
Manganese	51	0 (0%)	5 (100%)	51	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		\circ	0
Mercury	O1	0 (0%)	5 (100%)	Ŋ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			0
Molybdenum	Οī		5 (100%)	2	0	0	0	0	0	0	ω	0	0	0	0	0	0	0	0		စ္က	60
Nickel	O1	0 (0%)	5 (100%)	Ŋ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0
Potassium	ΟΊ			ω	0	0	0	2	0	0	2	0	0	0	0	0	40	0	0	+	4	40
																		ľ	ŀ		5	

Table 4-2c. Relict Floodplain Deposition Area Summary of Qualifiers for < 149-µm Fraction Metals and Conventional Parameter Results

* H J N N* * H J N N* * H J N N* 0 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Laboratory Flags, % of Accepted H	Laboratory Flags, % of Accepted Results H
0 5 0 0 0 0 0 0	0 0 0 5 0 0 0 0 0 0 0	0 0 0 5 0 0 0 0 0 0 0 0
0000		
0 0 0 0 0 0 0 0 0 Z _*		
Validator Flags, % of Accepted Results J U U* 20 0 0 0 40 0	dator FI U U 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	

Table 4-2c. Relict Floodplain Deposition Area Summary of Qualifiers for < 149-µm Fraction Metals and Conventional Parameter Results

	Number of	Reject	Accepted	Count of Results with	Cour	nt of Acce	epted Re	Count of Accepted Results Labo	oratory Flags	Flags	Cour Results	Count of Accepted Results Validator Flags	pted r Flags	Lab	oratory F	=lags, %	_aboratory Flags, % of Accepted Results	ted Resu	ılts	Validat Accel	Validator Flags, % of Accepted Results	% of ults
Analyte	Samples	Results	Results	No Flags	*	I	J	z	Z _*	U	٦	⊂	~	*	ェ	ے	Z	Z *	⊂	ل	⊂	~
RFD - Metals/Metalloids (continued)	etalloids (co	ntinued)																				
Lead	4	0 (0%)	4 (100%)	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Magnesium	4	0 (0%)	4 (100%)	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Manganese	4	0 (0%)	4 (100%)	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Mercury	4	0 (0%)	4 (100%)	_	0	0	0	0	0	0	ω	0	0	0	0	0	0	0	0	75	0	0
Molybdenum	4	0 (0%)	4 (100%)	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Nickel	4	0 (0%)	4 (100%)	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Potassium	4	0 (0%)	4 (100%)	ω	0	0	0	0	0	0	_	0	0	0	0	0	0	0	0	25	0	0
Selenium	4	0 (0%)	4 (100%)	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Silver	4	0 (0%)	4 (100%)	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Sodium	4	0 (0%)	4 (100%)	ω	0	0	0	0	0	0	_	0	0	0	0	0	0	0	0	25	0	0
Thallium	4	0 (0%)	4 (100%)	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Vanadium	4	0 (0%)	4 (100%)	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Zinc	4	0 (0%)	4 (100%)	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

The numbers of qualified samples (obtained from the project database) do not include laboratory QC samples, whereas the numbers of qualified samples presented in the text (obtained from the data validator) include laboratory QC samples. Therefore, the numbers in the text and the tables are not always consistent.

RFA, RFB, RFC, RFD - relict flood plain depositional areas A, B, C, and D

Laboratory

- * The result is an outlier. See case narrative.
- H The sample was analyzed as soon as possible after collection to minimize holding time.
- J The result is an estimated value that was detected outside the quantitation range.
- N The matrix spike sample recovery is not within control limits. See case narrative.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the method reporting limit/method detection limit (MRL/MDL).

- Validator

 J Quantitation is approximate due to limitations identified during the QA review (data validation).
- U This analyte was not detected at or above the associated detection limit.

 U* This analyte should be considered "not-detected" because it was detected in an associated blank at a similar level.

Table 4-3a. Windblown Sediment Deposition Area Summary of Qualifiers for Bulk Soil Sample Conventional Parameter Results

	OBUILION DE	sposition A	willabiowil sediment Deposition Alea Summary	or Qualifiers in	O DUIK O	oll Sample		Conventional	al Param	eter	esuits											
	-			Count of	Coun	t of Acce	Count of Accepted Results		Laboratory Fla	lags	Result	Count of Accepted Results Validator Flags	epted or Flags		aboratorv Flags.	Flags. %		of Accepted Results	ults	Validat	Validator Flags, % of Accepted Results	ults
Analyte	Samples	Results	Results	No Flags	*	ェ	J		Z _*		J	U	U* (*	н			Z _*	C	ے	_	∪ *
Columbia Beach North -	Conventional Parameters	l Parameter		•								•	•									
Solids	7	0 (0%)	7 (100%)	7	0	o \	0	0	0	0	0 ~	0	0	0	0 5	0	0	0	0	0 5	0	
Grain Size		0 (0,0)	. (10070)		,	•			ď	((,	,	,	,		•	(
Clay	7	0 (0%)	7 (100%)	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Silt	7		7 (100%)	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Very fine sand	7	0 (0%)	7 (100%)	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Fine sand	7	0 (0%)	7 (100%)	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Medium sand	7	0 (0%)	7 (100%)	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coarse sand	7	0 (0%)	7 (100%)	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Very coarse sand	7	0 (0%)	7 (100%)	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Very fine gravel	7	0 (0%)	7 (100%)	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Fine gravel	7	0 (0%)	7 (100%)	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Medium gravel	7	0 (0%)	7 (100%)	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coarse gravel	7	0 (0%)	7 (100%)	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Very coarse gravel	7	0 (0%)	7 (100%)	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Cobbles	7	0 (0%)	7 (100%)	7	0	0	0	0	0	0	0	0	0	0	0	0	0	C	0	0	0	c
pH Hand	2	0 (0%)	2 (100%)	0	0	2	0	0	0	0	2	0	0	0	100	0	0	0	0	100	0	0
Solids	2	0 (0%)	2 (100%)	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Grain Size		,																				
Clay	2	0 (0%)	2 (100%)	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Silt	2	0 (0%)	2 (100%)	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Very fine sand	2	0 (0%)		2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Fine sand	2	0 (0%)	2 (100%)	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Medium sand	N	0 (0%)		0 00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Voruse sand) N	0 (0%)	2 (100%)) N	0 0		0 0	0		0	0	0	0 0	0 0	0	0 0	0	0	0	0	0	
Very fine gravel	2 1	0 (0%)	2 (100%)	2 1	0	0	0	0	0	0	0	5 0	5 0		5 0	0	0	0	0			
Fine gravel	2	0 (0%)	2 (100%)	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Medium gravel	2	0 (0%)		2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coarse gravel	2			2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Very coarse gravel	2	0 (0%)	2 (100%)	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Cobbles	2	0 (0%)	2 (100%)	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Marcus Flats East - Conventional		Parameters																				
PH	10	0 (0%)	10 (100%)	30	0	0					10			0	100	0	0		0	100	0	
Grain Size	5	0 (0 %)	10 (100 /8)	5	c	c	c	c	c	c	c	c	c	c	c	c	c	c	c	•	c	
Clay	10	0 (0%)	10 (100%)	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Silt	10		10 (100%)	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Very fine sand	10	0 (0%)	10 (100%)	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Fine sand	10	0 (0%)	10 (100%)	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Medium sand	10	0 (0%)	10 (100%)	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coarse sand	10	0 (0%)	10 (100%)	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Very coarse sand	10	0 (0%)	10 (100%)	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Very fine gravel	10		10 (100%)	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Fine gravel	10	0 (0%)	10 (100%)	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Medium gravel	10	0 (0%)	10 (100%)	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coarse gravel	10	0 (0%)	10 (100%)	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Very coarse gravel	10			10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Cobbles	10	0 (0%)	10 (100%)	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

The numbers of qualified samples (obtained from the project database) do not include laboratory QC samples, whereas the numbers of qualified samples presented in the text (obtained from the data validator) include laboratory QC samples. Therefore, the numbers in the text and the tables are not always consistent.

Notes:

- * The result is an outlier. See case narrative.
- H The sample was analyzed as soon as possible after collection to minimize holding time.
- N The matrix spike sample recovery is not within control limits. See case narrative. J The result is an estimated value that was detected outside the quantitation range.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the method reporting limit/method detection limit (MRL/MDL).

- Validator

 J Quantitation is approximate due to limitations identified during the QA review (data validation).

 U This analyte was not detected at or above the associated detection limit.

 U* This analyte should be considered "not-detected" because it was detected in an associated blank at a similar level.

Count of Accep				Count of	Cou	Count of Accep		ted Results Laboratory Flags	oratory F	-lags	Cour	Count of Accepted	pted	Lab	oratory F	Laboratory Flags, % of Accepted Results	of Accept	ed Resul	ts	Validator Flags, % of	딢	SBE
Analyte	Number of Samples	Reject Results	Accepted Results	Results with	*	I	د	z	Z _*	C	د	C	Ç _*	*	エ	<u>ر</u>	z	z *	<u> </u>	د	C	
bia Beach North -	Conventional Parameters	meters		ķ																		
	7	0 (0%)	7 (100%)	- 7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Organic carbon	7	0 (0%)		7	0		0		0	0												
Solids	7	0 (0%)	7 (100%)	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Columbia Beach North - Metals/Metalloids Aluminum 7	tals/Metalloids	0 (0%)	7 (100%)	ىد	Δ	_ o	o	ס	D	о Э	4	5	о Э	۲,7	D	D	ס	ס	2	7 7	>	
Antimoni	1 -	O (O /o)		ی د	4 0	> c	> c) c	٠ (> C	1 1) c) c	۶ ز	> c	, c	5 <] <	› c	3 0) c	
Antimony	7		7 (100%)	0	0	0	0	ω	4	0	7	0	0	0	0	0	43	57	0	100	0	1
Arsenic	7		7 (100%)	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Barium	7	0 (0%)	7 (100%)	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	_
Beryllium	7	0 (0%)	7 (100%)	ω	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0	57	0	
Cadmium	7	0 (0%)	7 (100%)	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	_
Calcium	7	0 (0%)	7 (100%)	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Chromium	7	0 (0%)	7 (100%)	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	_
Cobalt	7		7 (100%)	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	- 1
Copper	7	0 (0%)	7 (100%)	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	- 1
lron :	7		7 (100%)	ω	4	0	0	0	0	0	4	0	0	57	0	0	0	0	0	57	0	- T
Lead	7	0 (0%)	7 (100%)	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	- 1
Magnesium	7		7 (100%)	ω	4	0	0	0	0	0	4	0	0	57	0	0	0	0	0	57	0	- 1
Manganese	7	0 (0%)	7 (100%)	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	- 1
Mercury	7		7 (100%)	0	0	0	7	0	0	0	7	0	0	0	0	100	0	0	0	100	0	- 1
Molybdenum	7	0 (0%)	7 (100%)	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Nickel	7		7 (100%)	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Potassium	7	0 (0%)	7 (100%)	ω	0	0	0	0	4	0	4	0	0	0	0	0	0	57	0	57	0	
Selenium	7		7 (100%)	0	0	0	7	0	0	0	7	0	0	0	0	1 00	0	0	0	100	0	
Silver	7	0 (0%)	7 (100%)	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Sodium	7	0 (0%)	7 (100%)	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Thallium	7	0 (0%)	7 (100%)	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Vanadium	7	0 (0%)	7 (100%)	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Zinc	7	0 (0%)	7 (100%)	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Beach South	nventional Para	Parameters																				
CEC	2	0 (0%)	2 (100%)	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
arbon	2	0 (0%)	2 (100%)	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Solids	2	0 (0%)	2 (100%)	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Columbia Beach South - Metals/Metalloids	tals/Metalloids																					
Aluminum	2	0 (0%)	2 (100%)	0	2	0	0	0	0	0	2	0	0	100	0	0	0	0	0	100	0	
Antimony	2	0 (0%)	2 (100%)	0	0	0	0	0	2	0	2	0	0	0	0	0	0	100	0	100	0	
Arsenic	2	0 (0%)	2 (100%)	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Barium	2	0 (0%)	2 (100%)	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Beryllium	2	0 (0%)	2 (100%)	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	100	0	
Cadmium	2	0 (0%)	2 (100%)	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Calcium	2	0 (0%)	2 (100%)	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Chromium	2	0 (0%)	2 (100%)	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Cobalt	2	0 (0%)	2 (100%)	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Copper	2	0 (0%)	2 (100%)	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Iron	2	0 (0%)	2 (100%)	0	2	0	0	0	0	0	2	0	0	100	0	0	0	0	0	100	0	
Lead	2	0 (0%)	2 (100%)	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Magnesium	2		2 (100%)	0	2	0	0	0	0	0	2	0	0	100	0	0	0	0	0	100	0	
Manganese	2	0 (0%)	2 (100%)	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Mercury	2			0	0	0	2	0	0	0	2	0	0	0	0	100	0	0	0	100	0	
Molybdenum	2	0 (0%)	2 (100%)	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Nickel	2	0 (0%)	_	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Potassium	2	0 (0%)	2 (100%)	0	0	0	0	0	2	0	2	0	0	0	0	0	0	100	0	100	0	-
Selenium	2	0 (0%)	2 (100%)	0	0	0	_	כ	_ _	_	_	_	D	2	>	כת	٥	>	٦ ٥	20	פע	

Table 4-3b. Windblown Sediment Deposition Area Summary of Qualifiers for < 2-mm Fraction Metals and Conventional Parameter Results

Table 4-56: Williamowill Sealineth Deposition Alea Salinitally of examiliers for	III Debosition	Tied oulling	lly of Qualifiers	101 < 2=111111 1 1 acr	CLIOIT IVIE	lais ailu Cc	Ollvelin	olial Fai	מוופופו	cuns												
				, , , , , ,	Cou	Count of Accep	ted	Results Lal	Laboratory Flags	Flags	Cou	Count of Accepted	pted	Lal	.aboratory	Flags, %	of Accepted	ted Results	ılts	Validat	Validator Flags, % of	% of
	Number of	Reject	Accepted	Count of Results with																		
Analyte	Samples	Results	Results	No Flags	*	I	ے	z	Z _*	C	ے	C	Ç	*	I	ے	z	z	C	ے	_	Ç
outh -	Metals/Metalloids	(continued)																				
Silver	2	0 (0%)	2 (100%)	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Sodium	2	0 (0%)		2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Thallium	2	0 (0%)	2 (100%)	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Vanadium	2	0 (0%)		2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Zinc	2	0 (0%)		2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Marcus Flats East - Conventional	onal Parameters	ers																				
	10	0 (0%)	10 (100%)	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Organic carbon	10	0 (0%)	10 (100%)	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Solids	10	0 (0%)	10 (100%)	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Marcus Flats East - Metals/Metalloids	talloids																					
Aluminum	10	0 (0%)	10 (100%)	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Antimony	10	0 (0%)	10 (100%)	0	0	0	0	10	0	0	10	0	0	0	0	0	100	0	0	100	0	0
Arsenic	10	0 (0%)	10 (100%)	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Barium	10	0 (0%)	10 (100%)	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Beryllium	10	0 (0%)	10 (100%)	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Cadmium	10	0 (0%)	10 (100%)	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Calcium	10	0 (0%)	10 (100%)	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Chromium	10	0 (0%)	10 (100%)	0	10	0	0	0	0	0	10	0	0	100	0	0	0	0	0	100	0	0
Cobalt	10	0 (0%)	10 (100%)	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Copper	10	0 (0%)	10 (100%)	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Iron	10	0 (0%)	10 (100%)	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Lead	10	0 (0%)	10 (100%)	0	0	0	0	10	0	0	10	0	0	0	0	0	100	0	0	100	0	0
Magnesium	10	0 (0%)	10 (100%)	0	10	0	0	0	0	0	10	0	0	100	0	0	0	0	0	100	0	0
Manganese	10	0 (0%)	10 (100%)	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Mercury	10	0 (0%)	10 (100%)	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Molybdenum	10	0 (0%)	10 (100%)	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Nickel	10	0 (0%)	10 (100%)	0	10	0	0	0	0	0	10	0	0	100	0	0	0	0	0	100	0	0
Potassium	10	0 (0%)	10 (100%)	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Selenium	10	0 (0%)	10 (100%)	6	0	0	4	0	0	0	4	0	0	0	0	40	0	0	0	40	0	0
Silver	10	0 (0%)	10 (100%)	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Sodium	10	0 (0%)	10 (100%)	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Thallium	10		10 (100%)	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Vanadium	10	0 (0%)	10 (100%)	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Zinc	10	0 (0%)	10 (100%)	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

The numbers of qualified samples (obtained from the project database) do not include laboratory QC samples, whereas the numbers of qualified samples presented in the text (obtained from the data validator) include laboratory QC samples. Therefore, the numbers in the text and the tables are not always consistent.

CEC - cation exchange capacity

- * The result is an outlier. See case narrative.

- H The sample was analyzed as soon as possible after collection to minimize holding time.

 J The result is an estimated value that was detected outside the quantitation range.

 N The matrix spike sample recovery is not within control limits. See case narrative.

 U The analyte was analyzed for, but was not detected ("Non-detect") at or above the method reporting limit/method detection limit (MRL/MDL).

- Validator

 J Quantitation is approximate due to limitations identified during the QA review (data validation).
- U This analyte was not detected at or above the associated detection limit.

 U* This analyte should be considered "not-detected" because it was detected in an associated blank at a similar level.

Table 4-4. Summary of Qualifiers for IVBA Results

Table 4-4. Suffiffia					Count of	Count of Acce	pted Results	Validator F	lags, % of
	Soil	Number of	Rejected	Accepted	Results with	Validato		Accepted	•
Analyte	Fraction	Samples	Results	Results	No Flags	J	NC	J	NC
ADA - High-density	•					-		-	
Aluminum, %	< 149-µm	11	0 (0%)	11 (100%)	10	1	0	9	0
Antimony, %	< 149-µm	11	0 (0%)	11 (100%)	0	11	0	100	0
Arsenic, %	< 149-µm	11	0 (0%)	11 (100%)	11	0	0	0	0
Barium, %	< 149-µm	11	0 (0%)	11 (100%)	11	0	0	0	0
Beryllium, %	< 149-µm	11	0 (0%)	11 (100%)	7	4	0	36	0
Cadmium, %	< 149-µm	11	0 (0%)	11 (100%)	10	1	0	9	0
Calcium, %	< 149-µm	11	0 (0%)	11 (100%)	10	1	0	9	0
Chromium, %	< 149-µm	11	0 (0%)	11 (100%)	11	0	0	0	0
Cobalt, %	< 149-µm	11	0 (0%)	11 (100%)	11	0	0	0	0
Copper, %	< 149-µm	11	0 (0%)	11 (100%)	11	0	0	0	0
Iron, %	< 149-µm	11	0 (0%)	11 (100%)	0	11	0	100	0
Lead, %	< 149-µm	11	0 (0%)	11 (100%)	1	10	0	91	0
Magnesium, %	< 149-µm	11	0 (0%)	11 (100%)	10	1	0	9	0
Manganese, %	< 149-µm	11	0 (0%)	11 (100%)	0	11	0	100	0
Mercury, %	< 149-µm	11	0 (0%)	11 (100%)	0	9	2	82	18
Molybdenum, %	< 149-µm	11	0 (0%)	11 (100%)	0	10	1	91	9
Nickel, %	< 149-µm	11	0 (0%)	11 (100%)	11	0	0	0	0
Potassium, %	< 149-µm	11	0 (0%)	11 (100%)	9	2	0	18	0
Selenium, %	< 149-µm	11	0 (0%)	11 (100%)	0	1	10	9	91
Silver, %	< 149-µm	11	0 (0%)	11 (100%)	10	1	0	9	0
Sodium, %	< 149-µm	11	0 (0%)	11 (100%)	0	11	0	100	0
Thallium, %	< 149-µm	11	0 (0%)	11 (100%)	11	0	0	0	0
Vanadium, %	< 149-µm	11	0 (0%)	11 (100%)	11	0	0	0	0
Zinc, %	< 149-µm	11	0 (0%)	11 (100%)	11	0	0	0	0
ADA - Primary	•		` ′	ì				· ·	
Aluminum, %	< 149-µm	13	0 (0%)	13 (100%)	12	1	0	8	0
Antimony, %	< 149-µm	13	0 (0%)	13 (100%)	0	13	0	100	0
Arsenic, %	< 149-µm	13	0 (0%)	13 (100%)	13	0	0	0	0
Barium, %	< 149-µm	13	0 (0%)	13 (100%)	13	0	0	0	0
Beryllium, %	< 149-µm	13	0 (0%)	13 (100%)	9	4	0	31	0
Cadmium, %	< 149-µm	13	0 (0%)	13 (100%)	13	0	0	0	0
Calcium, %	< 149-µm	13	0 (0%)	13 (100%)	13	0	0	0	0
Chromium, %	< 149-µm	13	0 (0%)	13 (100%)	13	0	0	0	0
Cobalt, %	< 149-µm	13	0 (0%)	13 (100%)	13	0	0	0	0
Copper, %	< 149-µm	13	0 (0%)	13 (100%)	13	0	0	0	0
Iron, %	< 149-µm	13	0 (0%)	13 (100%)	1	12	0	92	0
Lead, %	< 149-µm	13	0 (0%)	13 (100%)	5	8	0	62	0
Magnesium, %	< 149-µm	13	0 (0%)	13 (100%)	13	0	0	0	0
Manganese, %	< 149-µm	13	0 (0%)	13 (100%)	1	12	0	92	0
Mercury, %	< 149-µm	13	0 (0%)	13 (100%)	0	7	6	54	46
Molybdenum, %	< 149-µm	13	2 (15%)	11 (85%)	0	9	2	69	15
Nickel, %	< 149-µm	13	0 (0%)	13 (100%)	13	0	0	0	0
Potassium, %	< 149-µm	13	0 (0%)	13 (100%)	13	0	0	0	0
Selenium, %	< 149-µm	13	0 (0%)	13 (100%)	0	1	12	8	92
Silver, %	< 149-µm	13	0 (0%)	13 (100%)	6	7	0	54	0
Sodium, %	< 149-µm	13	0 (0%)	13 (100%)	0	13	0	100	0
Thallium, %	< 149-µm	13	0 (0%)	13 (100%)	11	2	0	15	0
Vanadium, %	< 149-µm	13	0 (0%)	13 (100%)	13	0	0	0	0
Zinc, %	< 149-µm	13	0 (0%)	13 (100%)	12	1	0	8	0
RFDA - RFA			- (3/0)	12 (10070)			-	-	
Aluminum, %	< 149-µm	4	0 (0%)	4 (100%)	4	0	0	0	0
Antimony, %	< 149-µm	4	0 (0%)	4 (100%)	0	4	0	100	0
Arsenic, %	< 149-µm	4	0 (0%)	4 (100%)	4	0	0	0	0
Barium, %	< 149-μm	4	0 (0%)	4 (100%)	4	0	0	0	0
Beryllium, %	< 149-μm	4	0 (0%)	4 (100%)	1	3	0	75	0
Cadmium, %	< 149-μm	4	0 (0%)	4 (100%)	3	1	0	25	0
Calcium, %	< 149-μm	4	0 (0%)	4 (100%)	4	0	0	0	0
Juliolaili, 70	- 1-70-μIII	т —	0 (0 /0)	7 (10070)		J J	<u> </u>	U	J

Table 4-4. Summary of Qualifiers for IVBA Results

	Soil	Number of	Rejected	Accepted	Count of Results with		epted Results or Flags	Validator F Accepted	
Analyte	Fraction	Samples	Results	Results	No Flags	J	NC	J	NC
FDA - RFA (contin									
Chromium, %	< 149-µm	4	0 (0%)	4 (100%)	4	0	0	0	0
Cobalt, %	< 149-µm	4	0 (0%)	4 (100%)	4	0	0	0	0
Copper, %	< 149-µm	4	0 (0%)	4 (100%)	4	0	0	0	0
Iron, %	< 149-µm	4	0 (0%)	4 (100%)	0	4	0	100	0
Lead, %	< 149-µm	4	0 (0%)	4 (100%)	4	0	0	0	0
Magnesium, %	< 149-µm	4	0 (0%)	4 (100%)	4	0	0	0	0
Manganese, %	< 149-µm	4	0 (0%)	4 (100%)	0	4	0	100	0
Mercury, %	< 149-µm	4	0 (0%)	4 (100%)	0	0	4	0	100
Molybdenum, %	< 149-µm	4	0 (0%)	4 (100%)	0	4	0	100	0
Nickel, %	< 149-µm	4	0 (0%)	4 (100%)	4	0	0	0	0
Potassium, %	< 149-µm	4	0 (0%)	4 (100%)	3	1	0	25	0
Selenium, %	< 149-µm	4	0 (0%)	4 (100%)	0	1	3	25	75
Silver, %	< 149-µm	4	0 (0%)	4 (100%)	3	1	0	25	0
Sodium, %	< 149-µm	4	0 (0%)	4 (100%)	0	4	0	100	0
Thallium, %	< 149-µm	4	0 (0%)	4 (100%)	1	3	0	75	0
Vanadium, %	< 149-µm	4	0 (0%)	4 (100%)	4	0	0	0	0
Zinc, %	< 149-µm	4	0 (0%)	4 (100%)	4	0	0	0	0
FDA - RFD	<u> </u>		- (/	(2211)					
Aluminum, %	< 149-µm	1	0 (0%)	1 (100%)	0	1	0	100	0
Antimony, %	< 149-µm	1	0 (0%)	1 (100%)	0	1	0	100	0
Arsenic, %	< 149-µm	1	0 (0%)	1 (100%)	1	0	0	0	0
Barium, %	< 149-µm	1	0 (0%)	1 (100%)	1	0	0	0	0
Beryllium, %	< 149-µm	1	0 (0%)	1 (100%)	1	0	0	0	0
Cadmium, %	< 149-µm	1	0 (0%)	1 (100%)	1	0	0	0	0
Calcium, %	< 149-µm	1	0 (0%)	1 (100%)	1	0	0	0	0
Chromium, %	< 149-µm	1	0 (0%)	1 (100%)	1	0	0	0	0
Cobalt, %	< 149-µm	1	0 (0%)	1 (100%)	1	0	0	0	0
Copper, %	< 149-µm	1	0 (0%)	1 (100%)	1	0	0	0	0
Iron, %	< 149-µm	1	0 (0%)	1 (100%)	0	1	0	100	0
Lead, %	< 149-µm	1	0 (0%)	1 (100%)	1	0	0	0	0
Magnesium, %	< 149-µm	1	0 (0%)	1 (100%)	1	0	0	0	0
Manganese, %	< 149-µm	1	0 (0%)	1 (100%)	0	1	0	100	0
Mercury, %	< 149-µm	1	0 (0%)	1 (100%)	0	1	0	100	0
Molybdenum, %	< 149-µm	1	0 (0%)	1 (100%)	0	1	0	100	0
Nickel, %	< 149-µm	1	0 (0%)	1 (100%)	1	0	0	0	0
Potassium, %	< 149-µm	1	0 (0%)	1 (100%)	0	1	0	100	0
Selenium, %	< 149-µm	1	0 (0%)	1 (100%)	0	0	1	0	100
Silver, %	< 149-µm	1	0 (0%)	1 (100%)	0	1	0	100	0
Sodium, %	< 149-µm	1	0 (0%)	1 (100%)	0	1	0	100	0
Thallium, %	< 149-µm	1	0 (0%)	1 (100%)	1	0	0	0	0
Vanadium, %	< 149-µm	1	0 (0%)	1 (100%)	1	0	0	0	0
vanaulum, 70									

No lab qualifiers were applied to the calculated bioavailability percentages

ADA - aerial deposition area

IVBA - in vitro bioaccessibility assay

J - estimated value

NC - IVBA percentage could not be calculated because the concentration was less than the MRL

RFA, RFB, RFC, RFD - relict flood plain depositional areas A, B, C, and D $\,$

Table 5-1a. Aerial Deposition Area Summary Statistics for Bulk Soil Sample Conventional Parameter Results

Number of Minimum		Number of	Minimum	Mean	Maximum	Mean Maximum Minimum Me	Mean	Maximum	Overall		Overall
	Number of	Detected	Detected	Detected	Detected	Nondetected	Nondetected	Nondetected	Minimum	Overall Mean Maximum	Maximum
Analyte	Samples	Values	Values	Values	Values	Value ^a	Value ^a	Value ^a	Valueª	Value ^a	Value ^a
High-density - Conventional Parameters	onal Paramete	irs									
(SU)	35	35	4.8	5.76	6.44	:	:	:	4.8	5.76	6.44
Solids (%)	35	35	77.2	88.5	96.8	:	:	:	77.2	88.5	96.8
Grain Size (%)											
Clay	35	35	0.775	2.21	8.74	1	1	1	0.775	2.21	8.74
Silt	35	35	11.44	29.2	59.64	:	:	:	11.44	29.2	59.64
Very fine sand	35	35	5.65	15.6	31.58	:	:	:	5.65	15.6	31.58
Fine sand	35	35	6.36	21.2	44.43	:	:	:	6.36	21.2	44.43
Medium sand	35	35	3.59	13.4	33.01	:	:	:	3.59	13.4	33.01
Coarse sand	35	35	0.94	5.91	11.91	:	:	:	0.94	5.91	11.91
Very coarse sand	35	35	0.58	3.8	8.58	1	1	:	0.58	3.8	8.58
Very fine gravel	35	35	0.13	2.63	8.27	-	1	1	0.13	2.63	8.27
Fine gravel	35	35	0	2.26	9:36	-	-	1	0	2.26	9.36
Medium gravel	35	35	0	1.3	12.3	-	-	1	0	1.3	12.3
Coarse gravel	35	35	0	0.046	1.61	-	-	1	0	0.046	1.61
Very coarse gravel	35	35	0	0	0	1	1	1	0	0	0
Cobbles	35	35	0	0	0			1	0	0	0
Primary - Conventional Parameter	Parameters										
(SU)	107	107	4.84	6.01	80	1	1	1	4.84	6.01	∞
Solids (%)	107	107	59.3	82.5	92.8	1	1	1	59.3	82.5	92.8
Grain Size (%)											
Clay	107	107	0.39	3.71	14.61	-	-	1	0.39	3.71	14.61
Silt	107	107	13.02	37	89	1	1	1	13.02	37	89
Very fine sand	107	107	4.32	9:26	21.49	-	-	1	4.32	9:26	21.49
Fine sand	107	107	2.77	8.92	36.5	-	-	1	2.77	8.92	36.5
Medium sand	107	107	2.54	7.96	33.4	:	:	1	2.54	7.96	33.4
Coarse sand	107	107	2.66	6.93	15.1	:	:	:	2.66	6.93	15.1
Very coarse sand	107	107	0.707	7.08	14.93	:	:	:	0.707	7.08	14.93
Very fine gravel	107	107	0.16	6.11	13.25	-	-	1	0.16	6.11	13.25
Fine gravel	107	107	0	6.63	18.71	-	-	1	0	6.63	18.71
Medium gravel	107	107	0	4.39	34.89	:	:	1	0	4.39	34.89
Coarse gravel	107	107	0	0.203	10.42	:	:	:	0	0.203	10.42
Very coarse gravel	107	107	0	0	0	:	:	:	0	0	0
Cobbles	107	107	0	0	0	1	1	ŀ	0	0	0
Notos:											

For decision units (DUs) with field split and triplicate samples, summary statistics are based on the average of results for the DU. Nondetected values (NDs) are included as half the reporting limits (RLs).

SU - standard unit

-- - no nondetected values

 $^{^{\}rm a}$ Calculated with nondetected results at one-half of the detection limit.

Table 5-1b. Aerial Deposition Area Summary Statistics for < 2-mm Fraction Metals and Conventional Parameter Results

	5	Number of	Minimim	Меап	Maximim	Minimum	Mean	Maximum	Overall		Overall
	Number of	Detected	Detected	Detected	Detected	Nondetected	Nondetected	Nondetected	Minimum	Overall Mean	Maximum
Analyte	Samples	Values	Values	Values	Values	Value ^a					
High-density - Conventional	al Parameters										
CEC (me/100 gm)	32	32	7.19	16.6	27.3	1	-	:	7.19	16.6	27.3
Organic carbon (%)	35	35	2.42	4.43	7.85	:	:	:	2.42	4.43	7.85
Solids (%)	35	35	88.6	96.3	99.2	1	:	:	88.6	96.3	99.2
High-density - Metals/Meta	- Metals/Metalloids (mg/kg)										
Aluminum	32	32	5510	10200	17300	-	-	:	5510	10200	17300
Antimony	35	35	1.19	4.5	10.7	1	:	:	1.19	4.5	10.7
Arsenic	35	35	8.26	17.1	26.4	:	:	:	8.26	17.1	26.4
Barium	35	35	56.2	193	492	1	:	:	56.2	193	492
Beryllium	35	35	0.21	0.339	0.49	:	:	:	0.21	0.339	0.49
Cadmium	35	35	2.35	80.9	12.4	1	:	:	2.35	80.9	12.4
Calcium	35	32	1620	3750	8870	1	:	:	1620	3750	8870
Chromium	35	35	7.32	15.5	40.5	1	-	:	7.32	15.5	40.5
Cobalt	35	35	2.26	5.33	10.4	1	:	:	2.26	5.33	10.4
Copper	35	35	11.5	22.4	102	1	-	:	11.5	22.4	102
Iron	35	35	7440	13300	22100	1	1	!	7440	13300	22100
Lead	35	35	108	316	714	1	:	:	108	316	714
Magnesium	35	35	1470	3240	6110	:	1	:	1470	3240	6110
Manganese	35	35	220	592	1040	:	:	:	220	592	1040
Mercury	35	35	0.0233	0.0796	0.18	1	:	:	0.0233	0.0796	0.18
Molybdenum	35	35	0.32	0.655	1.26	1	-	:	0.32	0.655	1.26
Nickel	35	32	5.59	13	31.5	1	:	:	5.59	13	31.5
Potassium	35	35	220	1340	2340	1	:	:	220	1340	2340
Selenium	35	35	0.18	0.302	0.73	1	1	:	0.18	0.302	0.73
Silver	35	35	0.12	0.329	0.85	1	:	:	0.12	0.329	0.85
Sodium	32	32	35.7	83.8	230	45.75	55.1	62.5	35.7	81.3	230
Thallium	32	35	0.17	0.301	0.535	ı	:	:	0.17	0.301	0.535
Vanadium	32	32	13.5	21.8	36.9	1	1	:	13.5	21.8	36.9
Zinc	35	35	120	358	2180	:	:	:	120	358	2180
OFO (200/400 200)	amerers	107	Coo	7 70	700				co	7 7 7	70.0
Oracio corbos (%)	107	107	0.03	24.1	10.0	!	:	:	0.03	1.4.1	16.0
Solids (%)	107	107	6/:1	63	6.86	1	:	:	62	93	98.9
Primary - Metals/Metalloids	(mg/k										
Aluminum		107	7450	16200	25200	-	-	:	7450	16200	25200
Antimony	107	107	0.63	2.53	7.52	1	1	:	0.63	2.53	7.52
Arsenic	107	107	5.59	14.7	27.7	1	:	:	5.59	14.7	27.7
Barium	107	107	89.8	399	1420	1	-	:	89.8	399	1420
Beryllium	107	107	0.263	0.524	0.98	1	-	:	0.263	0.524	0.98
Cadmium	107	107	0.7	5.11	14.3	1	:	:	0.7	5.11	14.3
Calcium	107	107	2040	6190	22200	1	-	:	2040	6190	22200
Chromium	107	107	8.01	21.6	78.7	:	:	:	8.01	21.6	78.7
Cobalt	107	107	3.03	8.18	15.5	1	:	:	3.03	8.18	15.5
Copper	107	107	8.22	21.6	49.5	1	1	;	8.22	21.6	49.5
Iron	107	107	8890	19200	30900	:	1	:	8890	19200	30900

Table 5-1b. Aerial Deposition Area Summary Statistics for < 2-mm Fraction Metals and Conventional Parameter Results

Number of Analyte Samples			אַמשוּ	Maximum			Maximum	Overall		Overall
Analyte Samples	Detected	Detected	Detected	Detected	Nondetected	Nondetected	Nondetected	Minimum	Overall Mean	Maximum
	Values	Values	Values	Values	Value ^a					
Primary - Metals/Metalloids (mg/kg) (continued)	(pənı									
Lead 107	107	44.5	183	592	:	:	:	44.5	183	592
Magnesium 107	107	1700	4570	9510	1	1	:	1700	4570	9510
Manganese 107	107	373	1090	2350	:	:	:	373	1090	2350
Mercury 107	107	0.0167	0.0719	0.16	1	:	:	0.0167	0.0719	0.16
Molybdenum 107	107	0.39	1.56	7.81	1	:	:	0.39	1.56	7.81
Nickel 107	107	8.38	24.2	59.4	1	:	:	8.38	24.2	59.4
Potassium 107	107	874	1770	4320	1	1	:	874	1770	4320
Selenium 107	107	0.133	0.387	3.32	:	:	:	0.133	0.387	3.32
Silver 107	107	0.0533	0.304	1.18	1	:	:	0.0533	0.304	1.18
Sodium 107	66	22	118	258	25.7	45	62	25.7	113	258
Thallium 107	107	0.12	0.256	0.54	1	:	:	0.12	0.256	0.54
Vanadium 107	107	13.7	31.9	63.2	1	:	:	13.7	31.9	63.2
Zinc 107	107	72.4	293	1150	1	:	:	72.4	293	1150

CEC - cation exchange capacity

me/100 gm - miliequivalents per 100 grams

mg/kg - milligram per kilogram SU - standard unit

-- - no nondetected values

 $^{^{\}rm a}$ Calculated with nondetected results at one-half of the detection limit.

October 2015

Table 5-1c. Aerial Deposition Area Summary Statistics for < 149-µm Fraction Metals and Conventional Parameter Results

Values Values<		Nimber	Number of	Minimum	Mean	Maximum	Minimum Nondetected	Mean Nondetected	Maximum Nondetected	Overall	Overall Mean	Overall
1834 96.9 99	Analyte	Samples	Values	Values	Values	Values	Value ^a	Value	Value ^a	Minimum Value ^a		Value ^a
93.4 96.9 93.4 7180 12800 22600 7180 10.7 4.24 12.6 7180 10.7 4.24 12.6 75.7 9.03 2.2.2 45.3 1.27 0.04 0.04 16.3 1.27 0.05 0.047 0.03 1.27 1.70 3.69 61.30 1.27 1.71 6.64 16.3 1.27 1.19 1.79 3.40 61.30 1.79 1.10 2.61 61.3 1.70 1.00 1.200 2.63 1.71 1.00 1.200 2.63 1.71 1.00 1.200 <td< td=""><td></td><td>onventional P</td><td>arameters (%)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		onventional P	arameters (%)									
7180 172800 22860 7180 1.27 4.24 1.26 1.27 1.27 4.24 1.26 1.27 7.57 4.24 1.26 7.67 7.57 6.64 16.33 1.71 1.70 3840 61.30 1.71 1.19 17.9 30.3 1.10 1.10 25.1 54.8 1.10 1.10 25.2 58.4 1.10 1.00 3.88 1.11 1.00 3.88 1.10 1.00 3.89 1.11 1.00 3.840 52.10 1.17 1.00 0.32 0.03 1.17<		35	35	93.4	6.96	66	:	:	:	93.4	6.96	66
7180 72800 22600 7180 9.03 22.2 56.9 1.27 9.03 22.2 56.9 1.27 9.03 22.2 56.9 1.27 0.286 0.417 0.483 1.76 1.70 3640 6.63 1.76 1.19 7.79 30.3 1.76 1.10 6.64 16.3 1.76 1.10 6.79 7.7 1.76 1.76 1.10 6.70 7.7 1.77 1.11 2.11 6.4 1.6 1.71 1.10 3.40 3.20 1.70 1.10 3.40 3.40 3.40 3.40 3.40 3.40 1.10 3.40 <	High-density - M€	etals/Metalloi	ds (mg/kg)									
127 4.24 12.6 1.27 0.03 2.22 2.68 1.27 75.7 2.06 45.3 1.27 0.286 0.417 6.83 7.5.7 1.70 6.64 16.30 1.76 1.11 6.64 16.30 1.77 3.69 6.03 1.76 1.76 1.10 25.1 6.43 1.70 3.69 6.03 1.71 1.71 1.20 3.40 5.86 1.11 1.20 3.40 5.86 1.10 1.20 1.20 1.10 1.70 3.40 5.86 1.10 1.70 3.40 5.89 1.10	Aluminum	32	35	7180	12800	22600	:	1	+	7180	12800	22600
9.03 22.2 65.9 9.03 0.266 0.266 45.3 75.7 0.266 0.246 0.243 17.0 1 17 6.64 16.3 17.0 1 17.0 3840 6130 17.0 1 1.1 25.1 54.8 17.0 1 1.2 25.1 54.8 17.0 1 1.0 25.1 58.8 17.0 1 1.0 25.1 58.4 94.2 17.0 1 17.0 34.8 98.8 11.0 1 17.0 34.8 98.8 11.0 1 17.0 34.8 94.2 11.0 1.0 1 17.1 35.1 32.8 1.0	Antimony	35	35	1.27	4.24	12.6	:	:	:	1.27	4.24	12.6
76.7 206 453 76.7 1.76 6.64 16.3 76.7 1.76 6.64 16.3 1.76 1.76 6.64 16.3 1.76 1.19 1.79 36.9 1.76 1.10 1.20 348 988 1.11 1.20 3.49 942 1.11 1.20 3.49 942 1.11 1.20 3.40 5.21 1.11 2.37 5.94 1.11 2.37 5.94 1.11 2.37 5.94	Arsenic	35	35	9.03	22.2	55.9	:	:	:	9.03	22.2	55.9
0.265 0.417 0.83 0.265 1.71 6.64 6.53 1.71 1.79 3640 6130 1.71 1.19 17.9 30.3 1.19 1.10 28.1 6.48 1.19 1.10 28.1 6.48 1.19 1.10 28.1 1.10 1.19 1.20 348 688 1.10 1.20 3440 5210 1.10 1.20 348 982 1.11 1.20 327 6.98 1.10 0.256 0.37 1.01 1.11 1.52 0.37 1.01 1.11 1.20 0.327 0.08 1.17	Barium	35	35	75.7	206	453	:	:	:	75.7	206	453
1771 664 163 1771 1180 3640 6630 1760 1180 1750 3643 1760 1180 175 363 1760 1180 175 363 1760 1120 368 1710 120 348 388 1710 120 348 388 1710 120 348 388 1710 237 584 382 1710 828 156 230 171 828 156 230 171 0.1 0.33 1.01 171 0.1 0.35 1.01 172 0.1 <	Beryllium	35	35	0.265	0.417	0.83	:	:	:	0.265	0.417	0.83
1760 3840 6130 1760 3.69 6.03 11 11.60 1.13 25.1 54.8 11.1 1.020 1520 20500 11.1 1.020 348 988 1020 1.02 348 988 11.1 1.02 234 942 1020 1.03 6.03 1020 0.0287 0.0948 0.59 1070 0.34 1650 2300 1030 0.15 232 101 1.1 1.21 232 101	Cadmium	35	35	1.71	6.64	16.3	:	:	:	1.71	6.64	16.3
11.9 17.9 30.3 11.9 11.9 17.9 30.3 11.9 13.69 6.03 11 11.9 14.0 25.1 54.8 1020 1970 3440 521.0 11.0 1970 3440 521.0 1020 1970 348 588 1120 1970 349 942 1120 1970 349 942 1120 1970 340 95 1120 1970 327 1.5 1120 198 937 1.5 1.23 198 1.01 1.23 117.7 25.6 33.5 1	Calcium	35	32	1760	3640	6130	:	:	:	1760	3640	6130
3.69 6.03 11 3.69 11/200 15300 20500 10200 120 348 988 10200 120 340 988 120 1370 594 942 1470 0.0267 0.0948 0.5 1470 39 0.662 0.99 0.0267 0.0247 0.694 0.5 0.0267 0.37 0.662 0.39 0.0267 0.145 0.277 0.0267 0.0267 0.15 0.277 0.15 0.0267 0.15 0.37 0.77 0.15 1.21 3.56 7.35 1.17 1.22 3.56 7.35	Chromium	35	32	11.9	17.9	30.3	:	:	:	11.9	17.9	30.3
111 251 548 111 10200 15300 20600 10200 1200 348 988 120 1970 348 982 1970 0.287 0.0948 0.5 1970 0.397 0.692 0.99 1937 0.387 0.692 0.99 0.0387 0.155 0.377 0.68 0.15 0.15 0.27 0.68 0.15 0.15 0.23 0.37 0.77 0.15 1.17.7 256 33.5 <t< td=""><td>Cobalt</td><td>32</td><td>35</td><td>3.69</td><td>6.03</td><td>11</td><td>÷</td><td>:</td><td>:</td><td>3.69</td><td>6.03</td><td>11</td></t<>	Cobalt	32	35	3.69	6.03	11	÷	:	:	3.69	6.03	11
10200 15300 20600 10200 1720 348 988 150 1970 348 988 1970 237 594 942 1970 0.0287 0.0948 0.5 0.0287 0.0288 1.50 23.08 0.0287 0.037 1.61 32.8 0.0287 0.155 0.327 0.68 0.155 0.15 0.327 0.68 0.155 0.1 0.335 1.01 0.155 1.7 2.24 5.3 57.5 6.2 44.9 0.2 3.35 1.1 1.2 3.55 7.35 1.1 1.2 3.55 3.5 <t< td=""><td>Copper</td><td>32</td><td>35</td><td>11.1</td><td>25.1</td><td>54.8</td><td>÷</td><td>:</td><td>:</td><td>11.1</td><td>25.1</td><td>54.8</td></t<>	Copper	32	35	11.1	25.1	54.8	÷	:	:	11.1	25.1	54.8
120 348 988 120 1370 3440 5210 1970 237 594 1970 0.0267 0.0948 0.5 237 0.039 0.692 0.99 0.39 9.37 15.1 32.8 0.39 0.155 0.327 0.68 0.155 0.14 0.355 1.01 0.155 0.156 0.327 0.68 0.155 0.14 0.345 1.01 0.155 0.1 0.35 1.01 0.155 0.1 0.27 0.68 0.155 0.1 0.1 0.155 0.155 1.1 0.22 0.22 5.7.5 6.2 44.9 <td>Iron</td> <td>35</td> <td>32</td> <td>10200</td> <td>15300</td> <td>20500</td> <td>:</td> <td>:</td> <td>:</td> <td>10200</td> <td>15300</td> <td>20500</td>	Iron	35	32	10200	15300	20500	:	:	:	10200	15300	20500
1970 3440 5210 1970 0.0267 0.0264 942 10.0267 0.0267 0.0348 0.562 0.0267 0.37 16.1 23.26 0.039 0.15 0.37 16.1 0.039 0.15 0.25 0.527 0.039 0.15 0.25 0.537 0.15 0.15 0.37 0.77 0.15 1.7 2.56 33.5 0.15 1.7 2.56 33.5 0.15 1.7 3.55 33.5	Lead	35	32	120	348	988	:	:	:	120	348	988
237 594 942 237 0.0267 0.0948 0.5 0.0267 0.0267 0.0948 0.5 0.0267 9.37 15.1 32.8 0.0267 828 1550 2300 9.37 0.15 0.327 0.68 0.15 0.15 0.327 0.68 0.15 0.15 0.1 0.1 0.32 0.77 0.15 1.2 2.5 33.5 17.7 1.2 3.5 7.35 17.7 1.2 3.5 7.2	Magnesium	35	32	1970	3440	5210	:	:	1	1970	3440	5210
0.0267 0.0948 0.5 0.0267 0.39 0.692 0.99 0.39 828 1550 23.08 0.39 0.155 0.327 0.68 0.15 0.1 0.335 1.01 0.15 0.1 0.335 1.01 0.15 0.1 0.335 1.01 0.15 0.1 0.335 1.01 0.15 0.1 0.335 1.01 0.15 1.17.7 2.5.6 33.5 0.17 1.21 3.5 7.35 1.17 1.21 3.5 1.3 1.17 1.21 3.5 1.2 1.17 1.24 3.5 1.3	Manganese	35	32	237	594	942	:	:	1	237	594	942
0.39 0.692 0.99 0.39 828 15.1 32.8 828 0.155 0.327 0.682 828 0.1 0.155 0.327 0.68 0.155 0.1 0.327 0.68 0.155 0.15 1.0.1 0.327 0.68 0.15 0.15 1.7.7 25.6 33.5 0.15 1.7.7 25.6 33.5 0.17 1.2.1 35.5 7.35 0.17 1.2.1 35.6 7.35 17.7 1.2.1 35.5 7.35 17.7 1.2.1 35.5 7.35 17.7 1.2.1 35.0 7.38	Mercury	35	32	0.0267	0.0948	0.5	:	:	1	0.0267	0.0948	0.5
9.37 15.1 32.8 9.37 828 1560 2300 0.155 0.155 0.327 0.68 0.155 0.1 0.327 0.68 0.155 0.1 0.327 0.77 0.1 121 25.6 33.5 0.2 17.7 25.6 33.5 0.2 17.7 355 735 17.7 121 355 735 17.7 121 355 735 17.7 121 355 98.1 17.7 122 386.4 95 98.1 17.7 12000 17300 25900 17.8 140 450 1270	Molybdenum	32	35	0.39	0.692	0.99	:	:	1	0.39	0.692	0.99
828 1550 2300 828 0.15 0.327 0.68 0.155 0.1 0.34 1.04 0.155 44.9 104 224 53 57.5 62 44.9 0.2 0.37 0.77 0.1 0.1 17.7 25.6 33.5 0.2 17.7 25.6 33.5 0.2 17.7 25.6 38.1 17.7 12.1 35.5 73.5 17.7 109.00 17300 25800 17.7 100 1750 10900 100 17300 25800 11.0 100 160 360 1270 10900	Nickel	35	35	9.37	15.1	32.8	:	:	:	9.37	15.1	32.8
0.155 0.327 0.68 0.155 44.9 1.04 2.24 53 57.5 62 44.9 0.2 0.35 1.01 0.1 0.1 1.2 0.2 0.37 0.1 1.2 0.2 0.35 0.7 0.4 1.2 25.6 33.5 0.2 1.2 25.6 33.5 17.7 1.2000 1730 25800 17.7 0.45 1.9 5.91 17.7 1.60 380 1270 10.45 1.5 5.58 1.5 1.090 1.4 4.2 1.3 1.21 0.45 1.2 3.	Potassium	32	35	828	1550	2300	:	1	1	828	1550	2300
0.1 0.335 1.01 0.1 44.9 104 224 53 57.5 62 44.9 0.2 0.37 0.77 0.2 1.7.7 25.6 33.5 17.7 1.21 35.5 73.5 17.7 1.2.1 35.5 73.5 17.7 1.2.1 35.5 17.7 17.7 1.2.2 5.58 17.7 17.7 1.0900 17.300 25.90 17.7 1.60 36.0 12.0 10900 1.52 32.5 160 0.33 0.537 1.08 160 8.69	Selenium	32	32	0.155	0.327	0.68	:	1	:	0.155	0.327	0.68
44.9 104 224 53 57.5 62 44.9 0.2 0.37 0.77 0.2 17.7 25.6 33.5 17.7 86.4 95 98.1 121 10900 17300 25900 10900 1045 1.9 5.91 10900 1070 2580 10900 1045 1.9 5.91 10900 1070 2580 10900 1080 17.0 25.91 10900 1080 17.0 25.91 10900 10.45 1090 17.0 17.0 10.04 10.05 1090 18.0 17.8 <td>Silver</td> <td>32</td> <td>32</td> <td>0.1</td> <td>0.335</td> <td>1.01</td> <td>:</td> <td>:</td> <td>:</td> <td>0.1</td> <td>0.335</td> <td>1.01</td>	Silver	32	32	0.1	0.335	1.01	:	:	:	0.1	0.335	1.01
0.2 0.37 0.77 0.2 17.7 25.6 33.5 17.7 121 355 735 17.7 121 17.7 121 17.7 10900 17300 25900 10090 0.45 1.9 5.91 10090 10000 1770 1000 100 1000 360 1270 160 100 1010 360 1270 160 100 1010 4.24 11.8 160 100 11210 4.44 8 18 10.45 12100 18600 27200 </td <td>Sodium</td> <td>32</td> <td>33</td> <td>44.9</td> <td>104</td> <td>224</td> <td>53</td> <td>57.5</td> <td>62</td> <td>44.9</td> <td>101</td> <td>224</td>	Sodium	32	33	44.9	104	224	53	57.5	62	44.9	101	224
17.7 25.6 33.5 17.7 121 355 735 17.7 86.4 95 98.1 17.7 10900 17300 25900 10900 0.45 1.9 5.91 0.45 1 60 360 1270 0.45 1 60 360 1270 0.45 1 60 360 1270 160 0.45 1 80 4.24 1.18 0.45 1 810 4.74 8 0.33 1 27.08 21.4 65.5 0.42 1 4.4 8 1 0.42 1 27.0 1270 -	Thallium	32	32	0.2	0.37	0.77	:	1	:	0.2	0.37	0.77
121 355 735 121 86.4 95 98.1 10900 10900 17300 25900 10900 7 0.45 1.9 5.91 10900 8.58 15.2 32.6 10900 1 60 360 1270 160 160 1 810 4.24 4.24 11.8 160 160 160 160 160 160 160 160 160 160 160 160 170 171 172 <th< td=""><td>Vanadium</td><td>35</td><td>35</td><td>17.7</td><td>25.6</td><td>33.5</td><td>:</td><td>1</td><td>1</td><td>17.7</td><td>25.6</td><td>33.5</td></th<>	Vanadium	35	35	17.7	25.6	33.5	:	1	1	17.7	25.6	33.5
86.4 95 98.1 86.4 86.4 10900 17300 25900 10900 7 0.45 1.9 5.91 10900 7 0.45 1.9 5.91 0.45 8 1.5 32.6 160 0.45 1 160 360 1270 160 0.45 1 160 360 1270 160 0.45 1 161 4.24 11.8 0.42 160 1 1810 4790 14300 0.42 1810 8 69 21.4 65.5 4.4 18.69 8 69 21.7 65.3 12100 12100 18600 27200 <td>Zinc</td> <td>35</td> <td>35</td> <td>121</td> <td>355</td> <td>735</td> <td></td> <td>-</td> <td>-</td> <td>121</td> <td>355</td> <td>735</td>	Zinc	35	35	121	355	735		-	-	121	355	735
107 86.4 95 98.1 86.4 86.4 107 10900 17300 25900 10900 107 6.58 1.9 5.91 0.45 10900 107 5.58 15.2 0.45 1600 1600 107 160 380 1270 0.45 160 160 107 0.33 0.537 1.08 0.33<	Primary - Conver	ntional Param	eters (%)									
107 10900 17300 25900 10900 107 0.45 1.9 5.91 10900 107 0.45 1.9 5.91 0.45 107 0.45 1.5 32.6 0.45 107 160 360 1270 160 107 0.33 0.537 1.08 160 107 4.24 11.8 0.33 107 8.69 21.4 65.5 0.42 107 4.4 8 18 0.42 107 7.28 21.7 65.3 8.69 107 1470 490 9880 14.0 1470 107 382 843 1650 <t< td=""><td>Solids</td><td>107</td><td></td><td>86.4</td><td>98</td><td>98.1</td><td></td><td>:</td><td>:</td><td>86.4</td><td>92</td><td>98.1</td></t<>	Solids	107		86.4	98	98.1		:	:	86.4	92	98.1
Imm 107 1090 17300 25900 10900 Iy 107 1045 1.9 5.91 0.45 Iy 107 107 160 360 1270 5.58 In 107 107 0.33 0.537 1270 160 In 107 107 0.42 4.24 11.8 0.42 In 107 107 1810 4790 14300 1810 In 107 4.4 8 18 4.4 8.69 In 107 107 27.28 21.7 65.3 14.4 In 107 107 1470 1460 27200 12100 In 107 1470 44	Primary - Metals/	Metalloids (m	_									
ny 107 107 0.45 1.9 5.91 0.45 107 107 5.58 15.2 32.6 5.58 160 m 107 107 0.33 0.537 1.08 160 160 m 107 107 0.42 4.24 11.8 0.42 1810 n 107 107 1810 4.24 14300 0.42 nm 107 107 4.4 8 18 8.69 nm 107 107 4.4 8 18 8.69 nm 107 107 4.4 8 18 8.69 nm 107 107 12100 18600 27200 12100 nm 107 107 1470	Aluminum	107	107	10900	17300	25900	:	:	:	10900	17300	25900
Include the control of the c	Antimony	107	107	0.45	1.9	5.91	:	:	:	0.45	1.9	5.91
m 107 160 360 1270 160 m 107 107 0.33 0.537 1.08 160 n 107 107 0.42 4.24 11.8 0.42 n 107 107 1810 4790 14300 0.42 nm 107 107 4.4 8 18 8.69 8.69 nm 107 107 4.4 8 18 4.4 8.69 107 107 1210 18600 27200 4.4 107 107 34.8 166 456 34.8 isium 107 1470 4190 9880 1470 ses 107 107	Arsenic	107	107	5.58	15.2	32.6	:	:	:	5.58	15.2	32.6
m 107 107 0.33 0.537 1.08 0.33 0.33 0.537 mm 107 107 0.42 4.24 11.8 0.3 0.42 0.42 0.42 0.43 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.5	Barium	107	107	160	360	1270	:	:	:	160	360	1270
m 107 107 0.42 4.24 11.8 0.42 0.42 11.8 1 0.42 0.42 11.8 0.42 0.42 11.8 11.8 11.8 11.8 11.8 11.8 11.8 11.	Beryllium	107	107	0.33	0.537	1.08	:	:	:	0.33	0.537	1.08
1 107 107 1810 4790 14300 1810 1m 107 107 8.69 21.4 65.5 8.69 8.69 107 107 107 7.28 21.7 65.3 4.4 8 107 107 12100 18600 27200 7.28 107 107 34.8 166 456 34.8 ilum 107 107 1470 9880 34.8 ilum 107 107 382 843 1650 382	Cadmium	107	107	0.42	4.24	11.8	:	1	:	0.42	4.24	11.8
Lim 107 107 8.69 21.4 65.5 8.69 8.69 107 107 4.4 8 18 4.4 8 4.4 7.28 4.4 7.28 4.4	Calcium	107	107	1810	4790	14300	:	1	1	1810	4790	14300
107 107 4.4 8 18 4.4 8 4.4 8 4.4 4.4 8 4.4 4.1 4.4 <	Chromium	107	107	8.69	21.4	65.5	:	1	1	8.69	21.4	65.5
107 107 7.28 21.7 65.3 7.28 107 107 12100 18600 27200 12100 ilum 107 107 1470 4190 9880 34.8 lese 107 107 382 843 1650 382	Cobalt	107	107	4.4	8	18	:	1	1	4.4	8	18
107 107 12100 18600 27200 12100 ilum 107 107 1470 4190 9880 1470 lese 107 107 382 843 1650 382	Copper	107	107	7.28	21.7	65.3	:	1	:	7.28	21.7	65.3
107 107 34.8 166 456 34.8 84.8 resium 107 107 1470 4190 9880 1470 1470 ranese 107 107 382 843 1650 382	Iron	107	107	12100	18600	27200	:	1	1	12100	18600	27200
107 107 1470 4190 9880 1470 107 107 382 843 1650 382	Lead	107	107	34.8	166	456	:	1	1	34.8	166	456
107 107 382 843 1650 382	Magnesium	107	107	1470	4190	9880	-	1	1	1470	4190	9880
	Manganese	107	107	382	843	1650	:	;	:	382	843	1650

Table 5-1c. Aerial Deposition Area Summary Statistics for < 149-µm Fraction Metals and Conventional Parameter Results

		Number of	Minimum	Mean	Maximum	Minimum	Mean	Maximum			Overall
	Number of	Detected	Detected	Detected	Detected	Nondetected	Nondetected	Nondetected	Overall		Maximum
Analyte	Samples	Values	Values	Values	Values	Value ^a	Value ^a	Value ^a	Minimum Value ^a	Value ^a	Value ^a
Primary - Metals/N	Metalloids (m.	nary - Metals/Metalloids (mg/kg) (continued	(pe								
Mercury	107	107	0.02	0.0599	0.14	:	:	1	0.02	0.0599	0.14
Molybdenum	107	107	0.39	1.25	5.72	:	:	:	0.39	1.25	5.72
Nickel	107	107	11	24.2	66.4	:	:	:	11	24.2	66.4
Potassium	107	107	778	1760	3860	:	:	:	778	1760	3860
Selenium	107	107	60.0	0.322	2.17	:	:	:	0.09	0.322	2.17
Silver	107	107	0.0333	0.261	0.94	:	ł	:	0.0333	0.261	0.94
Sodium	107	101	76.9	136	267	48.95	52.9	63.5	48.95	132	267
Thallium	107	107	0.12	0.26	0.52	:	ł	:	0.12	0.26	0.52
Vanadium	107	107	17.9	31.2	9.99	:	ł	:	17.9	31.2	9.99
Zinc	107	107	64.8	288	1160	:	:	:	64.8	288	1160

For decision units (DUs) with field split and triplicate samples, summary statistics are based on the average of results for the DU. Nondetected values (NDs) are included as half the reporting limits (RLs).

 $^{\rm a}$ Calculated with nondetected results at one-half of the detection limit.

mg/kg - milligram per kilogram --- no nondetected values

Table 5-2a. Relict Floodplain Deposition Area Summary Statistics for Bulk Soil Sample Conventional Parameter Results

		Number of	Minimum		Maximum	ENERGIN .	Mean	Maximum	CVEIBIL		ַ כֻּעַם כַּעַם
Analyte	Number of	Detected	Detected	Mean Detected	Detected	Nondetected	Nondetected	Nondetected	Minimum Value ^a	Overall Mean	Maximum Value ^a
DEA Contractional Bostomotors	Caldina				200	2	2	200	2	200	2
-A - Colliverillollal Farall											
pH (SU)	2	2	7.25	7.5	7.8	:	:	:	7.25	7.5	7.8
Solids (%)	2	5	94.6	95.4	97.6	:	:		94.6	95.4	9.76
Grain Size (%)				٠							
Clay	2	2	0.45	0.694	_	:	:	:	0.45	0.694	-
Silt	2	2	2.57	7.8	11.2	;	:	:	5.57	7.8	11.2
Very fine sand	2	2	6.6	14.1	16	:	:		6.6	14.1	16
Fine sand	2	2	29.8	33	37.91	:	:	:	29.8	33	37.91
Medium sand	2	2	18.95	24.7	34.82	;	:	ı	18.95	24.7	34.82
Coarse sand	2	2	2.95	6.84	11.8	;	:	ı	2.95	6.84	11.8
Very coarse sand	2	2	0.62	0.927	1.38	:	:	1	0.62	0.927	1.38
Very fine gravel	2	2	0.31	1.42	2.51	;	:		0.31	1.42	2.51
Fine gravel	2	2	0.84	3.28	7.28	:	:	:	0.84	3.28	7.28
Medium gravel	2	2	0	3.34	11.7	:	:	:	0	3.34	11.7
Coarse gravel	2	2	0	2.16	10.76	:	:		0	2.16	10.76
Very coarse gravel	2	2	0	0	0	:	:	:	0	0	0
Cobbles	2	2	0	0	0	:	:	ŀ	0	0	0
RFB - Conventional Parameters											
(OS)	3	3	5.69	5.93	80.9	:	:		5.69	5.93	80.9
Solids (%)	က	က	84.6	87.6	93	1	1	ı	84.6	87.6	93
Grain Size (%)											
Clay	က	က	2.94	6.87	9.21	:	:	:	2.94	6.87	9.21
Silt	က	က	31.4	38.8	50.5	:	:	:	31.4	38.8	20.2
Very fine sand	ဇ	က	12.91	20.2	29.36	:	:	1	12.91	20.2	29.36
Fine sand	8	က	7.97	12.9	20.24	:	:	ı	7.97	12.9	20.24
Medium sand	က	က	4.15	6.34	8.63	:	:	1	4.15	6.34	8.63
Coarse sand	က	က	2.72	3.56	4.92	:	:	1	2.72	3.56	4.92
Very coarse sand	3	8	1.36	1.8	2.03	:	:	1	1.36	1.8	2.03
Very fine gravel	8	က	0.07	0.826	1.6	:	:	ı	0.07	0.826	1.6
Fine gravel	ဇ	က	0.47	0.813	1.09	:	:	ı	0.47	0.813	1.09
Medium gravel	င	က	0.11	2.59	7.53	;	;		0.11	2.59	7.53
Coarse gravel	က	က	0	0	0	:	:	:	0	0	0
Very coarse gravel	က	က	0	0	0	:	:	:	0	0	0
Copples		က	0	0	0	:	:	:	0	0	0
RFC - Conventional Parameters				_							
pH (SU)	9	9	6.26	6.35	6.59	;	;	-	6.26	6.35	6.59
Solids (%)	9	9	83.7	87.4	91.2	:	:		83.7	87.4	91.2
Grain Size (%)				٠							
Clay	9	9	2.99	10.1	16.75	:	:	:	2.99	10.1	16.75
Fine sand	9	9	5.11	89.6	14.4	;	;		5.11	9.68	14.4
Medium sand	9	9	1.53	4.97	10.52	;	;		1.53	4.97	10.52
Coarse sand	9	9	0.47	3.87	7.34	:	:	1	0.47	3.87	7.34
Fine gravel	9	9	0	0.341	1.42	;	;		0	0.341	1.42
Medium gravel	9	9	0	0.0439	0.0933	:	:	-	0	0.0439	0.0933
Coarse gravel	9	9	0	0	0	;	;	:	0	0	0
Cobblee	ď	G	c	_	_	-	:	i	c	_	

Table 5-2a. Relict Floodplain Deposition Area Summary Statistics for Bulk Soil Sample Conventional Parameter Results

entional Parameter entional Parameter es sand gravel sigravel arse gravel entional Parameter:	Number of Samples s (continued) 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Number of Detected Values	Minimum Detected	Mean Detected	Maximum Detected	Nondetected	Nondetected	Nondetected	Minimum	Overall Mean	Maximim
Analyte San RFC - Conventional Parameters (co Silt Very fine sand Very coarse sand Very fine gravel Very coarse gravel Very coarse gravel PRFD - Conventional Parameters PH (SU)	nber of mples on tinued) on tinued) 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Detected	Detected	Mean Detected	Detected	Nondetected	Nondetected	Nondatatata	Minimum	Overall Mean	Maxim
Analyte San RFC - Conventional Parameters (co Silt Very fine sand Very coarse sand Very coarse gravel PRFD - Conventional Parameters	mples ontinued) 6 6 6 6 6	Values					5	ואסוומטוסיים			
Silt Silt Very fine sand Very coarse sand Very coarse savel Very coarse gravel Very Coarventional Parameters pH (SU)	6 6 6 6		Values	Values	Values	Value	Value ^a				
	9999										
	0000	9	27.46	43.8	63.65	:	:	:	27.46	43.8	63.65
	9 9 9	9	14.1	21.3	30.4	:	:	ı	14.1	21.3	30.4
	9 9	9	0.453	2.11	3.5	:	:	ı	0.453	2.11	3.5
	g	9	0.09	0.719	3.12	:	:	ı	60.0	0.719	3.12
	,	9	0	0	0	:	:	ı	0	0	0
	2	2	6.24	6.74	7.23	:	:		6.24	6.74	7.23
Solids (%)	2	2	90.7	93.5	96.2	;	:	:	2.06	93.5	96.2
Grain Size (%)											
Clay	2	2	0.77	1.24	1.71	:	:	ı	0.77	1.24	1.71
Silt	2	2	14.48	15.5	16.6	:	:	ı	14.48	15.5	16.6
Very fine sand	2	2	21.7	26.5	31.2	:	:	ı	21.7	26.5	31.2
Fine sand	2	2	26.8	32.5	38.25	;	:		26.8	32.5	38.25
Medium sand	2	2	8.26	11.4	14.5	:	:	ı	8.26	11.4	14.5
Coarse sand	2	2	1.68	3.88	6.07	:	:	ı	1.68	3.88	6.07
Very coarse sand	2	2	1.17	2.28	3.39	:	:	ı	1.17	2.28	3.39
Very fine gravel	2	2	0.53	1.57	2.6	:	:	ı	0.53	1.57	2.6
Fine gravel	2	2	0.67	0.875	1.08	:	:		0.67	0.875	1.08
Medium gravel	2	2	0	1.62	3.23	:	:	ı	0	1.62	3.23
Coarse gravel	2	2	0	0	0	:	:	:	0	0	0
Very coarse gravel	2	2	0	0	0	:	:	ı	0	0	0
Cobbles	2	2	0	0	0	:	:	:	0	0	0

Notes:
Notes:
For decision units (DUs) with field split and triplicate samples, summary statistics are based on the average of results for the DU. Nondetected values (NDs) are included as half the reporting limits (RLs).

^a Calculated with nondetected results at one-half of the detection limit. RFA, RFB, RFC, RFD - relict flood plain depositional areas A, B, C, and D SU - standard unit

Table 5-2b. Relict Floodplain Deposition Area Summary Statistics for < 2-mm Fraction Metals and Conventional Parameter Results

	30	Number of	Minimum	2000	Detotol	Nondetected	Nondatabada	Nondetected	Overall	Overall Mean	Maximim
Analyte	Samples	Values	Values	Values	Values	Value ^a	Value ^a	Value ^a	Mini		Value ^a
RFA - Conventional Parameters	ers										
CEC (me/100 gm)	2	2	2.74	3.78	5.27	:		-	2.74	3.78	5.27
Organic carbon (%)	2	2	0.95	1.42	1.78	ŀ	:	:	0.95	1.42	1.78
Solids (%)	2	2	98.2	99.2	99.7	ŀ	ı	ı	98.2	99.2	2.66
RFA - Metals/Metalloids (mg/kg)	'kg)										
Aluminum		2	7680	9260	11600	:		:	7680	9260	11600
Antimony	2	2	10.6	12.7	14.9	ŀ	:	:	10.6	12.7	14.9
Arsenic	2	2	9.81	13.6	16.8	ŀ	·	:	9.81	13.6	16.8
Barium	2	2	809	619	650	:	:	:	809	619	650
Beryllium	2	2	0.34	0.365	0.42	ŀ	:	:	0.34	0.365	0.42
Cadmium	2	2	2.83	3.94	5.05	ŀ	·	:	2.83	3.94	5.05
Calcium	2	2	35800	40000	42600	ı	:	ı	35800	40000	42600
Chromium	2	2	35.2	40.4	53.6	ŀ	:	ı	35.2	40.4	53.6
Cobalt	5	2	13.5	15.4	19.5	;	:	1	13.5	15.4	19.5
Copper	2	2	467	267	758	ŀ	:	ı	467	292	758
Iron	2	2	2200	76700	105000	:	:	:	27600	76700	105000
Lead	2	2	278	389	220	:	:	:	278	389	220
Magnesium	2	2	12400	14500	17400	:	:	:	12400	14500	17400
Manganese	2	2	1020	1340	1820	:		:	1020	1340	1820
Mercury	2	2	90.0	0.148	0.317	:	:	1	90.0	0.148	0.317
Molybdenum	5	5	7.69	8.28	10	:	-	1	7.69	8.28	10
Nickel	2	2	11.5	13	14.8	:		:	11.5	13	14.8
Potassium	2	2	1500	1840	2280	:	:	:	1500	1840	2280
Selenium	2	2	1.11	1.32	1.61	:	:	:	1.11	1.32	1.61
Silver	2	2	1.47	1.65	2.21	:	:	:	1.47	1.65	2.21
Sodium	2	2	425	552	731	:	:	:	425	292	731
Thallium	2	2	0.13	0.188	0.24	:	:	:	0.13	0.188	0.24
Vanadium	2	2	31.2	32.9	34.8	:	:	1	31.2	32.9	34.8
Zinc	2	5	5270	7100	8640	:	-	:	5270	7100	8640
RFB - Conventional Parameters	ers										
CEC (me/100 gm)	3	3	10.9	18.1	21.9	:	-	:	10.9	18.1	21.9
Organic carbon (%)	က	3	2.44	4.07	5.71	:	:	:	2.44	4.07	5.71
Solids (%)		3	94.4	9.96	99.4	:		:	94.4	9.96	99.4
RFB - Metals/Metalloids (mg/kg)	/kg)										
Aluminum	3	3	8040	10100	11500	-	-	-	8040	10100	11500
Antimony	3	က	0.94	1.94	2.51	:	:	:	0.94	1.94	2.51
Arsenic	က	က	7	10.6	12.9	:	:	:	7	10.6	12.9
Barium	က	က	136	182	237	:	:	:	136	182	237
Beryllium	က	က	0.32	0.438	0.51	:	:	:	0.32	0.438	0.51
Cadmium	က	က	1.84	2.98	3.7	:	:	:	1.84	2.98	3.7
Calcium	က	က	2620	4530	6500	:	:	:	2620	4530	6500
Chromium	3	က	18.6	26	32	:		:	18.6	26	32
Cobalt	3	က	6.13	7.71	8.91	:	:	:	6.13	7.71	8.91
Copper	က	က	13.4	20.1	26.3	:	:	:	13.4	20.1	26.3
Iron	က	က	13700	17000	19200	:	:	:	13700	17000	19200
Lead	က	ဇ	80.7	154	201	:	:	:	80.7	154	201
Magnesium	က	3	3880	5110	0209	:	:	:	3880	5110	0209
Manganese	3	င	322	415	498	:	:	:	322	415	498
Mercury	က	က	0.02	0.0522	0.09	:	:	;	000	0.0522	60.0

Table 5-2b. Relict Floodplain Deposition Area Summary Statistics for < 2-mm Fraction Metals and Conventional Parameter Results

)				
		Number of	Minimum		Maximum	Minimum	Mean	Maximum		1000	Overall
Analyte	Samples	Values	Values	Values	Values	Value	Value	Value	Min	Value	Value ^a
RFB - Metals/Metalloids (mg/kg) (continued)	g) (continued)										
Molybdenum	3	3	0.55	0.683	0.78	:	:	ı	0.55	0.683	0.78
Nickel	က	3	13.6	19.4	24.7	-	-	1	13.6	19.4	24.7
Potassium	ဇ	8	1540	1820	2050	:	ı	:	1540	1820	2050
Selenium	က	3	0.12	0.38	0.54	:	:	:	0.12	0.38	0.54
Silver	က	3	0.18	0.277	0.38	-	-	1	0.18	0.277	0.38
Sodium	က	ဇ	64	90.1	126	ı	ı	ŀ	64	90.1	126
Thallium	က	ဇ	0.17	0.214	0.243	1	ı	1	0.17	0.214	0.243
Vanadium	က	က	26.4	32.5	37.2	:	:	:	26.4	32.5	37.2
Zinc	က	က	144	216	270	:	:	:	144	216	270
RFC - Conventional Parameters	S										
CEC (me/100 gm)		9	14.7	19.6	24	:	:	:	14.7	19.6	24
Organic carbon (%)	9	9	2.92	4.65	5.49	:	:	:	2.92	4.65	5.49
Solids (%)	9	9	91.8	95.7	98.5	:	:	:	91.8	95.7	98.5
RFC - Metals/Metalloids (mg/kg)	(6										
Aluminum		9	0966	11800	13000	:	:	:	0966	11800	13000
Antimony	9	9	2.19	3.06	5.23	:	:	:	2.19	3.06	5.23
Arsenic	9	9	17.2	24.1	31.4	:	:	:	17.2	24.1	31.4
Barium	9	9	155	195	260	:	:	:	155	195	260
Beryllium	9	9	0.47	0.545	0.637	:	:	:	0.47	0.545	0.637
Cadmium	9	9	8.39	10	14.3	:	:	:	8.39	10	14.3
Calcinm	9	9	5420	6510	8590	:	:	:	5420	6510	8290
Chromium	9	9	21.7	24.7	26.3	:	:	:	21.7	24.7	26.3
Cobalt	9	9	8.19	8.71	9.12	:	:	:	8.19	8.71	9.12
Copper	9	9	69.4	123	154	:	:	:	69.4	123	154
Iron	9	9	18400	19400	21100		:	:	18400	19400	21100
Lead	9	9	373	540	730	:	:	:	373	540	730
Magnesium	9	9	5610	6160	6620	:	:	:	5610	6160	6620
Manganese	9	9	276	328	446		:	1	276	328	446
Mercury	9	9	0.13	0.185	0.24	:	:	:	0.13	0.185	0.24
Molybdenum	9	9	0.92	1.09	1.23		:	:	0.92	1.09	1.23
Nickel	9	9	18.3	19.7	21.3		:	1	18.3	19.7	21.3
Potassium	9	9	1380	1750	2190	:	:	:	1380	1750	2190
Selenium	9	9	0.42	0.556	0.755	:	:	:	0.42	0.556	0.755
Silver	9	9	0.65	0.829	1.07	:	:	:	0.65	0.829	1.07
Sodium	9	9	109	138	217	:	:	:	109	138	217
Thallium	9	9	0.28	0.335	0.37	:	:	:	0.28	0.335	0.37
Vanadium	9	9	32.3	36.2	38.9	:	:	:	32.3	36.2	38.9
Zinc	9	9	300	411	616	:	:	:	300	411	616
RFD - Conventional Parameters	.S										
CEC (me/100 gm)	2	2	7.15	8.78	10.4			:	7.15	8.78	10.4
Organic carbon (%)	2	2	2.06	2.48	2.89	:	:	:	2.06	2.48	2.89
Solids (%)	2	2	99.1	99.3	99.4	:	:	:	99.1	99.3	99.4
RFD - Metals/Metalloids (mg/kg)	(6										
Aluminum		2	2600	6020	6430	:	:	:	2600	6020	6430
Antimony	2	2	3.77	3.84	3.91	:	:	:	3.77	3.84	3.91
Arsenic	2	2	11.8	13.1	14.4	:	:	:	11.8	13.1	14.4
Barium	2	2	213	228	242	:	:	:	213	228	242
Beryllium	2	2	0.24	0.252	0.263	:	:	:	0.24	0.252	0.263

Table 5-2b. Relict Floodplain Deposition Area Summary Statistics for < 2-mm Fraction Metals and Conventional Parameter Results

		Number of	Minimim		Maximim	Minimum	Mean	Maximum			Overall
	Number of	Detected	Detected	Mean Detected	Detected	Nondetected	Nondetected	Nondetected	Overall	Overall Mean	Maximum
Analyte	Samples	Values	Values	Values	Values	Value ^a	Value ^a	Value ^a	Minimum Value ^a	Value ^a	Value ^a
RFD - Metals/Metalloids (mg/kg) (continued)	(kg) (continued)										
Cadmium	2	2	4.75	4.81	4.87	:	:	:	4.75	4.81	4.87
Calcium	2	2	10300	14900	19500	:	:	:	10300	14900	19500
Chromium	2	2	14.3	15	15.6	ŀ	ı	ŀ	14.3	15	15.6
Cobalt	2	2	4.75	5.37	5.99	ŀ	:	ŀ	4.75	5.37	5.99
Copper	2	2	37.9	84	130	:	:	:	37.9	84	130
Iron	2	2	15000	20600	26100	ŀ	ı	ŀ	15000	20600	26100
Lead	2	2	318	321	323	ŀ	:	ŀ	318	321	323
Magnesium	2	2	7200	7910	8620	ŀ	ŀ	ŀ	7200	7910	8620
Manganese	2	2	280	394	202	:	:	:	280	394	202
Mercury	2	2	0.23	0.25	0.27	ŀ	:	ŀ	0.23	0.25	0.27
Molybdenum	2	2	1.11	1.91	2.71	ŀ	ŀ	ŀ	1.11	1.91	2.71
Nickel	2	2	11.3	11.6	11.8	:	ı	:	11.3	11.6	11.8
Potassium	2	2	1300	1300	1300	:	:	:	1300	1300	1300
Selenium	2	2	0.307	0.414	0.52	:	:	:	0.307	0.414	0.52
Silver	2	2	0.34	0.445	0.55	:	:	ŀ	0.34	0.445	0.55
Sodium	2	2	88	159	230	:	ı	:	88	159	230
Thallium	2	2	0.26	0.279	0.297	:	:	:	0.26	0.279	0.297
Vanadium	2	2	22.2	23.1	24	:	:	:	22.2	23.1	24
Zinc	2	2	089	1640	2600	:	:	:	089	1640	2600

For decision units (DUs) with field split and triplicate samples, summany statistics are based on the average of results for the DU. Nondetected values (NDs) are included as half the reporting limits (RLs). ^a Calculated with nondetected results at one-half of the detection limit.

CEC - cation exchange capacity me/100 gm - miliequivalents per 100 grams

mg/kg - milligram per kilogram RFA, RFB, RFC, RFD - relict flood plain depositional areas A, B, C, and D --- no nondetected values

Table 5-2c. Relict Floodplain Deposition Area Summary Statistics for < 149-µm Fraction Metals and Conventional Parameter Results

		,	Minim		A A	Minimim	Mean	Maximum			Overall
	Nimber of	Number of Detected	Detected	Mean Detected	Maximum	Nondetected	Nondetected	Nondetected	Overall	Overall Mean	Maximum
Analyte	Samples	Values	Values	Values	Values	Value ^a	Value ^a	Value ^a	Minimum Value ^a	Value ^a	Value ^a
RFA - Convention	RFA - Conventional Parameters (%)	(%									
Solids	2	2	98.1	99.1	9.66	:	1	:	98.1	99.1	9.66
RFA - Metals/Metalloids (mg/kg)	alloids (mg/kg)										
Aluminum	2	2	4550	4950	5310			-	4550	4950	5310
Antimony	2	2	4.88	7.85	9.97	-	1	:	4.88	7.85	9.97
Arsenic	2	2	11.1	15.8	21.4	:	1	:	11.1	15.8	21.4
Barium	2	2	431	484	260	:	ı	ı	431	484	260
Beryllium	2	2	0.255	0.265	0.28	:	1	i	0.255	0.265	0.28
Cadmium	2	2	6.81	8.11	9.83	:	:	:	6.81	8.11	9.83
Calcium	2	2	41200	49700	26700	i	1	i	41200	49700	26700
Chromium	2	2	15.8	18.2	20.5	:	:	:	15.8	18.2	20.5
Cobalt	2	2	5.76	6.45	7.22	:	1	:	5.76	6.45	7.22
Copper	2	22	82.7	114	138	:	1	:	82.7	114	138
Iron	2	2	24200	30200	39000	:	:	:	24200	30200	39000
Lead	2	2	303	389	468	:	:	ŀ	303	389	468
Magnesium	2	2	22600	26800	30400	:	:	:	22600	26800	30400
Manganese	2	2	330	360	387	-	1	:	330	360	387
Mercury	2	2	0.2	0.804	2.74	-	1	:	0.2	0.804	2.74
Molybdenum	2	2	5.43	6.29	29.9		-	:	5.43	6.29	6.67
Nickel	2	2	15.1	17.4	20.5	:	1	:	15.1	17.4	20.5
Potassium	2	2	839	894	936	:	:	:	839	894	936
Selenium	2	2	0.505	99.0	0.847	:	:	:	0.505	99.0	0.847
Silver	2	2	1.08	1.4	1.8	:	ı	:	1.08	1.4	1.8
Sodium	2	വ	110	124	136	:	1	:	110	124	136
Thallium	2	2	0.275	0.312	0.377	:	1	:	0.275	0.312	0.377
Vanadium	2	2	29.4	32.8	36.2	:	:	:	29.4	32.8	36.2
Zinc	2		1570	1820	2140	:	:	:	1570	1820	2140
FB - Convention	RFB - Conventional Parameters (%)	_									
Solids	3	3	96.1	97.8	9.66	:	1	:	96.1	97.8	9.66
RFB - Metals/Metalloids (mg/kg)	alloids (mg/kg)										
Aluminum	က	ဇ	8330	9810	11300	:	:	:	8330	9810	11300
Antimony	က	ဇ	0.81	1.47	1.99	:	ı	:	0.81	1.47	1.99
Arsenic	က	က	6.4	9.39	12.5	:	:	:	6.4	9.39	12.5
Barium	က	ဇ	120	169	242	:	1	:	120	169	242
Beryllium	က	က	0.29	0.393	0.5	:	1	:	0.29	0.393	0.5
Cadmium	က	က	1.5	2.34	3.2	:	:	:	1.5	2.34	3.2
Calcium	₅₀	20	2670	3910	0/99	:	:	:	7670	3910	0/99
Chromium	ကျ	ကျ	19.6	25.4	32.4	:	:	:	19.6	25.4	32.4
Cobait	n (m (5.95	7.05	8.45	:	:	:	5.95	7.05	8.45
Copper	n (m (12.9	17.8	24.1	:	1	:	12.9	17.8	24.1
1011	0 0	0 0	71.8	130	1000	:	:	:	71.8	130	19000
Lead	2 (2 0	0. 0.	130	182	:	•	:	0.1.0	200	181
Magnesium	m (m (4040	4960	6030	:	1	:	4040	4960	6030
Manganese	ည	ε (276	339	417	:	•	:	276	339	417
Mercury	ED .	₁₀	0.02	0.0456	0.08	:	:	:	0.02	0.0456	0.08
Molybdenum	က	8	0.45	0.584	0.74	:	:	:	0.45	0.584	0.74

Table 5-2c. Relict Floodplain Deposition Area Summary Statistics for < 149-µm Fraction Metals and Conventional Parameter Results

		Number of	Minimum		Maximum	Minimum	Mean	Maximum			Overall
Analyte	Number of Samples	Detected Values	Detected Values	Mean Detected Values	Detected Values	Nondetected Value ^a	Nondetected Value ^a	Nondetected Value ^a	Overall Minimum Value ^a	Overall Mean Value ^a	Maximum Value ^a
RFB - Metals/Metalloids (mg/kg) (continued)	lloids (mg/kg) (c	continued)									
Nickel	3	3	13.8	18.1	23.4	:	:	:	13.8	18.1	23.4
Potassium	က	8	1590	1820	1950	:	:	ŀ	1590	1820	1950
Selenium	ო	က	0.13	0.296	0.47	·	:	:	0.13	0.296	0.47
Silver	ო	က	0.13	0.212	0.31	:	ı	ŀ	0.13	0.212	0.31
Sodium	ო	က	64.1	89.9	128	:	:	:	64.1	89.9	128
Thallium	က	က	0.18	0.23	0.28	:	:	:	0.18	0.23	0.28
Vanadium	က	က	27.2	32	38.5	:	:	ı	27.2	32	38.5
Zinc	က	က	137	192	250	:	:	:	137	192	250
RFC - Conventional Parameters (%	al Parameters (%	(%)									
Solids	9	9	94.9	97.2	66	:	:	·	94.9	97.2	66
REC - Metals/Metalloids (mg/kg	lloids (ma/ka)										
Aliminim	(Burgar) and	9	8770	10700	12400	:		:	8770	10700	12400
Antimony	o (c	o (c	134	2,00	3.03	:	:	ŀ	134	218	3 03
Arconic	ο (c	ی و	0.7	2 CC	27.2	1	1	1	5 7	2 CC	27.0
Rarium	o (c	ی و	11.5	75.0	27.7	:	:	:	115	158	27.12
Beryllium	9 6	9 6	0.375	0.459	0.54	:	1	ŀ	0.375	0.459	0.54
Cadmium	ဖ	9	4.53	6.85	8.49	:	:	:	4.53	6.85	8.49
Calcinm	ဖ	9	4060	5150	5840	:	:	:	4060	5150	5840
Chromium	9	9	20.7	23.1	25.4	:	1	ŀ	20.7	23.1	25.4
Cobalt	9	9	7.12	7.62	8.28	:	:	ŀ	7.12	7.62	8.28
Copper	9	9	50.8	99.3	133	:	ı	ŀ	50.8	99.3	133
Iron	9	9	16900	17900	19800	:	:	:	16900	17900	19800
Lead	9	9	239	420	292	:	:	:	239	420	292
Magnesium	9	9	2060	5630	6240	:	:	:	2060	5630	6240
Manganese	9	9	219	569	326	:	1	1	219	269	326
Mercury	9	9	0.08	0.16	0.207	:	:	:	0.08	0.16	0.207
Molybdenum	9	9	0.7	0.855	1.09	:	:	:	0.7	0.855	1.09
Nickel	9	9	16.6	17.8	19.2	:	:	:	16.6	17.8	19.2
Potassium	9	9	1320	1670	1990	:	ı	1	1320	1670	1990
Selenium	9	9	0.28	0.418	0.537	:	:	:	0.28	0.418	0.537
Silver	9	9	0.38	0.604	0.827	:	:	:	0.38	0.604	0.827
Sodium	9	9	106	139	219	:	:	:	106	139	219
Ihallium	9	9	0.23	0.306	0.363	:	:	:	0.23	0.306	0.363
Vanadium	9	9	30	33.2	35.8	:	:	:	30	33.2	35.8
Zinc	9	9	211	334	426	:	:	:	211	334	426
RFD - Conventional Parameters (%)	al Parameters (5	(%)									
Solids	2	2	99.1	99.3	93.5	-	:	-	99.1	66.3	99.5
RFD - Metals/Metalloids (mg/kg)	lloids (mg/kg)										
Aluminum	2	2	4420	2890	7360	:	:		4420	2890	7360
Antimony	2	2	2.92	3.02	3.11	:	:	:	2.92	3.02	3.11
Arsenic	2	2	16.1	17.3	18.4	:	:	:	16.1	17.3	18.4
Barium	2	2	351	432	512	:	:	:	351	432	512
Beryllium	2	2	0.23	0.272	0.313	:	:		0.23	0.272	0.313
Cadmium	2	2	2.7	6.47	7.23	:	:	:	5.7	6.47	7.23
Calcium	2	2	17200	33700	50200	:	:	:	17200	33700	50200

Table 5-2c. Relict Floodplain Deposition Area Summary Statistics for < 149-µm Fraction Metals and Conventional Parameter Results

		Number of	Minimum		Maximum	Minimum	Mean	Maximum			Overall
	Number of	Detected	Detected	Mean Detected	Detected	Nondetected	Nondetected	Nondetected	Overall	Overall Mean	Maximum
Analyte	Samples	Values	Values	Values	Values	Value ^a	Value ^a	Value ^a	Minimum Value ^a	Value ^a	Value ^a
-D - Metals/Meta	RFD - Metals/Metalloids (mg/kg) (continued)	continued)									
Chromium	2	2	14	15.7	17.3	:	:	1	14	15.7	17.3
Cobalt	2	2	4.68	5.09	5.5	:	-	ŀ	4.68	5.09	5.5
Copper	2	2	40.2	47.2	54.2	:	:	ı	40.2	47.2	54.2
Iron	2	2	17800	20400	23000	ŀ	1	ŀ	17800	20400	23000
Lead	2	2	369	391	413	:	:	ŀ	369	391	413
Magnesium	2	2	11400	19500	27500	:	:	ı	11400	19500	27500
Manganese	2	2	315	335	354	:	:	ı	315	335	354
Mercury	2	2	0.167	0.299	0.43	:	:	ŀ	0.167	0.299	0.43
Molybdenum	2	2	1.51	2.97	4.42	:	:	ŀ	1.51	2.97	4.42
Nickel	2	2	13.4	13.8	14.2	:	:	ı	13.4	13.8	14.2
Potassium	2	2	947	1230	1510	:	:	ŀ	947	1230	1510
Selenium	2	2	0.33	0.41	0.49	:	:	ŀ	0.33	0.41	0.49
Silver	2	2	0.373	0.467	0.56	ŀ	:	ŀ	0.373	0.467	0.56
Sodium	2	2	100	112	124	:	:	ŀ	100	112	124
-hallium	2	2	0.27	0.319	0.367	:	:	ŀ	0.27	0.319	0.367
Vanadium	2	2	29	29.5	29.9	ŀ	:	ŀ	29	29.5	29.9
Zinc	2	2	191	1250	1740	:	ı	:	292	1250	1740

For decision units (DUs) with field split and triplicate samples, summary statistics are based on the average of results for the DU. Nondetected values (NDs) are included as half the reporting limits (RLs).

 $\ensuremath{\mathrm{a}}$ Calculated with nondetected results at one-half of the detection limit.

mg/kg - milligram per kilogram RFA, RFB, RFC, RFD - relict flood plain depositional areas A, B, C, and D

-- - no nondetected values

Table 5-3a. Windblown Sediment Deposition Area Summary Statistics for Bulk Soil Sample Conventional Parameter Results

		Nimborof	Minimim		Maximim	Minimum	Mean	Maximum	Overall		()Vera
	Number of	Detected	Detected	Mean Detected	Detected	Nondetected	Nondetected	Nondetected	Minimum	Overall Mean	Maximum
Analyte	Samples	Values	Values	Values	Values	Value ^a					
Columbia Beach North - Conventional Parameters (%)	Conventional Pa	arameters (%)									
Solids	4	4	98.4	286	99.1	1	:	:	98.4	98.7	99.1
Grain Size											
Clay	4	4	1.91	2.8	3.67	:	:	:	1.91	2.8	3.67
Silt	4	4	20.3	29	35.4	1	1	ı	20.3	29	35.4
Very fine sand	4	4	7.9	11.9	15.97	:	:	1	7.9	11.9	15.97
Fine sand	4	4	8.94	11.1	14.3	:	1	ŀ	8.94	11.1	14.3
Medium sand	4	4	99.6	12.8	16.39	1	1	ŀ	99.6	12.8	16.39
Coarse sand	4	4	5.91	10.3	14.41	:	ŀ	ŀ	5.91	10.3	14.41
Very coarse sand	4	4	4.16	7.09	11	i	:	:	4.16	7.09	11
Very fine gravel	4	4	2.94	9.76	11.9	:	:	:	2.94	9.76	11.9
Fine gravel	4	4	2.43	4.67	8.16	:	:	:	2.43	4.67	8.16
Medium gravel	4	4	0	1.05	4.17	:	:	1	0	1.05	4.17
Coarse gravel	4	4	0	0	0	:	1	:	0	0	0
Very coarse gravel	4	4	0	0	0	:	:	:	0	0	0
Cobbles	4	4	0	0	0	:	:	:	0	0	0
Columbia Beach South - Conventional Parameters	- Conventional Pa	arameters									
(NS) Hd	2	2	6.43	6.46	6.48	:	:	:	6.43	6.46	6.48
Solids (%)	2	2	66	99.2	99.3	i	:	:	66	99.2	99.3
Grain Size (%)											
Clay	2	2	1.76	2.14	2.51	:	:	:	1.76	2.14	2.51
Silt	2	2	16.85	22.5	28.1	:	;	:	16.85	22.5	28.1
Very fine sand	2	2	10.61	12.5	14.35	:	:	:	10.61	12.5	14.35
Fine sand	2	2	17.28	18.6	19.91	:	:	1	17.28	18.6	19.91
Medium sand	2	2	11.92	12.8	13.62	:	:	1	11.92	12.8	13.62
Coarse sand	2	2	10.51	10.8	11.04	:	:	:	10.51	10.8	11.04
Very coarse sand	2	2	4.09	7.36	10.62	:	:	:	4.09	7.36	10.62
Very fine gravel	2	2	1.82	7.51	13.19	:	:	:	1.82	7.51	13.19
Fine gravel	2	2	1.65	3.52	5.38	:	:	1	1.65	3.52	5.38
Medium gravel	2	2	0.08	0.605	1.13	:	:	1	0.08	0.605	1.13
Coarse gravel	2	2	0	0	0	:	:	:	0	0	0
Very coarse gravel	2	2	0	0	0	:	:	:	0	0	0
Copples	2	I	0	0	0	:	:	:	0	0	0
Marcus Flats East - Conventional Parameters	ventional Parame										
pH (SU)	7	7	5.09	5.51	5.73	:	:	:	5.09	5.51	5.73
Solids (%)	7	7	90.4	92.3	93.6	:	:	:	90.4	92.3	93.6
Grain Size (%)											
Clay	7	7	1.37	2.52	3.58	:	:	:	1.37	2.52	3.58
Silt	7	7	20.51	25.1	30.15	:	:	1	20.51	25.1	30.15
Fine sand	7	7	8.02	12.3	16.2	:	:	:	8.02	12.3	16.2
Medium sand	7	7	4.51	6.7	9.47	:	:	1	4.51	6.7	9.47
Coarse sand	7	7	2.38	4.15	8.83	-	:	1	2.38	4.15	8.83
Fine gravel	7	7	2.48	8.07	14.74	-	1	1	2.48	8.07	14.74
Medium gravel	7	7	0	16.4	37.81	:	:	1	0	16.4	37.81
Coarse gravel	7	7	0	0	0	:	:	:	0	0	0
Cobbles	7	7	0	0	0	;	;	;	0	0	0

Table 5-3a. Windblown Sediment Deposition Area Summary Statistics for Bulk Soil Sample Conventional Parameter Results

	-		•		-						
		Number of	Minimum		Maximum	Minimum	Mean	Maximum	Overall		Overall
	Number of	Detected	Detected	Mean Detected	Detected	Nondetected	Nondetected	Nondetected	Minimum	Overall Mean	Maximum
Analyte	Samples	Values	Values	Values	Values	Value ^a					
Marcus Flats East - Conventional Parameters (continued,	entional Param	eters (continued	1,								
Very fine sand	7	7	9.64	15.2	21	1	1	ı	9.64	15.2	21
Very coarse sand	7	7	2.56	4.36	7.2	:	1	:	2.56	4.36	7.2
Very fine gravel	7	7	3.36	4.62	6.2	1	1	ı	3.36	4.62	6.2
Very coarse gravel	7	7	0	0	0	:	:	:	0	0	0

Notes:
For decision units (DUs) with field split and triplicate samples, summary statistics are based on the average of results for the DU. Nondetected values (NDs) are included as half the reporting limits (RLs).

 $^{^{\}rm a}$ Calculated with nondetected results at one-half of the detection limit. SU - standard unit

^{-- -} no nondetected values

Upper Columbia River

Soil Study Data Summary and Data Gap Report

Table 5-3b. Windblown Sediment Deposition Area Summary Statistics for < 2-mm Fraction Metals and Conventional Parameter Results

	Number of	Number of	Minim	Mean Detected	Maximix	Minimum	Mean	Maximum	Overall	Overall	Overall
Analyte	Samples	Detected Values Detect	Detected Values		Detected Values	Value ^a					
Columbia Beach North - Conventional Parameters	ventional Parame	ters									
CEC (me/100 gm)	4		7.28	8.63	11.5	:	:	:	7.28	8.63	11.5
Organic carbon (%)	4	4	0.89	1.28	1.76	ı	:	:	0.89	1.28	1.76
Solids (%)	4	4	99.2	99.4	9.66	:	:	:	99.2	99.4	9.66
Columbia Beach North - Meta	 Metals/Metalloids (mg/kg) 	/kg)									
Aluminum	4	4	10800	11600	13200	:	:	:	10800	11600	13200
Antimony	4	4	0.21	0.257	0.287	:	:	:	0.21	0.257	0.287
Arsenic	4	4	6.62	7.38	8.26	:	:	:	6.62	7.38	8.26
Barium	4	4	122	141	158	:	:	:	122	141	158
Beryllium	4	4	0.39	0.433	0.47	:	:	:	0.39	0.433	0.47
Cadmium	4	4	0.205	0.242	0.3	:	:	:	0.205	0.242	0.3
Calcium	4	4	2480	2810	3220	:	:	:	2480	2810	3220
Chromium	4	4	14.5	15.9	18.8	:	:	:	14.5	15.9	18.8
Cobalt	4	4	6.16	6.57	7.16	:	:	:	6.16	6.57	7.16
Copper	4	4	12.9	14.4	16	:	:	:	12.9	14.4	16
Iron	4	4	15800	16500	17100	:	:	:	15800	16500	17100
Lead	4	4	9.49	10.7	12.1	:	:	:	9.49	10.7	12.1
Magnesium	4	4	3580	3890	4310	ı	1	1	3580	3890	4310
Manganese	4	4	349	374	387	ŀ	ŀ	ŀ	349	374	387
Mercury	4	4	0.0085	0.00913	0.01	:	:	:	0.0085	0.00913	0.01
Molybdenum	4	4	0.46	0.521	0.58	ı	1	1	0.46	0.521	0.58
Nickel	4	4	12.7	13.5	15.6	1	:	:	12.7	13.5	15.6
Potassium	4	4	1890	2280	2640	:	:	:	1890	2280	2640
Selenium	4	4	0.08	0.0846	60.0	:	:	:	0.08	0.0846	60.0
Silver	4	4	0.035	0.0429	0.05	:	:	:	0.035	0.0429	0.05
Sodium	4	4	88.3	104	120	:	:	:	88.3	104	120
Thallium	4	4	0.11	0.118	0.12	:	:	:	0.11	0.118	0.12
Vanadium	4	4	24.1	25.5	27	:	:	:	24.1	25.5	27
Zinc	4		48.9	52.9	59	:	:	:	48.9	52.9	59
Columbia Beach South - Conventional Parameters	ventional Param										
CEC (me/100 gm)	2	2	7.08	7.41	7.73				7.08	7.41	7.73
Organic carbon (%)	2	2	1.02	1.19	1.35	:	:	:	1.02	1.19	1.35
Solids (%)	2	2	99.4	99.5	99.5	-			99.4	99.5	99.5
Columbia Beach South - Meta	- Metals/Metalloids (mg/kg	_									
Aluminum	2		9110	0986	10600	:	:	:	9110	0986	10600
Antimony	2	2	0.17	0.18	0.19	:	:	:	0.17	0.18	0.19
Arsenic	2	2	5.28	5.43	5.58	:	:	:	5.28	5.43	5.58
Barium	2	2	95.1	105	115	:	:	:	95.1	105	115
Beryllium	2	2	0.34	0.355	0.37	:	:	:	0.34	0.355	0.37
Cadmium	2	2	0.18	0.18	0.18	:	:	:	0.18	0.18	0.18
Calcinm	2	2	2140	2360	2580	:	:	:	2140	2360	2580
Chromium	2	2	11.9	13.5	15	:	:	:	11.9	13.5	15
Cobalt	2	2	4.88	5.33	5.78	:	:	:	4.88	5.33	5.78
Copper	2	2	11.1	11.9	12.7	:	:	:	11.1	11.9	12.7
Iron	2	2	13500	14000	14500	:	:	:	13500	14000	14500
Lead	2	2	7.91	8.04	8.16	:	:	:	7.91	8.04	8.16
Magnesium	2	2	3400	3490	3580	ı	1	1	3400	3490	3580
Manganese	2	2	306	307	307	:	1	:	306	307	307
Mercury	2	2	0.007	0.0075	0.008	:	:	:	0.007	0.0075	0.008
Molybdenum	2	2	0.37	0.38	0.39	:	:	:	0.37	0.38	0.39
Nickel	2	2	10.3	11.5	12.6	:	:	:	10.3	11.5	12.6
Potassium	2	2	1790	1880	1960	:	:	:	1790	1880	1960

Soil Study Data Summary and Data Gap Report

Table 5-3b. Windblown Sediment Deposition Area Summary Statistics for < 2-mm Fraction Metals and Conventional Parameter Results

						MINIMUM	Mean	Maximum	Overall	Overall	Overall
	Number of	Number of	Number of Minimum	Mea	Maximum	Nondetected	Nondetected	Nondetected	Minimum	Mean	Maximum
Analyte	Samples	Detected Values	Detected Values	Values	Detected Values	Value ^a					
Columbia Beach South - Metals/Metalloids (mg/kg) (continued)	tals/Metalloids (mg	g/kg) (continued)									
Selenium	2	1	0.08	0.08	80.0	0.095	0.095	0.095	0.08	0.0875	0.095
Silver	2	2	0.02	0.025	0.03	:	ŀ	:	0.02	0.025	0.03
Sodium	2	2	77.5	98	94.5	:	:	:	77.5	86	94.5
Thallium	2	2	60.0	0.095	0.1	:	ŀ	ŀ	0.09	0.095	0.1
Vanadium	2	2	18.4	20.7	22.9	:	:	:	18.4	20.7	22.9
Zinc	2	2	45	45.2	45.4				45	45.2	45.4
Marcus Flats East - Conventional Parameters	ional Parameters										
CEC (me/100 gm)	7	7	21.1	22.5	23.9	:	:	:	21.1	22.5	23.9
Organic carbon (%)	7	7	4.61	5.92	7.44	:	:	ŀ	4.61	5.92	7.44
Solids (%)	7	7	94.1	95.7	26	:	ŀ	ŀ	94.1	95.7	26
Marcus Flats East - Metals/Metalloids (mg/kg)	letalloids (mg/kg)										
Aluminum	7	7	14300	16700	18200	:	:	:	14300	16700	18200
Antimony	7	7	1.96	2.57	3.28	ŀ	ı	ŀ	1.96	2.57	3.28
Arsenic	7	7	11.5	14.8	17.6	:	:	:	11.5	14.8	17.6
Barium	7	7	149	174	189		:	:	149	174	189
Beryllium	7	7	0.44	0.513	0.57	:	:	-	0.44	0.513	0.57
Cadmium	7	7	3.11	3.88	5.01		:	:	3.11	3.88	5.01
Calcium	7	7	3060	3420	3850	ı	ı	:	3060	3420	3850
Chromium	7	7	11.7	12.5	14.2	:	:	:	11.7	12.5	14.2
Cobalt	7	7	4.43	4.98	5.24	:	ı	;	4.43	4.98	5.24
Copper	7	7	12.1	15	17.9	:	:	:	12.1	15	17.9
Iron	7	7	13200	13900	14500	:	:	:	13200	13900	14500
Lead	7	7	135	171	236	:	:	:	135	171	236
Magnesium	7	7	2950	3080	3360	:	:	:	2950	3080	3360
Manganese	7	7	415	482	547	:	ı	:	415	482	547
Mercury	7	7	0.05	0.0655	0.105	:	:	:	0.05	0.0655	0.105
Molybdenum	7	7	0.49	0.557	0.745	:	:	:	0.49	0.557	0.745
Nickel	7	7	10.1	10.8	11.4	-	:	:	10.1	10.8	11.4
Potassium	7	7	1410	1480	1590	ı	ı	:	1410	1480	1590
Selenium	7	7	0.177	0.225	0.28	:	:	:	0.177	0.225	0.28
Silver	7	7	90.0	0.0936	0.145	:	ı	;	90.0	0.0936	0.145
Sodium	7	7	91.3	122	137	:	:	:	91.3	122	137
Thallium	7	7	0.2	0.233	0.27	:	:	-	0.2	0.233	0.27
Vanadium	7	7	22.9	24.5	25.9	:	:	:	22.9	24.5	25.9
Zinc	7	7	140	184	258	:	:	:	140	184	258

For decision units (DUs) with field split and triplicate samples, summany statistics are based on the average of results for the DU. Nondetected values (NDs) are included as half the reporting limits (RLs).

^a Calculated with nondetected results at one-half of the detection limit.

CEC - cation exchange capacity

mg/kg - milligram per kilogram

me/100 gm - millequivalents per 100 grams -- - no nondetected values

Upper Columbia River Soil Study Data Summary and Data Gap Report

Table 5-4. Summary Statistics for IVBA Results

Analyte ADA - High-density Aluminum Antimony Arsenic Barium Beryilium	Soil Fraction < 149-µm < 149-µm	Number of Samples	Detected	Detected	Mean Detected Values	Detected Values	Nondetected Value ^a	Nondetected Value ^a	Nondetected Value ^a	Minimum Value ^a	Overall Mean Value ^a	Maximum Value ^a	Units
ADA - High-density ADA - High-density Aluminum Aluminum Arsenic Barium Beryilium	Soll Fraction< 149-µm< 149-µm	Samples 11	Values	Values	values	values	value	\algae	value	value	value	Value	2 2
Aluminum Antimony Arsenic Barium Berlium	< 149-µm < 149-µm	1-											
Auminum Antimony Arsenic Barium Beryllium	< 149-µm	-											
Antimony Arsenic Barium Beryllium	< 149-µm		11	14.8	20.9	28.4	:	:	:	14.8	20.9	28.4	%
Arsenic Barium Beryllium		7	17	19.7	37	53.7	1	:	:	19.7	37	53.7	%
Barium Beryllium	< 149-µm	11	11	26.3	36.4	49.2	:	:	:	26.3	36.4	49.2	%
Beryllium	< 149-µm	11	11	45.8	61.8	2.69		:	:	45.8	61.8	69.7	%
	< 149-µm	7	1	27.8	30.6	32.7	1			27.8	30.6	32.7	%
Cadmium	< 149-µm	7	11	89	81	91.9	1	:	:	89	84	91.9	%
Calcium	< 149-um	7	11	60.5	73.6	85.2		:	:	60.5	73.6	85.2	%
Chromium	< 149-um	1	11	2.1	3.56	4.9		:	:	2.1	3.56	4.9	%
Cobalt	< 149-µm	17	11	13.6	16.6	21.3		:	:	13.6	16.6	21.3	%
Copper	< 149-um	11	11	20.6	26.9	40	ı	:	:	20.6	26.9	40	%
Iron	< 149-um	11	11	4.3	6.51	8.8	ı	:	:	4.3	6.51	8.8	%
Lead	< 149-um	11	11	67.4	85.2	95.9	:	:	:	67.4	85.2	95,9	%
Magnesium	< 149-um	1	1	1.9	4.35	9.9	:	:	:	1.9	4.35	9.9	%
Manganese	< 149-um	-	-	37.6	50.4	58.2	:	;	:	37.6	50.4	58.2	%
Mercury	< 149-um	1	6	2.8	6.4	9.5	:	:	:	2.8	6.4	9.5	%
Molybdenum	< 149-um	1	10	2.9	5.36	11.1	:	:	:	2.9	5.36	11.1	%
Nickel	< 149-um	-	1	3.4	5.75	9.4		:	:	3.4	5.75	9.4	%
Potassium	< 149-um	1	1	13.1	20	27.5		:	:	13.1	20	27.5	%
Selenium	< 149-um	11	-	11.8	11.8	11.8	:	:	:	11.8	11.8	11.8	%
Silver	< 149-um	11	11	53.1	60.4	67.5	:	:	:	53.1	60.4	67.5	%
Sodium	< 149-um	1	1	4	9.65	14.2	:	:	:	4	9.65	14.2	%
Thallium	< 149-um	11	11	13.2	19	26.8	ı	:	:	13.2	19	26.8	%
Vanadium	< 149-µm	7	11	က	4.76	5.8	1	:	:	က	4.76	5.8	%
Zinc	< 149-µm	17	11	28.5	45.9	52.2	:	:	:	28.5	45.9	52.2	%
ADA - Primary													
Aluminum	< 149-µm	11	11	9.4	18.6	30.6	-	:	:	9.4	18.6	30.6	%
Antimony	< 149-µm	11	11	21.6	30.2	37.6	1	:	:	21.6	30.2	37.6	%
Arsenic	< 149-µm	7	7	14.9	27.8	42.9	:	:	:	14.9	27.8	42.9	%
Barium	< 149-µm	7	11	54.3	62.7	9.92		:	:	54.3	62.7	9.92	%
Beryllium	< 149-µm	7	7	22.1	31.6	38.5		:	:	22.1	31.6	38.5	%
Cadmium	< 149-µm	1	11	70.5	82.4	87.1	-	:	:	70.5	82.4	87.1	%
Calcinm	< 149-µm	7	77	58.9	76.1	96		:	:	58.9	76.1	96	%
Chromium	< 149-µm	7	1	1.6	3.48	6.9		:	:	1.6	3.48	6.9	%
Cobalt	< 149-µm	11	11	8.1	18.8	30.7	:	:	:	8.1	18.8	30.7	%
Copper	< 149-µm	7	7	13.2	21.5	26.7	:	:	:	13.2	21.5	26.7	%
lron	< 149-µm	7	7	3.1	6.17	10.8	1	:	:	3.1	6.17	10.8	%
Lead	< 149-µm	: -		92	81.9	94	:	:	:	65	81.9	96	%
Magnesium	< 149-µm	11	1,	1.9	8.09	24.7	:	:	:	1.9	8.09	24.7	%
Manganese	< 149-µm	7	17	38.6	52.8	74.5	1	:	:	38.6	52.8	74.5	%
Mercury	< 149-µm	7	9	6.55	7.58	o	1	:	:	6.55	7.58	o	%
Molybdenum	< 149-µm	6	7	3.8	5.45	7.2		:	:	3.8	5.45	7.2	%
Nickel	< 149-µm	7	7	3.1	6.16	8.9	:	:	:	3.1	6.16	8.9	%
Potassium	< 149-µm	7	77	15.2	21.6	30.3		:	:	15.2	21.6	30.3	%
Selenium	< 149-µm	7	_	21.7	21.7	21.7		:	:	21.7	21.7	21.7	%
Silver	< 149-µm	7	7	20.7	61.2	29	:	;	:	50.7	61.2	29	%
Sodium	< 149-µm	11	11	5.4	8.64	16.4	:	:	:	5.4	8.64	16.4	%
Thallium	< 149-µm	7	7	8.7	17.1	41.1	:	:	:	8.7	17.1	41.1	%
Vanadium	< 149-µm	11	11	3.5	5.28	9.6		:	:	3.5	5.28	9.6	%
Zinc	< 149-µm	7	11	19.4	33.6	48.2		:	:	19.4	33.6	48.2	%

Soil Study Data Summary and Data Gap Report

Table 5-4. Summary Statistics for IVBA Results

Machine Signature Signature Village Village Village Village Village Village Village Village Village Village Village Village Village Village Village Village Village Village Village Village Village Village Village Village Village Village Village Village Village	Soil Fraction Samples Values		Values 16.1 23.2 18.1 35.2 34.5 34.5 37.3 37.3 37.3 37.3 37.3 37.3 37.3 37	Values 17.5 28.3 20.7 40.9 34.5 50.7 50.7 40.9 34.5 50.7 60.7 12.9 29.9 63.7 16.1 63.7 12.8 12.8 12.8 12.8 12.8 12.8 12.8 12.8	Value a	Value ^a	Value ^a	Value ^a 14.7 18 18 18 29.4 29.4 34.5 36.8 48.4 12.3 28.3	Value ^a 16.1 23.2 18.1 35.2	Value ^a 17.5 28.3 20.7	Units %
	149-µm 2 149-µm 1 1 1 1 1 1 1 1 1	14.7 18 15.4 29.4 34.5 36.8 36.8 48.4 12.3 28.3 51.7 51.7 61.3 35.4 53.4 13.5 61.3 35.4 53.4 11.2 9.1 11.2 9.1 11.2 9.1 17.6 17.6	16.1 23.2 18.1 35.2 34.5 37.3 49.2 12.6 29.1 55.1 14.8 62.5 36.1 55.1 10.9 13 21.1 21.1 29.8 12.1 12.1 12.1 12.1 12.1 12.1 13.2 14.0 10.9 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0	17.5 28.3 20.7 40.9 34.5 37.7 50. 12.9 53 16.1 63.7 63.7 12.8 12.8 12.8 12.8 12.8 12.8 12.8 12.8				14.7 18 15.4 29.4 34.5 36.8 48.4 12.3 28.3 28.3	16.1 23.2 18.1 35.2	17.5 28.3 20.7	%
Part	C 149-µm C	14.7 18 18 18.4 29.4 34.5 36.8 48.4 12.3 28.3 51.7 61.3 61.3 61.3 35.4 53.4 53.4 11.2 9.1 11.2 9.1 11.2 9.1 17.6 17.6	16.1 23.2 18.1 35.2 34.5 37.3 49.2 12.6 29.1 55.1 14.8 62.5 62.5 36.1 55.1 10.9 13.25 11.8 12.1 21.1 21.1 21.1 43.2	17.5 28.3 20.7 40.9 34.5 37.7 50 12.9 53 16.1 63.7 63.7 63.7 12.6 12.8 12.8 12.8 3.9 12.8 3.9 12.8 3.9 12.8 3.7 12.8 3.7 12.8 3.7 12.8 3.7 12.8 3.7 12.8 3.7 12.8 3.7 12.8 3.7 12.8 3.7 12.8 3.7 12.8 3.7 12.8 3.7 12.8 3.7 12.8 3.7 12.8 12.8 12.8 12.8 12.8 12.8 12.8 12.8				14.7 18 15.4 29.4 34.5 36.8 36.8 12.3 28.3 28.3	16.1 23.2 18.1 35.2	17.5 28.3 20.7	%
100. C 100. 11.0 12.0 <	C 149-µm C	18 15.4 29.4 34.5 36.8 36.8 48.4 12.3 28.3 51.7 51.7 61.3 61.3 61.3 61.3 61.3 93.4 53.4 53.4 11.2 9.1 11.2 9.1 11.2 42.7 42.7	23.2 35.2 34.5 34.5 37.3 49.2 12.6 12.6 62.5 86.1 62.5 11.8 10.9 13.25 11.8 12.1 12.1 12.1 13.25 17.4	28.3 20.7 40.9 34.5 37.7 50 12.9 29.9 53 16.1 63.7 63.7 12.8 12.8 12.8 12.8 12.8 36.7 36.7 12.8 36.7 12.8 12.8 12.8 12.8 12.8 12.8 12.8 12.8				18 15.4 29.4 34.5 36.8 48.4 12.3 28.3 28.3	23.2 18.1 35.2	28.3	
Maintent Cartelonia 2	C 49-µm C 449-µm C	15.4 29.4 34.5 36.8 36.8 48.4 12.3 51.7 13.5 61.3 13.5 61.3 13.5 11.2 9.1 18 18 18 18 17.6 17.6	18.1 35.2 34.5 37.3 49.2 12.6 12.6 12.6 12.6 10.9 11.8 12.1 12.1 12.1 12.1 13.2 14.3 15.1 17.6	20.7 40.9 34.5 37.7 50 12.9 29.9 53 16.1 63.7 96.7 12.8 13.9 12.8 13.9 12.8 13.9 13.9 12.8 13.9 13.6 13.7 13.6 13.7 13.6 13.7 13.6 13.7 13.6 13.7 13.6 13.7 13.6 13.7 13.6 13.7 13.6 13.7 13.6 13.7 13.6 13.7 13.6 13.6 13.6 13.6 13.6 13.6 13.6 13.6				29.4 29.4 34.5 36.8 48.4 12.3 28.3	18.1 35.2	20.7	%
Minth C. (16)	C 49-µm C 49-µm C 449-µm C 4	29.4 29.4 36.8 48.4 12.3 28.3 51.7 13.5 61.3 61.3 61.3 13.5 61.3 13.5 61.3 13.4 53.4 53.4 61.3 10.9 11.2 11.2 11.2 11.2 11.7 42.7 42.7	35.2 37.3 49.2 12.6 29.1 52.4 14.8 62.5 36.1 55.1 10.9 10.9 11.8 10.9 12.1 12.1 12.1 12.1 13.2 17.4	40.9 34.5 37.7 50 12.9 29.9 53 16.1 63.7 66.7 66.7 12.3 12.3 12.3 12.3 12.6 13.2 15.4 15.4				29.4 34.5 36.8 48.4 12.3 28.3	35.2	007	%
No. C. C. C. C. C. C. C.	C 49-µm C 489-µm C	34.5 36.8 48.4 48.4 12.3 28.3 28.3 28.3 61.3 35.4 53.4 53.4 11.2 9.1 11.2 9.1 18 18 18.7 42.7 77.4	34.5 37.3 49.2 12.6 52.4 14.8 62.5 36.1 55.1 10.9 13 12.1 12.1 12.1 12.1 13.2 13.2 13.2 1	34.5 37.7 50 12.9 29.9 29.9 29.9 53.7 16.1 63.7 56.7 56.7 12.3 12.3 12.3 12.3 13.2 13.2 13.2 15.4 13.2				34.5 36.8 48.4 12.3 28.3	27.0	t 5.0	%
	149-µm 2 149-µm 1 1 149-µm 1 1 149-µm 1 1 1 1 1 1 1 1 1	36.8 48.4 12.3 28.3 51.7 61.3 35.4 61.3 35.4 53.4 11.2 9.1 11.2 9.1 10.9 14.7 42.7	37.3 49.2 12.6 29.1 52.4 14.8 62.5 36.1 55.1 10.9 13 21.1 21.1 12.1 12.1 12.1 13.2 13.2 1	37.7 50 12.9 29.9 63.7 36.7 36.7 56.7 56.7 12.3 12.6 13.2 13.2 15.4 13.2 15.4 16.1 17.3 17.4 18.4 19				36.8 48.4 12.3 28.3 51.7	0.4.0	34.5	%
Intitut C 659-mm 2 2 68-3 68-3 59-3 - - 68-2 68-3 68-3 19-3 - - 68-2 18-3 68-3 18-3 - - 68-2 18-3 68-3 18-3 - - 68-2 18-3 68-3 - - - 18-3 18-3 - - 18-3 - - 18-3 -	149-µm 2 149-µm 1 149-µm 1 1 149-µm 1 1 149-µm 1 1 149-µm 1 1 1 1 1 1 1 1 1	48.4 48.4 42.7 48.3 28.3 26.1 51.3 61.3 61.3 35.4 53.4 53.4 11.2 9.1 11.2 9.1 11.2 42.7 42.7 42.7	492 12.6 29.1 52.4 14.8 62.5 36.1 10.9 11.8 10.9 13.25 11.8 12.1 12.1 12.1 12.1 12.1 13.2 14.3 27.4	50 12.9 29.9 53 53 16.1 63.7 63.7 63.7 12.8 12.8 12.8 13.2 13.2 13.2 13.2 13.2 14.2 31.5 15.4				48.4 12.3 28.3 51.7	37.3	37.7	%
mintant (149-µm 2 2 2 2 2 2 2 2 2	12.3 28.3 51.7 13.5 61.3 35.4 13.5 11.2 9.1 13 14.7 42.7 42.7	29.1 52.4 14.8 62.5 36.1 55.1 10.9 11.8 12.1 21.1 29.8 12.1 12.1 12.1 17.6	12.9 29.9 53 16.1 63.7 63.7 56.7 na 3.9 12.6 13.2 13.2 15.4 15.4				12.3 28.3 51.7	49.2	20	%
### 1	149-µm 2 149-µm 1 1 149-µm 1 1 1 1 1 1 1 1 1	28.3 51.7 13.5 61.3 85.4 83.4 na 2.6 11.2 9.1 13 14.7 42.7 42.7	29.1 14.8 16.2.5 36.1 10.9 11.8 10.9 13.2 12.1 12.1 12.1 12.1 13.1 14.3.2	29.9 53 16.1 63.7 36.7 36.7 12.3 12.8 13.9 13.2 13.5 14.2 31.5 15.4 13.7				51.7	12.6	12.9	%
State of the color of	149-µm 2 149-µm 1 1 149-µm 1 1 149-µm 1 1 1 1 1 1 1 1 1	13.5 61.3 35.4 61.3 35.4 53.4 53.4 11.2 9.1 18 18 18.1 10.9 14.7 42.7	22.4 14.8 62.5 36.1 55.1 na 3.25 11.8 10.9 13.2 12.1 12.1 12.1 15.1 17.6	10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1				51.7	29.1	29.9	% 2
Nestline C. 165pine 2 C. 167	1.49-µm 2 1.49-µm 1	61.3 61.3 35.4 53.4 53.4 53.4 53.4 11.2 9.1 18 18 18 18.7 42.7 42.7	14.0 62.5 36.1 55.1 10.9 13 22.5 11.8 10.9 13 12.1 12.1 12.1 15.1 43.2	63.7 36.7 56.7 56.7 12.3 12.3 12.6 13.2 13.2 15.4 15.4 15.4				3.5	92.4	55	% %
residential 2 c.	1	35.4 53.4 53.4 10.9 11.2 9.1 11.2 9.1 10.9 14.7 42.7	36.1 55.1 na 3.25 11.8 10.9 13 21.1 12.1 15.1 43.2	36.7 56.7 56.7 na 3.9 12.3 12.6 13 24.2 31.5 13.5 13.5				0. 20	0. 1.	- 0	۶ ۵
Part	1	53.4 na na 11.2 9.1 11.2 9.1 10.9 14.7 42.7 17.6	20.1 55.1 na 3.25 11.8 10.9 13 21.1 22.8 12.1 12.1 15.1 43.2	50.7 56.7 12.3 12.6 13 24.2 31.5 13.4 13.4 13.4 13.4 13.4 13.4 13.4				01.3	02.3	03.7	% %
Maintenance Categorium Ca	1	2.6 11.2 9.1 13 13 18 18.2 14.7 42.7 42.7	25.1 11.8 10.9 13.25 11.8 21.1 29.8 12.1 15.1 43.2	3.9 12.8 12.6 13.9 13.2 31.5 13.2 15.4 13.2		: : : : : :	: : : : :	4.05	30.1	30.7	% %
Column C 469-lim 2 1	149-pm 2 149-pm 1 1 149-pm 1 1 1 1 1 1 1 1 1	2.6 11.2 9.1 13 18 18 28.1 10.9 14.7 42.7 42.7	3.25 11.8 10.9 13 21.1 29.8 12.1 15.1 43.2 17.6	3.9 12.8 12.6 13 13 24.2 31.5 13.2 15.4 15.4				4.00		7.00	٥ %
table of the part of the par	 (149-µm (1	2.0 11.2 9.1 18 18 28.1 10.9 14.7 42.7 27.4 27.4	25.25 11.8 10.9 10.9 29.8 12.1 15.1 43.2 43.2	24.2 12.3 12.6 13 24.2 31.5 13.2 15.4 15.4		: : : :	: : :	= a	- E	2 2	۶ à
shipm 6 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 num 6 1 0 0 mm 1 0 0 mm 1 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 num 6 1 0 0 mm 2 0 0 0 0 2 0 0 0 2 0	 (149-µm (1	9.1 13 18 18 28.1 10.9 14.7 42.7 42.7 77.4	10.9 10.9 10.9 12.1 12.1 15.1 43.2 17.6	12.6 13 24.2 31.5 13.2 15.4 43.7		: : :	: :	11.0	3.23	9.0	% %
Sealon (1959)	 (149-µm (1	28.1 18 28.1 10.9 14.7 42.7 17.6 27.4	13 21.1 29.8 12.1 15.1 15.1 43.2 17.6	13 24.2 31.5 13.2 15.4 43.7		: :	:	7.1.0	0.04	12.5	٥ ٥
1.65 pm 2 2 2 2 3 4 2 2 2 2 3 4 2 2 2 3 3 3 3 3 3 3	 (149-µm 	28.1 10.9 14.7 42.7 17.6 27.4	21.1 29.8 12.1 15.1 43.2 27.4	24.2 31.5 13.2 15.4 43.7				7. 67.	13.6	13	0 %
mm C165-mm 2<	 < 149-µm < 1	28.1 10.9 14.7 42.7 17.6 27.4	29.8 12.1 15.1 43.2 17.6	31.5 13.2 15.4 43.7		:	: :	2 &	21.1	24.2	%
min C 169 mm 2 2 121 132 103 122 mm effect C 169 mm 2 2 127 123 123 112 112 112 effect C 149 mm 2 2 127 1	 < 149-µm < 1	10.9 14.7 42.7 17.6 27.4	12.1 15.1 43.2 17.6 27.4	13.2		:	:	28.7	20.8	31.5	%
Harmon Color Col	 < 149-µm 	17.6 17.6 27.4 27.3	15.1 43.2 17.6 27.4	15.4	: :	:	1	10.9	12.1	13.5	8
	 < 149-µm 	42.7 17.6 27.4 27.3	43.2	43.7	1	:	:	14.7	1 12	15.4	%
Heads Head	 < 149-µm 	17.6 27.4 27.3	17.6			:	:	42.7	43.2	43.7	%
Initium 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		17.6 27.4 27.3	17.6								
Oncy < 1494 m 1 27.4 27.4 27.4 - - - 27.4 27.4 - - - 27.4 27.4 - - - 27.4 27.4 - - - 27.4 27.4 - - - 27.4 27.4 - - - 27.4 27.4 - - - 27.4 27.4 - - - - 27.4 27.4 27.4 - - - 27.4 27.4 27.4 - - - - - 27.4 27.4 -	ک لا الا ا	27.4	27.4	17.6	1	-	-	17.6	17.6	17.6	%
Inition < 149-µm 1 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 27.3 1 1 26.4 2	E E _	27.3		27.4	:	-	:	27.4	27.4	27.4	%
mm C 1484µm 1 264 </td <td>E E _</td> <td>5</td> <td>27.3</td> <td>27.3</td> <td>i</td> <td>;</td> <td>:</td> <td>27.3</td> <td>27.3</td> <td>27.3</td> <td>%</td>	E E _	5	27.3	27.3	i	;	:	27.3	27.3	27.3	%
Illium		26.4	26.4	26.4	ı	:	:	26.4	26.4	26.4	%
Inflime C Id9- 1 1 484		31.8	31.8	31.8	i	;	:	31.8	31.8	31.8	%
time < 148 με 48		43.4	43.4	43.4	:	:	:	43.4	43.4	43.4	%
Influence of 449-µm 1 11.4		48	48	48	:	;	:	48	48	48	%
sit 1 254 254 254 - - 254 254 set 386 386 - - - 254 386	um	11.4	11.4	11.4	i	:	:	11.4	11.4	11.4	%
beta 418-bit 1 38.6 38.6 - - - 38.6 38.6 class 418-bit 1 1 21.1 21.1 - - 38.6 38.6 class 418-bit 1 1 21.1 21.1 - - 55.2 55.2 55.2 - - - 56.2 55.2 56.2 - - 56.2 5		25.4	25.4	25.4	:	;	;	25.4	25.4	25.4	%
Color Colo		38.6	38.6	38.6	1	:	:	38.6	38.6	38.6	%
Second Parish		21.1	21.1	21.1	:	:	:	21.1	21.1	21.1	%
Paresium (149-µm 1 1 56.2 56.2		55.2	55.2	55.2	:	:	:	55.2	55.2	55.2	% 3
Second Part		37.8	37.8	37.8	:	:	:	37.8	37.8	37.8	% &
below		2.00.	200.7	200.2	:	: :	: :	2.00	200.7	2.00	%
Section C149-µm 1 13.1		2.0	9.00	8.0		:	:	9.00	5. 6.	5.0	%
Selium < 149-µm 1 14.9		1. 5.	1. 5.	1.5		: :	! !	1. 5.	7 5	13.4	%
1	E	14.9	14.9	14.9	ŀ	:	:	14.9	14.9	149	8 %
r < 149-µm 1 15.5 15.5 15.5 15.5 um < 149-µm 1 1 35.5 35.5 35.5 35.5 ium < 149-µm 1 1 10.4 10.4 10.4 10.4 10.4 adium < 149-µm 1 1 1 1 1 10.4 10.4 adium < 149-µm 1 1 1 1 1 1 10.4 10.4 adium < 149-µm 1	149-um 1	Da C	. Ba	g g		:	:	Da C	la La	Da C	%
um < 149-µm 1 35.5 35.5	< 149-um 1	15,5	15.5	15.5		:	;	15.5	15.5	15,5	%
lum < 149-µm 1 10.4 10.4 10.4 10.4 10.4 10.4 adium < 149-µm		35.5	35.5	35.5	1	1	:	35.5	35.5	35.5	%
adjum < 149-jum 1 19.2 19.2 19.2 19.2 19.2 siston units (DUs) with field split and triplicate samples, summary statistics are based on the average of results for the DU. Nondetected values (NDs) are included as half the reporting limits (RLs). 53 53 53 siston units (DUs) with field split and triplicate samples, summary statistics are based on the average of results for the DU. Nondetected values (NDs) are included as half the reporting limits (RLs). 53 53 rivatro bioaccessibility 50 50 50 50 50 FB, RFC, RFD - relict flood plain deposition area 50 50 50 50 50 relict flood plain deposition area 50 50 50 50 50 50		10.4	10.4	10.4	:	:	:	10.4	10.4	10.4	%
< 149-µm 1 53 53		19.2	19.2	19.2	ı	ŀ	:	19.2	19.2	19.2	%
ision units (DUs) with field split and triplicate samples, summary statistics are based lated with nondeteded results at one-half of the detection limit. errail deposition area in vitro bioaccessibility FB, RFC, RFD - relict flood plain depositional areas A, B, C, and D relict flood plain deposition area ondetected values		53	53	53	1	-	:	53	53	53	%
Q P	tes: decision units (DUs) with field split and triplicate samples. summary statistics are	ire based on the av	erage of results for	the DU. Nondeted	cted values (NDs)	are included as hal	If the reporting limits	(RLs).			
AA-Aerial deposition area 3A - in vitro bioaccessibility 3A - in vitro bioaccessibility A. RFB, RFC, RFD - relict flood plain depositional areas A, B, C, and D Each - relict flood plain deposition area and D To nondetected values	Calculated with nondetected results at one-half of the detection limit.)								
A <i>n - in vitro</i> bioaccessbility A, RFB, RFC, RFD - relict flood plain depositional areas A, B, C, and D DA - relict flood plain deposition area no nondetected values	A- Aerial deposition area										
DA - relict flood plain deposition area no nondetected values	3A - <i>in vitro</i> bioaccessibility A, RFB, RFC, RFD - relict flood plain depositional areas A, B, C, and D										
	DA - relict flood plain deposition area no nondetected values										

Table 5-5. Relative Bioavailability (RBA) Data for Lead from the < 149-µm Fraction

Decision Unit	Bioavailable Percentage Overall (IVBA)	Qualifier	Decision Unit RBA ^{a,b}	Ratio of Site-specific RBA to EPA Default RBA ^c
ADA - High-density				
ADA-125	87.7	J	74.2	1.2
ADA-126	89.1	J	75.4	1.3
ADA-141 ^d	82.9	J	70.0	1.2
ADA-142	91.0	J	77.1	1.3
ADA-144	79.6	J	67.1	1.1
ADA-145	83.3	J	70.3	1.2
ADA-150	79.8	J	67.3	1.1
ADA-152	95.9	J	81.4	1.4
ADA-160	87.6	J	74.1	1.2
ADA-161 ^d	93.0	J	78.9	1.3
ADA-162	67.4		56.4	0.94
Average for ADA High-der	nsity		72.0	1.2
ADA - Primary	•		•	
ADA-001	87.2	J	73.8	1.2
ADA-016-A	88.6		70.4	1.2
ADA-016-B	83.8		70.4	1.2
ADA-016-C	77.8		70.4	1.2
ADA-016 ^e	77.8		70.4	1.2
ADA-035	83.6	J	70.6	1.2
ADA-047	85.9	J	72.6	1.2
ADA-048	82.3	J	69.5	1.2
ADA-057	70.7		59.3	1.0
ADA-059	79.1	J	66.6	1.1
ADA-061	65.0		54.3	0.90
ADA-076	94.0	J	79.7	1.3
ADA-081	80.1	J	67.5	1.1
ADA-096	89.9	J	76.1	1.3
Average for ADA Primary			69.1	1.2
Average for ADA Overall			70.6	1.2
RFDA				•
RFA-001-A	67.0		53.1	0.89
RFA-001-B	65.8		53.1	0.89
RFA-001-C	58.3		53.1	0.89
RFA-001 ^e	58.3		53.1	0.89
RFA-005	61.3		51.0	0.85
RFD-002	55.2		45.7	0.76
Average for RFDA ^f			49.9	0.8

ADA - aerial deposition area

IVBA - in vitro bioaccessibility

RFDA - relict floodplain deposition area

^a RBA equation from EPA (2007-lead estimation guidance) RBA= 0.878*IVBA-0.028

^b For decision units (DUs) with triplicate samples (ADA-016 and RFA-001), triplicate sample results were RBA adjusted and then averaged.

^c EPA default RBA= 60% (EPA 2007a), empirical lead soil concentrations are multiplied by this ratio before comparison to the human health soil screening value to account for differences in bioavailability relative to the the screening value.

^d Analysis of bioaccessibility percentage was performed on the split sample rather than the primary sample from ADA-141 (i.e., DIRT-011 149μm) and from ADA-161 (i.e., DIRT-015 149μm).

 $^{^{\}rm e}$ Values are averages of the preceeding triplicate samples for that DU.

The average value for the area is calculated using the average of the triplicate values and not the individual values.

Table 5-6. Lead Data from < 149-µm Fraction Adjusted for Bioavailability

Decision Unit	Bioavailability Adjusted Lead Concentration a	Qualifier ^b
Decision Unit	(mg/kg)	Quaimer
ADA - High Density	1=0	
ADA-124	178	
ADA-125	151	
ADA-126	427	
ADA-127	214	
ADA-128	365	
ADA-131	387	
ADA-132	163	
ADA-133	340	
ADA-135	141	
ADA-136	387	
ADA-139	222	
ADA-140	560	
ADA-141	191	
ADA-142	599	
ADA-143	279	
ADA-144	747	
ADA-145	373	
ADA-146	394	
ADA-147	772	
ADA-148	373	
ADA-150	627	
ADA-151	440	
ADA-151 ADA-152	300	
ADA-153	450	
ADA-154	399	
ADA-155	321	
ADA-156	385	
ADA-158	391	
ADA-159	520	
ADA-160	348	
ADA-161	452	
ADA-162	928	
ADA-164	496	
ADA-165	567	
ADA-168	315	
ADA - Primary		
ADA-001	354	
ADA-002	61	
ADA-004	162	
ADA-005	85	J
ADA-006	272	
ADA-008	349	
ADA-010	529	
ADA-015	187	
ADA-016	258	
ADA-017	292	
ADA-018	529	
ADA-010	115	
ADA-019 ADA-020	105	
	103	
ADA-021		
ADA-024	178	
ADA-024	513	

Table 5-6. Lead Data from < 149-µm Fraction Adjusted for Bioavailability

ADA - Primary (continued) ADA-025 ADA-026 ADA-028 ADA-028 ADA-033 ADA-034 ADA-035 ADA-035 ADA-039 ADA-042 ADA-042 ADA-044 ADA-045 ADA-046 ADA-047 ADA-048 ADA-049 ADA-049 ADA-050 ADA-050 ADA-053 ADA-053 ADA-055 ADA-055 ADA-056 ADA-056 ADA-057 ASS ASS ASS ASS ASS ASS ADA-056 ADA-057 ASS ASS ASS ASS ASS ASS ASS ASS ASS AS	Qualifier ^b
ADA-025 245 ADA-026 85 ADA-028 243 ADA-033 89 ADA-034 77 ADA-035 215 ADA-039 41 ADA-042 96 ADA-044 165 ADA-044 165 ADA-045 381 ADA-046 212 ADA-047 326 ADA-048 144 ADA-049 54 ADA-050 432 ADA-052 415 ADA-053 103 ADA-055 211 ADA-056 85 ADA-056 85 ADA-057 132	zuuo.
ADA-026 85 ADA-028 243 ADA-033 89 ADA-034 77 ADA-035 215 ADA-039 41 ADA-042 96 ADA-043 178 ADA-044 165 ADA-045 381 ADA-046 212 ADA-047 326 ADA-048 144 ADA-049 54 ADA-050 432 ADA-050 415 ADA-053 103 ADA-054 505 ADA-055 211 ADA-056 85 ADA-057 132	
ADA-028 ADA-033 ADA-034 ADA-035 ADA-035 ADA-039 ADA-042 ADA-042 ADA-043 ADA-044 ADA-045 ADA-045 ADA-046 ADA-047 ADA-048 ADA-048 ADA-049 ADA-050 ADA-051 ADA-052 ADA-053 ADA-055 ADA-055 ADA-055 ADA-056 ADA-057 ADA-056 ADA-057 ADA-057 ADA-057 ADA-056 ADA-057 ADA-057 ADA-057 ADA-057 ADA-057 ADA-057 ADA-057 ADA-056 ADA-057 ADA-057 ADA-057 ADA-056 ADA-057 ADA-057 ADA-057 ADA-057 ADA-056 ADA-057 ADA-05	
ADA-033 ADA-034 ADA-035 ADA-035 ADA-039 ADA-042 ADA-043 ADA-043 ADA-044 ADA-045 ADA-046 ADA-047 ADA-048 ADA-049 ADA-050 ADA-051 ADA-052 ADA-055 ADA-056 ADA-057 ADA-055 ADA-057 ADA-055 ADA-057 ADA-057 ADA-056 ADA-057 ADA-05	
ADA-034 77 ADA-035 215 ADA-039 41 ADA-042 96 ADA-043 178 ADA-044 165 ADA-045 381 ADA-046 212 ADA-047 326 ADA-048 144 ADA-049 54 ADA-050 432 ADA-051 124 ADA-052 415 ADA-053 103 ADA-054 505 ADA-056 85 ADA-057 132	
ADA-034 77 ADA-035 215 ADA-039 41 ADA-042 96 ADA-043 178 ADA-044 165 ADA-045 381 ADA-046 212 ADA-047 326 ADA-048 144 ADA-049 54 ADA-050 432 ADA-051 124 ADA-052 415 ADA-053 103 ADA-054 505 ADA-056 85 ADA-057 132	
ADA-035 ADA-039 ADA-042 ADA-042 ADA-043 ADA-044 ADA-044 ADA-045 ADA-045 ADA-046 ADA-047 ADA-048 ADA-048 ADA-049 ADA-050 ADA-051 ADA-052 ADA-053 ADA-054 ADA-055 ADA-056 ADA-057	
ADA-039 41 ADA-042 96 ADA-043 178 ADA-044 165 ADA-045 381 ADA-046 212 ADA-047 326 ADA-048 144 ADA-049 54 ADA-050 432 ADA-051 124 ADA-052 415 ADA-053 103 ADA-054 505 ADA-055 211 ADA-056 85 ADA-057 132	
ADA-042 96 ADA-043 178 ADA-044 165 ADA-045 381 ADA-046 212 ADA-047 326 ADA-048 144 ADA-049 54 ADA-050 432 ADA-051 124 ADA-052 415 ADA-052 103 ADA-053 103 ADA-054 505 ADA-055 211 ADA-056 85 ADA-057 132	
ADA-043 ADA-044 ADA-044 ADA-045 ADA-045 ADA-046 ADA-047 ADA-047 ADA-048 ADA-049 ADA-049 ADA-050 ADA-051 ADA-052 ADA-052 ADA-053 ADA-053 ADA-054 ADA-055 ADA-055 ADA-056 ADA-057 ADA-05	
ADA-044 165 ADA-045 381 ADA-046 212 ADA-047 326 ADA-048 144 ADA-049 54 ADA-050 432 ADA-051 124 ADA-052 415 ADA-053 103 ADA-054 505 ADA-055 211 ADA-056 85 ADA-057 132	
ADA-045 ADA-046 ADA-046 ADA-047 ADA-047 ADA-048 ADA-049 ADA-050 ADA-050 ADA-051 ADA-052 ADA-053 ADA-053 ADA-054 ADA-055 ADA-055 ADA-056 ADA-057 ADA-05	
ADA-046 212 ADA-047 326 ADA-048 144 ADA-049 54 ADA-050 432 ADA-051 124 ADA-052 415 ADA-053 103 ADA-054 505 ADA-055 211 ADA-056 85 ADA-057 132	
ADA-047 ADA-048 ADA-049 ADA-050 ADA-050 ADA-051 ADA-052 ADA-053 ADA-053 ADA-054 ADA-055 ADA-055 ADA-055 ADA-056 ADA-057 ADA-05	
ADA-048 ADA-049 ADA-050 ADA-050 ADA-051 ADA-052 ADA-053 ADA-053 ADA-054 ADA-055 ADA-055 ADA-055 ADA-056 ADA-057 ADA-057	
ADA-049 54 ADA-050 432 ADA-051 124 ADA-052 415 ADA-053 103 ADA-054 505 ADA-055 211 ADA-056 85 ADA-057 132	
ADA-050 432 ADA-051 124 ADA-052 415 ADA-053 103 ADA-054 505 ADA-055 211 ADA-056 85 ADA-057 132	
ADA-051 124 ADA-052 415 ADA-053 103 ADA-054 505 ADA-055 211 ADA-056 85 ADA-057 132	
ADA-052 415 ADA-053 103 ADA-054 505 ADA-055 211 ADA-056 85 ADA-057 132	
ADA-053 103 ADA-054 505 ADA-055 211 ADA-056 85 ADA-057 132	
ADA-054 505 ADA-055 211 ADA-056 85 ADA-057 132	
ADA-055 211 ADA-056 85 ADA-057 132	
ADA-056 85 ADA-057 132	
ADA-057 132	J
ADA-058 94	
ADA-059 143	
ADA-060 478	
ADA-061 124	
ADA-062 348	
ADA-063 152	
ADA-064 167	
ADA-065 385	
ADA-066 168	
ADA-067 107	
ADA-070 245	
ADA-071 276	
ADA-073 312	
ADA-076 286	
ADA-078 256	
ADA-079 151	
ADA-081 187	J
ADA-082 194	
ADA-084 175	
ADA-085 135	
ADA-003 103 ADA-088 327	
ADA-000 327 ADA-089 331	
ADA-089 331 ADA-090 248	
ADA 003	
ADA 003	
ADA-093 182	
ADA-094 100	
ADA-095 165	
ADA-096 364	J

Table 5-6. Lead Data from < 149-µm Fraction Adjusted for Bioavailability

Decision Unit	Bioavailability Adjusted Lead Concentration a (mg/kg)	Qualifier ^b
		Qualifor
ADA - Primary (con	•	I
ADA-097	536	
ADA-099	259	
ADA-101	226	
ADA-102	127	J
ADA-103	174	
ADA-104	80	
ADA-105	235	
ADA-106	80	
ADA-107	148	
ADA-108	228	
ADA-109	381	
ADA-110	267	
ADA-111	120	
ADA-112	103	
ADA-113	163	
ADA-114	115	
ADA-115	143	
ADA-116	113	J
ADA-117	194	
ADA-118	192	
ADA-119	207	
ADA-121	240	
ADA-122	57	
ADA-169	69	
ADA-170	109	
ADA-171	95	
ADA-172	70	
ADA-173	90	
ADA-174	77	
ADA-175	83	
ADA-176	79	
ADA-177	72	
ADA-178	56	
ADA-179	67	
ADA-180	133	
ADA-181	101	
ADA-182	41	
ADA-183	58	
ADA-184	85	
RFDA - RFA	·	
RFA-001	414	
RFA-002	252	
RFA-003	388	
RFA-004	290	
RFA-005	308	
RFDA - RFB		
RFB-002	159	
RFB-003	107	J
RFB-008	60	

Table 5-6. Lead Data from < 149-µm Fraction Adjusted for Bioavailability

	Bioavailability Adjusted Lead Concentration a	
Decision Unit	(mg/kg)	Qualifier ^b
RFDA - RFC		
RFC-003	386	
RFC-004	199	
RFC-005	470	
RFC-006	343	
RFC-007	362	
RFC-008	339	
RFDA - RFD		
RFD-002	314	
RFD-003	307	

ADA - aerial deposition area

J - estimated value

mg/kg - milligram per kilogram

RFDA - relict floodplain deposition area

RFA, RFB, RFC, and RFD- relict flood plain depositional areas A, B, C, and D

^a Lead concentrations adjusted for the ratio of site-specific relative bioavailability (RBA) to EPA's default RBA, see Table 5-5. The ratio of the DU-specific RBA to EPA's default RBA was used when available. For ADA and RFDA DUs that did not have IVBA measured directly (i.e. those DUs not listed in Table 5-5), the average RBA ratio for the ADA overall (including primary and high density) or RFDA reported in Table 5-5 was applied.

^b Qualifiers are from lead data before the adjustment for bioavailability.

Table 5-7a. Aerial Deposition Area Summary of Field Split and Triplicate Sample Results for Bulk Soil Samples

	Fi	eld Split Sample RP	Ds	Т	riplicate Sample RS	Ds
Analyte	Number of Samples	No. RPDs >20%	Max RPD (%)	Number of Samples	No. RSDs >35%	Max RSD (%)
High-density - Convention	onal Parameters	•			· · · · · · · · · · · · · · · · · · ·	
рН	6	0	18.8	6	0	5.07
Solids	6	0	6.95	6	0	4.93
Grain Size						
Clay	6	na	64	6	2	51.3
Silt	6	na	16.6	6	0	18.7
Very fine sand	6	na	34.4	6	0	34.4
Fine sand	6	na	30.8	6	1	43.5
Medium sand	6	na	24.5	6	1	46.3
Coarse sand	6	na	14.9	6	1	35.7
Very coarse sand	6	na	34.5	6	1	38.3
Very fine gravel	6	na	56.3	6	2	77
Fine gravel	6	na	139	6	6	111
Medium gravel	6	na	200	6	4	173
Coarse gravel	6	na	200	6	0	0
Very coarse gravel	6	na	0	6	0	0
Cobbles	6	na	0	6	0	0
Primary - Conventional I	Parameters					
рН	12	0	3.05	10	0	5.63
Solids	12	0	5.61	10	0	5.97
Grain Size						
Clay	12	na	64.9	10	1	94.2
Silt	12	na	28.3	10	0	32.1
Very fine sand	12	na	106	10	0	24.9
Fine sand	12	na	45	10	0	27.7
Medium sand	12	na	49.4	10	0	20.1
Coarse sand	12	na	35.8	10	0	34.4
Very coarse sand	12	na	32.4	10	0	27.5
Very fine gravel	12	na	63.8	10	2	88.6
Fine gravel	12	na	156	10	8	122
Medium gravel	12	na	200	10	9	173
Coarse gravel	12	na	200	10	0	0
Very coarse gravel	12	na	0	10	0	0
Cobbles	12	na	0	10	0	0

Highlighted cells identify where relative percent differences (RPDs) and relative standard deviations (RSDs) are greater than the control limit.

Control limits specified in the quality assurance project plan (QAPP) (Exponent et al. 2014) are 20% for analytical RPDs (i.e., metals, mercury, total organic carbon [TOC], cation exchange capacity [CEC], and pH) and 35% for field triplicate RSDs. The QAPP did not specify a quality objective for grain size RPDs.

na - not applicable

Table 5-7b. Aerial Deposition Area Summary of Field Split and Triplicate Sample Results for the < 2-mm Soil Fraction

		d Split Sample R		ple Results for the < 2-mm Soil Fraction Triplicate Sample RSDs		
	Number of	No. RPDs		Number of	No. RSDs	
Analyte	Samples	>20%	Max RPD (%)	Samples	>35%	Max RSD (%)
High-density - Conventional Par	rameters			·		· /
CEC	6	3	32.5	6	0	28.2
Organic carbon	6	2	23.5	6	0	26.6
Solids	6	0	3.16	6	0	2.89
High-density - Metals/Metalloids		-		-		
Aluminum	6	1	41.2	6	0	14.2
Antimony	6	1	27.4	6	1	35.2
Arsenic	6	1	35.1	6	0	26
Barium	6	1	29.8	6	0	10.8
Beryllium	6	1	36.6	6	0	12.4
Cadmium	6	1	30.4	6	0	24.9
Calcium	6	1	36.3	6	0	14.2
Chromium	6	1	37.9	6	0	23.5
Cobalt	6	1	35.6	6	0	20.9
Copper	6	1	32.7	6	0	19.5
Iron	6	1	34.6	6	0	13.9
Lead	6	1	40.5	6	0	34.9
Magnesium	6	1	35.6	6	0	17.9
Manganese	6	2	33.4	6	0	14.5
Melyhdanus	6	1	33.3	6	0	28.6
Molybdenum Nickel	6	1	32.1	6	0	14.2
	6	1	34.8	6	0	18
Potassium	6	1	38.8 31.1	6	0	21.9
Selenium Silver	6	1	27	6	0	26.9
Sodium	6	1	43.9	6	0	27.8
Thallium	6	1	27.3	6	0	23.5
Vanadium	6	1	39.1	6	0	14.2
Zinc	6	1	26.9	6	0	24.1
Primary - Conventional Paramet		,	20.3	U		27.1
CEC	12	8	62.8	10	2	43.1
Organic carbon	12	6	52.9	10	0	22.6
Solids	12	0	2.42	10	0	4.7
Primary - Metals/Metalloids		-				
Aluminum	12	1	20.1	10	0	7.58
Antimony	12	1	22.2	10	0	12.9
Arsenic	12	0	12.5	10	0	15.3
Barium	12	2	26.4	10	0	22.3
Beryllium	12	0	17.9	10	0	9.56
Cadmium	12	0	19.5	10	0	14.4
Calcium	12	0	17.9	10	1	35.1
Chromium	12	1	28.8	10	0	26.6
Cobalt	12	0	16.1	10	0	12.3
Copper	12	0	8.6	10	0	14.4
Iron	12	0		10	0	8.94
Lead	12	1	9.69 22.7	10	0	14.8
	12	1		10	0	14.8
Magnesium			25.6			
Manganese	12	1	20.5	10	0	16.6
Mercury	12	0	13.3	10	0	34.6
Molybdenum	12	0	20	10	1	35.9
Nickel	12	0	18	10	0	23
Potassium	12	0	17.2	10	0	14.1
		0	14.3	10	0	21
Selenium	12					
Selenium Silver	12	0	15.9	10	0	15.1
Selenium Silver Sodium	12 12	0	15.4	10	0	30.2
Selenium Silver Sodium Thallium	12 12 12	0 0 1	15.4 23	10 10	0	30.2 10.2
Selenium Silver Sodium	12 12	0	15.4	10	0	30.2

Notes:

Highlighted cells identify where relative percent differences (RPDs) and relative standard deviations (RSDs) are greater than the control limit. Control limits specified in the quality assurance project plan (QAPP) (Exponent et al. 2014) are 20% for analytical RPDs (i.e., metals, mercury, total organic carbon [TOC], cation exchange capacity [CEC], and pH) and 35% for field triplicate RSDs. The QAPP did not specify a quality objective for grain size RPDs.

Table 5-7c. Aerial Deposition Area Summary of Field Split and Triplicate Sample Results for the < 149-µm Soil Fraction

	F	ield Split Sample RP	Ds	Triplicate Sample RSDs			
Analyte	Number of Samples	No. RPDs >20%	Max RPD (%)	Number of Samples	No. RSDs >35%	Max RSD (%)	
High-density - Co	-		, ,	·			
Solids	6	0	1.82	6	0	1.64	
High-density - Me	etals/Metalloids					-	
Aluminum	6	0	2.69	6	0	11.3	
Antimony	6	0	8.56	6	0	29.7	
Arsenic	6	0	5.11	6	0	22.4	
Barium	6	0	5.95	6	0	11.6	
Beryllium	6	0	3.77	6	0	13.9	
Cadmium	6	0	8.93	6	0	23.6	
Calcium	6	0	9.92	6	0	15.3	
Chromium	6	0	2.88	6	0	28.8	
Cobalt	6	0	1.75	6	0	20.1	
Copper	6	0	6.91	6	0	16.2	
Iron	6	0	4.17	6	0	9.89	
Lead	6	0	10.1	6	0	31.1	
Magnesium	6	0	2.13	6	0	15.6	
Manganese	6	0	6.76	6	0	12.9	
Mercury	6	0	13.3	6	0	25	
Molybdenum	6	0	7.55	6	0	8.2	
Nickel	6	0	3.64	6	0	14.3	
Potassium	6	0	3.69	6	0	21.2	
Selenium	6	0	19.4	6	0	20	
Silver	6	0	8.96	6	0	18.9	
Sodium	6	0	8	6	0	33.7	
Thallium	6	0	8	6	0	19.5	
Vanadium	6	0	4.13	6	0	10.7	
Zinc	6	0	7.28	6	0	17.6	
Primary - Conven			7.20		0	17.0	
Solids	12	0	1.27	10	0	3.46	
Primary - Metals/I		U	1.21	10	U	0.40	
Aluminum	12	0	8.84	10	0	8.13	
Antimony	12	0	15.3	10	0	12.8	
Arsenic	12	0	16.8	10	0	19	
Barium	12	1	24.7	10	0	26.1	
Beryllium	12	0	4.17	10	0	11.3	
Cadmium	12	0	16.7	10	0	16.1	
Calcium	12	0	8.55	10	0	31.8	
Chromium	12	0	9.4	10	0	21.9	
Cobalt	12	0	6.08	10	0	10.5	
Copper	12	0	12.9	10	0	13.2	
	12	0	6.06	10	0	6.57	
Iron Lead	12		18.3	10	0	13.9	
		0					
Magnesium	12	0	7.2	10	0	15.5	
Manganese	12	0	11.1	10	0	14	
Mercury	12	2	22.2	10	0	33.3	
Molybdenum	12	0	9.66	10	0	27	
Nickel	12	0	6.15	10	0	20.2	
Potassium	12	0	8.22	10	0	15.9	
Selenium	12	0	16	10	0	27.2	
Silver	12	1	22.2	10	0	21.7	
Sodium	12	0	12.1	10	0	22.3	
Thallium	12	0	13.3	10	0	10.2	
Vanadium	12	0	10.7	10	0	9.36	
Zinc	12	0	13.9	10	0	12.2	

Highlighted cells identify where relative percent differences (RPDs) and relative standard deviations (RSDs) are greater than the control limit.

Control limits specified in the quality assurance project plan (QAPP) (Exponent et al. 2014) are 20% for analytical RPDs (i.e., metals, mercury, total organic carbon [TOC], cation exchange capacity [CEC], and pH) and 35% for field triplicate RSDs. The QAPP did not specify a quality objective for grain size RPDs.

Table 5-8a. Relict Floodplain Deposition Area Summary of Field Split and Triplicate Sample Results for Bulk Soil Samples

	Field Split Sample RPDs			Triplicate Sample RSDs		
	Number of	N DDD oog/	M DDD (0/)	Number of	N 505 050/	N DOD (0)
Analyte	Samples	No. RPDs >20%	Max RPD (%)	Samples	No. RSDs >35%	Max RSD (%
RFA - Conventional Parai	neters					
рН	1	0	1.47	1	0	2.12
Solids	1	0	0.841	1	0	2.43
Grain Size						
Clay	1	na	19.7	1	1	53.4
Silt	1	na	4.51	1	0	10
Very fine sand	1	na	16.2	11	0	9.32
Fine sand	1	na	5.71	11	0	14.6
Medium sand	1	na	9.56	11	0	7.17
Coarse sand	1	na	5.67	1	1	36.9
Very coarse sand	1	na	1.57	1	0	29.2
Very fine gravel	1	na	21.9	1	0	19.8
Fine gravel	1	na	198	1	1	57.7
Medium gravel	1	na	200	1	1	98.4
Coarse gravel	1	na	0	11	1	173
Very coarse gravel	1	na	0	1	0	0
Cobbles	1	na	0	1	0	0
RFB - Conventional Parai						
pH	ns	ns	ns	1	0	0.285
Solids	ns	ns	ns	1	0	4.49
Grain Size						
Clay	ns	ns	ns	1	0	24.7
Silt	ns	ns	ns	11	0	18
Very fine sand	ns	ns	ns	1	0	5.48
Fine sand	ns	ns	ns	1	1	44
Medium sand	ns	ns	ns	1	1	71.9
Coarse sand	ns	ns	ns	1	1	91.5
Very coarse sand	ns	ns	ns	11	1	74.2
Very fine gravel	ns	ns	ns	1	0	22.9
Fine gravel	ns	ns	ns	1	1	63.7
Medium gravel	ns	ns	ns	1	1	125
Coarse gravel	ns	ns	ns	1	0	0
Very coarse gravel	ns	ns	ns	1	0	0
Cobbles	ns	ns	ns	1	0	0
RFC - Conventional Paral			0.000		0	4.44
pH	1	0	0.638	<u> </u>	0	1.44
Solids	1	0	0.339	l l	0	4.85
Grain Size	4		40.4	4	0	45.0
Clay	1	na	10.1	1	0	15.8
Silt	1	na	5.71	<u> </u>	0	13.4
Very fine sand	1	na	10.9	<u></u>	0	12.9 28.3
Fine sand Medium sand	1	na	8.34	<u></u>	1	
	1	na	2.53	<u></u>	1	93.5
Coarse sand Very coarse sand	1	na	10.7	1	1	83.5
	1	na		<u></u> 1	1	75.2
Very fine gravel Fine gravel	1	na na	85.7 96.3	<u></u>	1	163
Medium gravel	1		96.3	<u></u>	1	173
Coarse gravel	1	na na	0	<u></u>	0	0
Very coarse gravel	1	na	0	<u></u>	0	0
Cobbles	1	na	0	1	0	0
RFD - Conventional Paral		ıla	U	1	U	U
pH	ns	ns	ns	1	0	8.29
Solids	ns	ns	ns	1	0	3.17
Grain Size	113	110	110	I	U	3.17
Clay	nc	ne	nc	1	0	22.8
Silt	ns	ns	ns ns	<u></u>	1	35.8
Very fine sand	ns	ns		1	0	35.8
	ns	ns	ns	1 1	0	9.82
Fine sand	ns	ns	ns	1 1	-	
Medium sand	ns	ns	ns		1	48.7
Coarse sand	ns	ns	ns	1	1	50
Very coarse sand	ns	ns	ns	1	1	42.3
Very fine gravel	ns	ns	ns	1	1	68.9
Fine gravel	ns	ns	ns	1	1	37
Medium gravel	ns	ns	ns	1	1	173
Coarse gravel	ns	ns	ns	11	0	0
Very coarse gravel	ns	ns	ns	1	0	0
Cobbles	ns	ns	ns	1	0	0

Highlighted cells identify where relative percent differences (RPDs) and relative standard deviations (RSDs) are greater than the control limit.

Control limits specified in the quality assurance project plan (QAPP) (Exponent et al. 2014) are 20% for analytical RPDs (i.e., metals, mercury, total organic carbon [TOC], cation exchange capacity [CEC], and pH) and 35% for field triplicate RSDs. The QAPP did not specify a quality objective for grain size RPDs. na - not applicable

ns - not sampled (field duplicates were not prepared)

Table 5-8b. Relict Floodplain Deposition Area Summary of Field Split and Triplicate Sample Results for the < 2-mm Soil Fraction

		Field Split Sample RP	Ds		Triplicate Sample RSI	Os
Analyte	Number of Samples	No. RPDs >20%	Max RPD (%)	Number of Samples	No. RSDs >35%	Max RSD (%)
RFA - Conventional Paramet			()			(,,,
CEC	1	0	13.9	1	0	14
Organic carbon	1	0	5.88	1	0	14.6
Solids	1	0	0	1	0	0.823
RFA - Metals/Metalloids						
Aluminum	1	0	11.3	1	0	8.1
Antimony	1	0	0	1	0	5.21
Arsenic	1	0	2.75	1	0	6.57
Barium	1	0	4.39	1	0	1.37
Beryllium	11	0	13.7	1	0	7.56
Cadmium	1	0	7.55	1	0	7.73
Calcium Chromium	1 1	0	3.17 12.4	1	0	5.41 4.78
Cobalt	1	0	8.7	1	0	10.3
Copper	1	0	16.4	1	0	12.8
Iron	1	0	14.8	1	0	15
Lead	1	0	0.704	1	0	8.47
Magnesium	1	0	8.39	1	0	8.49
Manganese	1	0	13.3	1	0	13.3
Mercury	1	1	52.6	1	1	46.9
Molybdenum	1	0	8.97	1	0	6.13
Nickel	1	0	1.74	1	0	5.85
Potassium	1	0	10.5	1	0	9.71
Selenium	1	0	15.8	1	0	4.61
Silver	11	0	16.2	1	0	11.6
Sodium	1	0	15.7 19.4	1	0	18.7
Thallium	1	0	6.9	1	0	10.6
Vanadium Zinc	1	0	15.5	1	0	3.16 15.7
RFB - Conventional Paramet		0	10.0	·	0	13.7
CEC CEC	ns	ns	ns	1	0	26.3
Organic carbon	ns	ns	ns	1	0	4.67
Solids	ns	ns	ns	1	0	1.57
RFB - Metals/Metalloids		'				
Aluminum	ns	ns	ns	1	0	6.01
Antimony	ns	ns	ns	1	1	45.5
Arsenic	ns	ns	ns	1	0	19.2
Barium	ns	ns	ns	1	0	10.7
Beryllium	ns	ns	ns	1	0	15.3
Cadmium	ns	ns	ns	1	1	39.5
Chromium	ns	ns	ns	1	0	8.65
Chromium Cobalt	ns	ns	ns	1	0	7.19 5
Copper	ns ns	ns ns	ns ns	1	0	13.9
Iron	ns	ns	ns	1	0	5.84
Lead	ns	ns	ns	1	1	45.9
Magnesium	ns	ns	ns	1	0	3.72
Manganese	ns	ns	ns	1	0	22.5
Mercury	ns	ns	ns	1	0	24.7
Molybdenum	ns	ns	ns	1	0	8.97
Nickel	ns	ns	ns	1	0	7.85
Potassium	ns	ns	ns	1	0	4.21
Selenium	ns	ns	ns	1	0	24.6
Silver	ns	ns	ns	1	0	25.9
Sodium	ns	ns	ns	1	0	4.26
Thallium Vanadium	ns ns	ns ns	ns ns	1	0	20.3 4.93
Zinc	ns	ns	ns	1	0	21.2
PFC - Conventional Paramet		/10	110	'		21.2
	1	0	0.509	1	0	14.5
CEC		0	2.76	1	0	2.14
CEC Organic carbon	1		 0			
Organic carbon	1		0	1	0	0.588
Organic carbon Solids	1 1	0	0	1	0	0.588
Organic carbon Solids RFC - Metals/Metalloids	1	0				
Organic carbon Solids RFC - Metals/Metalloids Aluminum	1	0	0.502	1	0	7.51
Organic carbon Solids RFC - Metals/Metalloids Aluminum Antimony	1 1 1	0 0 0	0.502 0.574	1 1	0 0	7.51 10.4
Organic carbon Solids RFC - Metals/Metalloids Aluminum Antimony Arsenic	1 1 1 1	0 0 0 0	0.502 0.574 0	1 1 1	0 0 0	7.51 10.4 2.65
Organic carbon Solids RFC - Metals/Metalloids Aluminum Antimony	1 1 1	0 0 0	0.502 0.574	1 1	0 0	7.51 10.4

Table 5-8b. Relict Floodplain Deposition Area Summary of Field Split and Triplicate Sample Results for the < 2-mm Soil Fraction

	F	ield Split Sample RP	Ds	Triplicate Sample RSDs		
Analyte	Number of Samples	No. RPDs >20%	Max RPD (%)	Number of Samples	No. RSDs >35%	Max RSD (%
RFC - Metals/Metalloids (con	<u> </u>		(1.7)			(44,
Calcium	1	0	5.82	1	0	1.5
Chromium	1	0	1.84	1	0	4.18
Cobalt	1	0	2.45	1	0	2.2
	1	0	4.44	1	0	4.95
Copper				1		
Iron	1	0	1.07		0	4.09
Lead	1	0	4.8	1	0	4.8
Magnesium	1	0	1.05	1	0	4.11
Manganese	1	0	0.448	1	0	5.46
Mercury	1	0	13.3	1	0	5.33
Molybdenum	1	0	1.71	1	0	0.813
Nickel	1	0	2.61	1	0	3.17
Potassium	1	0	1.86	1	0	7.35
Selenium	1	0	3.97	1	0	3.7
Silver	1	0	1.87	1	0	4.91
Sodium	1	0	16.7	1	0	31.1
Thallium	1	0	5.71	1	0	9.74
Vanadium	1	0	0.93	1	0	3.37
Zinc	1	0	0.487	1	0	1.29
RFD - Conventional Paramete		, , ,	0.107	·		1.20
CEC	ns	ns	ns	1	0	2.88
Organic carbon	ns	ns	ns	1	0	21.5
RFD - Metals/Metalloids			110	·		20
Solids	ns	ns	ns	1	0	0.354
Aluminum	ns	ns	ns	1	0	6.05
Antimony	ns	ns	ns	1	0	7.11
Arsenic	ns	ns	ns	1	0	13.2
Barium	ns	ns	ns	1	1	37.6
Beryllium	ns	ns	ns	1	0	5.8
Cadmium	ns	ns	ns	1	0	6.69
Calcium	ns	ns	ns	1	1	37.6
Chromium	ns	ns	ns	1	0	3.05
Cobalt	ns	ns	ns	1	0	4.79
Copper	ns	ns	ns	1	0	8.62
Iron	ns	ns	ns	1	0	5.36
Lead	ns	ns	ns	1	0	1.79
Magnesium	ns	ns	ns	1	0	28.1
Manganese	ns	ns	ns	1	0	6.08
Mercury	ns	ns	ns	1	0	31.4
Molybdenum	ns	ns	ns	1	0	30.7
Nickel	ns	ns	ns	1	0	6
Potassium	ns	ns	ns	1	0	5.11
Selenium	ns	ns	ns	1	0	12.3
Silver	ns	ns	ns	1	0	20.4
Sodium	ns	ns	ns	1	0	3.82
Thallium	ns	ns	ns	1	0	5.15
Vanadium	ns	ns	ns	1	0	4.01
Zinc	ns	ns	ns	1	0	19.8

Highlighted cells identify where relative percent differences (RPDs) and relative standard deviations (RSDs) are greater than the control limit.

Control limits specified in the quality assurance project plan (QAPP) (Exponent et al. 2014) are 20% for analytical RPDs (i.e., metals, mercury, total organic carbon [TOC], cation exchange capacity [CEC], and pH) and 35% for field triplicate RSDs. The QAPP did not specify a quality objective for grain size RPDs. ns - not sampled (field duplicates were not prepared)

RFA, RFB, RFC, and RFD - relict flood plain depositional areas A, B, C, and D $\,$

Table 5-8c. Relict Floodplain Deposition Area Summary of Field Split and Triplicate Sample Results for the < 149-µm Soil Fraction

Analyte RFA - Conventional F Solids RFA - Metals/Metallio Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper	1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0	0.502 5.27 3.9 2.71	Number of Samples	No. RSDs >35%	Max RSD (%)
RFA - Conventional P Solids RFA - Metals/Metallic Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt	1 1 1 1 1 1 1 1 1	0 0 0	5.27 3.9		0	0.637
Solids RFA - Metals/Metallic Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt	1 1 1 1 1 1 1 1 1	0 0 0	5.27 3.9		0	0.637
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt	1 1 1 1 1	0	5.27 3.9	4		
Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt	1 1 1 1	0	3.9	4		
Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt	1 1 1	0		1	0	6.63
Barium Beryllium Cadmium Calcium Chromium Cobalt	1 1 1		2 71	1	0	16.1
Beryllium Cadmium Calcium Chromium Cobalt	1 1	0	4.11	1	0	3.45
Cadmium Calcium Chromium Cobalt	1		11	1	0	6.93
Calcium Chromium Cobalt		0	3.92	1	0	7.14
Chromium Cobalt		0	4.76	1	0	2.29
Cobalt	1	0	0.603	1	0	6.2
	1	0	7.59	1	0	5.43
Copper	1	0	2.43	1	0	3.73
	1	0	4.23	1	0	7.56
Iron	1	0	3.31	1	0	1.21
Lead	1	0	4.96	1	0	4.41
Magnesium	1	0	0.76	1	0	4.7
Manganese	1	0	3.34	1	0	1.96
Mercury	1	0	20	1	0	31.5
Molybdenum	1	0	8.35	1	0	12.7
Nickel	1	0	5.3	1	0	1.85
Potassium	1	0	4.2	1	0	6.3
Selenium	1	0	1.98	1	0	7.86
Silver	1	1	21.4	1	0	11.6
Sodium	1	0	2.74	1	0	4.09
Thallium	1	0	10.9	1	0	8.11
Vanadium	1	0	7.16	1	0	1.84
Zinc	1	0	6.37	1	0	1.18
RFB - Conventional I	Parameters					
Solids	ns	ns	ns	1	0	0.446
RFB - Metals/Metallic	ods					
Aluminum	ns	ns	ns	1	0	3.65
Antimony	ns	ns	ns	1	1	41.1
Arsenic	ns	ns	ns	1	0	17.7
Barium	ns	ns	ns	1	0	4.61
Beryllium	ns	ns	ns	1	0	4.44
Cadmium	ns	ns	ns	1	0	33.1
Calcium	ns	ns	ns	1	0	2.6
Chromium	ns	ns	ns	1	0	3.11
Cobalt	ns	ns	ns	1	0	4.03
Copper	ns	ns	ns	1	0	8.44
Iron	ns	ns	ns	1	0	2.5
Lead	ns	ns	ns	1	1	40.6
Magnesium	ns	ns	ns	1	0	5.43
Manganese	ns	ns	ns	1	0	12.8
Mercury	ns	ns	ns	1	0	31.5
Molybdenum	ns	ns	ns	1	0	6.72
Nickel	ns	ns	ns	1	0	2.66
Potassium	ns	ns	ns	1	0	7.24
Selenium	ns	ns	ns	1	0	7.26
Silver	ns	ns	ns	1	0	20.5
Sodium	ns	ns	ns	1	0	11.5
Thallium	ns	ns	ns	1	0	15.1
Vanadium	ns	ns	ns	1	0	4
Zinc	ns	ns	ns	1	0	14.2
PFC - Conventional F Solids	Parameters 1	0	0.305	1	0	0.389

Table 5-8c. Relict Floodplain Deposition Area Summary of Field Split and Triplicate Sample Results for the < 149-µm Soil Fraction

		Field Split Sample RPI	Os	Triplicate Sample RSDs			
Analyte	Number of Samples	No. RPDs >20%	Max RPD (%)	Number of Samples	No. RSDs >35%	Max RSD (%)	
RFC - Metals/Metall			, ,	·		,	
Aluminum	1	0	0.456	1	0	3.3	
Antimony	1	0	1.85	1	0	12.6	
Arsenic	1	0	1.67	1	0	5.84	
Barium	1	0	2.09	1	0	5.24	
Beryllium	1	0	2.67	1	0	12.1	
Cadmium	1	0	3.18	1	0	4.58	
Calcium	1	0	1.68	1	0	1.4	
Chromium	1	0	1.93	1	0	1.86	
Cobalt	1	0	3.1	1	0	1.19	
Copper	1	0	1.28	1	0	9.5	
Iron	1	0	1.78	1	0	2.1	
Lead	1	0	4.31	1	0	6.44	
Magnesium	1	0	2.37	1	0	2.33	
Manganese	1	0	2.15	1	0	3.87	
Mercury	1	0	5.71	1	0	7.39	
Molybdenum	1	0	4.82	1	0	5.04	
Nickel	1	0	1.81	1	0	1.59	
Potassium	1	0	3.19	1	0	10.2	
Selenium	1	0	8.89	1	0	4.69	
Silver	1	0	4.72	1	0	10.1	
Sodium	1	0	5.67	1	1	37.2	
Thallium	1	0	3.17	1	0	12.4	
Vanadium	1	0	3.33	1	0	2.11	
Zinc	1	0	0.469	1	0	0.422	
RFD - Conventional		v	0.100		, and the second	022	
Solids	ns	ns	ns	1	0	0.101	
RFD - Metals/Metall							
Aluminum	ns	ns	ns	1	0	9.87	
Antimony	ns	ns	ns	1	0	17.4	
Arsenic	ns	ns	ns	1	0	16.8	
Barium	ns	ns	ns	1	0	31.7	
Beryllium	ns	ns	ns	1	0	4.88	
Cadmium	ns	ns	ns	1	0	3.98	
Calcium	ns	ns	ns	1	1	40	
Chromium	ns	ns	ns	1	0	4.59	
Cobalt	ns	ns	ns	1	0	5.22	
Copper	ns	ns	ns	1	0	7.62	
Iron	ns	ns	ns	1	0	4.22	
Lead	ns	ns	ns	1	0	9.44	
Magnesium	ns	ns	ns	1	0	32.3	
Manganese	ns	ns	ns	1	0	6.44	
Mercury	ns	ns	ns	1	1	36.2	
Molybdenum	ns	ns	ns	1	0	24.6	
Nickel	ns	ns	ns	1	0	2.94	
Potassium	ns	ns	ns	1	0	13	
Selenium	ns	ns	ns	1	0	10.9	
Silver	ns	ns	ns	1	0	13.2	
Sodium	ns	ns	ns	1	0	6.17	
Thallium	ns	ns	ns	1	0	4.17	
Vanadium	ns	ns	ns	1	0	1.07	

Highlighted cells identify where relative percent differences (RPDs) and relative standard deviations (RSDs) are greater than the control limit.

Control limits specified in the quality assurance project plan (QAPP) (Exponent et al. 2014) are 20% for analytical RPDs (i.e., metals, mercury, total organic carbon [TOC], cation exchange capacity [CEC], and pH) and 35% for field triplicate RSDs. The QAPP did not specify a quality objective for grain size RPDs.

ns - not sampled (field duplicates were not prepared)

RFA, RFB, RFC, and RFD - relict flood plain depositional areas A, B, C, and D

Table 5-9a. Windblown Sediment Deposition Area Summary of Field Split and Triplicate Sample Results for Bulk Soil Samples

	Fie	ld Split Sample RP	Ds	Triplicate Sample RSDs		
Analyte	Number of Samples		Max RPD (%)	Number of Samples	No. RSDs >35%	Max RSD (%)
Columbia Beach North - C	Conventional Paramete	rs				
рН	1	0	3.62	1	0	1.07
Solids	1	0	0.101	1	0	0.0587
Grain Size						
Clay	1	na	0.425	1	0	3.87
Silt	1	na	11.5	1	0	12.3
Very fine sand	1	na	4.27	1	0	3.59
Fine sand	1	na	6.22	1	0	6.28
Medium sand	1	na	8.1	1	0	10.4
Coarse sand	1	na	2.73	1	0	8.19
Very coarse sand	1	na	9.64	1	0	14.8
Very fine gravel	1	na	9.32	1	0	24.6
Fine gravel	1	na	60.1	1	1	83
Medium gravel	1	na	0	1	1	173
Coarse gravel	1	na	0	1	0	0
Very coarse gravel	1	na	0	1	0	0
Cobbles	1	na	0	1	0	0
Marcus Flats East - Conve	entional Parameters					
pH	1	0	2.44	1	0	2.66
Solids	1	0	1.41	1	0	1.15
Grain Size	<u>'</u>			·		
Clay	1	na	8.22	1	1	40.3
Silt	1	na	6.35	1	0	8.48
Very fine sand	1	na	0.477	1	0	4.9
Fine sand	1	na	1.06	1	0	10.4
Medium sand	1	na	8.59	1	0	9.03
Coarse sand	1	na	23.1	1	0	34
Very coarse sand	1	na	25.6	1	0	11.6
Very fine gravel	1	na	102	1	1	54.1
Fine gravel	1	na	28.9	1	1	51.3
Medium gravel	1	na	200	1	1	173
Coarse gravel	1	na	0	1	0	0
Very coarse gravel	1	na	0	1	0	0
Cobbles	1	na	0	1	0	0

Highlighted cells identify where relative percent differences (RPDs) and relative standard deviations (RSDs) are greater than the control limit.

Control limits specified in the quality assurance project plan (QAPP) (Exponent et al. 2014) are 20% for analytical RPDs (i.e., metals, mercury, total organic carbon [TOC], cation exchange capacity [CEC], and pH) and 35% for field triplicate RSDs. The QAPP did not specify a quality objective for grain size RPDs.

na - not applicable

Table 5-9b. Windblown Sediment Deposition Area Summary of Field Split and Triplicate Sample Results for the < 2-mm Soil Fraction

	Fie	ld Split Sample RP	Ds	Tripl	icate Sample RSDs	3
A mali da	Number of Samples	No. RPDs >20%	Max RPD (%)	Number of Samples	No RSDs >35%	Max RSD (%)
Analyte Columbia Beach North - Conv		140.111 23 >20 /0	Wax I ti D (70)	Transcr or campies	140: 1(0D3 >00 /0	Wax NOD (70)
CEC	1	0	18.8	1	0	14
Organic carbon	1	0	1.71	1	0	13.8
Solids	1	0	0.1	1	0	0.0582
Columbia Beach North - Metal		0	0.1	<u>'</u>	U	0.0302
Aluminum	1	0	2.76	1	0	1.79
Antimony	1	0	9.52	1	0	5.33
Arsenic	1	1	24.2	1	0	8.02
Barium	1	0	1.64	1	0	1.84
Beryllium	1	0	0	1	0	4.26
Cadmium	1	0	4.88	1	0	2.47
Calcium	1	0	11.3	1	0	2.8
Chromium	1	0	1.34	1	0	4.5
Cobalt	1	0	4.87	1	0	1.83
Copper	1	0	0.778	1	0	2.34
Iron	1	0	9.58	1	0	2.19
Lead	1	0	0.211	1	0	2.32
Magnesium	1	0	5.01	1	0	2.8
Manganese	1	0	4.01	1	0	2.7
Mercury	1	0	11.8	1	0	11.1
Molybdenum	1	0	4.35	1	0	6.35
Nickel	1	0	4.69	1	0	3.95
Potassium	1	0	4.23	1	0	4.38
Selenium	1	0	11.8	1	0	6.93
Silver	1	1	28.6	1	0	12.4
Sodium	1	1	27.2	1	0	22.5
Thallium	1	0	0	1	0	0
Vanadium	1	0	1.59	1	0	1.1
Zinc	1	0	5.32	1	0	1.33
Marcus Flats East - Convention	nal Parameters					
CEC	1	1	30.4	1	0	33.9
Organic carbon	1	0	10.8	1	0	28
Solids	1	0	0.105	1	0	0.26
Marcus Flats East - Metals/Me						
Aluminum	1	0	0.627	1	0	2.25
Antimony	1	0	7.63	1	0	13
Arsenic	1	0	5.78	1	0	12.1
Barium	1	0	2.68	1	0	4.11
Beryllium	1	0	0	1	0	3.94
Cadmium	1	0	5.99	1	0	20.2
Calcium	1	0	2.6	1	0	1.95
Chromium	1	0	7.69	1	0	3.38
Cobalt	1	0	4.47	1	0	1.11
Copper	1	0	6.16	1	0	4.09
Iron	1	0	0.702	1	0	3.05
Lead	1	0	7.22	1	0	23.4
Magnesium	1	0	1.79	1	0	3.62
Manganese	1	0	2.26	1	0	3.46
Mercury Molybdenum	1	0	9.52 25.5	1	0	10.8 4.68
Nickel	1	0	25.5 1.75	1	0	1.14
Potassium	1	0	0	1	0	3.86
Selenium	1	1	21.4	1	0	
Silver	1	0	6.9	1	0	6.54 0.00000134
Sodium	1	0	15.1	1	0	
Thallium	1	0	0	1	0	6.57 9.52
Vanadium	1	0	1.16	1	0	5.59
Zinc	1	0	1.16	1	0	12.8
Notes:	I	U	1.54	<u> </u>	U	12.0

Highlighted cells identify where relative percent differences (RPDs) and relative standard deviations (RSDs) are greater than the control limit.

Control limits specified in the quality assurance project plan (QAPP) (Exponent et al. 2014) are 20% for analytical RPDs (i.e., metals, mercury, total organic carbon [TOC], cation exchange capacity [CEC], and pH) and 35% for field triplicate RSDs. The QAPP did not specify a quality objective for grain size RPDs.

Table 5-10. Comparison of Actual Method Reporting Limits with Analytical Concentration Goals for Nondetected Samples

Analyte	Soil Fraction	ACG	MRL	Minimum MRL	Maximum MRL	Units	Number of 1X ACG Exceedances / Total Nondetected Results	Number of 10X ACG Exceedances / Total Nondetected Results
ADA - High-der	nsity							
Sodium	< 149-µm	40	40	106	124	mg/kg	2/2	0/2
Sodium	< 2-mm	40	40	91.5	125	mg/kg	3/3	0/3
ADA - Primary								
Sodium	< 149-µm	40	40	97.9	127	mg/kg	9/9	0/9
Sodium	< 2-mm	40	40	51.4	125	mg/kg	13 / 13	0 / 13
WSDA - Colum	bia Beach Sou	ıth						
Selenium	< 2-mm	0.3	0.2	0.19	0.19	mg/kg	0/1	0/1

ACG - analytical concentration goal

ADA - Aerial deposition area

MRL - method reporting limit

WSDA - windblown sediment deposition area

Table 5-11a. Summary of Metals Data Compared with Available Eco-SSLs

			ļ ,	ADA	R	FDA	W	SDA
Analyte	Soil Fraction	Eco-SSL (mg/kg) ^a	Number of DUs	Number of DUs > Eco-SSL	Number of DUs	Number of DUs > Eco-SSL	Number of DUs	Number of DUs > Eco-SSL
Antimony	< 2-mm	0.27	142	142	16	16	13	8
Arsenic	< 2-mm	18	142	41	16	5	13	0
Barium	< 2-mm	330	142	59	16	5	13	0
Beryllium	< 2-mm	21	142	0	16	0	13	0
Cadmium	< 2-mm	0.36	142	142	16	16	13	7
Chromium	< 2-mm	26	142	26	16	9	13	0
Cobalt	< 2-mm	13	142	5	16	5	13	0
Copper	< 2-mm	28	142	21	16	13	13	0
Lead	< 2-mm	11	142	142	16	16	13	8
Manganese ^b	< 2-mm	220	142	141	16	16	13	13
Nickel	< 2-mm	38	142	10	16	0	13	0
Selenium	< 2-mm	0.52	142	19	16	9	13	0
Silver	< 2-mm	4.2	142	0	16	0	13	0
Vanadium	< 2-mm	7.8	142	142	16	16	13	13
Zinc	< 2-mm	46	142	142	16	16	13	11

For decision units (DUs) with field split and triplicate samples, summary statistics are based on the average of results for the DU. Nondetected values (NDs) are included as half the reporting limits (RLs).

ADA - aerial deposition area

mg/kg - milligram per kilogram

RFDA - relict flood plain deposition area

WSDA - wind blown sediment deposition area

^a Ecolgocial soil screening level (Eco-SSL) values are presented in the quality assurance project plan (QAPP) (Exponent et al. 2014), except as noted, and are the lowest of the screening levels adopted by EPA for plants, soil invertebrates, birds, and mammals (USEPA 2010a).

^b The Eco-SSL for manganese was not presented in Table A7-2 of the QAPP but is referenced in USEPA (2007b).

Table 5-11b. Comparison of Aerial Deposition Area Metals Data from < 2-mm Fraction with Available Eco-SSLs

Part	+	_	233	74.4	3	62	25 X	6.76		-66		U.12	<u>5</u>	3.0	_	ADA-034
The				2	031		נו ס		+	2		0.70	240	0 80	-	
The color Patron Patron Patron Patron Calvar Calvar		0.28	0.38	45		89.7	16.2	6.13	10.7	O)		0.62	517	13.6	1:1 	DA-033
The Mart M		0.23	0.2	11.1		280	21.5	5.29	13.9		د	0.4	221	20	2.96 J)A-028
The Martin Mart		0.43	0.57	42.6	705	104	25.2	5.84	9.66			0.44	630	11.3	2.5	A-026
The color Part Pa		0.46	0.58	31.7	1490	283	24.3	7.02	8.01			0.52	820	20.7	2.84 J	A-025
The		0.54	0.37	13.3	824	506	42.8	5.17	14.4	0.7		0.47	248	27.7	6.44 J)A-024
May Martin May M		0.487	0.73	25	400	129	30.8	8.29	25.1	.43		0.417	198	16.3	2.13 J)A-023
Declaration Process		0.21	4	38.4	664	66.7	49.5	14.5	23.4	.13		0.52	194	23	1.61 J	DA-021
Part		0.0967	-	14.3	449	64.3	16	7.11	19.6	.65		0.633	174	9.34	0.933 J	DA-020
Part		0.16	0.22	26.4	537	76.6	22.5	8.95	29.6	2		\dashv	159	13.8		DA-019
No. Autor About About		0.35	0.35	16.3	1010	592	29.5	6.91	20.4	0.1	_	+	263	15.8	4	DA-018
The part Par		0.21	4	11.4	649	267	19.6	4.97	14.2	.04	ے	+	178	18.4	4	DA-017
Note Part		0.0833	+	8.38	373	108	9.03	3.03	10.2	.63		0.263	89.8	7.84	4)A-016
Part		-	-	9.86	565	137	<u>-1</u>	3.76	11.6	.67		0.305	161	8.27)A-015
		4	0.39	18.8	1390	429	31.8	9.27	18.3	.64		0.6	196	24.6)A-010
		0.31	0.4	22	757	407	20.5	6.47	25.2	.06		0.5	289	20	4)A-008
Third Author Au		0.15	0.205	12	450	187	15	4.81	15.3	4.2		0.345	130	11.9	2.8 J)A-006
Table		0.4	0.9	38.9	573	74.2	33 i	9 9 9	21 4		-	0.66	259	19.4	2.66)A-005
Mark		0.30	0.51	26.5	826	152	22.2	619	13.8	3 6		0.50	428	15.7	-)A-004
Market M		0.24	0.27	36	501	316	22.3	0.00	33 8	.13		0.44	192	16.1	+	JA-007
The Marity Aleysing Bayliam Bayliam Bayliam Bayliam Chiroliam Chiroliam															3	4 - Primary
Authonomy Absonic Absonium Boyilum Code		0.36	0.29	13.7	640	307	20.5	5.66	16.4	.55	ے	0.35	187	25.8	4.94 J	ADA-168
Authonomy Austroine Authonomy Authonomy Calculum Calcu		0.54	0.38	11.9	631	504	26.8	5.71	17.4	0.8		0.38	208	22.4	5.6 J	ADA-165
Authinordy Assaint Barlim Barlim Barlim Barlim Cabalmin Cabal		0.46	0.73	12.4	795	447	21.9	5.33	14.5	.19		0.31	208	20.1	6.94 J	ADA-164
Authonomy Alsonine Baylum Baylum Cambum Choralum Cho		0.85	0.44	7.67	449	714	30.7	3.03	10	2.4		0.26	124	19.8	10.7 J	ADA-162
Authmorp Alesanic Basium Baylum Cabrilla Chromito Chro		0.345	0.27	14.1		378	20.1	5.99	19.1	.55	د	0.35	253	16.5	4.6 J	ADA-161
Arthmory Art Arthmory Art Arthmory Art Arthmory Art Arthmory Art Art		0.23	0.18 J	8.37		224	12.4	3.06	9.82	.31	د	0.27	105	13.9	3.38 J	ADA-160
Antimory Antimory Barium Berjuim Colamin Chantin Alead Mangameer Nuclei 38 or. Alead Mangameer Nuclei 38 or. 422 7.8 224 J 113.2 114.0 0.33 J 7.3 12.1 4.93 3.75 11.5 11.5 11.6 9.81 0.107 J 0.12 14.7 33 2.543 J 140 0.23 J 5.33 17.51 1.93 3.9 1.02 0.03 0.03 2.4 33 2.545 J 160 0.23 3.43 1.7 1.03 2.24 1.03 0.03 0.03 2.24 2.24 2.24 2.24 2.24 2.24 2.24 2.24 2.24 2.24 2.24 2.24 2.24 2.24 2.24 2.24 2.24 2.24 <td></td> <td>0.397</td> <td>0.303</td> <td>16</td> <td>816</td> <td>370</td> <td>21.7</td> <td>7.22</td> <td>21.2</td> <td>.63</td> <td></td> <td>0.37</td> <td>194</td> <td>17.5</td> <td>5.6</td> <td>)A-159</td>		0.397	0.303	16	816	370	21.7	7.22	21.2	.63		0.37	194	17.5	5.6)A-159
Animory		0.433	0.363	12	459	430	23.9	5.43	17.5	.76	_	0.297	115	18.7	5.72 J	DA-158
Actimony Actimony Actimony Actimony Actimony Actimony Actimony Actimony Actimony Cobat Cobat Copper Lead Management Weel Silver Vanadium Silver Vanadium Actimony 255 1 11.8 12.9 11.8 12.0 3.7 11.5 178 62.8 0.92 0.92 15.4 11.7 256 1 23.2 14.4 0.33 2.35 9.73 3.45 11.7 198 475 0.93 0.12 14.7 3.35 254 1 21.1 10.2 0.33 2.35 17.5 10.4 25.4 31.5 0.93 0.12 14.7 31.5 0.33 0.03 0.34 0.04 0.23 2.4 0.04 0.04 0.04 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04		0.575	0.375	15.8	1010	553	22	6.75	20.7	55		0.415	335	19.5	7.09 J	DA-156
Antimory Assinic Barillum Cadmillum Chromium Colonium Chromium Colonium Chromium Colonium Chromium Colonium Chromium Colonium Chromium Colonium Colonium Chromium Colonium Colonium Colonium Colonium Chromium Colonium Coloniu		0.25	0.25	20 00	669	249	13 13	သ	4	98	-	$^{+}$	184	17 1	5.01	OA-155
Animody		0.347	0.307	26.6	819	321	24 9	7 97	-	67		\dagger	299	19.5	3 8 9)A-154
Animory <		O 3.	0.02	13.6	605	327	23.6	7 21	-	7 6		+	224	20.5	3 57	DΔ-153
Animory Cadnium Composition Cobe 13 Cobe 11 Cobe Nickel Selinium Silvert Vanadum 2.85 1 1.83 1.63 0.307 2.8 10.8 3.77 11.5 178 6238 9.93 0.127 15.4 11.7 11.2 11.4 0.337 2.35 9.73 3.45 11.7 1188 455 9.81 0.19 0.127 11.7 12.3 11.7 11.8 41.8 0.19 0.127 11.7 12.3 11.7 11.8 455 9.81 0.19 0.127 11.7 12.3 12.4 49.9 0.23 J. 4.8 19.1 4.86 19.1 4.86 19.2 9.81 0.19 0.25 21.7 11.2 2.83 19.8 0.23 0.24 19.8 17.1 19.8 25.9 19.8	+	0.00	0.27	22.29	1040	3000	23 5	9.42	27.8	58		0.21	375	26.4	3 78)A-152
Animory <		0.35	0.25	ο	320	326	19.8	4.22	10.3	3 6		0.26	500	43.6	+)A-150
Animory Animory Animory Assenic Bayllum Cadmium Chromum Cobalt Copper Lead Minganese Mickel Selenium Silvet Vanadum 2.85 J 118 330 2.8 10.8 3.77 11.5 2.8 11.5 2.9 1.9 0.52 4.2 7.8 7.8 1.2 1.9 1.1 1.1 2.0 0.30 0.6 1.1 1.1 1.1 2.0 0.3 0.0 1.1 1.1 1.1 2.0 0.0 0.0 1.1 1.1 2.0 0.0 0.0 0.0 1.1 1.1 1.1 2.0 0.0		0.26	0.24	10.2	437	342	10.00	4.21	12.7	99		0.26	88.7	16.5	+)A-148
Animory Arimory Arim		0.33	0.29	5.59		352	16.9	2.26	7.32	H		0.26	88	17	7.06 J)A-147
Antimory Arisenic Baylum Baylum Cadmium Cohemium Cohemium Copper Lead Manganess Nickel Selnium Silver Vanadum 2.85 J 11.8 156 0.307 2.8 10.8 3.77 11.5 178 628 9.54 0.197 J 0.127 15.4 11.7 2.84 J 11.8 156 0.33 2.35 9.73 11.5 11.5 4.75 9.63 0.197 J 0.127 14.4 0.13 2.35 9.73 11.5 11.5 4.75 9.63 0.197 J 0.127 14.5 11.5 11.5 4.75 9.63 0.197 J 0.127 14.4 11.5		H	0.25	=	591	290	18.3	4.65	13.1	.35	_	0.32	182	16.8)A-146
Antimority Arsenic Barium Beyllium Commum Chonium Cobalt Copper Lead Manganese Nicket Selentim Silver Vanadum 2.28 J 11.8 156 0.307 2.8 10.8 3.77 11.5 178 2.8 0.52 4.2 7.8 11.5 1.2 2.8 1.0 2.8 11.5 178 2.8 0.197 J 0.127 15.4 13.4 1.2 1.2 2.8 1.1 1.1 1.1 2.2 0.23 2.3 2.3 2.3 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.2 0.1 0.1 0.1 0.1 0.1 1.1<		0.36	0.29	15.4	792	309	20	6.97	16.6	.83		0.49	235	16.5		ADA-145
Antimory Antimory Baylim Baylim Baylim Baylim Cadnium Coper Lead Manganese Nicket Selenium Silver Vanadum 2.26 J 11.8 156 0.307 2.8 10.8 3.77 11.5 47 9.84 0.197 J 0.127 15.4 11.5 0.307 2.8 10.8 3.77 11.5 178 6.28 9.81 0.197 J 0.127 14.7 11.8 11.7 2.94 0.197 J 0.127 14.7 11.8 11.7 2.98 19.8 19.8 19.8 0.197 J 0.127 14.7 11.7 11.8 11.7 2.98 19.8 19.8 0.197 J 0.127 19.8 19.8 19.8 0.33 0.48 19.8 19.8 19.8 19.8 33 0.4 19.8 19.8 19.8 19.8 19.8 19.8 19.8 19.8 19.8 19.8 19.8 19		0.29	0.26	6.21		260	18.2	2.81	7.44			0.33	88.6	19.1	5.62 J	ADA-144
Antimory Assenic Barium Beryllium Cedmium Chromium Cobalt Copper Lead Manganes Nickel Selenium Silver Vanadium 2.28 J 11.8 156 0.307 2.8 10.8 3.77 11.5 178 220 9.54 0.197 J 0.127 15.4 11.5 11.5 2.8 11.5 178 6.28 9.54 0.197 J 0.127 15.4 11.4 12.2 11.5 178 6.28 9.54 0.197 J 0.127 15.4 11.5 11.5 178 4.86 13.7 11.5 178 4.75 9.81 0.019 J 0.127 15.4 11.5 1.5 17.5 14.86 3.77 15.8 4.75 9.81 0.03 0.012 9.14 9.81 0.03 9.93 0.3 9.94 13.4 9.94 9.94 9.94 9.94 9.94 9.94 9.94 9.94 9.94 <		0.2	0.21	8.9	329	141	15	4.02	12.3	.98	د	0.31	109	9.86	2.46 J	ADA-143
Antimory Arisenicy Barium Beryillium Cadmium Chromium Cobalt Copper Lead Manganese Nickel Selenium Silver Vanadium 0.27 18 330 21 0.36 26 13 28 11 220 38 0.52 4.2 7.8 12		0.21	0.2	8.08	477	232	12.3	3.33	12.2	.16		0.27	125	10.9	H	ADA-142
Antimony Ansenic Baium Beyllium Cedmium Chromium Cobalt Copper Lead Manganese Nickel Selenium Silver Vanadium 0.27 18 330 21 0.36 26 13 28 11 220 38 0.52 4.2 7.8 11 2.85 J 11.8 156 0.307 2.8 10.8 3.77 11.5 178 628 9.54 0.197 J 0.127 15.4 11.7 2.24 J 13.2 144 0.33 2.35 9.73 3.45 11.7 158 475 9.81 0.197 J 0.127 14.7 14.8 2.54 J 19.8 4.2 0.43 4.81 15.1 158 475 9.81 0.19 J 0.12 14.7 14.8 14.8 15.8 12.9 0.18 0.18 0.14 14.7 15.8 2.1 1.1 2.0	ے	0.185	0.225 J	18.4	782	176 J	14.7		6	.59	د	0.46	Н		2.26 J	A-141
Antimony Arsenic Barium Beylium Cadmium Chromium Cobalt Copper Lead Manganese Nickel Selenium Silver Vanadium 0.27 18 330 21 0.36 26 13 28 11 220 38 0.52 4.2 7.8 2.85 J 11.8 156 0.307 2.8 10.8 3.77 11.5 178 628 9.54 0.197 J 0.127 15.4 11 2.24 J 13.2 144 0.33 2.35 9.73 3.45 11.7 158 475 9.81 0.197 J 0.127 14.7 11 3.95 J 19.1 4.86 51.8 379 778 10.8 0.33 0.48 19.6 33 2.54 J 10.6 0.23 J 5.13 2.85 17.1 230 30.2 0.18 3.3 29.8 33 <t< td=""><td></td><td>0.56</td><td>0.5</td><td>10.7</td><td>430</td><td>536</td><td>102</td><td>5.49</td><td>15.2</td><td>.27</td><td></td><td>0.27</td><td>190</td><td>19.8</td><td>8.38</td><td>)A-140</td></t<>		0.56	0.5	10.7	430	536	102	5.49	15.2	.27		0.27	190	19.8	8.38)A-140
Antimony Arsenic Barlum Beyllium Cadmium Chromium Cobalt Copper Lead Manganese Nickel Selenium Silver Vanadium 0.27 18 330 21 0.36 26 13 28 11 220 38 0.52 4.2 7.8 1 2.85 J 11.8 156 0.307 2.8 10.8 3.77 11.5 178 628 9.54 0.197 J 0.127 15.4 11 2.24 J 13.2 144 0.33 2.35 9.73 3.45 11.7 158 475 9.81 0.197 J 0.127 14.7 11 3.95 J 19.2 0.35 J 7.9 12.1 4.86 51.8 379 778 10.8 0.33 0.48 19.6 33 2.44 3.7 1.5 10.4 29.4 18.9 762 31.5 0.38 0.21		0.26	0.37	21.2	804	236	18.9	7.99	22.2	5.1	، ے	0.4	314	18.7	3.62 J	A-139
Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Manganese Nickel Selenium Sliver Vanadium 0.27 18 330 21 0.36 26 13 28 11 220 38 0.52 4.2 7.8 2.85 J 11.8 156 0.307 2.8 10.8 3.77 11.5 178 628 9.54 0.197 J 0.127 15.4 13 2.24 J 13.2 144 0.33 2.35 9.73 3.45 11.7 158 475 9.81 0.197 J 0.127 15.4 13 2.24 J 13.2 14.4 0.33 2.35 9.73 3.45 11.7 158 475 9.81 0.19 J 0.127 14.7 13 3.4 19 492 0.47 J 6.32 17.5 10.4 29.4 18		0.24	+	10.8	478	215	15.6	4.74	3 0	59		0.29	136	10.5	3.09	A-136
Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Manganese Nickel Selenium Silver Vanadium 0.27 18 330 21 0.36 26 13 28 11 220 38 0.52 4.2 7.8 2.85 J 11.8 156 0.307 2.8 10.8 3.77 11.5 178 628 9.54 0.197 J 0.127 15.4 11 2.24 J 13.2 144 0.33 2.35 9.73 3.45 11.7 158 475 9.81 0.197 J 0.127 14.7 11 3.45 J 19.6 28.2 0.35 J 7.9 12.1 4.86 51.8 379 778 10.8 0.33 0.48 19.6 33 3.45 J 10.4 29.1 4.86 51.8 379 778 10.8 0.		0.22	+	± 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	350	108	17 4	5 78	3000	48	c	0.35	50.5	8 2 6 4	1.19	A-135
Antimony Arsenic Barium Beryllium Cadmium Copper Lead Manganese Nickel Selenium Silver Vanadium 0.27 18 330 21 0.36 26 13 28 11 220 38 0.52 4.2 7.8 2.85 J 11.8 156 0.307 2.8 10.8 3.77 11.5 178 628 9.54 0.197 J 0.127 14.7 11.7 2.24 J 13.2 144 0.33 2.35 9.73 3.45 11.7 158 475 9.81 0.197 J 0.127 14.7 11.7 3.95 J 22.1 282 0.35 J 7.9 12.1 4.86 51.8 379 778 10.8 0.33 0.48 19.6 33 3.48 J 10.6 85.1 0.23 J 6.15 10.4 29.4 189 762 31.5 <td>+</td> <td>0.243</td> <td>0.215</td> <td>15.0</td> <td>714</td> <td>255</td> <td>17.9</td> <td>5 66 7</td> <td>15.5</td> <td>9 <u>:</u></td> <td></td> <td>0.3</td> <td>210</td> <td>15.4</td> <td>+</td> <td>A-133</td>	+	0.243	0.215	15.0	714	255	17.9	5 66 7	15.5	9 <u>:</u>		0.3	210	15.4	+	A-133
Antimony Arsenic Barium Beryllium Cadmium Cobalt Copper Lead Manganese Nickel Selenium Silver Vanadium 0.27 18 330 21 0.36 26 13 28 11 220 38 0.52 4.2 7.8 2.85 J 11.8 156 0.307 2.8 10.8 3.77 11.5 178 628 9.54 0.197 J 0.127 15.4 13 2.24 J 13.2 144 0.33 2.35 9.73 3.45 11.7 158 475 9.81 0.197 J 0.127 14.7 13 3.95 J 22.1 282 0.35 J 7.9 12.1 4.86 51.8 379 778 10.8 0.33 0.48 19.6 33 0.38 0.3 0.38 0.3 0.18 0.0 30 0.13 0.18 0.0 0.0 0.0 <td></td> <td>0.393</td> <td>0.517</td> <td>18.2</td> <td>362</td> <td>463</td> <td>130</td> <td>7.06</td> <td>17.1</td> <td>H</td> <td></td> <td>0.43</td> <td>378</td> <td>25.4</td> <td>H</td> <td>A-131</td>		0.393	0.517	18.2	362	463	130	7.06	17.1	H		0.43	378	25.4	H	A-131
Antimony Arsenic Barium Beryllium Cadmium Chromium Copper Lead Manganese Nickel Selenium Vanadium 0.27 18 330 21 0.36 26 13 28 11 220 38 0.52 4.2 7.8 2.85 J 11.8 156 0.307 2.8 10.8 3.77 11.5 178 628 9.54 0.197 J 0.127 15.4 13 2.84 J 13.2 144 0.33 2.35 9.73 3.45 11.7 158 475 9.81 0.19 J 0.127 14.7 13 2.54 J 19 492 0.47 J 6.32 17.5 10.4 29.4 189 762 31.5 0.38 0.3 29.8 33		0.21	+	7.32		230	17.1	2.85	8.51	-	د	0.23	85.1	10.6	3.48	A-128
Antimony Arsenic Barium Beryllium Cadmium Chromium Copper Lead Manganese Nickel Selenium Silver Vanadium 0.27 18 330 21 0.36 26 13 28 11 220 38 0.52 4.2 7.8 2.85 J 11.8 156 0.307 2.8 10.8 3.77 11.5 178 628 9.54 0.197 J 0.127 15.4 13 2.24 J 13.2 144 0.33 2.35 9.73 3.45 11.7 158 475 9.81 0.19 J 0.127 14.7 13 3.95 J 22.1 282 0.35 J 7.9 12.1 4.86 51.8 379 778 10.8 0.33 0.48 19.6 33		0.3	H	31.5		189	29.4	10.4	17.5	.32	. c	0.47	492	19	2.54 J	A-127
Antimony Arsenic Barium Beryllium Cadmium Chromium Copper Lead Manganese Nickel Selenium Vanadium 0.27 18 330 21 0.36 26 13 28 11 220 38 0.52 4.2 7.8 2.85 J 11.8 156 0.307 2.8 10.8 3.77 11.5 178 628 9.81 0.197 J 0.127 14.7 11.7 11.8 0.197 J 0.127 14.7 11.7 11.8 0.197 0.197 J 0.127 11.7 11.8 0.197 0.197 J 0.127 11.7 11.8 0.197 0.197 J 0.127 11.7 11.8 11.7 11.8 11.7 11.8 11.7 11.7 11.8 11.7 11.8 11.7 11.8 11.7 11.8 11.8 11.7 11.8 11.7 11.8 11.7 11.8 11.8 11.7		0.48	0.33	10.8	778	379	51.8	4.86	12.1	7.9	د	0.35	282	22.1	3.95	A-126
Antimony Arsenic Barium Beryllium Cadmium Chromium Copper Lead Manganese Nickel Selenium Silver Vanadium 0.27 18 330 21 0.36 26 13 28 11 220 38 0.52 4.2 7.8 2.85 J 11.8 156 0.307 2.8 10.8 3.77 11.5 178 628 9.54 0.197 J 0.127 15.4 13		0.12	H	9.81	475	158	11.7	3.45	9.73	.35		0.33	144	13.2	2.24 J	A-125
Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Manganese Nickel Selenium Silver Vanadium 0.27 18 330 21 0.36 26 13 28 11 220 38 0.52 4.2 7.8		0.127	H	9.54	628	178	11.5	3.77	10.8	2.8		0.307	156	11.8	2.85 J	A-124
Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Manganese Nickel Selenium Silver 0.27 18 330 21 0.36 26 13 28 11 220 38 0.52 4.2																- High-density
Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Manganese Nickel Selenium Silver	7.8	4.2	0.52	38	220	11	28	13	26	0.36			330	18	0.27	-SSL (mg/kg) ^b
	Vanadium	Silver	Selenium	Nickel	Manganese	Lead	Copper	Cobalt	Chromium	admium			Barium	Arsenic	Antimony	Decision Unit

Table 5-11b. Comparison of Aerial Deposition Area Metals Data from < 2-mm Fraction with Available Eco-SSLs

Decision Unit Eco-SSL (mg/kg) ^b NDA - Primary (continuo)	Antimony 0.27	Arsenic	Н	Barium 330	Beryllium 21	Cadmium 0.36	Chromium 26	Cobalt	Cobalt Copper Lead	Lead	Manganese 220	Nickel 38	Selenium 0.52	Silver 4.2	Vanadium 7.8	Zinc 46
ADA - Primary (continued) ADA-039 0.7	0.78 J	8.31	6	643 J	0.63 J	5.57	14.1	6.56	13.2	47.7	1080	33.2	0.33	0.32	33	277
ADA-042	1.94 J	11.7	4.		Н	2.27	16.9	7.48	14.8	116	908	18.3	0.29	0.17	26.4	180
ADA-043	2.66 J	12.9	12	1220	0.4 J	4.95	П	13.6	42.3	119	972 J	40.7	0.64	0.315	32.9	296
ADA-044 ADA-045	1.73 5.97	13./ 27.4	25	395 257	0.615	10.6	15.1	7.02	27.5	137 497	1110	16.1	0.39	0.52	23.3	443
ADA-046	3.24 J	14	22	230 J	0.34 J	5.19	13.2	4.95	18.1	269	638	10.8	0.25	0.2	21.6	221
ADA-047	4.05 J	19.2	2;	Н	Н	7.7	27.4	8.71	25.8	316	851	20.7	0.37	0.42	38.4	478
ADA-048	2.16 J	10.8	6 14	1420	0.46	5.16	15.4	9.45	27.5	127 57 3	1030	30.8	0.78	0.29	23.3	297
ADA-050	4.2 J	21.8	Ŋ.	213	0.77	10.3	32.6	11.9	46.2	387	577	34.6	0.66	0.77	63.2	546
ADA-051	1.52 J	9.98	8 1	802	0.45	8.16	12.1	7.57	48.9	114	783	35.3	0.88	0.4	26.8	418
ADA-052	4.75 J	19.1	ų	343	H	9.85	28.7	8.67	26	398	872	22.4	0.39	0.4 J	36.1	456
ADA-053	7.36	24.1	y 5	565	0.54 0.55	2.4	35	646	18.4	123	1940	29.8	0.34	0.16	37.6	190
ADA-055	3.04	23.6	1 2	1380	0.523 J	9.91	14.5	8.78	38.7	195	J 1520	43 5	0.757	0.517	36.2	519
ADA-056	0.96 J	11.5	551	51	Н	2.27	32.5	10.1	17.5	92		28.9	0.21	0.16	33.6	193
ADA-057	1.56 J	14.6	28	285		2.9	35.4	11.4	26.3	127	913	30.9		0.17	48.4	180
ADA-058 ADA-059	201	11.8		588	0.4/ 0.48	3.46	20.2	10.6	74./	94.1	1950	31 0	0.18	0.15	20.5	210
ADA-060	3.37 J	20.4	20	206	+	7.09	26.1	9.42	31.4	283	728	24.8	0.317	0.36	33.3	350
ADA-061	0.99 J	15	65	620	0.61	2.83	78.7	13.3	19.4	141	2350	37.3	0.21	0.12	40.8	211
ADA-062	2.58 J	15.7	22	235	0.53	6.45	$^{+}$	6.98	19.7	277	736	18.7	0.24	0.23	30.4	303
ADA-064	1.05	16.5	υ, <u>γ</u>	517	0.57	2.68	37	10.9	20.2	126	2270	33.2	0.38	0.15	29.4	233
ADA-065	2.18 J	10.7	10	102	0.32 J	3.17	10.9	4.21	13.1	145	472	10.4	0.17 J	0.14	20.3	160
ADA-066	2.15 J	11.9	Ŋ	211	0.47	4.53		6.46	18.5	181	711	16.1	0.21	0.19	26.3	243
ADA-067	5.41 J	20	347	811 347 J	0.55 J	6.28	26.1	8.54	22.6	300	972	20.6	0.38	0.34	33.8	338
ADA-071	3.96 J	15.8	28	Н	0.49 J	5.85	20.9	6.62	18	294	959	18.9	0.27	0.23	33.5	266
ADA-073	5.61 J	19.7	22	286	0.46 J	50	20.1	6.26	18.1	274	847 J	18.3	0.31	0.25	31.5	240
ADA-078	4.98 J	21.6	.4	420	+	6.13	J 24.5	7.82	16.2	272	1230 J	19.5	0.32	0.24	39.9	281
ADA-079	3.47 J	14.8	937	37	0.51 J	12.2	Н	6.52	19	176	1030	27.6	0.45	0.96	29.4	448
ADA-081	2.03	12.7	20 1	290	0.444	3.11	24.8	7.74	24.6	147	709	20.8	0.23	0.19	33.9	189
ADA-084	2.51 J	12.7	ယ္တ၂	329	0.465	3.81	22.3	9.4	20.9	169	1640	24.4	0.315	0.295	27.9	269
ADA-085	1.86	11.2	28	287	0.495	4.02	J 18.2	7.85	17.5	136	1030	23.7	0.48		32.2	1150
ADA-088 ADA-089	3.22 J	19.2	2 3	379	0.6 J	5.59 5.98	33 25.2	10.9	25.5 24.6	242	1300	29.9	0.41	0.27 0.24	35.4 29.3	290 312
ADA-090	3.02 J	12.9	48	481	H	5.19	27.8	8.8	18.6	212	1280	20.5	0.28	0.225	35.3	294
ADA-091	3.11	19.8	30	309	0.58 J	7.52	35.7	9.82	22.4	267	1020	34.5	0.33	0.28 J	33.3	358
ADA-093	2.22	19	4, 4	416	0.61	4.46	18.5	8.13	15.5	197	1920	19.6	0.33	0.23	29.8	265
ADA-094	1.32 J	12.6	, ,	359	П	1.96	22.6	7.97	16.4	98.4		20.9	0.18 J	0.15	30.5	152
ADA-095	2.66	17		347	0.7 J	2.86	30	10.1	18.4	161	1240	28.1	0.29	0.22	29.4	187
ADA-097	5.47 J	19.6	ယ္ န	346	0.53	9.89	28.9	8.37	28.6	419	1190	21.9	0.47	0.48	25.6	446
ADA-099	3.21 J	21.1	32	386	0.98	5.81	4	J 9.34	22.4	264	1580	28.6	0.29	0.23 J	29.5	324
ADA-101	4.04 J	17.3	2;	237	Н	3.93	Н	Н	20.8	227		18.6	0.4	0.28	36.8	254
ADA-102	1.99	15.0	4 r	400	0.52 J	3.69	3 N	8.94 5	19.2	130	2140	3 .8	0.27	0.19	33 38	277
ADA-104	1.45	11	4, 4	423	0.54 J	2.54	12.8	6.86	14.2	94.2	1180	18.9	0.47	0.49	32.7	231
ADA-105	3.67 J	15.7	4,	413	0.46	6.63	Н	J 9.09	25.2	270	1050	18.3	0.285	0.42 J	40.6	387
ADA-106	1.73 J	11.6	7(2.85	19.5	10.4	20.1	84.7	1360	33	0.633		33	226
ADA-107 ADA-108	1.56	13.8	2 2	562 J	0.56 J	4.97 3.75	30.4	13.3	3 2.4	147	2060 705	34.7	+	0.23 0.403	49.2	294
ADA-109	4.85	15.1	2,1	217	0.41	7.46	+	5.89	20.4	327	696	15.1	0.46	+	21	393
ADA-110	3.25	126	<u>,</u>	183	0.43	5.22	20	603	18.8	216	482	3020	0.00	0.28	38.6	257

Table 5-11b. Comparison of Aerial Deposition Area Metals Data from < 2-mm Fraction with Available Eco-SSLs

		D)			Odmiim	Chrom		ohalt	Copper	D D	Manganaga	Nickol	Soloniim	Cilvor	\\openier \\openier \openier \\openier \\openi
Antimony	Arsenic	Dallu		erymun	Caulliulli	00		ייייייייייייייייייייייייייייייייייייייי	ooppo.	LOCAC	Mangancac	INICACI	Ocidinani	GIIVEI	vanadium
0.27	18	330		21	0.36	26		13	28	11	220	38	0.52	4.2	7.8
ADA - Primary (continued)															
1.18 J	11.3	373	0.	.48 J	2.71	33.1	10).1	22	108	1070	22.1			47.5
1.35 J	11.6	451	0	.65	3.29	20.7	8.	35	19.8	103	1520	14.8	0.3	0.26	37.1
	13	545	ر 0.	.72	2.73	25.8	ر 8.	64	17.9	145	1490	20.9	0.26	0.18	34.3
1.36 J	16.7	401	0	.74	2.85	20.1	7.	21	16.6	133	1500	20.9		+	26.8
1.81	14	320	0.	.57	2.66	17.4	5.	99	12.6	148	1190	12.7	_	_	24.6
2.04 J	15.2	266	0.	.51 J	2.57	19.1	7	2	14.6	131 J	1110	14.7	0.2		32.2
2.22 J	15.4	292	0.	.48			7.	15	15.7	165		13.5	_		31.7
	13.1	411	0.	69	4.95	43.9	8.	89	17.9	154	1430	26.2	0.22	0.2	31.1
1.99 J	13.3	268	0.	51 J	3.87	24.6	8.	01	19.7	175	948	21.4			J 24.8
2.99 J	17.5	393	0	ر 5.	5.84	25.4	9.	91	25.6	242	1190	22.6	0.31	0.28	44.2
1.57 J	10.4	431	0	.6	2.9	19.4	J 8.	09	13	102	1620	25.7	0.36	0.23	J 26.8
	10.9	204	0.1	587 J	0.89	14.6	9.	07	11.9	75.9	889	23.8			19.8
1.68 J	12.8	218	0.	.48 J	2.37	14.7	7.	36	14.6	122	931	16.4	0.31	0.3	37.7
1.07 J	11	221	0).4 J	2.76	13.4	6	ω	17.4	100	805	17.6	0.3	0.58	33
1.2 J	6.23	220	0.	.42	0.89		5.	29	8.22	82	1100 J	13.3	0.26	0.13	17.8
1.61 J	12	325	_ ن.0	523	1.99	15.3	6	Ġ	12.9	106	1250	16.1	0.28	0.267	33.6
1.95 J	10.9	407	J 0.	515	3.42	12.8	5	.6	10.1	93.1	1360	14.2	0.325	0.475	27.4
0.71 J	5.98	286	0.	.43 J	0.93	16.3	7.	47	13.2	76.6	1070	23.7	0.17		22.3
0.63 J	5.59	371	J 0.	.52	0.85	24.4	1,	.9	17.5	63.4	858	44.8	0.16		32.9
0.74 J	9.09	188	0.	.39	0.7	19	9.	89	13	70.4	1140	21.3			25.2
0.73 J	9.37	178	0.	.47 J	0.73	17.6	10).4	13.3	58.7	871	23.3			28.5
1.48 J	8.78	302	0.	.58			5.	92	11.7	86.2	1190	15.1	0.3	0.27	31
1.8	8.7	599	0	ح.	4.25	13.4	6.	42	16	125	962	20	0.505	0.4	32
1.99 J	10.1	420	J 0.	.46	4.27	13.9	6.	08	17.8	102	1180	20.4	0.6	0.7	40.9
1.38 J	8.12	362	0).5	5.2	15	6.	74	19.7	44.5	590	27.2	0.62	0.48	34.9
3.94 J	16.4	433	0	.44 J	14.3	14.6	6.	13	32.3	49	491	57.6	3.32	1.13	47.9
1.3 J	9.61	757	0.	.43 J	9.86	10.8	7	.5	22	74.7	1160	30.5	0.6	1.18	26.1
			=	ì											
000000000000000000000000000000000000000			soil screening	PVP (FCO-SS											
;;	9.27 9.27 9.99 9.99 9.99 9.99 9.99 9.99	27	Activity Priscrite Daried	Part Part	Marie Mari	0.36 2.71 2.73 2.85 2.66 2.66 2.66 2.66 2.73 2.77 3.71 4.95 3.87 5.84 2.9 0.89 0.89 0.89 0.89 1.99 0.89 1.98	Section Scale Section Scale Section Section	0.36 26 0.36 26 2.71 33.1 1 3.29 20.7 8 2.85 20.1 7 2.66 17.4 5 2.73 25.8 J 8 2.85 20.1 7 2.66 17.4 5 2.77 19.1 7 2.85 20.1 7 2.9 19.1 7 2.9 19.4 9 2.9 14.6 9 2.9 14.6 9 2.9 14.6 9 2.9 14.7 7 2.9 14.7 7 2.9 14.7 7 2.76 13.4 6 0.89 10.7 15.3 6 0.93 16.3 7 6 0.73 17.6 1 1 1.99 12.4 9 9 0.73 17.4 5 6 14.3 14.6 6 6 9.86 10.8 10.8 7	0.36 26 2.71 33.1 10 3.29 20.7 8 2.73 25.8 J 8 2.85 20.1 7 2.66 17.4 5 2.71 J 18.5 7 2.66 17.4 5 2.77 19.1 7 2.89 18.5 7 2.9 19.4 J 8 5.84 25.4 9 2.89 14.6 9 2.37 14.7 7 2.76 13.4 9 2.37 14.7 7 2.76 13.4 6 0.89 10.7 7 2.76 13.4 9 2.37 14.7 7 2.4 1 9 2.37 12.4 9 2.38 12.4 1 0.93 16.3 7 0.93 12.4 1 0.7 19 9 0.7 19 9 0.7 13.4 6 4.25 13.4 6 1.43 14.6 6 1.43 14.6	0.36 26 13 0.36 26 13 2.71 33.1 10.1 3.29 20.7 8.35 2.66 17.4 5.99 2.57 19.1 7.2 3.87 18.5 7.15 4.95 43.9 8.89 3.87 24.6 8.01 5.84 25.4 9.91 2.9 19.4 9.07 19.4 9.07 1 2.76 13.4 6.3 2.76 13.4 9.07 1.99 15.3 6.5 2.76 13.4 9.07 1.99 15.3 6.5 2.76 13.4 9.07 1.19 15.3 6.5 2.76 13.4 9.07 1.99 15.3 6.5 2.76 13.4 10.3 1.76 10.7 10.9 1.99 15.3 7.47 1 1 1 2.76 13.4 10.4 1.99 15.3 6.5 3.42 12.8 5.6 1 1 1 9.86 10.4 11.9 <	Color Color Color Color Color Color Color Color Color Table Table <th< td=""><td>COMMINITE COLORIS COLORIS</td><td>CORDITION CONDITION <t< td=""><td>Columin Colorin <t< td=""><td>Calilliulli Colorii III Colorii IIII Colorii IIII Colorii IIII Colorii IIIII Colorii IIIIII Colorii IIIIII Colorii IIIIIII Colorii IIIIIIII Colorii IIIIIIII Colorii IIIIIIII Colorii IIIIIIIII Colorii IIIIIIIIIII Colorii IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII</td></t<></td></t<></td></th<>	COMMINITE COLORIS COLORIS	CORDITION CONDITION CONDITION <t< td=""><td>Columin Colorin <t< td=""><td>Calilliulli Colorii III Colorii IIII Colorii IIII Colorii IIII Colorii IIIII Colorii IIIIII Colorii IIIIII Colorii IIIIIII Colorii IIIIIIII Colorii IIIIIIII Colorii IIIIIIII Colorii IIIIIIIII Colorii IIIIIIIIIII Colorii IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII</td></t<></td></t<>	Columin Colorin Colorin <t< td=""><td>Calilliulli Colorii III Colorii IIII Colorii IIII Colorii IIII Colorii IIIII Colorii IIIIII Colorii IIIIII Colorii IIIIIII Colorii IIIIIIII Colorii IIIIIIII Colorii IIIIIIII Colorii IIIIIIIII Colorii IIIIIIIIIII Colorii IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII</td></t<>	Calilliulli Colorii III Colorii IIII Colorii IIII Colorii IIII Colorii IIIII Colorii IIIIII Colorii IIIIII Colorii IIIIIII Colorii IIIIIIII Colorii IIIIIIII Colorii IIIIIIII Colorii IIIIIIIII Colorii IIIIIIIIIII Colorii IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

dw - dry weight

ADA - aerial deposition area

J - estimated value

mg/kg - milligram per kilogram

Table 5-11c. Comparison of Relict Floodplain Deposition Area Metals Data from < 2-mm Fraction with Available Eco-SSLs

							Soil Conce	Soil Concentration by Analyte (mg/kg dw) ^a	te (mg/kg dw) ^a						
Decision Unit	Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Manganese	Nickel	Selenium	Silver	Vanadium	Zinc
Eco-SSL (mg/kg) ^b	0.27	18	330	21	0.36	26	13	28	11	220	38	0.52	4.2	7.8	46
RFA															
RFA-001	14.7	J 16.8	608	0.35 J	4.97	37.2	13.8	516	451	1120	14.8	1.25	1.58	34.8	6300
RFA-002	10.6	J 9.81	616	0.365	3.18 J	38.6	15	566	284	1500	11.5	1.46	1.48 J	31.9	7600
RFA-003	12.2	J 14.5	614	0.34 J	5.05	35.2	13.5	467	362	1020	14.1	1.11	1.47	31.2	5270
RFA-004	14.9	J 12	650	0.42 J	2.83	53.6	19.5	758	278	1820	12.2	1.61	2.21	34.2	8640
RFA-005	11.1	J 14.9	608	0.35	3.65 J	37.4	15.3	527	570	1250	12.6	1.19	1.51 J	32.5	7710
RFB															
RFB-002	2.51	J 12.9	237	0.51 J	3.7	32	8.91	26.3	201	498	24.7	0.54	0.38	37.2	270
RFB-003	2.36	J 11.8	174	0.483	3.41 J	27.4	8.09	20.7	180 J	425	19.9	0.48	0.27 J	34	234
RFB-008	0.94	J 7	136	0.32	1.84 J	18.6	6.13	13.4	80.7	322	13.6	0.12 J	0.18 J	26.4	144
RFC															
RFC-003	5.23 J	J 29.3	212	0.48	14.3	21.7	8.97	135	730	446	19.2	0.755	1.07	32.3	616
RFC-004	2.31	J 17.2	155	0.47	8.76	23	8.19	69.4	373	347	18.3	0.42	0.65	34.1	300
RFC-005	3.31	31.4	205	0.637	9.89	25.9	9.12	154	606	339	20.5	0.623	0.963	37.9	432
RFC-006	2.19	25.2	172	0.55 J	8.39	26.1	8.55	125	467	285	19.6	0.44	0.77	37.6	312
RFC-007	2.96	18.5	260	0.57 J	8.63	26.3	8.73	115	559	277	21.3	0.6	0.76	38.9	461
RFC-008	2.36	J 23	168	0.56	10.1	25.3	8.72	142	505	276	19.1	0.5	0.76	36.4	346
RFD															
RFD-002	3.77 J	J 11.8	242	0.24	4.87	15.6	5.99	130	323	507	11.3	0.52	0.55	22.2	2600
RED-003	3.91	14.4	213 J	0.263	4.75	14.3	4.75	37.9	318	280	11.8	0.307	0.34	24	680

Notes:

Bold and shaded cells indicate concentrations greater than the ecolgocial soil screening level (Eco-SSL).

Averaged results have three significant figures applied.

Averaged results have three significant figures applied.

Bold and shaded cells indicate concentrations greater than the ecolgocial soil screening level (Eco-SSL).

Averaged results have three significant figures applied.

Bold and shaded cells indicate concentrations greater than the ecolgocial soil screening level (Eco-SSL).

Averaged results have three significant figures applied.

Bold and shaded cells indicate concentrations greater than the ecolgocial soil screening level (Eco-SSL).

Averaged results have three significant figures applied.

Bold and shaded cells indicate concentrations greater than the ecolgocial soil screening level (Eco-SSL).

Averaged results have three significant figures applied.

Bold and shaded cells indicate concentrations greater than the ecolgocial soil screening level shaded cells indicate concentrations greater than the ecolgocial soil screening level shaded cells indicate concentrations greater than the ecolgocial soil screening level shaded cells indicate concentrations greater than the ecolgocial soil screening level shaded cells indicate concentrations greater than the ecolgocial soil screening level shaded cells indicate concentrations greater than the ecolgocial soil screening level shaded cells indicate concentrations greater than the ecolgocial soil screening level shaded cells indicate concentrations greater than the ecolgocial soil screening level shaded cells indicate concentrations greater than the ecolgocial soil screening level shaded cells indicate concentrations greater than the ecolgocial soil screening level shaded cells indicate concentrations greater than the ecolgocial soil screening level shaded cells indicate concentrations greater than the ecolgocial soil screening level shaded cells in the ecolgocial soil screening level shaded cells in the ecolgocial soil screening level shaded cel

mg/kg - milligram per kilogram RFA, RFB, RFC, RFD - relict flood plain depositional areas A, B, C,and D

Table 5-11d. Comparison of Windblown Sediment Deposition Area Metals Data from < 2-mm Fraction with Available Eco-SSLs

		-						Soil Cond	Soil Concentration by Analyte (mg/kg dw)	yte (mg/kg dw) ^a		-				
Decision Unit	Antimony		Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Manganese	Nickel	Selenium	Silver	Vanadium	Zinc
Eco-SSL (mg/kg) ^b	0.27		18	330	21	0.36	26	13	28	11	220	38	0.52	4.2	7.8	46
Columbia Beach North	orth															
CBN-001	0.21	۲	6.83	122	0.4 J	0.205	14.9	6.16	12.9	9.49	349	12.8	0.085 J	0.035	25.2	48.9
CBN-002	0.27	ے	6.62	158	0.47 J	0.23	15.5	6.52	13.8	10.3	380	13	ر 90.09	0.04	25.7	50.7
CBN-003	0.287	ر	7.82	144	0.47	0.233	14.5	6.45	14.8	10.8	379	12.7	0.0833 J	0.0467	24.1	52.8
CBN-004	0.26	J	8.26	138	0.39 J	0.3	18.8	7.16	16	12.1	387	15.6	0.08 J	0.05	27	59
Columbia Beach South	outh															
CBS-001	0.19	J	5.28	115	0.37 J	0.18	15	5.78	12.7	8.16	306	12.6	J 80.0	0.03	22.9	45
CBS-002	0.17	J	5.58	95.1	0.34 J	0.18	11.9	4.88	11.1	7.91	307	10.3	0.19 U	0.02	18.4	45.4
Marcus Flats East																
MFE-001	3.28	J	17.3	187	0.49	5.01	13 ,	J 5.15	17.9	236	J 532	11.4 J	0.28	0.145	25.9	258
MFE-002	2.5	ر	15.6	187	0.55	4.19	11.7 J	5.19	16.3	169	J 547	11 J	0.22	0.11	25.7	199
MFE-003	2.92	ر	17.6	189	0.57	4.39		J 5.24	15.9	196	J 534	10.8 J	0.26	0.11	24.8	204
MFE-004	2.59	ر	16	179	0.56	3.77	14.2	_	15.5	172	J 480	11.1 J	0.24	0.08	24.7	175
MFE-005	1.96	ر	13.7	169	0.51	3.35	12.4	J 5.04	14.7	139	J 442	10.8 J	0.21	0.07	24.3	157
MFE-006	2.01	ر	11.6	157	0.47	3.36		J 4.43	12.7	135	J 421	10.3 J	0.19 J	0.06	22.9	157
MFE-007	2.73	_	11.5	149	0.44	3.11	12.3	J 4.6	12.1	148	J 415	10.1 J	0.177 J	0.08	23.4	140

Bold and shaded cells indicate concentrations greater than the ecolgocial soil screening level (Eco-SSL).

Averaged results have three significant figures applied.

^a For decision units (DUs) with field split and triplicate samples, summary statistics are based on the average of results for the DU. Nondetected values (NDs) are included as half the reporting limits (RLs).

^b Eco-SSL values are presented in the quality assurance project plan (QAPP) (Exponent et al. 2014) and are the lowest of the screening levels adopted by EPA for plants, soil invertebrates, birds, and mammals (USEPA 2010a). dw - dry weight

J - estimated value

mg/kg - milligram per kilogram

Table 5-12a. Summary of Metals Data from < 149-µm Fraction Compared with Available Human Health Screening Levels

	Human Health Soil	A	ADA	R	FDA
Analyte	Screening Level ^a (mg/kg) ^a	Total Number of DUs	Number of DUs > Screening Level	Total Number of DUs	Number of DUs > Screening Level
Aluminum	77,400	142	0	16	0
Antimony	31.3 ^b	142	0	16	0
Arsenic ^c	9.39 ^{b,d}	142	68	16	8
Barium	15,300	142	0	16	0
Beryllium	156	142	0	16	0
Cadmium	70.3	142	0	16	0
Chromium	117,000	142	0	16	0
Cobalt	23.4	142	0	16	0
Copper	3,130	142	0	16	0
Iron	54,800	142	0	16	0
Lead ^e	400	142	21	16	2
Manganese	1,830	142	0	16	0
Mercury	24 ^b	142	0	16	0
Molybdenum	390	142	0	16	0
Nickel	1,550	142	0	16	0
Selenium	391	142	0	16	0
Silver	391	142	0	16	0
Thallium	0.782	142	0	16	0
Vanadium	394	142	0	16	0
Zinc	23,500	142	0	16	0

For decision units (DUs) with field split and triplicate samples, summary statistics are based on the average of results for the DU. Nondetected values (NDs) are included as half the reporting limits (RLs).

ADA - aerial deposition area

mg/kg - milligram per kilogram

RFDA - relict flood plain deposition area

^a Screening level values are from Syracuse Research Corporation (SRC) (2013) and presented in the quality assurance project plan (QAPP) (Exponent et al. 2014).

^b The screening levels for antimony, arsenic, and mercury were adjusted to reflect changes to the default values for those metals as discussed by SRC when developing screening levels for use in EPA's subsurface sediment screen (SRC 2013).

^c Arsenic concentrations adjusted for EPA's default relative bioavailability (RBA) of 60 percent arsenic in soil (USEPA 2012b).

^d The human health screening level for arsenic is based on the 2012 default residential soil screening level for a 1 in 1 million risk level (USEPA 2012b) plus an estimate of the concentration of arsenic in natural background (9 mg/kg).

^e Lead concentrations adjusted for the ratio of site-specific RBA to EPA's default RBA, see Table 5-5.

Table 5-12b. Comparison of Aerial Deposition Area Metals Data from < 149-µm Fraction with Available Human Health Screening Levels

						ADA-035								ADA-021			ADA 018				ADA-008	ADA-006					ADA-168				ADA-161				ADA-155			ADA-157					ADA-145						ADA-135				ADA-128		ADA-125	-1	(mg/kg) ⁵	Screening Level	Decision Unit	
11,300	15,900	21,600	16,200	13,600	17.500	17 900	19,300	13,500	14,000	14,200	4,000	14,500	14 500	13 800	32 600	14 100	12,600	13,400	10,900	18,900	13,000	12,500	15,200	14,400	16,400	15,600	13,100	13,100 J	11,900	10.700	11.200	12,400	8,650	11,400	11,000	16,800	16,100	17,200	14,100	7,540	12,500	12,700	17.300	22 600	11,800	16,800 J	\vdash	16.300	9,130		7,730 J	14.100	8 200	12,500	11,300	9,830		77,400	Aluminum	
			_		+	1 39	-	-	1.57	1.67	4.07	7 57 J	+	162	+	1 27	3.42 J	H	+	H	3.27 J	2.74 J	2.57 J	2.17 J	1.89 J	2.3 J	4.11 J	4.59 J	5.48 J	12.6 J	3.74 J	-	+		4.43 J	_	4	2.46 J	-	3.13 J	10.4 J	3.55 J	3.27 J	121	5.93 J			+	1.27 J	H	_	+	3.74 J	2.96 J	1.71 J	2.01 J		31.3	Antimony ^c	
7.86	16.92	9.18	8.16	5.712	4.086	8 16	5.78	9	5.892	10.14	10.00	16.68	10.08	15.78	7.12	9 12	7 20	9.18	6.3	18.42	12.12	9.3	10.8	8.76	6.96	11.1	16.26	15.72	15.48	19.98	10.26	14.28	11.7	9.12	13.2	15.9	15.9	12.3	18.96	11.88	20.34	13.8	12.6	33 54	13.5	10.02	14.82	11.1	5.418	12.24	5.724	14.52	9.3	13.74	8.28	7.44		9.39	Arsenic ^{c,d,e}	
	214	441	1250	4	4	231	202	16/	4//	518	540	221	217	262	227	103	+	168	182	216	248	171	222	379	247	188	174	216	219	165	215	120	108	214	190			314	138	92.4	155	245	264	225	233	259	225	289	112	249	131	316	109	238	134	140		15,300	Barium	
	0.47	+		0.36	+	0.72	0.56	+	+	0.38	0 0 0	0.477	0 477	0.65	0.00	0.00	0.41	t	0.335		0.5	0.48		0.48	0.61	0.47	0.37	0.4	0.375	+	0.345	-	+	-	0.3		J 0.45	0.33	0.5	0.3	0.48	0.42	0.6	+	+				0.407	0.46	0.265		0.31	-	0.32	0.31		156	Beryllium	
J 3.22	6.92	+	5.66	\dagger	3.56	1 4 02	3.67	3.66	+	6.43	6.43	8 16	2 6	286	2	2.51	6 5.0	H	2.94	J 10	4.87	5.03	J 2.75	5.01	2.85	6.52	J 6.56	9.92	8.31	+	J 6.27		J 5.32	+	J 4.86	6.85	8.57	5.03	8.77	5.33	9.92	J 7.3	6.74	16.3	10.7	J 2.85	7.26	3.86	2.75	J 5.57	2.01	+	5.78		1.71	2.12		70.3	Cadmium	
14	+	J 34.7	24.6	16.6	13.5	127	10.1	13./	+	8.69	+	14.5	3 80	20.3	22.2	32 1	16.5	15.2	14.9	18	25.3	20.8	20.7	14.2	20.8	20	18.2	18	17.4	14.9	18.1	24.1	20.1	20.1	13.8	30.3	17.1	25.1	14.8	16	J 13.7	16.8	+	13.5	17.7	25.8	17.4	21.8	21.2	18.2		J 17.5	12.1	13.9	11.9	13.2		117,000	Chromium	
4.6	6.61	11.8	13.6	5.29	5.65	4.5		4.49	5.64	4.66	4.1.	4 76	0 31	18	0.10	9.04	5.0	5.14	4.4	9.3	6.27	6.25	8.09	5.68	7.6	9.12	5.85	5.99	6.2	4.61	5.72	4 36	5.63	5.29	4.38		J 7.94	8.04	5.26	4.9	3.93	5.92	7.76	7 O. 7	5.74	7.7	5.46	7.73	6.31	6.7	4.48	6.6	3 69	4.86	3.89	4.13		23.4	Cobalt	
14.7	23.4	28.2	42.3	12.8	11.4	9 75	14.1	18.3	22.4	20.2	3 -	33.4 41.7	25 00	6.53	20.2	24.6	20.4	17.8	13.5	34.9	18.7	20.1	33.7	21.3	29.5	22.7	19.9	26.7	23.7	47.8	19.9	17.5	22.3	17.4	16.1	29	26.8	20.5	35.3	21.2	34.9	24.3	23.6	51.7 C2	26 26	17.3	33.8	17.8	19.4	22.1	11.1	18.7	24.6	54.8	11.9	11.5		3,130	Copper	
13,000	17,200	22,300	25,900	16.100	13.900	14 900	14,000	12,400	15,200	12,900	1,000	14,500	10 100	27 200	20,200	24 200	15,000	14,400	12,100	19,900	18,900	15,800	20,000	15,800	19,300	18,000	15,700	14,400	15,300	14.300	13.900	17,200	15,700	14,400	12,400	17,300	17,200	20.500	13,800	13,600	14,000	14,900	18.600	15,400	15,800	H	17,200	18,200	15,600	15,500	12,000	16.500	10,000	13,400	11,700	12,300		54,800	Iron	Soil Concentration by Analyte (mg/kg dw) ^a
212	381	165	178	96	41	215	77 89	243	2 85	245	245	713	179	107	100	115	292	258	187	529	349	272		162	61	354	315	567	496	928	452	340	391	385	321	399	450	300	627	373	772	394	373	747	599	J 191	560	222	387	J 340	163	387	365	427	151	178		400	Lead	h by Analyte (mg/l
449	772	_	4	490	-	722	725	-	-	647	647	67.3 67.3	133	749	500	633	593	645	588	1,650	554	560	J 382	614	427	634	577	625	755	4	659		385	578	667	888	769	765	490	379	H	707	858	-	784	709	297	593	384	736	237		397	559	385	469		1,830	Manganese	g dw) ^a
0.04	0.07	+	0.08	0.04	0.02	0.02	0.02	0.04	0.04	0.05	0.00	0.0433	0.003	0.05	0.03	0.08	0.04	0.0567	0.045	0.1	0.07	0.045	0.03	0.05	0.02	0.05	0.06	0.1	0.11	+	J 0.085	+	0.0667	0.09	0.08	0.09	0.1	0.07	0.1	0.06	J 0.15	0.07	0.08	0.07	0.11	0.06	0.5	0.05	0.0267	0.08	0.04		0.03	0.08	0.03	0.04		24	Mercury ^c	
0.45	0.47	2.3	2.67	1.61	1.89	0.53	2.46	0.46	3.89	3.43	3 0	0.20	3	1 64	0.00	0.00	0.72	0.797	0.725	0.73	0.58	0.665	5.24	3.52	3.88	0.59	0.58	0.64	0.715	0.65	0.57	0.723	0.563	0.745	0.7	0.763	0.61	0.44	0.68	0.45	0.72	0.71	0.7	0.70	0.82	0.845	0.9	0.86	0.517	0.94	0.53	0.777	0.84	0.67	0.81	0.74		390	Molybdenum	
1	16.3	66.4	41.9	17.4	30.3	117	3/.1	27.3	43.7	82.2	20 -	110	27.7	393	47	25.7	12.7	12.8	11.9	J 18.1	21.6	16.2	37.2	25.9	33.6	19.4	14.9	13.2	14.6	11.5	13.8	11.8	13.4	14.6	11.2	23.6	15.1	21	12.1	12.4	9.43	J 13.9	17.3	11 5.	13.7	22.6	13.6	22.2	14.6	19.2	10.6	18.7	9.37	12.1	11.7	11.5		1,550	n Nickel	
Н	0.27	0.535	0.645	0.21	0.25	0.22	0.29	0.78	0.42	0.42	2 5	0.007	0.667	0.223	0.22	0.23	0.23	0.26	0.175	0.41	0.27	0.25	0.93	0.41	0.65	0.25	0.27	0.34	0.505	0.61	0.255	0.383	0.293	0.265	0.28	0.333	0.36	0.26	0.39	0.23	0.57	0.3	0.33	0.32	0.4	0.23	0.36	0.31	0.223	0.29	0.155	0.357	0.36	0.31		0.18		391	Selenium	
J 0.12	0.21	0.525	0.295	0.11	0.26	0 .	+	0.17	+	0.33	1 6	0.02	0.00	0.32	0.443	0.23	0.17	0.153	J 0.09	0.46	0.22	0.18	0.4	0.29	0.33	0.21	0.27	0.42	0.375	1.01	0.275	0.44	0.33	0.39	0.24	0.307	0.31	0.4	0.46	0.24	0.53	0.26	0.34	0.33	0.37	0.165	0.46	0.2	0.207	0.24	J 0.16	0.28	0.28	0.38	J 0.11	0.1		391	Silver	
0.23	0.44	0.345	0.25	0.18	0.18	0.24	+	0.25	0.21	0.25	0.00	0.32	0 30	0.21	0.17	0.40	0.34	0.27	0.225	J 0.46	0.31	0.31	0.31	0.25	0.27	0.36	0.36		0.415	0.77	0.385	0 0.4	+	0.325	0.33	0.37	0.4	0.44	0.52	0.38	Н	J 0.38	0.31	0.65	0.45	0.24		+	0.203	0.32		0.37	0.25	0.31	0.213	0.2		0.782	Thallium	
21.3	25.4	45.2	31.2	25.9	30.5	20.4	27.3	7.97	30.1	0.5	40.5	21.6	40.6	27.7	20 0	47.7	24.5	22.3	19.4	25.5	32.5	29.2	53.5	31.3	46.4	28.1	27.2	J 22.4	26.3	22.8	24.2	25.1	J 29.7	24	20	27.7	24.9	31.6	23.9	23	27.2	23.1	26.5	20.2	26.3	33.5	J 27.8	\dagger	29.1	26	J 21	25.3	19.7	21.1	17.7	18.7		394	Vanadium	
174	343	516	333	162	261	392	2410	207	407	479	440	400	3 -	184	166	179	247	218	174	432	268	245	273	343	295	282	381	514	417	735	347	252	346	302	278	366	428	355	371	235	417	416	346	624	483	218	667	283	199	322	153	291	309	294	121	136		23,500	Zinc	

Table 5-12b. Comparison of Aerial Deposition Area Metals Data from < 149-µm Fraction with Available Human Health Screening Levels

ADA-173	ADA-172	ADA-170	ADA-169	ADA-122	ADA-121	ADA-118	ADA-117	ADA-116	ADA-115	ADA-113	ADA-112	ADA-111	ADA-110	ADA-109	ADA-107	ADA-106	ADA-105	ADA-104	ADA-103	ADA-102	ADA-101	ADA-097	ADA-096	ADA-095	ADA-094	ADA-092	ADA-091	ADA-090	ADA-089	ADA-085	ADA-084	ADA-082	ADA-081	ADA-079	ADA-078	ADA-073	ADA-071	ADA-070	ADA-066	ADA-065	ADA-064	ADA-062	ADA-061	ADA-060	ADA-059	ADA-057	ADA-056	ADA-054	ADA-053	ADA-052	ADA-051	ADA-050	ADA - Primary (continued)	Screening Level (mg/kg) ^b	Decision Unit	
20,300	12,400 J	+	20,000	18,800	22.200	19,400	15,800	14,700	17.500	20,200	24,400	20,500	14,000	14,900	15.600	19,700	16,900	18,900	18,100	19.900	16,600	17,300	16,200	20,400	-	21.800 J	17,900	17,700	20,100	17.500	16 700	16,300	15,100	15,700	16,000	16,500	14,500	21.200	11,900	16,800	17,900 J	19,200	22,200 J	20,600	17.400	18,600	19,700	16.900	19,100	16,100	13,900	23.300	ntinued)	77,400	Aluminum	
1.01	0.58	0.91		0.75	2.27	+		H	1.17	+	0.89			3.91	2.04	1.26	2.13		+	+	3.15	+		1.72		1.56	-	2.32	2.96	2.91	1.58	-	Н	+	2 03	+	2.78	2.8	1.54	4.33	0.88	1.4			1.35		Н	2.22	+			3.67	7 0	31.3	Antimony	
J 6.3	J 6.54 J 3.348	H	Н	J 5.208	11.4	J 8.76		H	J 8.58	t		J 7.38	J 9.12	J 12.42	J 8.04 J 9.12	6.3	J 10.02		J 8.7	+	9.42			J 11.52	J 7.92	J 11.02		J 7.8	J 16.44	13.08	6.92	J 8.46		J 7.44	12.26		J 9.78	J 12.78	6.96	J 12.6	J 8.94	J 7.56	9.18		J 5.868	J 9.12		J 19.56			J 5.712	J 15.18	2	9.39	Arsenic ^{c,d,e}	
	167	196	174	318	380	415	296	230	296	-	-	344	182	245	305		374	349	490	376	218	384	478	340	341	368	299	471	412	454	274	294	220	681	354	284		290	186	207	463	1040	543	287	465	307	415	1270	398	322	801	203	466	15,300	Barium	
J 0.483	0.45	0.5	0.54	0.52	0.54	0.72	0.51	0.44	0.76	0.71		0.52	0.47	0.5	0.577	+	0.485	0.47	0.6	0.52	0.39	0.66	0.68	0.76	0.57	0.58	0.59	0.55	0.77	0.515	0.49	0.505	0.53	0.41	0.40	0.49		0.55	0.46	0.56	0.55	0.465	0.67	0.743	0.46	0.56	0.55	0.47	0.49	0.51	0.46	0.80	0 75 60	156	Beryllium	
1.22	0.42	t	J 0.52	H	J 4.58		3.24	J 1.52	2.89	2.43	2.48	J 2.23	5.18	6.5	J 3.83		4.62	J 1.65	3.4	+	J 2.99	10		J 2.38	1.55	3.1	J 6.16	H	H	J 6.32	3 2.82	2.94		J 7.76	4 53		J 4.23	J 4.21	3.45	J 7.19	2.26	4.71	2.17		J 2.7		J 1.49	J 7.37	J 1.46		7.09	9.9	4 26	70.3	Cadmium	
14.6	J 10.4	14.6	13.4	16.5	25.8	32	J 19	16.8	18.5	10.5	21.3	29.9	20.3	20.4	37.3	18	23.1	12.3	27.3	20.2	22.7	28	16.2	28.9	22.8	16.1	26.4	25.4	23.6	35.8	\dagger	24.1	34.8	19.8	25.1	22.5	23.4	27.6	t	17.7	(2)	J 16	65.5	33.9	30.4	36.8	30.8	15	28.1	27.9	13.6	30.2	1300	117,000	Chromium	
5.94	5.23	7.01	8.09	J 6.79	10	8.47	7.02	5.95	5.96	ς α		9.5	6.34		J 9.68	9.13	J 8.88	5.85	12.7	7.96	7.87		7.26	10.6	7.73	7.09	8.84	8.44	10.9	12.9	9.46 7.63	7.68	8.06	5.85	7.55	6.56	6.66	8.41	6.15	6.68	1	8.13	13.1	13.5	9.47	11.8	8.92	7.98	8.03	8.58	00 !	12.9	600	23.4	Cobalt	
11.5	7.28	12.8	10.3	10.8	25.1	19	16.3	12.6	11.5	17.2	19.4	22.7	20.7	21.9	29.5	18.8	24.1	13.2	24	16.8	20.2	33.7	18.6	19.8	15.9	13.7	23.6	18.2	26.3	31.5	17.0	24.9	19	17.1	15.4	19.1	17.7	21.9	17.4	26.4	21.5	15.3	21.1	46.8	21.2	28.1	16.9	33.1	15.3	25.8	48.2	48.5	100	3,130	Copper	
16,600	13,700	19,400	21,900	16,800	21.700	19,300	16,600	15,800	15,600	19,000	21,400	20,900	15,700	16,200	19.200	20,800	19,100	16,700	25,700	19.200	18.800	19,300	17,400	22,200	19,800	18,100	18,400	19,600	23,000	24,400	21,500	16,500	22,900	13,600	18 900	16,700	18,000	19.100	16,100	16,600	24,200	18,000	25,500	23,700	22,500	23,500	21,200	21.700	18,900	18,100	18,000	21.500	10 000	54,800	Iron	Soil Concentratio
90	70	J 109	69	57	240	192	194	113	143	163	103	120	267	381	148 228	80	235	80	174	127	226	536	364	165	100	182	282	248	331	327	135	194	187	151	256	312	276	245	168	385	167	152	124	478	143	132	85	211	103	415	124	432	7.2	400	Lead	Soil Concentration by Analyte (mg/kg dw) ^a
714	733	572	588	829	1.090	1,250	1,070	J 637	7,180	1,320	1,250	957	548	729	937	850	862	701	1,520	J 762	626	1,340	1,160	J 1,110	756	1,730	889	1,170	1,510	1.490	1,160	627	J 815	659	030	711	726	751	600	901	1,500	1.030	1,530	1,050	1,190	786	1,090	J 1.200	919	808	742	634	800	1,830	Manganese	ka dw) ^a
0.05	J 0.07	0.06	0.03	0.04	0.06	0.06	J 0.06	0.04	0.07	0.07	0.06	0.05	0.09	0.11	0.0633	0.05	0.07	0.06	0.06	0.04	0.07	0.14	0.09	0.06	0.04	0.06	0.08	0.11	0.09	0.11	0.07	0.08	0.07	0.07	0.09	J 0.09	0.06	0.07	0.04	0.08	0.05	0.085	0.04	0.103	0.05	0.05	0.03	0.0267	0.04	0.09	0.03	0.03	000	24	e Mercury ^c	
1.45	0.39	1.27	0.447	0.73	0.82	0.57	0.56	0.47	0.64	0.55	0.53	0.47	0.4	0.76	0.563	1.67	0.46	1.96	0.96	0.54	0.72	1.15	0.66	0.7	0.6	0.61	0.64	0.59	0.74	0.99	0.615	0.725	0.86	2.01	0.74	7 -	0.82	0.66	0.8	0.91	0.99	1.29	0.69	0.923	1.01	0.78	0.66	ω :	0.6	0.78	2.18	1.14	2 74	390	Molybdenum	
J 16	13.4	16.2	21.8	23.4	23.4		14.5	12.9	14	20.4	J 15.8		12.3	17.1	J 34	31.8	19.1	18.4	38.9	17.6	19.3	23.3	16.6	Н	J 20.5	18	J 26.3			J 32.2	2/3	19.8	21.6	27.7	108	19.8	19.3	21.7	16.4	14.9	35.3	25.1	36.9	32.8	30.5	28.2	26.6	41.7	25.3	J 21.3	35.8	35.5) FI)	1,550	n Nickel	
Ľ	0.31	0.21	Н		0.19	+			0.18	+	0.24		0.25	0.42	0.243	0.46	0.215	0.35	0.29	0.22	0.27	0.54	0.31		4	0.41	0.34	0.255	0.33	0.45	0.26	0.345	0.25	0.3	0.4	0.3	0.22	0.33	0.2	0.33	0.3	0.285	0.15	H	+	0.25	Н	0.557	-	L	0.61	0.57	0 3 4	391	Selenium	
0.19	J 0.05	0.22	J 0.0333	0.16	+	0.18		J 0.12	J 0.17	+	0.23	J 0.14	0.28	-	+	+	0.305	0.36	0.15	0.15	+	0.45	0.21		J 0.14	0.26				0.255	0.23	0.185	0.17	0.77	0.34	0.25	0.18	0.24	0.15	0.33	0.12	0.235	0.11		J 0.14		J 0.14	0.38	0.11	0.33	0.34	0.76	0 82	391	Silver	
0.187	0.23	0.19	0.123	J 0.12	0.22		0.23	0.17	0.19	0.2	0.19	0.21	0.27	+	J 0.303	+	J 0.3	0.17	0.25	0.2	0.32		0.28	0.21	0.17	0.3	J 0.32	0.295	0.31	J 0.33	0.235	0.225	0.23	0.2	0.33	0.3	0.31	0.32	0.22	0.38	0.29	0.225	0.3	0.52	0.25	0.26	0.2	0.44	0.21	J 0.41	0.21	0.52	0.22	0.782	Thallium	
31.1	17.9	35.2	J 18.6	25	39.2	28.3	29.3	27.9	24.8	32.1	3 38	J 40.7	29.6	25.1	32.7	31.7	35.6	J 29.5	29.4	31.9	33 33 33	27.9	23.1	32.7	31.6	J 25.5	29.9	T	J 29.1	35.4	28.9	28.9	51.2	29.1	37 1	31.4	J 32.5	37	25.7	J 30.8	H	26.1	J 39.2	H	34.3		33.7	32.4	30.3		26.1	56.6	36.6	394	Vanadium	
178	64.8	371	90.8	169	322	318	228	159	198	1/6	190	184	256	359	289	220	306	213	273	187	250	489	306	186	154	243	339	301	334	327	1 160	203	172	410	244	245	245	270	213	317	256 J	253	214 J	489	229	199	173	489	161	422	447	547	260	23,500	Zinc	

Table 5-12b. Comparison of Aerial Deposition Area Metals Data from < 149-µm Fraction with Available Human Health Screening Levels

											S	Soil Concentration by Analyte (mg/kg dw)	oy Analyte (mg∕kg	dw) ^a								
Decision Unit	Aluminum	Antimony ^c		Arsenic ^{c,d,e}	Barium	Beryllium	т	Cadmium	Chromium	Cobalt	Copper	Iron	Lead	Manganese	Mercury ^c	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc
Human Health Screening Level	77,400	31.3		9.39	15,300	156		70.3	117,000	23.4	3,130	54,800	400	1,830	24	390	1,550	391	391	0.782	394	23,500
ADA - Primary (continued)	inued)																					
ADA-174	18,800	1.05	ر	5.58	317	J 0.43		2.13	10.8	4.65	7.79	13,100	77	728	0.075	1.41 J	13	0.24	0.36	0.14	24.5	195
ADA-175	17,400	0.54	د	4.044	292	0.48	د	0.74	19.6	8.64	14	17,700	83	889	0.03	0.56	28	0.13 J	0.07	0.2	25.2	144
ADA-176	25,900	0.55	د	4.05	373	J 0.67		0.77	31.4	13.8	20.6	24,800	79	860	0.05	0.53 J	54.4	0.15 J	0.06	0.32	36.8	143
ADA-177	15,300 J	0.45	د	5.334	161	0.38		0.48	19.9	9.75	12.9	21,000	72	817	0.05	0.58	22.6	0.13 J	0.05	0.14 J	25.4	99.4
ADA-178	18,400	0.48	د	5.304	160	0.46	د	0.48	16.7	9.17	11.8	21,700	56	580	0.03	0.79	22.2	0.13 J	0.05	0.12	27.9	162
ADA-179	16,800	0.83	د	4.164	226	0.49		1.15 J	11.6	4.91	9.98	15,300	67	627	0.04	1.35	14.1	0.2 J	0.2	0.16	27.8	209
ADA-180	16,000	1.19	د	4.95	502	0.47	د	3.33	13.3	5.87	14.4	16,600	133	713	0.06	2.17	19.8	0.435	0.305	0.205 J		384
ADA-181	15,500	1.18	د	4.938		J 0.4		2.66	11.9	4.96	13.2	14,200	101	706	0.06	2.41 J	17.2	0.38	0.41	0.27	34.2	266
ADA-182	17,800	0.95	د	4.404	325	0.46		3.67	16.9	6.9	18.1	17,300	41	451	0.05	2.26 J	27.5	0.49	0.46	0.15	36.2	240
ADA-183	11,800	2.66	د	7.74	376	0.39	د	11.3	14.2	6.07	26.8	14,000	58	422	0.1	5.72	56.5	2.17	0.94	0.19	48.4	611
ADA-184	14.400	0.91	د	5.148	630	0.38	د	6.54	10.8	6.52	19.5	14,400	85	827	0.04	2.92	27.6	0.41	0.9	0.15	24.4	330

Notes:

Bold and shaded cells indicate concentrations greater than the human health soil screening level.

Averaged results have three significant figures applied.

**Por decision units (DUs) with field split and triplicate samples, summary statistics are based on the average of results for the DU. Nondetected values (NDs) are included as half the reporting limits (RLs).

**Screening level values are from Syracuse Research Corporation (SRC) (2013) and presented in the quality assurance project plan (QAPP) (Exponent et al. 2014).

**Continued on the default values for those metals as discussed by SRC when developing screening levels for use in EPA's subsurface sediment screen (SRC 2013).

^a Arsenic concentrations adjusted for EPA's default relative bioavailability (RBA) of 60 percent arsenic in soil (USEPA 2012b).

^aThe human health screening level for arsenic is based on the 2012 default residential soil screening level for a 1 in 1 million risk level (USEPA 2012b) plus an estimate of the concentration of arsenic in natural background (9 mg/kg).

^aLead concentrations adjusted for the ratio of site-specific RBA to EPA's default RBA, see Table 5-5.

ADA - aerial deposition area

dw - dry weight J - estimated value

Table 5-12c. Comparison of Relict Floodplain Deposition Area Metals Data from < 149-µm Fraction with Available Human Health Screening Levels

Decision Unit A	Aluminum	Antimony ^c	Arsenic ^{c,d,e}	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Iron	Lead	Manganese	Mercury ^c	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium
					•				-			¢	•	•					
vel	77,400	31.3	9.39	15,300	156	70.3	117,000	23.4	3,130	54,800	400	1,830	24	390	1,550	391	391	0.782	394
RFA																			
RFA-001 5,	5,290	9.97 J	12.84	431	0.28 J	8.9	20.5	7.22	138	39,000	414	375	0.36	6.52 J	20.5	0.847	1.8	ر	36.2
	4,550	4.88 J	6.66	471	0.255	6.94 J	15.8	5.76	82.7	24,200	252	330	0.2	6.59 J	15.1	0.505	د	0.275	29.4
RFA-003 4,	4,960	9.31 J	10.68	511	0.26 J	9.83	18.9	6.77	134	33,400	388	387	0.37	6.67 J	18.6	0.81		د	34
	4,630	8.5 J	9.06	560		8.05	17.9	6.07	105	28,600	290	371	0.35	_	17	0.58		د	33.3
	5,310	6.61 J	8.22	446	0.27	6.81 J	17.9	6.43	110	25,900	308	337	2.74	5.43 J	16	0.56	د		31.1
RFB-002 11	11,300	1.99 J	7.5	242	0.5 J	3.2	32.4	8.45	24.1	19,000	159	417	0.08	0.74 J	23.4	0.47	0.31	ے	38.5
	9,810	1.6 J	5.568	144	0.39	2.33 J	24.3	6.74	16.4	16,200	107 J	324	0.0367	0.563 J	17.2	_	د	0.23	30.3
	8,330	0.81 J	3.84	120	0.29	1.5 J	19.6	5.95	12.9	13,900	60	276	0.02	0.45 J	13.8	د	د		27.2
RFC																			
RFC-003 8,	8,770 J	2.71 J	14.4	144	0.375	7.55	20.7	7.43	94.1	16,900	386	326	0.175	0.83	16.6	0.45	0.635	0.315	30
	9,580 J	1.34 J	8.52	115	0.39	4.53	22	7.12	50.8	16,900	199	272	0.08	0.70	16.9	0.28			31.7
	11,500 J	3.03 J	16.32	182	0.54	8.49	24.6	8.28	133	19,800	470	299	0.207	1.09	19.2	0.537		0.363	35.8
	12,400	1.95 J	14.46	152	0.52 J	6.74	25.4	8.04	114	18,600	343	256	0.11	0.8	19	0.39			35.7
	11,200	2.3 J	9	221	0.49 J	6.52	23.6	7.54	91.1	17,700	362	241	0.2	1.01 J	18.3	0.48		د	34.4
RFC-008 10	10,900 J	1.75 J	12.24	136	0.44	7.28	22.5	7.28	113	17,200	339	219	0.19	0.7	16.9	0.37	0.57		31.7
RFD																			
RFD-002 4,	4,420 J	2.92 J	9.66	512	0.23	7.23	14	4.68	54.2	23,000	314	354	0.43	4.42	13.4	0.49	0.56	0.27	29
-003	7,360	3.11 J	11.04	351	0.313	5.7	17.3	5.5	40.2	17,800	307	315	0.167 J	1.51	14.2	0.33	0.373	0.367	29.9
Bold and shaded cells indicate concentrations greater than the human health soil screening level Averaged results have these significant floures applied	ate concentratio	ns greater than the	e human health soil	screening level.															
^a For decision units (DUs) with field split and triplicate samples, summary statistics are based on the average of results for the DU. Nondetected values (NDs) are included as half the reporting limits (RLs).	n field split and to	riplicate samples, s	summary statistics	are based on the av	erage of results for t	he DU. Nondetected	values (NDs) are inc	cluded as half the re	porting limits (RLs).										
"Screening level values are from Syracuse Research Corporation (SRC) (2013) and presented in the quality assurance project plan (QAPP) (Exponent et al. 2014). "The screening levels for antimony, arsenic, and mercury were adjusted to reflect changes to the default values for those metals as discussed by SRC when developing screening levels for use in EPA's subsurface sediment screen (SRC 2013).	om Syracuse Ra mony, arsenic, a	esearch Corporation	on (SRC) (2013) an adjusted to reflect c	nd presented in the or changes to the defai	quality assurance pro ult values for those m	oject plan (QAPP) (E netals as discussed l	xponent et al. 2014). oy SRC when develo	pping screening level	ls for use in EPA's s	ubsurface sediment	screen (SRC 2013								
darsenic concentrations adjusted for EPA's default relative bioavailability (RBA) of 60 percent arsenic in soil (USEPA 2012b)	sted for EPA's d	efault relative bioa	vailability (RBA) of	60 percent arsenic	in soil (USEPA 2012	b).													
*Lead concentrations adjusted for the tratio of site-specific RBA to EPA's default RBA, see Table 5-5.	d for the ratio of	site-specific RBA	to EPA's default RE	3A, see Table 5-5.						Q	9								
dw - dry weight																			
mg/kg - milligram per kilogram	<u> </u>																		